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ABSTRACT

We propose a Machine Learning (ML) assisted procedure to extract Vertical Cavity Surface Emitting Lasers
(VCSELs) parameters from Light-Current (L-I) and S21 curves using a two-step algorithm to ensure high accu-
racy of the prediction. In the first step, temperature effects are not included and a Deep Neural Network (DNN)
is trained on a dataset of 10000 mean-field VCSEL simulations, obtained changing nine temperature-independent
parameters. The agent is used to retrieve those parameters from experimental results at a fixed temperature. Sec-
ondly, additional nine temperature-dependent parameters are analyzed while keeping as constant the extracted
ones and changing the operation temperature. In this way a second dataset of 10000 simulations is created and
a new agent in trained to extract those parameters from temperature-dependent L-I and S21 curves.

Keywords: Vertical Cavity Surface Emitting Lasers, Machine Learning, Deep Learning,Parameters Extraction.

1. INTRODUCTION

VCSEL have been accurately described by a number of computationally effective models that have been developed
in recent years, many of them being also available in commercial software aimed at simulating VCSEL sources
as a single component or as part of larger optoelectronic systems. The complexity of these models, generally
including a description of carrier and photon dynamics with temperature dependent effects, is a crucial element
for accuracy of their result. Unfortunately, accurate results also need the proper setting of numerous physical
parameters that must be carefully adjusted in order to faithfully represent the behavior of a real VCSEL source.

The extraction of these unidentified physical parameters from the experimental curves is typically time
consuming and relies on techniques like regression analysis or trial-and-error approaches. In this work, we
suggest an ML-based solution to the problem that can successfully extract the necessary VCSEL parameters from
experimental data. Although for our study we consider the VCSEL model available in the Synopsys OptSim
circuit simulation environment,1 the proposed procedure can be easily adapted to extract the parameters of
different VCSELs and the edge-emitting laser model.

2. VERTICAL CAVITY SURFACE EMITTING LASERS MODEL

The considered VCSEL model, which is accessible as a standard OptSim block, extends the model proposed in,2

including the temporal evolution of the field phase.3 In cylindrical geometry, the number of carriers is expanded
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Parameter Range Value
Current injection ηi 0.4 to 1 0.8
Photons lifetime τp 1.5 ps to 3.5 ps 2.5 ps
Carrier lifetime τn 1.5 ns to 3.5 ns 2.5 ns
Gain coefficient g0 25 000 s−1 to 75 000 s−1 50 000 s−1

Carrier transparency number N tr 0.5 × 106 to 1.5 × 106 1 × 106

Gain saturation factor ε 3 × 10−7 to 6 × 10−7 5 × 10−7

Overlap coeff. (N0 – S) γ00 0.75 to 1 1
Overlap coeff. (N0 – S) γ01 0.2 to 0.5 0.38
Diffusion parameter hdiff 7.5 to 22.5 15

Table 1: Parameters investigated and variation ranges for generating 1st dataset at 25 °C.
Last column values were obtained from the DNN analysis and were used for the generation of the 2nd dataset.

Parameter Range
Gain coeff. parameter ag0 −0.6 to −0.2
Gain coeff. parameter ag1 1 × 10−3 K−1 to 3 × 10−3 K−1

Gain coeff. parameter ag2 3 × 10−7 K−2 to 3 × 10−8 K−2

Gain coeff. parameter bg0 0.5 to 3
Gain coeff. parameter bg1 −5 × 10−3 K−1 to −2 × 10−3 K−1

Gain coeff. parameter bg2 1 × 10−5 K−2 to 3 × 10−5 K−2

Transparency number param. cn0 −0.5 to −2
Transparency number param. cn1 4 × 10−3 K−1 to 1.2 × 10−2 K−1

Transparency number param. cn2 3 × 10−6 K−2 to 1.2 × 10−5 K−2

Table 2: Parameters investigated and variation ranges for generating the 2nd dataset.

in the Bessel series, and the first two terms, N0 and N1, are evaluated using4
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Equations (1-6) describe then the temporal evolution of the carriers N0 and N1, the photons number S and the
phase ϕ in a mean field approximation. In Eqs. (1-4), I is the injected current, q is the electron charge, I l is the
leakage current, ϕ100 and ϕ101 are the overlap coefficient between the expanded carrier terms and the optical field,
β is the spontaneous emission coefficient, and α is the linewidth enhancement factor. With the fitting parameters
indicated in Eq.s (5-6),2 a phenomenological representation of the gain G and the carrier transparency number
Nt is introduced to model the temperature T dependency of the VCSEL behavior. Additional parameters defined
in Eq.s (1-6), the objective of the ML study, are defined in Tables 1 and 2.

3. RESULTS AND CONCLUSION

The extraction of the 18 parameters given in Tables 1 and 2 is the main goal of the our analysis. Executing the
study in two steps reduces its complexity and requires the training of two smaller ML agents, mostly using a
DNN architecture with three hidden layers and 10 neurons per layer.5 ReLU served as the activation function



and Mean Square Error (MSE) served as the loss function in the proposed DNN model. The DNN model is set
up for 100 training steps with 0.01 as the default learning rate. The percentages of the training and test sets are
70% and 30%, respectively, of the entire dataset.
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Figure 1: Relative prediction error of 1st agent for the nine considered parameters.

The initial DNN agent is used to extract the parameters listed in Table 1 and is trained on the data obtained at
a constant temperature. The parameters appearing in Table 1 are changed to their central values of the suggested
ranges, while all other parameters are left at their default values, as indicated in OptSim. In specific, a dataset of
10 000 simulations is created at the constant temperature of 25 °C, changing the values of the parameters listed
in Table 1 and keeping all other parameters fixed. The dataset contains 16 instances of the L-I curve for each set
of parameters, generated for linearly spaced injected currents I in the 1mA to 25mA. Furthermore, responses to
small-signal modulation responses are calculated at 6mA, 12mA, 18mA, and 24mA; for each curve, 16 samples
are recorded, at frequencies that are logarithmically spaced between 10 kHz and 50GHz. The relative predicted
errors for the nine parameters considered by this agent are presented in Fig 1; the most critical parameter is γ00,
with a relative error of approximately 20%, while for ηi, g0, γ01, and hdiff the relative error is well below 10%.

The trained agent is used to extract the randomly generated parameters used in an additional set of simula-
tions used as reference; the extracted values, listed in the last column of Table 1, are kept constant in the second
analysis. In a real-case scenario, this additional data would be obtained from experimental measurements. The
second DNN agent is trained using L-I curves calculated at different temperatures changing the parameters listed
in Table 2 all of which introduce a dependence of gain and transparency carrier number with temperature. The
best values for those parameters can subsequently be determined using the experimentally collected data by a
second ML agent. For the second study, a new dataset of 10 000 simulations is created. It contains data from four
L-I curves derived at 10 °C, 25 °C, 40 °C, and 55 °C and corresponding S21 curves; the relative predicted errors
for the nine parameters considered by this agent are presented in Fig 2. While the relative errors are between
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Figure 2: Relative prediction error of 2nd agent for the nine considered parameters.

18% and 47%, the set of values extracted from the first and second agents allows one to obtain an excellent
approximation of the L-I and S21 curves of the reference case.

4. CONCLUSION

We described a DNN based assisted procedure to extract fundamental VCSELs parameters from L-I and S21
curves. The two-step procedure focuses first on the extraction of temperature-independent parameters and
then on the determination of the temperature dependent ones. The proposed approach can also be applied to
edge-emitting lasers without significant changes.
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