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�is work presents a theoretical and experimental study regarding defect detection in a robotic gearbox using vibration signals in
both cyclostationary and noncyclostationary conditions. �e existing work focuses on inferring the health of the robot during
operation with little regard toward the defective element of the components. �is article illustrates the detection of speci�c
element damage of a robotic gearbox during a robotic cycle based on domain knowledge and presents a novel data-driven method
for asset health. �is starts by studying the robotic gearbox, speci�cally its kinematics as a planetary 2-stage reduction gearbox to
acquire the knowledge of the rotations of each component. �e signals acquired from a test bench with four sensors undergo
di�erent acquisition methods and signal processing techniques to correlate the elements’ frequencies. �e work shows the
detection of the arti�cially created defects from the acquired vibration data, verifying the kinematic methodology and identifying
the root cause of failure of such gearboxes. A novel resampling method, Binning, is presented and compared with the traditional
signal processing techniques. Binning combined with Principal Component Analysis (PCA) as a data-driven method to infer the
state of the gearbox is presented, tested, and validated. �is work presents methods as a step toward automatized predictive
maintenance on robots in industrial applications.

1. Introduction

�eprediction of failure inmachines has attracted interest in
the research community targeting shorter downtime, higher
reliability, and lower maintenance cost [1]. �is presented
instruments, such as sensors and computational devices, in
addition to numerous methodologies to unearth the root
cause of failure in machines [2]. With the developments seen
in manufacturing, advanced manufacturing systems became
more complex [3] in conjunction with the rise of robots’
density worldwide [4]. �e installations of industrial robots
increased by 6% to 422,271 in 2019 worth USD 16.5 billion
with a forecast of +12% per year from 2020 to 2022 [5].
Robots causing 20% of downtime in highly automated lines
[6] make their health and their components worthy asset to
be studied.

Kim et al. [7] proposed a phase-based time domain
averaging method to detect faults in gearboxes of industrial
robots. �e method used vibration signals to detect the
failure of the gearbox and not speci�c elements barring the
need of constant angular speed conditions, whichmay not be
present in some industrial robotic cycles. Khalastchi et al. [8]
developed a hybrid, unsupervised online and supervised
o¤ine, to improve fault detection in robotic systems. �e
technique showed better results than the unsupervised
method in most cases but did not reveal the cause of failure
and needs enhancements as the authors suggest. Wing K. To
et al. [9] presented an approach to fault diagnosis using three
sensing modalities during a robotic operation. �e work
showed over 95% accuracy but was limited to a singular
operation within a laboratory environment. Costa et al. [10]
demonstrated classi�cation models in industrial robotic
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arms, using machine learning and statistical methods, to
detect failure. )e article showed various methods per-
forming differently for different joints with the writers
recommending more data to improve the statistical
methods. Mien et al. [11] investigated an algorithm for
robust fault diagnosis in robotic systems in the presence of
modelling uncertainties. )e proposed method was dem-
onstrated to show effectiveness in computer simulations of
3-degree-of-freedom robot. )e research mentioned focuses
on faults of a robot; however, present are investigations on
the components, specifically the power transmission in
robotics. Schempf and Yoerger [12] studied the performance
differences between various robots’ transmissions. )eir
work showed how task performance requirements impact
the transmission selection through data and analytical
techniques. Although the mentioned publication explores
the robot as a monitored asset, work has been done on high-
reduction gearboxes and systems.

)e health of high-reduction ratio gearboxes, a com-
ponent of the power transmission system, was a subject of
investigations. Chang et al. [13] proposed a one-dimensional
fully decoupled network for planetary gearboxes health
status identification. )e method acquired vibration signals
from the gearbox setup to then apply the suggested algo-
rithm with limitations especially with the determination of
the algorithm’s parameters. Barbieri et al. [14] identified the
presence of damage and diagnosed the component by
comparing vibration signals of damaged and undamaged
systems. )e faults were directly verified by the contrast of
energy levels and entropy of the two systems. Interesting
research done by Plöger et al. [15] where the experimental
data correlates partially with the existing research related to
vibration signals and planetary gearboxes. )e experiment
included testing six commodity gearboxes where vibration
data could only be partially explained due to the noticeable
deviations from the mathematical models.

Research work in fault detection is also present in the
field of gearbox elements as in gears and bearings using
vibration signals. Several articles [16–21] study the possi-
bility of detecting damages of gears with vibration data.
Bearings are also present in gearboxes and researches
published various articles on detecting their defects during
operation [22–26].

)e work to be presented in this article is towards the
identification of faults inside a complex cycloidal gearbox
consisting of both bearings and gears in normal robotic
operating conditions. Regarding the previously mentioned
work, the detection of the root cause of failure was absent
with a focus on the gearbox being faulty or not in robotic
cycles in industrial applications. Although the presence of
several components emitting vibration signals is challeng-
ing, the methodology described in this article can reveal the
present defects. )e identification is based on a kinematic
study of each element of the gearbox to infer their specific
operating cycles allowing the knowledge of their respective
faulty frequencies. )ese are then correlated with the ac-
quired and processed vibration data from the four mounted
sensors on the test rig. )e observation of the elements’
defect frequencies corresponds to the detection of damage

on that specific entity of a robot in industrial applications.
Another method using a novel method, Binning, and a
machine learning technique, PCA, is evaluated to detect
faults within the gearbox.

)e contribution of this paper is as follows: a purely data-
driven method to detect defects using the Binning algorithm
and PCA in both cyclostationary and noncyclostationary
conditions. )e method proposed removes the need of an
additional sensor, the tachometer, as the robotic cycle
motion and the vibration signals are correlated.)is method
is compared to traditional methods in terms of frequency
demonstrations. )e kinematic study of this high-precision
gearbox combined with traditional approach allows the
identification of the defect component before failure.

)e structure of this research starts in Section 2 where
the cycloidal gearbox, the Nabtesco RV-42N, and its char-
acteristics are shown as well as the test rig, its components,
and the sensors positioning relative to the gearbox. )e state
of the gearbox being monitored with its faults is also shown.
Section 3 demonstrates the kinematic study of the gearbox
along with the signal processing techniques to be used for
cyclostationary and noncyclostationary conditions. )is
section also provides the expected emitted frequencies of the
vibration signals in the presence of a damaged component
and presents the Binning algorithm with PCA. Section 4
describes the acquired signals, analysis, and discussion
moving into the conclusion, which is found in Section 5.

2. The Gearbox, Its State, and the Test Rig

In this section, the chosen gearbox is described with its
elements from the gears to the bearings and its operating
principle. )e state of the gearbox is discussed, that is, the
damage inflicted to it and the overall health of its compo-
nents. In the final part of this section, the test rig imple-
mentation is illustrated from the operating cycle to the
sensors and signal acquisition kit.

2.1. Nabtesco RV-42N. Knowing that Nabtesco’s RV series
gearboxes have a high share of the global market for in-
dustrial robot joints [27], the adopted gearbox is the Nab-
tesco RV-42N. Figure 1, courtesy of Nabtesco, presents the
mechanical structure of the gearbox with indications of its
elements that achieve a high reduction ratio. In the figure, s
refers to the excentre present and s’ to the overall output
carrier.

It consists of 2-stage reduction where the first is a spur
gear reduction stage from the input pinion that is fixed onto
the motor. )e second is a hypocycloidal reduction stage
that transfers the speed and the amplified torque to the
output side. )e epicyclic gears are offset 180° from one
another to provide a balanced load and negate vibration
generation. In addition to the components mentioned, more
are present as bearings which aid the rotational motion of
the gearbox.

)e Nabtesco RV-42N is a hypocycloidal gearbox with 3
input spur gears and 2 cycloidal disks rotating around pins.
)e nomenclature of the components will be Nabtesco’s as
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reported in Figure 1 in addition to the present bearings
termed Angular Contact Ball Bearing (ACBB), Cylindrical
Roller Bearing (CRB), and Tapered Roller Bearing (TRB).
Table 1 reports the number of elements found in this
gearbox.

2.2..eGearbox’s Condition. In its initial form, the gearbox
is defect free and it is tested to acquire some firsthand
knowledge regarding the emission of vibration signals. )e
Nabtesco RV-42N is shown in Figure 2 where it is dismantled,
and all its elements are visible. Instead of running until failure
and the scope being condition based monitoring, the decision
to make artificial damages was made.

Considering that failure of gearboxes is related 70% of
the time to bearing damages and 26% to gears [28], both are
chosen to be damaged. Due to the complexity to dismantle
the internal components, some elements of the components
were not easily reachable, such as the rollers of the TRBs.)e
artificial damages were made with a milling tool and the
damages were chosen to be on 3 elements: the ACBB’s outer
ring, the CRB’s outer ring, and the RV gear’s undulations
that could represent surface spalling.)e size of the damages
was not quantified, but was visually considered to be suf-
ficient to check if defects can be detected.

)e damages depicted in Figure 3 correspond to specific
frequencies separate from each other so that they can be
easily identifiable. )e damages reported are in order from
left to right as follows: ACBB’s outer ring, CRB’s outer ring,
and disk undulation damage. )ese are well known and
reported in the kinematic study in Section 3.

2.3. Test Rig. )is section provides the necessary informa-
tion regarding the test rig and sensors setup. Figure 4 depicts
the tools that are connected to the test rig where the gearbox

setup is present. It contains the signal acquisition kit in
direct connection to the sensors through cable connections.
)e kit includes the condition monitoring system from SKF
connected to SKF’s sensor on the rig and managing the data
transfer to the computer. )e computer is installed to allow
the visualization and storage of the acquired signals. )e
control panel is used for the correct operation of the gearbox
setup along with the emergency stop button. Both are lo-
cated outside the cage where the actual setup is placed.

Figure 4 describes the components found outside the
safety cage and Figure 5 illustrates the sensor placement for
the signal acquisitions. As shown, there are 5 medium
sensitivity, 100mV/g, accelerometers of which 4 are used for
vibration data acquisition and 1 is used as an emergency stop
in case the vibration signals exceed the predefined limits. On
the other side, there is the tachometer used to acquire the
variations of rotational velocity at the input side. Table 2
presents the sensors used in addition to the gearbox setup’s
parameters that Figure 5 describes.

)e positioning of the 4 vibration sensors, Acc1, Acc2,
Acc3, and Acc4, is done to acquire vibration signals in all
three directions with Acc0, the sensor responsible for the

Case
Pin

Rv gear

Output

S’

Crankshaft
Shaft 2nd reduction 1st reduction

Input gear

Spur gear

Z1

Z2Z3

S

Z4

Figure 1: Nabtesco’s RVN mechanism block [27].

Table 1: Nabtesco RV-42N components.

Element Count (total number)
Input gear 1
Spur gear 3
RV gear 2
ACBBs 2
CRBs 6
TRBs 6
Input gear teeth (Z1) 16
Spur gear teeth (Z2) 50
RV gear undulations (Z3) 39
Internal pins (Z4) 40
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emergency stop. )e mounting of these is of stud mount to
allow the minimal sensitivity deviation [29]. )e tachometer
is placed on the motor side where reflective tape has been

glued to the shaft to allow the correct operation. All these
sensors are directly connected to the signal acquisition kit
through a direct cable connection.

Figure 3: Gearbox artificial damages.

Signal Acquisition Kit

Emergency Button

Computer

Control Panel

Figure 4: Test rig setup.

RV Gear

ACBB Outer Ring

CRB Outer Ring

Spur Gear

Pins

ACBB

Housing

Figure 2: Dismantled nabtesco RV-42N.
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After the description of the sensors’ positioning,
Figure 6 illustrates the gearbox setup in its initial position
(60°) with the noncyclostationary cycle. Cyclostationary
in this article represents a constant rotational speed with
the angle going from 0 to 180 and back again while
noncyclostationary represents variable rotational speed.
)e gearbox is connected to an arm on which 30 Kg has
been added to simulate load. )e operating cycle is 3.3
seconds with 3 seconds of rest time to avoid overheating
during which the arm performs partial rotations (seen in
blue). )e combination of the added weight and the
chosen cycle is within the operational limits of the chosen
gearbox, the Nabtesco RV-42N.

Figures 4–6 describe the test rig setup along with the
gearbox setup used in this experiment. )e overall pa-
rameters are listed in Table 2, indicating the type of sensors,
components, and overall weight.

3. Kinematic Study and Signal Processing

)is section studies the internal motion of the gearbox
indicating each element’s frequency and fault frequency and
presenting general threshold. )e signal processing methods
used for the vibrational data are also discussed. )e infor-
mation provided in this section along with Section 2 pro-
vides adequate basis to go into the results and discussion
section.

3.1. Kinematic Study. )e knowledge of the parameters
listed in Table 1 and Figure 1 allows the calculation of the
overall reduction ratio of the gearbox. In addition to this

ratio (#1), the torque and rotational velocity of each
element is shown in Figure 7 with reference to Figure 1.
)e calculations are done using the Willis equation also
known as the fundamental equation of planetary gears
with Figure 7 expressing the method described by Muller
[30]. )e considered gearbox is treated as a typical 2-stage
planetary reduction gearbox, where the torque amplifi-
cation and speed reduction is calculated throughout the
present components leading to the overall reduction ratio
of 126.

i � 1 + Z2∗
Z4
Z3

� 126 . (1)

)e speed calculations of Figure 7 are done with an input
speed of 126 rpm and input torque of 3 Nmwith no regard to
losses. Each reduction ratio is denoted by i and represents
the rotation relation between the input and output com-
ponent. )e first reduction stage is between the input gear
and the spur gear. )e excentre has the same rotational
velocity as the spur gear and the second reduction stage
occurs between the RV gear and theHollow.)e RV gear has
the same rotational velocity as the Carrier. )e overall re-
duction ratio of 126 represents an ideal output torque of 378
Nm and output speed of 1 rpm. )ese reduction ratios are
used for the frequency calculations of gears and bearings in
Section 3.2.

3.2. Frequency Calculations. )e usage of the vibration
signals and the signal processing techniques allows the
detection and visualization of the frequencies, which are
either fundamental or fault frequencies. )e fundamental
frequencies are related to the operation of the gearbox, such
as the meshing of the gears.)e fault frequencies correspond
to the presence of damage or improper operation of the
gearbox. )e two types of frequencies are described and
reported respectively in the upcoming Sections 3.2.1 and
3.2.2 moving into amplitude thresholds in Section 3.2.3. )e
relative frequencies are reported with reference to the input
rotational speed denoted by the input frequency to the
system or x as multiples of occurrences during one full
rotation of the input shaft.

Acc 1

Acc 2

Acc 4

Acc 3

Acc 0

Figure 5: Vibration sensors placement. (a) Tachometer placement (b).

Table 2: Test rig parameters.

Object Nomenclature/value
Gearbox Nabtesco RV-42N
Motor KEBA KeDrive DMS2-100-0100-60
Weight on arm 30Kg
Test rig mass Approximately 2 tons
Accelerometers 5 SKF CMS2200
Tachometer OBR2500-12GM40-E5-V1
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3.2.1. Fundamental Frequencies. �e fundamental fre-
quencies result from the operation of the gearbox com-
ponents and can be divided in this case to the gear
meshing and the input speed. �e gearbox has 2 reduction
stages and as such will have 2 meshing frequencies. �e
�rst is called Gear Mesh Frequency (GMF) and the second
is Disk Mesh Frequency (DMF) in addition to the input
speed (�).

Due to the cyclical motion, the notations of the fre-
quencies will be in values of x, which refers to �. To simplify,
it can be thought as the number of repetitions occurring
during one full rotation of the input shaft. �e fundamental
frequencies are calculated as follows.

GMF � Z1∗fi � 16∗ x,

DM F �
Z3
i
∗fi � 0.309∗ x,

fi � x.

(2)

�e detection of these frequencies is not only seen as
singularities in the frequency domain, but rather they might
show up as harmonics or sidebands as shown in Figure 8.

After the calculation of the fundamental frequencies, the
following section discusses the fault frequencies which are
either a result from damage or improper operation.

VIBRATION SEVERITY PER ISO 10816

Machine Class l
small

machines

Class ll
medium
machines

Class lll
large rigid
foundation

Class lV
large soft

foundationin/s mm/s

0.01 0.28

0.02 0.45

0.03 0.71

0.04 1.12

0.07 1.80

0.11 2.80

0.18 4.50

0.28 7.10

0.44 11.2

0.70 18.0

0.71 28.0

1.10 45.0

Vi
br

at
io

n 
Ve

lo
ci

ty
 V

rm
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good

satisfactory

unsatisfactory

unacceptable

Figure 8: Frequency spectrum of a single-stage gearbox without
noise.
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Figure 6: Gearbox setup (a). Operating cycle (b).

i 12=3.125i 43=0.975
T1=3 Nm

n1=126 rpm

Tout=–378 Nm

T2=9.375 Nm
n2=–39 rpm

Ts=–9.375 Nm
ns=–39 rpm

T1=375 Nm
n4=0 rpm

Ts’=12.375 Nm
ns’ = 1 rpm

T3=–365.6 Nm
n3= 1 rpm

First reduction stageSecond reduction stage

Input Gear

Hollow

Spur Gear

RV Gear Carrier

Excentre

Figure 7: Willis equation for torque and velocity calculation on Nabtesco RV-42N.
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3.2.2. Fault Frequencies. )e fault frequencies represent
damages of the gearbox, which can show as a new frequency
or modulation of the existing fundamental frequencies. )e
presence of misalignment between the motor and the
gearbox is seen as a high amplitude of x, measured axially, in
case it is radial and 2x, measured radially, if it is axial. Wear
of the gearbox is observed by higher amplitude of the
meshing frequencies and their sidebands. Looseness inside
the gearbox is noticed as higher amplitude of the meshing
frequencies and half harmonics. )ese are some of the
modulations gearbox damages can make.

Regarding bearing damages, they are seen as a rise of new
frequencies regarding the specific damage made. )e
equations used for the identification of these damages are
listed in Appendix A and are calculated after the knowledge
of each element’s rotational velocity. )e ACBB, TRB, and
CRB damages, if present, can be directly correlated to their
respective fault frequencies. )e repetition frequencies of
possible defects on a bearing element are reported in Table 3
in orders of frequency.

)e damages reported in Figure 3 are three and correlate
to 3 modifications in the frequency domain. )e first is the
ACBB outer ring that correlates to 0.135 ∗ xwith the second
damage correlating to 1.88∗ x, which is the CRB outer ring.
)e third is the disk damage that should see an increase of
the DMF-related frequencies.

3.2.3. Frequency .resholds. )e frequencies discussed in
Section 3.2.2 should be visible and propagate to the sensors
regarding normal operations of a bearing. In normal bearing
monitoring operations, the sensor is set closely to the
bearing in operation, which allows the recording of the
vibrations. )e estimation of the damage or health of the
bearing is done from the knowledge of the application, the
bearing, and the amplitude of the vibration signals present.
)ose estimations are made based on experience built from
previous recorded experiments done to understand and
infer the state of bearings from the amplitudes seen. A more
general estimation based on vibration velocity, from the ISO
10816 [31], is shown in the figure below used to infer the
state of the asset monitored.

In our work, as shown in Section 2, the bearings are part
of the 2-stage reduction gearbox which alters the pure
amplitude of the vibration signals of the bearing frequencies
as shown in Section 3.3.1. )e work presented focuses on
identifying the transmitted internal frequencies of the
gearbox to infer normal operations or the presence of a
defect. )e estimation of the defect with the recorded
amplitude could be part of a future work that is discussed in
Section 4. After the acknowledgements of all the vibration
frequencies of the gearbox regarding normal operation and
in the presence of damages, the following section describes
the signal processing used before discussing the results.

3.3. Signal Processing. )is section provides the methods
used in the acquired signals in order to infer the state of the
gearbox. )is first section provides a brief introduction
regarding the signals, their path, some signal processing

techniques, and how a gearbox vibration signal would look
like. Section 3.3.2 presents briefly Binning and PCA which
are, respectively, a signal processing method and a machine
learning method with Figure 9 showing a pipeline of them
combined.

3.3.1. Traditional Approach. An acquired vibration signal
does not represent what is occurring inside the gearbox, but
rather the vibrations at that specific sensor position. )e
reason is that the measured vibrational signal is due to the
combination of source effects, internal vibrations, and
transmission path effects [32] as shown in Figure 10.

)e transmission of the signal from the time domain to
the frequency domain is done using the Fast-Fourier
Transform (FFT). It offers a very important tool when an-
alyzing signals especially the repetitive type where rather
than visualizing peaks in the time domain, they are viewed as
a signal amplitude in the frequency domain.

)e utilization of FFT is essential; however, a problem
rises since it is considered that the sinusoidal signals’ cycles
are of integer value, but the endpoints are not always
continuous. To minimize this effect, a technique called
windowing is used, which reduces the amplitude of the
discontinuities at the boundaries of each finite sequence
acquired by the digitizer [33].

To remove the signals that are not important to the
monitored system and to intensify the frequency range
where the signals needed to be detected lie in, a method
called Enveloping is used. Enveloping used in this work
starts with a bandpass filter on the high-frequency signals
usually representing the natural frequency of the component
in question, after which the signal undergoes some kind of
rectifying then a low-pass filter on the low-frequency signals,
which can also be an anti-aliasing filter [34].)emodulation
that occurs on the signal allows to better detect the source
rather than the effect.

Considering noncyclostationary conditions, order
tracking is a method to evaluate frequencies as orders where
it synchronizes the sampling of input signals to the in-
stantaneous angular position of the machine shaft using a
resampling technique. )e specific implementation on this
setup is done by adjusting the number of samples taken after
measuring the speed on each revolution [35]. Rather than a
constant number of samples per time, this results in a
constant number of samples per revolution and transforms

Table 3: Bearings’ defect frequencies.

Defect location Repetition frequency
ACBB inner ring 0.15∗ x
ACBB outer ring 0.135∗ x
ACBB rolling element 0.11∗ x
CRB inner ring 2.56∗ x
CRB outer ring 1.88∗ x
CRB rolling element 2.01∗ x
TRB inner ring 2.36∗ x
TRB outer ring 1.76∗ x
TRB rolling element 1.82∗ x

Shock and Vibration 7



the analysis to the order domain rather than the frequency
domain.�is allows the visualization of frequencies in terms
of order rather than Hz avoiding variable speed problems.
An example to better explain is found in Figure 11.

In addition to the pure signals, there will also be side-
bands and harmonics due to nonlinearities, amplitude
modulation, and defects. �ese modulations to the signals
can be also due to a forcing frequency which can then be
inferred. Considering a single-stage gearbox with 2 gears, the
spectrum will show the input speed, the meshing of the gears
as the fundamental frequency with sidebands separated by
the input frequency. In addition to that, harmonic signals of
the fundamental meshing will be present as seen in
Figure 11.

To illustrate the methods used, Figure 12 shows the
conditions and steps to obtain the signal visualization re-
quired. �e techniques used allow various representations
where the user can infer the state of the monitored system. In
addition, the processing techniques can be altered, with the
knowledge of the monitored entity, to achieve better results.
�e decision to take these steps in the traditional imple-
mentation is made in reference to [32] and a recent com-
prehensive review [36].

3.3.2. Binning and PCA. Binning is a novel SKF developed
algorithm used in the context of condition monitoring for
partial rotations. It correlates the vibrational signal

Mobility Force X Mobility = VibrationForce

Figure 9: Binning and PCA steps.
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Figure 10: Force and transfer path.
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extracted from an accelerometer and angular data
extracted from an encoder creating angular bins. �ese
angular bins are exploited considering the frequencies
that are of interest by choosing bigger or smaller bins.
Windowing, �ltering, enveloping, and other signal pro-
cessing techniques are incorporated within and can be
used to enhance the results. �en, an FFT is applied after
�ltering to move into the frequency spectrum. It can be
considered as a resampling technique for speci�c ap-
plications. Figure 13 shows the steps in a typical Binning
process starting from the acquisition leading to the
analysis and the implications. Additional information
and full description can be found in the released patent on
this invention [37].

PCA, an unsupervised machine learning technique,
was invented in 1901 by Karl Pearson [38]. It is usually
used as a dimensionality-reduction method where the
components aim to reserve the variance of the data. �e
output is a collection of orthogonal vectors in the di-
rection that best �ts the data. �e �rst vector can be
de�ned as a direction with maximum variance of the

Fixed Sampling

Accelerometer Data

Windowing

Enveloping

Order Tracking

Accelerometer Data
+

Tachometer Data

Constant Velocity Variable Velocity

FFT

FFT

Frequency or Order
Spectrum

Time
Waveform

Frequency or Order
Spectrum

Time
Waveform

Operating Condition
Acquisition Method
Data Processing
Signal Visualization

Figure 12: Signal processing steps.
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Figure 11: Di�erence in frequency spectrum regarding sampling technique for a speed-varying signal.

First vibration signal sampling

Preprocessing of the sampled vibration signals

Binning of the vibration signals

Signal processing done on the vibration
signals within each bin and/or across the bins

Complete FFT

Analysis

Determine the implications of the analysis

Figure 13: Signal processing ¬ow according to the invention.
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projected data and the second has less variance but or-
thogonal to the previous.

�e use of Binning in this work is conducted without
the data from an encoder but by correlating the angular
data from the cycle data that are fed to operate the robotic
cycle. �e full binning method, as explained in the patent,
was not used, but rather partially. �e correlation is based
upon the start of the cycle observed as an increase in
vibration data amplitude, allowing the removal of the key
speed sensor, the tachometer. �e robotic cycle has a
resting phase that corresponds to a period of stop of the
motion and low-amplitude vibration signals. �e increase
in vibration signals’ amplitude refers to the start of motion
and the prede�ned cycle of the robot has then be cor-
related with the vibration data. After this step, FFT is used
to go into the order domain. PCA is a second step in the
pipeline with the �rst 2 principal components used for the
data projection as Figure 9 shows the steps including
Figure 14 and Figure 15.

4. Results and Discussion

�e frequencies obtained from the vibration signals after ap-
plying the signal processing methods are reported. �e results
show both the cyclostationary and noncyclostationary condi-
tions. �e outcomes show the gearbox with and without the
damages; each result is brie¬y discussed.

Starting with the normal operation of the gearbox,
Figure 16 reports the vibration frequencies acquired from
the radial accelerometer Acc1 at cyclostationary condition.
Figure 17 shows the same frequency domain with less clarity,
which is expected when moving into the noncyclostationary
conditions.

After the reporting of the vibration signal acquisitions
shown in Figures 16 and 17, the clarity and presence of
another order, order 8, should be discussed. Regarding the
di�erence in precision between the two �gures, it is reported
back to the di�erence in operation and signal acquisition.

At cyclostationary conditions, the speed is constant
causing the vibrations to have pure repetitive nature when
the signals are acquired. Moving to the noncyclostationary
conditions, the velocity acquisition and its correlation to the
vibration signals is done using order tracking. �e accuracy
of the velocity acquired could be the major factor due to the
presence of a tachometer and high variations of the velocity
in the cycle.

�e presence of order 8 and its harmonics could be
regarding the presence of 8 poles from the motor side and 16
input teeth (Z1). �is combination could be an excitation
causing the vibrations to have a measured order 8 in the
frequency domain.

An example is shown in Figure 14 where the binning
method is used in noncyclostationary conditions. �e result
resembles that of Figure 17, showing the most dominant
frequencies but losing some sharpness in the process. An-
other factor in this process is the correlation and delay
between the vibration signal and the angular data that can be
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improved but the data is still acquired a priori and not actual
data from an encoder. In addition, Binning manipulates the
amplitude and gB is the amplitude nomenclature chosen.

Regarding the damaged gearbox, the results are reported
with a focus on the lower orders of frequencies. �e selected
damages’ frequencies all appear in that �eld and are reported
as before in both cyclostationary and noncyclostationary

conditions. �e veri�cation of damages is the rise of 2 new
frequencies regarding the bearing damages and increase in
vibrations regarding the DMF.

�e results shown in Figure 18 and Figure 19 illustrate
the vibration frequencies acquired from the radial Accel-
erometer Acc1 with damage.�e �gures themselves with the
notations clarify the damages and their modulations onto
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the frequencies. �e damages regarding the bearing saw a
rise of their respective frequencies and the disk showed an
increase of amplitude of its harmonics.

�e �nal process made was using data samples taken
from damaged and not damaged gearbox and passed
through the Binning and PCA pipeline. 100 samples were
acquired for the healthy gearbox and 20 for the damaged.
Figure 15 presents the results and it can be seen that some

samples are clustered with each other. All the damaged
samples are close to each other with 1 healthy sample near
that cluster.

�e results shown proved not only the kinematic study
of the gearbox but also the ability to detect speci�c damages
within in a nonoptimal laboratory operating conditions.
And Figure 17 represents the gearbox in healthy operation
using traditional approaches while Figure 14 is done using
the Binning algorithm. Figures 18 and 19 show the operation
with damage and di�erences between the two gearbox
conditions can be made further than the speci�ed gearbox
damages. Figure 15 shows the pipeline result of Binning and
PCA that shows the ability to have di�erences between the
two operating conditions.

Section 3.1 provided the kinematic study of the
Nabtesco gearbox speci�cally the RV-42N, but it can also
be applied for the other models of the same family. �e
ability to detect damage in both operating conditions was
shown using the de�ned traditional approach. It is quite
an extensive approach and requires knowledge of the
asset being monitored and each of its components motion
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Figure 20: Vibration severity per ISO 10816.

Table 4: Bearings’ variables.

Variables
Number of rolling elements (z)
Diameter of rolling element (dre)

Pitch diameter (dp)
Contact angle (α)

Inner ring rotational velocity (�n)
Outer ring rotational velocity (fout)

Inner ring defect repetition frequency (�rd)
Outer ring defect repetition frequency (ford)

Rolling element defect repetition frequency (Fred)
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but offers the insight for the elements defect frequencies. )e
viability of the Binning method, which is tachometer free,
showed resemblance to the methods with the tachometer and
can be further improved. )e combination of Binning and
PCA to infer the state of the gearbox was demonstrated in
Figure 15 as a nondomain knowledge procedure.

Regarding the work done, improvements regarding the
equipment used can be done as in a more accurate ta-
chometer. )e stability of the system and data acquired
could be improved by considering the vibrational data for
the whole cycle and nonshort windows. Other areas could
have been explored and are open for future work in the field
as a mapping between damage severity and vibration signal
amplitudes. )e work presented a separated system that can
infer the state of the gearbox and then predict the defect
present. A step in this methodology would combine the
Binning and PCA as a first step and if the gearbox is
damaged, the traditional approach would give the damaged
component. )e exploitation of the Binning approach or
similar methods can be studied especially since it can be
done with one less sensor, the tachometer.

Another concept in this area is fault estimation from the
vibration signals’ amplitude and the threshold estimation. A
mapping could be done on this gearbox, from the component-
level defects and the operating conditions to the fault esti-
mation. )at would require a full investigation and testing for
several gearboxes with different operating conditions and
damages. )e results of which could be used to have an es-
timate similar to Figure 20 but with more precise defects. Such
work is needed for faults thresholds and defect size estimations.

An interesting area to explore is the combination of ma-
chine learning methods and domain knowledge where this
work can be used as a first step. An automatic pipeline that can
infer the state and then predict the defect based on sensor data
is an avenue to explore. To aid in this, deep learning meth-
odologies can be used injected with the domain knowledge or a
complete data-driven method can be used.

5. Conclusion

According to the author’s research, until now there is not yet
a commercially available technique that makes it possible to
detect defects in robots during their normal working con-
ditions. Knowing that a defect occurs within a robot a long

time before actual failure, this work was done on vibration
monitoring of a robotic gearbox in order to test the pos-
sibility of defect detection.

)e work is done with the kinematic study of a robotic
gearbox, Nabtesco RV-42N, to understand the vibration
frequencies that it emits during motion and the feasibility of
detecting the defective element. )is work shows a positive
result in vibration monitoring of a robotic gearbox, which
could be a first step in further investigations and work. )e
techniques and equipment used, shown in Sections 2.3 and
3.3.1, are well established and widely available. )e non-
cyclostationary operation conditions of robots have always
been a challenge, but with proper tools, this work has shown
the ability to identify the root cause of damage before failure.

Binning, a tachometer-free method based on angular
data, was presented and the results resemble those of the
traditional approach. Binning was then combined with PCA
to infer the state of the gearbox as healthy or damaged, and
the results presented show a good separation between the
two states. As part of the suggested future work, an auto-
matic machine learning pipeline to infer the state and predict
the defect of the asset can be done creating a commercialized
solution for defect detection in robots.

Appendix

A

)is section provides the necessary equations [39] to cal-
culate the defect frequencies of the bearings. Table 4 provides
the necessary variables and their nomenclature required for
the calculations.

)ese variables allow to calculate the rotation frequen-
cies of the components and then of the repetition frequency
of the defect location using the equations in Table 5.

)en, the repetition frequency of the specific defect
location is calculated using the equations shown in Table 6.
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Table 5: Rotation frequencies’ equations of the cage and rolling element.

Component Rotation frequency
Cage fc � fin/2[1 − dr e/dp∗ cos(α)] + fout/2[1 + dr e/dp∗ cos(α)]

Rolling element fre � dp/dr e(fout − fc)[1 + dr e/dp∗ cos(α)]

Table 6: Repetition frequencies of defective location.

Defect location Repetition frequency
Inner ring fird � z|fc − fin| ± fin
Outer ring ford � z|fc − fo| ± fout
Rolling element fred � 2fre ± fc

)e presence of ± is to signify the sidebands of each repetition frequency.
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14 Shock and Vibration

https://ifr.org/ifr-press-releases/news/robot-density-rises-globally
https://ifr.org/ifr-press-releases/news/robot-density-rises-globally
https://ifr.org/downloads/press2018/Executive%20Summary%20WR%202019%20Industrial%20Robots.pdf
https://ifr.org/downloads/press2018/Executive%20Summary%20WR%202019%20Industrial%20Robots.pdf
https://ifr.org/downloads/press2018/Executive%20Summary%20WR%202019%20Industrial%20Robots.pdf
http://www.nabtescomotioncontrol.com/pdfs/rvn-series.pdf
http://www.nabtescomotioncontrol.com/pdfs/rvn-series.pdf
https://www.nrel.gov/docs/fy14osti/60982.pdf
https://www.nrel.gov/docs/fy14osti/60982.pdf
https://www.iso.org/standard/18866.html
https://www.iso.org/standard/18866.html
http://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
http://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf


[36] W. R. Mohamad Hazwan Mohd Ghazali, “Vibration analysis
for machine monitoring and diagnosis: a systematic review,”
Shock and Vibration, vol. 2021, p. 25, 2021.

[37] A. )omson and V. S. United, States of America Patent,
vol. 10, no. 914, p. 656, 2021.

[38] K. Pearson, “LIII. On lines and planes of closest fit to systems
of points in space,” .e London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 2, no. 11,
pp. 559–572, 1901.

[39] G. Van Nijen, P. Van Dalen, G. Angelov Dimitrov et al.,Noise
and Vibration in Bearing Systems, SKF Reasearch & Tech-
nology Development, 2 edition, 2017.

Shock and Vibration 15


