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An SIR model with viral load–dependent transmission

Rossella Della Marca∗1, Nadia Loy†2, and Andrea Tosin‡2
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Abstract

The viral load is known to be a chief predictor of the risk of transmission of infectious diseases. In this work,
we investigate the role of the individuals’ viral load in the disease transmission by proposing a new susceptible–
infectious–recovered epidemic model for the densities and mean viral loads of each compartment. To this aim,
we formally derive the compartmental model from an appropriate microscopic one. Firstly, we consider a multi–
agent system in which individuals are identified by the epidemiological compartment to which they belong and by
their viral load. Microscopic rules describe both the switch of compartment and the evolution of the viral load.
In particular, in the binary interactions between susceptible and infectious individuals, the probability for the
susceptible individual to get infected depends on the viral load of the infectious individual. Then, we implement
the prescribed microscopic dynamics in appropriate kinetic equations, from which the macroscopic equations for
the densities and viral load momentum of the compartments are eventually derived. In the macroscopic model,
the rate of disease transmission turns out to be a function of the mean viral load of the infectious population.
We analytically and numerically investigate the case that the transmission rate linearly depends on the viral
load, which is compared to the classical case of constant transmission rate. A qualitative analysis is performed
based on stability and bifurcation theory. Finally, numerical investigations concerning the model reproduction
number and the epidemic dynamics are presented.

Keywords: Boltzmann–type equations, Markov–type jump processes, epidemic, basic reproduction number, viral
load, qualitative analysis

Mathematics Subject Classification: 35Q20, 35Q70, 35Q84, 37N25

1 Introduction

The route of transmission of many infectious diseases is given by social contacts among individuals. The virus
shed by an infectious individual may be transmitted to a healthy one during an encounter, so that the disease also
develops in the latter. There is evidence that the quantity of virus carried by the infectious individual determines
the occurrence or not of the transmission: as it is reasonable to expect, higher is the viral load of the infectious
individual higher is the probability of transmitting the infection. For example, the quanta emission rate (ERq)
measures the number of quanta (a quantum is the dose of airborne droplet nuclei required to cause infection in 63%
of susceptible persons) into the air per time unit. The ERq for respiratory diseases (including SARS–CoV–1, SARS–
CoV–2, MERS, measles virus, adenovirus, rhinovirus, coxsackievirus, seasonal influenza virus and Mycobacterium
tuberculosis) has been estimated as directly [resp. inversely] proportional to the viral load in sputum [resp. the
infectious dose] [23]: a more contagious strain would have higher ERq values through a higher median viral load
and/or a lower infectious dose. The viral load is also the chief predictor of the risk of sexually–transmitted infections,
like HIV/AIDS [25, 27].

In the mathematical epidemiology community, the awareness of the importance of the viral load in the dynamics
of infectious diseases has recently led to the development of epidemic models that explicitly incorporate such a
microscopic trait [2, 8, 19, 20]. Specifically, in the paper [19] the authors propose a modelling framework through
kinetic equations in which individuals are characterized by a discrete label and by their viral load; then, a prototype
epidemic model is introduced in order to illustrate the impact of individuals’ viral load on test–and–isolate activities.
This work is extended in the paper [20], where the authors propose a kinetic model for the spread of an infectious
disease on a graph, the nodes here representing different spatial locations. By following the wake of papers [19, 20], in
the paper [8] the authors introduce a compartmental susceptible–infectious–isolated–recovered model, in which the
individual viral load evolves according to appropriate microscopic rules and determines the probability of isolation
of infectious individuals.
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To the best of our knowledge, the first epidemic model that incorporates the role of viral load in the disease
transmission term has been proposed by Banerjee et al. [2]. In the paper [2] an immuno–epidemiological model is
introduced, where the number of susceptible people depends on the number of infectious people through the initial
viral load acquired during the interactions. More precisely, according to the model [2], the growth in the number
of infectious individuals increases the initial viral load, and provides a switch from the first stage of the epidemic
where only people with weak immune response can be infected to the second stage where also people with strong
immune response can be infected.

In the present work, we investigate how the viral load of infectious individuals affects the probability of disease
transmission, and the consequent epidemic dynamics, by relying on the modelling framework of kinetic equations
for multi–agent systems. Kinetic theory and Boltzmann–like equations have proved to be a very effective tool to
enhance the description of infectious diseases dynamics, by allowing the incorporation in the model of not only the
role of viral load [8, 19, 20], but also that of: social structure and wealth distribution within the host population
[3, 9, 10, 28], contact heterogeneity [11, 22], implementation of lockdown measures [1] and spatial propagation of
the infection [4, 5, 20]. Specifically, we follow the approach of the papers [8, 19, 20], by starting from a detailed
description of the microscopic dynamics of the disease spread, microscopic dynamics that is shared by all the
individuals (also called the agents) that are assumed to be indistinguishable. Then, we introduce suitable kinetic
equations that give a statistical portrait of the agents of the system by following exactly the prescribed microscopic
rules. Eventually, from the kinetic equations we derive a macroscopic model for the aggregate description of the
system that naturally inherits the details of the microscopic dynamics.

We assume that the individuals are characterized by a double microscopic state: a label, that denotes the
epidemiological compartment to which they belong, and a physical quantity that is chosen to be the individual
viral load. The microscopic dynamics is described in terms of microscopic interactions that allow the viral load to
evolve and by the means of Markovian processes ruling the switch of compartment. We consider a basic susceptible–
infectious–recovered (SIR) compartmental structure and assume that the mechanism of disease transmission (leading
the healthy individuals to become ill) depends on the viral load of the infectious individuals.

The rest of the manuscript is organized as follows. In Section 2, we present our multi–agent system and the
microscopic dynamics. Then, we revise the modelling framework proposed in the paper [8] in order to derive the
macroscopic compartmental model including the role of viral load in the rate of disease transmission. In Section
3, we perform a qualitative analysis of the proposed model by determining the equilibria and investigating their
stability in terms of the basic reproduction number R0. In Section 4, some numerical simulations of the macroscopic
model are performed: both the reproduction number and the epidemic temporal dynamics under the assumption
of viral load–dependent rate of disease transmission are compared with those under the classical assumption of
constant rate of disease transmission. Finally, in Section 5, we draw some conclusions.

2 The mathematical model: from a multi–agent system to compart-
mental macroscopic equations

Let us consider an infectious disease spreading among individuals as a consequence of social contacts. Individuals
are modelled as agents of a multi–agent system and characterized by a microscopic state. In particular, the agents
are divided into disjoint compartments depending on their state of health with respect to the disease. Moreover,
they are characterized by a physical quantity named viral load, that represents the quantity of viral particles present
in the organism.

2.1 The microscopic model

At any time t each agent of the system is characterized by a microscopic state (x, v), where x ∈ X is a label that
takes into account the epidemiological compartment to which the agent belongs, and v ∈ [0, 1] is a normalized
measure of the individual’s viral load, being v = 1 the maximum observable value.

The evolution of both the label and the viral load may be described by the means of microscopic stochastic
processes, that can be expressed through Markovian processes [8], namely through transition probabilities

P ((j, v) → (i, v′)) ,

that is the conditional probability for an agent to change microscopic state from (j, v) to (i, v′), with (j, v), (i, v′) ∈
X × [0, 1]. In general, the viral load of an individual may change both simultaneously to and independently of the
switch of compartment. In the second case, we consider transition probabilities for the mere evolution of the viral
load of an individual in class i ∈ X that we denote by

Pi(v → v′) = P ((i, v) → (i, v′)) ,

with v, v′ ∈ [0, 1].
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Instead, if only the compartment changes, then we denote by P (i → j) the probability for an agent to switch
from the compartment i to the compartment j.

2.1.1 The compartmental structure

At any time t the agents, labelled with x ∈ X , are divided in the following disjoint epidemiological compartments:

• susceptible, x = S: individuals who are healthy but can contract the disease. The susceptible population
increases by a net inflow, incorporating new births and immigration, and decreases due to disease transmission
and natural death;

• infectious, I: individuals who are infected by the disease and can transmit the virus to others. Infectious
individuals arise as the result of new infections of susceptible individuals and diminish due to recovery and
natural death;

• recovered, x = R: individuals who have recovered from the disease after the infectious period. They come
from the infectious compartments I and acquire long lasting immunity against the disease. Recovered people
diminish only due to natural death.

Specifically: susceptible individuals have v ≡ 0; once infected, an individual’s viral load increases until reaching
a peak value (that varies from person to person) and then gradually decreases, see e.g. the representative plot
of SARS–CoV–2 viral load evolution given in the paper [7], Fig. 2. Hence, for mathematical convenience [8], we
assume that members of the class I are further divided into:

• infectious with increasing viral load, x = I1;

• infectious with decreasing viral load, x = I2.

Note that new infections enter the class I1, while recovery may occur only during the stage I2. Finally, after the
infectious period, recovered individuals may still have a positive viral load which however definitively approaches
zero, as live virus could no longer be cultured (see e.g. the studies [7, 17] on COVID–19 viral shedding).

Also, since our model incorporates birth and death processes, we introduce the following two auxiliary compart-
ments: individuals that enter the susceptible class by newborn or immigration, x = B, and individuals who die of
natural causes, x = D. We assume that members of the class B have v ≡ 0, while those of the class D retain the
viral load value at the time they died. Individuals can switch from the class B to the class S with frequency λb

and probability P (B → S) = b/ρB(t). The quantity ρB(t), that will be defined later, measures the size of the class
B at time t. Moreover, all the living individuals can die, thus moving to the class x = D, with frequency λµ and
probability P (i → D) = µ, being i ∈ {S, I1, I2, R}.

2.1.2 Evolution of the viral load

Let us now focus on the mathematical modelling of the evolution of an individual’s viral load v. We distinguish the
two following cases when v changes over time: i) a susceptible individual, having v = 0, acquires a positive viral
load (and gets infected) by interaction with an infectious individual; ii) the viral loads of infectious (I1, I2) and
recovered (R) individuals evolve naturally in virtue of physiological processes.

Given an agent labelled with S, then the necessary condition for acquiring a positive viral load is an encounter
with an infectious agent (I1 or I2). Therefore, we model the disease transmission process as a binary interaction,
thus relying on the typical tools of kinetic theory [24]. Let us denote by λβ > 0 the frequency of these interactions.
Increasing [resp. decreasing] λβ corresponds to increasing [resp. reducing] encounters among people: the lower λβ

the more strengthened social distancing.
By interacting with an infectious individual carrying viral load w > 0, a susceptible individual does or does not

get infected. In the first case his/her viral load after the interaction (say, v′) is positive: v′ > 0; in the second case
it remains null: v′ = 0. Specifically, we consider the following microscopic binary interaction rule:

v′ = Tνβ
v0, w′ = w,

where Tνβ
is a Bernoulli random variable of parameter νβ = νβ(w) ∈ (0, 1) describing the case of successful

transmission of the disease (Tνβ
= 1) and the case of contact without transmission (Tνβ

= 0). It seems us reasonable
to assume that νβ(w), that we name transmission function, is a non–decreasing function of w, the viral load of the
infectious individual.

We assume that new infected individuals enter the class I1 and they all acquire the same initial viral load,
v0 (that can be interpreted as an average initial value). We remark that this binary interaction process causes
simultaneously a change of the microscopic state v and a label switch, because as soon as v becomes positive, i.e. if
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Tνβ
= 1, the susceptible individual switches to the class I1. In terms of transition probabilities for the susceptible

individual, this can be expressed as

P ((S, v) → (I1, v
′)) = νβ(w)PS(v → v′), PS(v → v′) = δ(v′ − v0),

given an encounter of the susceptible individual with an infectious one (belonging to either I1 or I2) carrying viral
load w and for whom P ((i, w) → (i, w)) = 1, i ∈ {I1, I2}.

Infectious and recovered individuals cannot change their viral load in binary interactions, but the evolution
reflects physiological processes. Starting from the initial positive value v = v0, the viral load increases until
reaching a given peak value and then it decreases towards zero. In this framework, the microscopic state v varies as
a consequence of an autonomous process (also called interaction with a fixed background in the jargon of multi–agent
systems [24]). Specifically, given an agent (I1, v), namely an infectious individual with increasing viral load, we
consider a linear–affine expression for the microscopic rule describing the evolution of v into a new viral load v′:

v′ = v + ν1(1− v). (1)

The latter is a prototype rule describing the fact that the viral load may increase up to a certain threshold normalized
to 1 by a factor proportional to (1− v). In particular, ν1 ∈ (0, 1) is the factor of increase of the viral load.

Similarly, given an agent (I2, v) or (R, v), namely an infectious individual with decreasing viral load or a recovered
individual, we consider the following microscopic rule for the evolution of v:

v′ = v − ν2v, (2)

being the parameter ν2 ∈ (0, 1) the factor of decay of the viral load. These microscopic processes happen with
frequency λγ > 0, i.e. 1/λγ is the average increase/decay time of the viral load.

We observe here that the introduction of the sub–classes I1, I2 is needed in order to implement the microscopic
rules (1)–(2) in a kinetic equation. These two rules are deliberately generic and very simple: the only aim is to
distinguish individuals based on whether their viral load is increasing or decreasing and to implement two different
factors ν1 and ν2 accordingly.

We assume that individuals in I1 move to the class I2 with frequency λγ and constant probability ν1. In turn,
individuals in I2 move to the recovered class with frequency λγ and constant probability ν2. These choices, that
trace the same assumptions done in the paper [8], allow to derive λγν1 as the rate of transition from I1 to I2, that
is also the increase rate of the viral load. Analogously, the rate of recovery from the disease turns to be λγν2, that
is the decay rate of the viral load. Transitions I1 → I2 and I2 → R are assumed to take place at the same frequency
λγ because they are driven by a common cause, namely the progression of the viral load. Hence, the rate of both
transitions coincides with the progression rate of the viral load. Formally, to describe these microscopic mechanisms
in terms of transition probabilities, we set

PI1(v → v′) = δ (v′ − (v + ν1(1− v))) ,

Pi(v → v′) = δ (v′ − (v − ν2v))) , i ∈ {I2, R},
P ((I1, v) → (I2, v

′)) = ν1PI1(v → v′),

P ((I2, v) → (R, v′)) = ν2PI2(v → v′).

2.2 The kinetic model and the derivation of the macroscopic model

In order to give a statistical description of the multi–agent system, whose total mass is conserved in time, we
introduce a distribution function for describing the statistical distribution of the individuals characterized by the
pair (x, v) ∈ X × [0, 1], as

f(t, x, v) =
∑
i∈X

δ(x− i)fi(t, v). (3)

In (3), δ(x − i) is the Dirac delta distribution centred at x = i, and fi = fi(t, v) ≥ 0 is the distribution function
of the microscopic state v of the individuals that are in the ith compartment at time t. Hence, fi(t, v)dv is the
proportion of individuals in the compartment i, whose microscopic state lies between v and v + dv at time t.

We assume that f(t, x, v) is a probability distribution, namely∫ 1

0

∫
X
f(t, x, v)dxdv =

∑
i∈X

∫ 1

0

fi(t, v)dv = 1, ∀ t ≥ 0.

In general, the fi’s, i ∈ X , are not probability density functions because their v–integral varies in time due to the
fact that individuals move from one compartment to another.
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We denote by

ρi(t) =

∫ 1

0

fi(t, v)dv

the density of individuals in the class i, thus 0 ≤ ρi(t) ≤ 1 and∑
i∈X

ρi(t) = 1, ∀ t ≥ 0.

Then, we define the viral load momentum of the ith compartment as the first moment of fi for each class i ∈ X , i.e.

ni(t) =

∫ 1

0

fi(t, v)vdv.

If ρi(t) > 0, then we can also define the mean viral load as the ratio ni(t)/ρi(t). Instead, ρi(t) = 0 implies necessarily
fi(t, v) = 0. In this case, the mean viral load is not defined because the corresponding compartment is empty.

Starting from the microscopic dynamics illustrated in the previous section, it is possible to formally derive
kinetic equations implementing exactly the microscopic processes (similarly to what done in the paper [8]). We
report here the weak kinetic equations for completeness. Let φ : [0, 1] → R be an arbitrarily chosen test function of
an observable quantity depending on the microscopic physical quantity v. For i ∈ X \ {B,D}, namely the classes
of living individuals, we get:

• susceptible individuals (i = S)

d

dt

∫ 1

0

φ(v)fS(t, v)dv =

∫ 1

0

φ(v)

(
λb

b

ρB(t)
fB(t, v)− λµµfS(t, v)

)
dv

− λβ

∫ 1

0

∫ 1

0

∫ 1

0

φ(v)νβ(
′w)PS(v)fS(

′v, t) (fI1(t,
′w) + fI2(t,

′w)) d′vd′wdv, (4)

where the last term on the r.h.s. accounts for the binary interactions between susceptible individuals and
infectious individuals in either I1 (fSfI1) or I2 (fSfI2), leading to the transmission of the disease,

• infectious individuals with increasing viral load (i = I1)

d

dt

∫ 1

0

φ(v)fI1(t, v)dv = −λµµ

∫ 1

0

φ(v)fI1(t, v)dv

+ λβ

∫ 1

0

∫ 1

0

∫ 1

0

φ(v)νβ(
′w)PS(v)fS(

′v, t) (fI1(t,
′w) + fI2(t,

′w)) d′vd′wdv

− λγν1

∫ 1

0

∫ 1

0

φ(v)PI1(
′v → v)fI1(t,

′v)d′vdv

+ λγ

∫ 1

0

∫ 1

0

φ(v)(PI1(
′v → v)fI1(t,

′v)− PI1(v → ′v)fI1(t, v))d
′vdv, (5)

• infectious individuals with decreasing viral load (i = I2)

d

dt

∫ 1

0

φ(v)fI2(t, v)dv = −λµµ

∫ 1

0

φ(v)fI2(t, v)dv

+ λγν1

∫ 1

0

∫ 1

0

φ(v)PI1(
′v → v)fI1(t,

′v)d′vdv

− λγν2

∫ 1

0

∫ 1

0

φ(v)PI2(
′v → v)fI2(t,

′v)d′vdv

+ λγ

∫ 1

0

∫ 1

0

φ(v)(PI2(
′v → v)fI1(t,

′v)− PI2(v → ′v)fI2(t, v))d
′vdv, (6)

• recovered individuals (i = R)

d

dt

∫ 1

0

φ(v)fR(t, v)dv = −λµµ

∫ 1

0

φ(v)fR(t, v)dv

+ λγν2

∫ 1

0

∫ 1

0

φ(v)PI2(
′v → v)fI2(t,

′v)d′vdv

+ λγ

∫ 1

0

∫ 1

0

φ(v)(PR(
′v → v)fR(t,

′v)− PR(v → ′v)fR(t, v))d
′vdv. (7)
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As far as the disease transmission rate λβνβ(·) is concerned, we consider that it is given by

λβνβ(w) = βwp, (8)

with β positive constant and p ∈ {0, 1}.
The choice p = 0 corresponds to a constant transmission function, while p = 1 reflects the experimental evidence

that higher is the viral load of an infectious individual higher is his/her ability of transmitting the disease. Of course,
formulations different from the linear one could be taken into account. However, since the novelty of this assumption
and in absence of exhaustive field data, the linear formulation can be considered as a reasonable approximation at
a first step.

In order to obtain the equations for the macroscopic densities and viral load momentum of each compartment,
we set φ(v) = vn in (4)–(7), with n = 0, 1, respectively. Since we consider interaction rules that are linear in
v and we assume that νβ(·) is a constant or a linear function, we obtain an exact closed system of macroscopic
equations, without the need of other assumptions. This also implies that at the macroscopic level individuals in
the same compartment may have heterogeneous viral loads that can be different from the mean viral load of the
compartment.

The ensuing macroscopic model is given by the following system of non–linear ordinary differential equations:

ρ̇S = b− β

(
nI1 + nI2

ρI1 + ρI2

)p

ρS (ρI1 + ρI2)− µρS

ρ̇I1 = β

(
nI1 + nI2

ρI1 + ρI2

)p

ρS (ρI1 + ρI2)− λγν1ρI1 − µρI1

ρ̇I2 = λγν1ρI1 − λγν2ρI2 − µρI2

ρ̇R = λγν2ρI2 − µρR

ṅI1 = β

(
nI1 + nI2

ρI1 + ρI2

)p

v0ρS (ρI1 + ρI2) + λγν1(1− ν1)ρI1 − λγν1(2− ν1)nI1 − µnI1

ṅI2 = λγν
2
1ρI1 + λγν1(1− ν1)nI1 − λγν2(2− ν2)nI2 − µnI2

ṅR = λγν2(1− ν2)nI2 − λγν2nR − µnR,

(9)

where we have set (with a slight abuse of notation)

b = λbb, µ = λµµ,

representing the net inflow of susceptibles and the rate of natural death, respectively. Also, for convenience of
notation, in (9) we have denoted with the upper dot the time derivative and omitted the explicit dependence on
time of the state variables.

From system (9) we note that the equations ruling the evolution of the densities of the compartments have an
SIR structure, but the transmission term may depend on the mean viral load of the infectious population. In the
simplest case that p = 0, i.e. νβ(·) is a constant function, we retrieve a classical SIR model with standard incidence
[18], which reduces to

ρ̇S = b− βρS(ρI1 + ρI2)− µρS

ρ̇I1 = βρS(ρI1 + ρI2)− λγν1ρI1 − µρI1

ρ̇I2 = λγν1ρI1 − λγν2ρI2 − µρI2 ,

(10)

by noting that the differential equations for ρR, nI1 , nI2 and nR are independent of the other ones. In such a case,
the analysis of the model turns to be trivial being the equations for the densities independent of the viral load
momentum.

In the present work, we take a step forward by assuming that νβ(·) is a linear increasing function, i.e. by
choosing p = 1 in the system (9). With this choice, the model to be studied eventually reduces to

ρ̇S = b− βρS(nI1 + nI2)− µρS (11a)

ρ̇I1 = βρS(nI1 + nI2)− λγν1ρI1 − µρI1 (11b)

ρ̇I2 = λγν1ρI1 − λγν2ρI2 − µρI2 (11c)

ṅI1 = βv0ρS(nI1 + nI2) + λγν1(1− ν1)ρI1 − λγν1(2− ν1)nI1 − µnI1 (11d)

ṅI2 = λγν
2
1ρI1 + λγν1(1− ν1)nI1 − λγν2(2− ν2)nI2 − µnI2 , (11e)

by noting that the differential equations for ρR and nR are independent of the other ones.
To models (10)–(11) we associate the following generic initial conditions

ρS(0) = ρS,0 > 0, ρi(0) = ρi,0 ≥ 0, ni(0) = ni,0 ≥ 0, i ∈ {I1, I2}. (12)

Equilibria and stability properties of model (11) are investigated in the following section.
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Remark 2.1. If field data concerning a specific disease showed evidence that the probability of disease transmission
non–linearly depends on the viral load, one could implement a non–linear transmission function νβ(·). In such a case,
it could not be possible to obtain an exact closed system of macroscopic equations, but other closure assumptions
could be required. For example, in the paper [8] a monokinetic closure is used, implying that in the derivation of
the macroscopic model all the individuals of a given compartment are assumed to have as viral load the mean value
of that compartment.

3 Qualitative analysis

Let us start by ensuring that the model (11) is mathematically and epidemiologically well posed. It is straightforward
to verify that the region

D =

{
(ρS , ρI1 , ρI2 , nI1 , nI2) ∈ [0, 1]5

∣∣∣ 0 < ρS + ρI1 + ρI2 ≤ b

µ
, nI1 ≤ ρI1 , nI2 ≤ ρI2

}
with initial conditions in (12) is positively invariant for model (11), namely any solution of system (11) starting in
D remains in D for all t ≥ 0.

3.1 The disease–free equilibrium and the basic reproduction number

The model (11) has a unique disease–free equilibrium (DFE), given by

DFE =

(
b

µ
, 0, 0, 0, 0

)
. (13)

It is obtained by setting the r.h.s. of equations (11) to zero and considering the case ρI1 = ρI2 = 0.

Theorem 1. The DFE of model (11) is locally asymptotically stable (LAS) if R0 < 1, where

R0 = β
b

µ

λγν1(λγν1(1− ν2)
2 + λγν2(2− ν2) + µ) + v0(λγν1 + µ)(λγν1(1− ν1) + λγν2(2− ν2) + µ)

(λγν1 + µ)(λγν1(2− ν1) + µ)(λγν2(2− ν2) + µ)
. (14)

Otherwise, if R0 > 1, then it is unstable.

Proof. The Jacobian matrix of system (11) evaluated at the DFE (13) reads

J(DFE) =



−µ 0 0 −β
b

µ
−β

b

µ

0 −λγν1 − µ 0 β
b

µ
β
b

µ
0 λγν1 −λγν2 − µ 0 0

0 λγν1(1− ν1) 0 βv0
b

µ
− λγν1(2− ν1)− µ βv0

b

µ
0 λγν

2
1 0 λγν1(1− ν1) −λγν2(2− ν2)− µ


.

One can immediately get the eigenvalues l1 = −µ < 0, l2 = −λγν2 −µ, while the other three are determined by the
submatrix

J̄ =


−λγν1 − µ β

b

µ
β
b

µ

λγν1(1− ν1) βv0
b

µ
− λγν1(2− ν1)− µ βv0

b

µ
λγν

2
1 λγν1(1− ν1) −λγν2(2− ν2)− µ

 .

The characteristic polynomial of J̄ reads

p(l) = l3 + a1l
2 + a2l + a3,

where

a1 = −Tr(J̄) = −J̄11 − J̄22 − J̄33

a2 =
1

2

(
Tr2(J̄)− Tr(J̄2)

)
=

(
J̄22 − βv0

b

µ

)
J̄33(1−R0) + J̄11

(
J̄22 + J̄33

)
− β

b

µ

λ2
γν1ν2(1− ν1)(2− ν2)

J̄11

a3 = −Det(J̄) = −J̄11

(
J̄22 − βv0

b

µ

)
J̄33(1−R0),
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with R0 given in (14).
In particular, sgn(a3)=sgn(1−R0). Also, R0 < 1 implies that J̄22 < 0, yielding a1 > 0 and a1a2 − a3 > 0.
From the Routh–Hurwitz criterion it follows that, if R0 < 1, then the DFE is LAS. Otherwise, if R0 > 1, then

it is unstable.

The threshold quantity R0 is the so–called basic reproduction number for model (11), a frequently used indicator
for measuring the potential spread of an infectious disease in a community. Epidemiologically, it represents the
average number of secondary cases produced by one primary infection over the course of the infectious period in a
fully susceptible population.

The expression of R0 for model (11) turns out to be much more complex than that for the epidemic model (10)
which assumes a constant disease transmission rate (we investigate more in details this point in the subsection 4.2).
Note that the R0 in (14) depends also on v0, the initial viral load of infectious individuals, a parameter that is not
present in the differential equations for the densities of the compartments, namely (11a)–(11b)–(11c).

Remark 3.1. It would be interesting to investigate how the expression of the basic reproduction number R0 varies
by modifying some assumptions of model (11). For instance, one can consider the case that individuals in one
between the classes I1 and I2 are infected but not infectious. Specifically, one can assume that

• individuals in I1 are not infectious because, for the specific disease, the period of viral load increase can be
approximated to the period of latency of the infection. In such a case, the I1’s play the role of the exposed
individuals E in an SEIR model. This leads to the disappearance of the term βρSnI1 [resp. βv0ρSnI1 ] in the
equation (11b) [resp. (11d)]. The basic reproduction number proves to be

R0 = β
b

µ

λγν
2
1(λγ + µ) + v0(λγν1 + µ)λγν1(1− ν1)

(λγν1 + µ)(λγν1(2− ν1) + µ)(λγν2(2− ν2) + µ)
;

• individuals in I2 are not infectious because they are isolated from the community and receive treatment to
decrease the viral load. This leads to the disappearance of the term βρSnI2 [resp. βv0ρSnI2 ] in the equation
(11b) [resp. (11d)]. In such a case, the basic reproduction number proves to be

R0 = β
b

µ

λγν1(1− ν1) + v0(λγν1 + µ)

(λγν1 + µ)(λγν1(2− ν1) + µ)
.

3.2 The endemic equilibrium

Let us denote by
EE =

(
ρES , ρ

E
I1 , ρ

E
I2 , n

E
I1 , n

E
I2

)
(15)

the generic endemic equilibrium of model (11), obtained by setting the r.h.s. of equations (11) to zero and considering
the case ρI1 + ρI2 > 0. Note that if it were ρEI1 = 0 [resp. ρEI2 = 0], from (11c) it would follow that ρEI2 = 0 [resp.

ρEI1 = 0]. Hence, it must be ρEI1 , ρ
E
I2

> 0.
More precisely, by rearranging equations (11a)–(11b)–(11c)–(11d), one obtains

ρES =
b− (λγν1 + µ)ρEI1

µ

ρEI1 = nE
I1

λγν1(2− ν1) + µ

λγν1(1− ν1) + v0(λγν1 + µ)

ρEI2 = ρEI1
λγν1

λγν2 + µ

nE
I2 =

b− βρES n
E
I1

− µρES
βρES

.

(16)

Substituting the expressions (16) into (11e), one gets nE
I1

as a positive root of the equation

λγν1(n
E
I1 + ν1(ρ

E
I1 − nE

I1))− λγν2(2− ν2)n
E
I2 − µnE

I2 = 0,

that is

nE
I1 = b

λγν1(1− ν1) + v0(λγν1 + µ)

(λγν1 + µ)(λγν1(2− ν1) + µ)

(
1− 1

R0

)
. (17)
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Then, one can make explicit also the other components of EE:

ρES =
b

µ

1

R0

ρEI1 =
b

λγν1 + µ

(
1− 1

R0

)
ρEI2 = b

λγν1
(λγν1 + µ)(λγν2 + µ)

(
1− 1

R0

)
nE
I2 =

µ

β

λγν
2
1(λγ + µ) + v0λγν1(1− ν1)(λγν1 + µ)

λγν1(λγν1(1− ν2)2 + λγν2(2− ν2) + µ) + v0(λγν1 + µ)(λγν1(1− ν1) + λγν2(2− ν2) + µ)
(R0 − 1) .

(18)

For the equilibrium to exist in D all its components must be positive. Hence, the following result can be stated.

Theorem 2. If R0 < 1, then the model (11) has no endemic equilibria. Otherwise, if R0 > 1, then the model (11)
has an un unique endemic equilibrium (15) whose components are given in (17)–(18).

Due to the complexity of the Jacobian matrix of system (11) evaluated at EE, we renounce to study the local
stability of the endemic equilibrium. However, we make use of bifurcation analysis and show that a unique branch
corresponding to the unique endemic equilibrium emerges from the criticality, namely at DFE and R0 = 1. The
emerging EE is LAS in the neighbouring of R0 = 1 for R0 > 1.

3.3 Central manifold analysis

To derive a sufficient condition for the occurrence of a transcritical bifurcation at R0 = 1, we can use a bifurcation
theory approach. We adopt the approach developed in [12, 26], which is based on the general center manifold theory
[15]. In short, it establishes that the normal form representing the dynamics of the system on the central manifold
is, for u sufficiently small, given by

u̇ = Au2 +Bβu,

where

A =
z

2
·DxxF(DFE, β)w2 ≡ 1

2

5∑
k,i,j=1

zkwiwj
∂2Fk(DFE, β)

∂xi∂xj
(19)

and

B = z ·DxβF(DFE, β)w ≡
5∑

k,i=1

zkwi
∂2Fk(DFE, β)

∂xi∂β
. (20)

Note that in (19) and (20) the transmission rate β has been chosen as bifurcation parameter, β is the critical value
of β, x = (ρS , ρI1 , ρI2 , nI1 , nI2) is the state variables vector, F is the r.h.s. of system (11), and z and w denote,
respectively, the left and right eigenvectors corresponding to the null eigenvalue of the Jacobian matrix evaluated
at criticality (i.e. at DFE and β = β).

Observe that R0 = 1 is equivalent to

β = β =
µ

b

(λγν1 + µ)(λγν1(2− ν1) + µ)(λγν2(2− ν2) + µ)

λγν1(λγν1(1− ν2)2 + λγν2(2− ν2) + µ) + v0(λγν1 + µ)(λγν1(1− ν1) + λγν2(2− ν2) + µ)
,

so that the disease–free equilibrium is LAS if β < β, and it is unstable when β > β.
The direction of the bifurcation occurring at β = β can be derived from the sign of coefficients (19) and (20).

More precisely, if A > 0 [resp. A < 0] and B > 0, then at β = β there is a backward [resp. forward] bifurcation.
For our model, we prove the following theorem.

Theorem 3. System (11) exhibits a forward bifurcation at DFE and R0 = 1.

Proof. From the proof of Theorem 1, one can verify that, when β = β (or, equivalently, when R0 = 1), the Jacobian
matrix J(DFE) admits a simple zero eigenvalue and the other eigenvalues have negative real part. Hence, the DFE
is a non–hyperbolic equilibrium.

It can be easily checked that a left and a right eigenvector associated with the zero eigenvalue so that z·w = 1
are

z =

(
0, λγν1

λγν2(1− ν1)(2− ν2) + λγν1 + µ

(λγν1 + µ)(λγν1(1− ν1) + λγν2(2− ν2) + µ)
z4, 0, z4,

λγν1 (2− ν1) + µ

λγν1 (1− ν1) + λγν2 (2− ν2) + µ
z4

)
w =

(
−λγν1 + µ

µ
, 1,

λγν1
λγν2 + µ

,
v0(λγν1 + λµµ) + λγν1(1− ν1)

λγν1 (2− ν1) + λµµ
,w5

)T

,
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Parameter Description Baseline value
b Net inflow of susceptibles 2.11 · 10−5 days−1

µ Rate of natural death 3.18 · 10−5 days−1

βc Constant transmission rate See text
M Factor of transmission normalization See text
βv Viral load–dependent transmission factor βc/M
v0 Initial viral load of infectious individuals 0.01
λγ Frequency of viral load evolution 0.5 days−1

ν1 Factor of increase of the viral load 0.4
ν2 Factor of decay of the viral load 0.2

Table 1: List of model parameters with corresponding description and baseline value.

with

z4 =
K

λγν1 [λγν2(1− ν1)(2− ν2) + λγν1 + µ] +Kw4 + (λγν1 + µ)(λγν1(2− ν1) + µ)w5

w5 = λγν1
ν1 (λγ + λµµ) + v0 (1− ν1) (λγν1 + λµµ)

(λγν1 (2− ν1) + λµµ) (λγν2 (2− ν2) + λµµ)
,

and
K = (λγν1 + µ)(λγν1(1− ν1) + λγν2(2− ν2) + µ).

The coefficients A and B may be now explicitly computed. Considering only the non–zero components of the
eigenvectors and computing the corresponding second derivative of F, it follows that

A = z2w1w4
∂2F2(DFE, β)

∂ρS∂nI1

+ z2w1w5
∂2F2(DFE, β)

∂ρS∂nI2

+ z4w1w4
∂2F4(DFE, β)

∂ρS∂nI1

+ z4w1w5
∂2F4(DFE, β)

∂ρS∂nI2

= β (z2 + v0z4)w1(w4 + w5)

and

B = z2w4
∂2F2(DFE, β)

∂nI1∂β
+ z2w5

∂2F2(DFE, β)

∂nI2∂β
+ z4w4

∂2F4(DFE, β)

∂nI1∂β
+ z4w5

∂2F4(DFE, β)

∂nI2∂β

=
b

µ
(z2 + v0z4)(w4 + w5),

where z2, z4, w4, w5 > 0 and w1 < 0. Then, A < 0 < B. Namely, when β−β changes from negative to positive, the
DFE changes its stability from locally asymptotically stable to unstable; correspondingly, an endemic and locally
asymptotically stable equilibrium emerges. This completes the proof.

4 Numerical simulations

In this section, we numerically investigate how the viral load of the infectious individuals may affect the disease
transmission among the population. At this aim, we compare the basic reproduction number and the numerical
solutions of the macroscopic model (9) in the case of viral load–dependent rate of disease transmission (p = 1) with
those in the classical case of constant rate of disease transmission (p = 0).

Numerical simulations are performed in Matlab® [21]. We implement the 4th order Runge–Kutta method
with constant step size for integrating the system (9). Platform–integrated functions are used for getting the plots.

4.1 Parametrization

Since our investigations are purely qualitative, demographic and epidemiological parameters values do not address
a specific infectious disease and/or spatial area. They refer to a generic epidemic course following an SIR–like
dynamics.

We are considering a model with demography and constant net inflow of susceptibles b. Since travel restrictions
are usually implemented during epidemics, we assume that b accounts only for new births (which can be assumed
to be approximately constant due to the short time span of our analyses). Therefore, the net inflow of susceptibles
is given by

b = br
N̄

Ntot
,
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where br is the birth rate, N̄ denotes the total resident population at the initial time, and Ntot is the total (constant)
system size. Note that Ntot accounts for individuals belonging to all model compartments X (including B, D),
whereas N̄ refers only to living individuals.

We assume an initial population of N̄ = 106 individuals, representing, for example, the inhabitants of a European
metropolis. The most recent data by European Statistics refer to 2020 and provide an average crude birth rate
br = 9.1/1, 000 years−1 [14] and an average crude death rate µ = 11.6/1, 000 years−1 [13]. The total system size Ntot

is set to Ntot = N̄/(1− btmax), in such a way Ntot = N̄ + btmaxNtot is given by the sum of the initial population, N̄ ,
and the total inflow of individuals during the time interval [0, tmax], btmaxNtot. The time tmax is set to tmax = 20
years, that is much larger than the terminal time of our numerical simulations, so ensuring that the compartment
B remains not empty.

As far as the disease transmission rate λβνβ(·) is concerned, we numerically compare the characteristics of the
disease dynamics in the case that νβ(·) depends on the individual viral load (p = 1 in (8)) w.r.t the classical case
that νβ(·) is constant (p = 0 in (8)). Namely, we consider the following simulation scenarios:

Sv viral load–dependent transmission rate, as studied here: λβνβ(w) = βvw (i.e., model (11) with βv in place of
β);

Sc constant transmission rate, as in classical epidemic models: λβνβ(w) = βc (i.e., model (10) with βc in place
of β).

In order to make the two scenarios properly comparable, we make the following considerations. In the case Sc,
the quantity βc represents the rate at which infectious individuals transmit the disease in the unit of time. In the
case Sv, in the microscopic model the same rate is given by βv multiplied by the microscopic viral load w of the
infectious individual Ij , j ∈ {1, 2}; whereas, in the macroscopic model (9) this rate is given by βv multiplied by the
mean viral load of the total infectious population: (nI1 + nI2)/(ρI1 + ρI2). Thus, we assume that the value of βv in
scenario Sv is given by the value βc adopted in scenario Sc rescaled by a normalization factor M ∈ (0, 1):

βv =
βc

M
, (21)

where M represents an average quantity for (nI1 + nI2)/(ρI1 + ρI2). It follows that

βv > βc.

For the other epidemiological parameters we take the following baseline values from the paper [8]:

λγ = 1/2 days−1, ν1 = 1/(5λγ), ν2 = ν1/2, v0 = 0.01.

In particular, the product λγν1 can be interpreted as the inverse of the average time from exposure to viral load
peak, whilst λγν2 as the inverse of the average time from viral load peak to recovery.

All the parameters of the model as well as their baseline values are reported in Table 1.

4.2 Impact of viral load on the reproduction number

In this subsection, we investigate the impact of different modelling assumptions about the disease transmission rate
on the expression and value of the reproduction number of model (9).

At this aim, let us denote by

Rv
0 = βv b

µ

λγν1(λγν1(1− ν2)
2 + λγν2(2− ν2) + µ) + v0(λγν1 + µ)(λγν1(1− ν1) + λγν2(2− ν2) + µ)

(λγν1 + µ)(λγν1(2− ν1) + µ)(λγν2(2− ν2) + µ)
(22)

the basic reproduction number of model (9) in the case of viral load–dependent transmission rate, Sv, that is (14)
with βv in place of β. It is straightforward to verify that in the case of constant disease transmission rate, Sc, the
basic reproduction number of model (9) reads

Rc
0 = βc b

µ

λγν1 + λγν2 + µ

(λγν1 + µ)(λγν2 + µ)
, (23)

(see also the paper [8]).

Remark 4.1. It is difficult to determine a priori the relationship between Rv
0 and Rc

0 for a given set of parameters.
Nonetheless, some considerations can be made in the limit cases:
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Figure 1: Relative difference of the reproduction number of the model (9) in the scenario Sv, Rv
0, w.r.t. the

reproduction number in the scenario Sc, Rc
0, for nine values of the factor of transmission normalization, M ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (as indicated in the legend). Panel (a): Rv
0/Rc

0 − 1 as a function of the factor
of viral load increase, ν1. Panel (b): Rv

0/Rc
0 − 1 as a function of the factor of viral load decay, ν2. Panel (c):

Rv
0/Rc

0 − 1 as a function of the frequency of viral load evolution, λγ . Black dotted lines indicate the corresponding
baseline value. Other parameters values are given in Table 1.

i) λγ ≫ 1, namely the viral load of an infected individual evolves very slowly.
Then, by considering the numerator and the denominator of Rv

0 and Rc
0 as polynomials in λγ and disregarding

the lower order terms, one can approximate

Rv
0 ≈ βv b

µ

ν1(1− ν2)
2 + ν2(2− ν2) + v0(ν1(1− ν1) + ν2(2− ν2))

λγν1ν2(2− ν1)(2− ν2)
, Rc

0 ≈ βc b

µ

ν1 + ν2
λγν1ν2

.

Interestingly, the ratio Rv
0/Rc

0 turns to be independent of λγ .

ii) ν1 → 0, namely all the infectious individuals have constant viral load v0 and do not recover from the disease.
Then, Rv

0 and Rc
0 coincide. Indeed,

Rv
0 = βv bv0

µ2
= βc b

µ2
= Rc

0,

being M = v0 in (21).

iii) ν1, ν2 → 1, namely in the two subsequent evolution steps after the infection, the viral load of the infected
individuals reaches the maximum value 1 and then vanishes, respectively.
Then, the reproduction numbers Rv

0 and Rc
0 read

Rv
0 = βv b

µ

λγ + v0(λγ + µ)

(λγ + µ)2
, Rc

0 = βc b

µ

2λγ + µ

(λγ + µ)2
,

implying that
sgn (Rv

0 −Rc
0) = sgn ((1−M)λγ − (M − v0)(λγ + µ)) .

In such a case, if we further assume that λγ ≫ 1 (see point (i)), then the ratio Rv
0/Rc

0 reduces to

Rv
0

Rc
0

=
1 + v0
2M

.

An overall view of the relationship betweenRv
0 andRc

0 is provided by numerically exploring their mutual position
when the relevant model parameters vary in appropriate ranges. In Fig. 1, we display the relative difference of Rv

0

w.r.t. Rc
0, that is the ratio

Rv
0 −Rc

0

Rc
0

=
Rv

0

Rc
0

− 1,

as a function of the factor of viral load increase, ν1 (Fig. 1a), the factor of viral load decay, ν2 (Fig. 1b), and the
frequency of viral load evolution, λγ (Fig. 1c). The parameters ν1, ν2 and λγ continuously vary in the possible
ranges of values

ν1, ν2 ∈ [0.05, 0.95], λγ ∈ [0.2, 2] days−1. (24)
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Figure 2: Counterplots of the relative difference of the reproduction number of the model (9) in the scenario Sv,
Rv

0, w.r.t. the reproduction number in the scenario Sc, Rc
0. Panel (a): Rv

0/Rc
0 − 1 versus the factor of viral load

increase, ν1, and the factor of viral load decay, ν2. Panel (b): Rv
0/Rc

0−1 versus the factor of viral load increase, ν1,
and the frequency of viral load evolution, λγ . Panel (c): Rv

0/Rc
0 − 1 versus the frequency of viral load evolution,

λγ , and the factor of viral load decay, ν2. The intersection between white dotted lines indicates the corresponding
baseline value. Other parameters values are given in Table 1.

We disregard the extreme cases that ν1, ν2 ≈ 0 and ν1, ν2 ≈ 1, which we consider to be rather unrealistic. Also,
we consider nine values of the factor of transmission normalization M that span the range [0.1, 0.9], as indicated in
the legend of Fig. 1. The baseline values of the other parameters are those given in Table 1. Note that the ratio
Rv

0/Rc
0 is independent of βc, which does not need to be assigned for the moment.

From Fig. 1, we observe that the ratio Rv
0/Rc

0 is a non–monotone convex function of ν1 (Fig. 1a), an increasing
function of ν2 (Fig. 1b) and an almost constant function of λγ (Fig. 1c), independently of M . In particular, as
a function of the factor of viral load increase, ν1, the ratio Rv

0/Rc
0 is minimum for intermediate values of ν1 and

assumes almost the same value at ν1 = 0.05 and ν1 = 0.95. As regards the irrelevance of the frequency of viral load
evolution λγ on the ratio Rv

0/Rc
0, it can be explained by the fact that in the current parameter setting the rate of

natural death, µ, is much lower than the other parameters contributing to the reproduction numbers. From the
expressions (22)–(23), it follows that Rv

0/Rc
0 is almost independent of λγ being the terms multiplied by µ negligible

(see also the point (i) of Remark 4.1).
From Fig. 1 we also observe that the relative difference Rv

0/Rc
0 − 1 decreases by increasing the factor of

transmission normalization M (see (21)), eventually passing from positive to negative values (namely, from Rv
0 > Rc

0

to Rv
0 < Rc

0). Globally, Rv
0 spans from being about 60% lower than Rc

0 (M = 0.9) to 350% higher than Rc
0

(M = 0.1). Also, the sensitivity of Rv
0/Rc

0 to M greatly diminishes when M overcomes the value 0.5. From Fig.
1a [resp. Fig. 1b] we can note that, for a given value of M , the relative difference Rv

0/Rc
0 − 1 can pass through

zero by varying ν1 [resp. ν2], meaning that the mutual position between Rv
0 and Rc

0 changes. In particular, this
happens for M = 0.4 and it is the reason why we choose it as baseline value for the next numerical investigations
in this subsection.

In Fig. 2, we display the counterplots of the relative difference Rv
0/Rc

0−1 as a function of the pairs of parameters
(ν1, ν2), (ν1, λγ) and (λγ , ν2) in the ranges given in (24), by setting M = 0.4. From Fig. 2 we can evaluate the
combined impact on Rv

0/Rc
0−1 of two model parameters among {ν1, ν2, λγ} when the third one is set at the baseline

value. We can note that, independently of λγ , it is Rv
0/Rc

0 − 1 > 0 (that is, Rv
0 > Rc

0) if ν1 > 0.8 or ν2 > 0.6.
Otherwise, if ν1 < 0.8 and ν2 < 0.6, then Rv

0/Rc
0 − 1 can be negative (namely, Rv

0 < Rc
0). In other words, the

reproduction number of the model (9) in the scenario Sv is greater than the reproduction number in the scenario
Sc when at least one between the factor of viral load increase and the factor of viral load decay is high, whilst Rv

0

can be less than Rc
0 when both ν1 and ν2 are medium–low. However, in any case the relative difference of Rv

0 w.r.t.
Rc

0 is rather small: Rv
0 is at most 20% greater or smaller than Rc

0.
The relative difference Rv

0/Rc
0 − 1 does not provide information about the exact values assumed by Rv

0 and Rc
0.

In order to complete the investigations, in Fig. 3 we provide the values of Rv
0 and Rc

0 as a function of one among
the parameters {ν1, ν2, λγ} in the ranges (24) when the other ones are set at the baseline value (Figs. 3a–c), and as
a function of the normalization factor M ∈ [0.1, 0.9] when the other parameters are set at the baseline value (Fig.
3d). Here, we assume that in the case of constant transmission rate the baseline value of the reproduction number
is at the threshold 1, namely

Rc
0 = 1,
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Figure 3: Reproduction number of the model (9) in the scenario Sv, Rv
0 (black solid lines), and reproduction

number in the scenario Sc, Rc
0 (blue dash–dotted lines). Panel (a): Rv

0 and Rc
0 as functions of the factor of viral

load increase, ν1. Panel (b): Rv
0 and Rc

0 as functions of the factor of viral load decay, ν2. Panel (c): Rv
0 and

Rc
0 as functions of the frequency of viral load evolution, λγ . Panel (d): Rv

0 and Rc
0 as functions of the factor

of transmission normalization, M . Black dotted lines indicate the corresponding baseline values. Red x–marks
indicate the intersection points between Rv

0 and Rc
0. Other parameters values are given in Table 1.

which yields βc = 0.10 days−1.
From Fig. 3 we note that, for values of ν1, ν2 and λγ slightly smaller than the baseline value (see Figs. 3a–c,

black dotted lines), it is Rc
0 above the threshold 1 (blue dash–dotted lines) and Rv

0 below the threshold 1 (black
solid lines). This suggests that, for given epidemiological conditions, the disease dynamics predicted by model (9)
can be radically different depending on the modelling assumption about the transmission function νβ(·), namely if
p = 0 or p = 1 in (9). Also, from Fig. 3d, we note that the reproduction number Rv

0 varies from about 3.6 to 0.4
by varying M , by crossing the threshold 1 (that is also the value of Rc

0) for M ≈ 0.36.

4.3 Impact of viral load on the disease dynamics

In this subsection, we numerically explore the impact of different modelling assumptions about the transmission rate
on the disease dynamics predicted by model (9). At this aim, we consider the following illustrative epidemiological
setting.

Initial data are set to the beginning of an epidemic, namely there is a single infectious individual in a totally
susceptible population:

ρS,0 = (N̄ − 1)/Ntot, ρI1,0 = 1/Ntot, nI1,0 = v0ρI1,0, ρI2,0 = nI2,0 = 0. (25)

Here, like in the paper [8], we assume that
Rc

0 = 4,

which yields βc = 0.4 days−1.
We denote by tf the terminal time of our numerical simulations (i.e. time horizon). We want that the tf is a

finite time with a reasonable epidemiological interpretation. To this end, inspired by the approach adopted in the
papers [6, 16], we assume that tf coincides with the end of the first epidemic wave, namely tf is the first time there
is less than one infectious individual in the population:

tf = inf

{
t ∈ R+

∣∣∣∣ρ1(t) + ρ2(t) <
1

Ntot

}
. (26)

In other words, tf is the first time at which ρ1+ρ2 drops to 1/Ntot. Of course, the presence of subsequent epidemic
waves is not excluded, but for the sake of simplicity we focus here on just the first one.
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Figure 4: Numerical solutions as predicted by the model (9) in scenarios Sv (black solid lines) and Sc (blue dash–
dotted lines). Panel (a): compartment size of infectious individuals with increasing viral load, I1. Panel (b):
compartment size of infectious individuals with decreasing viral load, I2. Panel (c): mean viral load of infectious
individuals with increasing viral load, I1. Panel (d): mean viral load of infectious individuals with decreasing viral
load, I2. Dotted lines indicate the corresponding terminal time, as defined in (26). Initial conditions and other
parameters values are given in (25) and Table 1, respectively.

In order to estimate the factor of transmission normalization M , we consider the model (9) in the case Sc and
denote by ρcI1(t), ρ

c
I2
(t), nc

I1
(t), nc

I2
(t) the corresponding solutions for ρI1(t), ρI2(t), nI1(t), nI2(t), respectively.

Then, M is set to

M =
1

tf

∫ tf

0

nc
I1
(t) + nc

I2
(t)

ρcI1(t) + ρcI2(t)
dt,

that is the average value of the mean viral load of the infectious population over [0, tf ]. In such a way, we obtain

M = 0.17,

yielding
Rv

0 = 8.47.

It turns out that Rv
0 is more than 110% higher than Rc

0, suggesting that the epidemic wave predicted in the scenario
Sv could be much more devastating than in the scenario Sc. The other parameter values are given in Table 1.

In Fig. 4, we display the numerical solutions of model (9) in the case of viral load–dependent transmission rate,
Sv (black solid lines), and in the case of constant transmission rate, Sc (blue dash–dotted lines). Specifically, Figs.
4a and 4c [resp. 4b and 4d] report the temporal dynamics of the compartment size of the infectious individuals in
I1 [resp. in I2] and the corresponding mean viral load. Dotted lines indicate the terminal time (26).

In accordance with the values of the reproduction numbers, from Figs. 4a and 4b we observe that in the case
Sv the peak of infectious prevalence (i.e., max(ρI1 + ρI2)) occurs earlier than in the case Sc (at day 36 vs at day
51) and it is also higher (about 770,000 vs 600,000 total infectious individuals). However, the epidemic wave ends
earlier in the case Sv (tf = 176 days) than in the case Sc (tf = 198 days). Cumulatively, the total number of
infections during the epidemic wave are:

CI = Ntot

∫ tf

0

β

(
nI1(t) + nI2(t)

ρI1(t) + ρI2(t)

)p

ρS(t)(ρI1(t) + ρI2(t))dt,

where CI stands for cumulative incidence. We obtain that in the case Sv (β = βv, p = 1) about all the initial
population becomes infected, whilst in the case Sc (β = βc, p = 0) only 6,000 infections are avoided. From a
mathematical point of view, this means that the area under the curve ρI1 + ρI2 changes little by varying the
modelling assumption about the disease transmission rate. In Table 2, we collect some relevant epidemiological
quantities in the scenarios Sv and Sc.
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Scenario max(ρI1 + ρI2)Ntot argmax(ρI1 + ρI2) tf CI
Sv 7.70 · 105 35.6 days 176.4 days 1.00 · 106
Sc 5.96 · 105 50.6 days 198.5 days 9.94 · 105

Table 2: Relevant quantities as predicted by the model (9) in the case of viral load–dependent transmission rate
(scenario Sv, first line) and in the case of constant transmission rate (scenario Sc, second line). First column:
infectious prevalence peak, max(ρI1+ρI2)Ntot. Second column: time of infectious prevalence peak, argmax(ρI1+ρI2).
Third column: terminal time, tf . Fourth column: cumulative incidence at tf , CI. Initial conditions and other
parameters values are given in (25) and Table 1, respectively.

In Figs. 4c and 4d we report the temporal dynamics of the mean viral load of the infectious compartments. As
anticipated in Section 2, we highlight that the mean viral load is reliable when the number of particles is sufficiently
high due to the law of large numbers (see [8] for a more detailed discussion). From Fig. 4c we note that the mean
viral load of the compartment I1 in the case Sv (black solid line) is – for most of the time horizon – higher than
in the case Sc (blue dash–dotted line). At variance, the mean viral load of the compartment I2 is smaller in the
case Sv w.r.t. the case Sc (Fig. 4d). This suggests that the model (9) under the assumption of constant disease
transmission tends to underestimate the mean viral load of infectious individuals in the increasing phase and to
overestimate the mean viral load of infectious individuals in the decreasing phase. From Figs. 4c and 4d we also
note that, at the end of the time horizon when the compartments I1 and I2 are almost empty, the mean viral load
remains approximately constant at a positive value, suggesting that the viral load momentum nI1 [resp. nI2 ] and
the density ρI1 [resp. ρI2 ] go to zero with the same speed.

5 Conclusion

In this work, we propose and analyse an SIR epidemic model with viral load–dependent transmission. The com-
partmental model is formally derived – by the means of kinetic equations – from a stochastic particle description of
the individual course of the disease and the viral load progression. This approach allows the macroscopic model to
inherit the features of the microscopic dynamics related to the heterogeneity of the viral load in the population [8].

The main results are as follows:

• the particle stochastic model provides that, in the binary interaction between a susceptible and an infectious
individual, the probability for the former to get infected depends on the viral load of the latter. In particular,
the transmission function is a non–decreasing function of the viral load of the infectious individual. In the
macroscopic model, the rate of disease transmission turns out to be a function of the mean viral load of the
infectious population;

• we analytically and numerically investigate the impact of different modelling assumptions about the disease
transmission rate on the epidemic dynamics. In particular, we consider the case that the transmission rate
linearly depends on the viral load (scenario Sv), which is compared to the classical case of constant transmission
rate (scenario Sc);

• we determine explicitly the equilibria of the macroscopic model in the scenario Sv and study their stability in
terms of the basic reproduction number (R0) of the model. We prove that a transcritical forward bifurcation
occurs at the disease–free equilibrium and R0 = 1. The expression of the R0 appears to be much more
complex than that in the scenario Sc, by depending – inter alia – on the initial viral load of the infectious
individuals;

• the numerical simulations unravel the relationship between the reproduction numbers R0 in the scenarios Sv

and Sc when the model parameters vary in appropriate ranges. We observe that the mutual position between
the two R0’s is almost independent of the frequency of the viral load evolution, but it may be noticeably
affected by the factors of viral load increase and decay. Interestingly, for given parameter values, it may be
R0 < 1 in scenario Sv and R0 > 1 in scenario Sc, suggesting that the disease dynamics can be radically
different depending on the modelling assumption about the transmission rate;

• we simulate an epidemic wave by assuming R0 = 4 in the scenario Sc and estimating the R0 in the scenario
Sv accordingly. We obtain that in the case of viral load–dependent transmission, the epidemic wave is more
severe, with a higher and earlier prevalence peak, than in the case of constant transmission. Also, the model
in the scenario Sc tends to underestimate the mean viral load of infectious individuals whose viral load is
increasing and to overestimate the mean viral load of infectious individuals whose viral load is decreasing.

The role of viral load in the dynamics of infectious diseases has recently attracted the interest of mathematical
epidemiologists. Our work makes a further step in this line of research, by serving as a proof–of–principle verification
of the impact of the individuals’ viral load on the disease transmission rate and the consequent epidemic dynamics.
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In the proposed framework, the description of the microscopic mechanisms and the heterogeneity of the viral
load at the microscopic level allows one to derive a macroscopic model, which provides for a richer description of
the disease spreading in the host population w.r.t. classical epidemic models. Here we only consider the explicit
influence of the viral load on the transmission mechanism, but, in principle, other switches of individuals between
compartments may depend on the viral load at the microscopic level, and on the mean viral load at the macroscopic
level. Also, more complex situations could be addressed, for example by assuming different initial viral loads of the
infectious individuals that may give rise to a different epidemic scenario.

We underline that our model does not address a specific infectious disease. Of course, in presence of exhaustive
data concerning the progression of the individuals’ viral load, the modelling assumptions can be reformulated or
adjusted according on the particular case. However, even if our model is too simple to provide reliable solutions
to real–world epidemics from the quantitative point of view, our theoretical findings can be used to inform more
complex simulation models developed for specific epidemiological scenarios where more realistic descriptions of the
biological and epidemiological processes are included.
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