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Abstract: The aging process is a multifaceted phenomenon that affects cognitive-affective and
physical functioning as well as interactions with the environment. Although subjective cognitive
decline may be part of normal aging, negative changes objectified as cognitive impairment are present
in neurocognitive disorders and functional abilities are most impaired in patients with dementia.
Electroencephalography-based brain–machine interfaces (BMI) are being used to assist older people
in their daily activities and to improve their quality of life with neuro-rehabilitative applications. This
paper provides an overview of BMI used to assist older adults. Both technical issues (detection of
signals, extraction of features, classification) and application-related aspects with respect to the users’
needs are considered.

Keywords: brain–machine interfaces; brain–computer interfaces; electroencephalography; older adults

1. Introduction

The aging of the world’s population is a major health challenge. This is the reason
why new technologies based on human–machine interaction (HMI) or brain–machine
interface (BMI) offer important perspectives to support older adults in their daily activities
and improve their quality of life. As a heterogeneous process, aging refers to people
of 60 years or older and needs to be studied in a comprehensive and multidimensional
perspective that simultaneously considers different components and their interactions, i.e., a
person’s intrinsic capacity, environments, and functional ability. Intrinsic capacity includes
physical and mental functioning such as vitality and locomotor, sensory, cognitive, and
psychological abilities; environment includes home, community, and society; functional
ability integrates intrinsic capacity and how people interact with their environments. These
three components and their domains can help personalize and prioritize care and services
to meet the needs of older people from a comprehensive and person-centered perspective.
In this direction, and according to the World Health Organization [1], addressing these
components would enable the achievement of the Decade of Healthy aging 2021–2030.
This under-researched topic could shed light on the process of describing and improving
intrinsic capacities, the way people interact with their environment and functional abilities.
This would be important for developing person-centered intervention programs to promote
well-being and support patients with physical disabilities and dementia.

With this aim, many engineering tools, such as neurofeedback (NF) and brain–computer
interface (BCI) technologies, have been developed to allow HMI that may be helpful in
detecting possible age changes in healthy individuals and in rehabilitating patients with
physical and cognitive impairments. In particular, recent reviews have emphasized the role
of NF [2] and BCI [3] as countermeasures for the cognitive decline experienced during aging.
For example, older adults with dementia may be assisted in their daily living activities [4].

The aim of this review on older adults is to examine BCI technology based on sur-
face electroencephalogram (EEG), focusing on the intrinsic capacity to detect possible age
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changes and potential effectiveness of cognitive training (CT). We also provide an intro-
ductory tutorial on EEG processing and classification (in the Appendix A), which serve as
fundamental tools for the development of HMI interfaces. Studies addressing these issues
are proving critical to improving the functional abilities and well-being of older people, as
outlined in the World Health Organization’s Guidelines for Healthy Aging [1].

2. Research Methodology

A systematic and comprehensive review of the literature on HMI to support aging has
been applied to find, assess, and interpret significant research outcomes. The following
steps of our research are detailed below: research strategy, inclusion/exclusion criteria,
paper selection, and outcomes.

2.1. Search Strategy

To identify studies on HMI applied to assist older adults in their daily life activities
and to improve their quality of life with diagnostic and neuro-rehabilitative applications, a
systematic search strategy was implemented in the international literature online database
PubMed. We entered the following query terms: (Brain machine interfaces) AND (Ageing),
searching for relevant scientific literature published up to 27 October 2022.

The results of both search queries are presented in the flowchart diagram shown
in Figure 1. The guidelines of the Preferred Reporting Items for Systematic Review and
Meta-Analyses (PRISMA) [5] were followed, adapted to our investigation.

Figure 1. Study selection, following the PRISMA 2020 statement [5].
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Two authors (M.A. and G.E.C.) carried out the study selection process independently.
They identified articles by title, abstract, and full text. Any disagreements were discussed
and resolved. Finally, one author (L.M.) supervised this phase.

2.2. Inclusion and Exclusion Criteria

To guarantee the selection of pertinent articles, we included only studies satisfying the
following criteria:

(a) HMI in older adults;
(b) HMI using EEG signals;
(c) Both healthy aging individuals and subjects with neurocognitive impairment;
(d) Both technical issues (signals detection, feature extraction, classification) and ap-

plicative implications (users’ need, effectiveness in restoration of lost skills, and
rehabilitation).

The following exclusion criteria were adopted:

(a) Studies not using EEG signals;
(b) Subjects not meeting the ”ageing” criteria (mean age: 60 years and older) [6];
(c) Cross-sectional studies without differences between age groups (single-group data

analysis).

2.3. Study Selection

After discussing the eligibility criteria for each study, two authors (M.A. and G.E.C.)
independently analyzed the following information: population and its characteristics,
sample size, procedures, study design, and outcomes. In case of disagreement, a consensus
was reached or the judgment of a third author was sought (L.M.).

2.4. Outcome Measures

This review was conducted to find information about HMI in healthy aging sub-
jects and in patients with neurocognitive disorders. The following information was also
examined in relation to HMI: (a) technical issues; (b) applicative implications.

3. Results
3.1. Study Selection

The initial literature search process led to 62 articles meeting our eligibility criteria.
Of these, none was removed before screening, as duplicates. After the identification and
screening phase, 9 studies [7–15] were included and 53 were excluded (see flowchart,
Figure 1). In particular, two studies on mild cognitive impairment were excluded, as wrong
procedure (magnetic resonance imaging study) [16] and wrong age group [17]. The number
and reasons for the exclusion of the articles were as follows:

• 23 did not take into consideration older adults (wrong age group);
• 19 were not original articles (12 reviews, 2 editorials, 2 conference papers, 1 perspective,

1 letter, 1 case);
• 6 focused on issues not concerning the aims of our review (inadequate topics);
• 4 studies did not evaluate humans (wrong species);
• 1 did not use EEG signals (wrong procedure).

All studies not included in this review and reasons for their exclusion are available in
Table S1 in Supplementary Material.

3.2. Description of the Selected Studies

The included studies in healthy older adults focusing on HMI using EEG signals are
described in the following sections. Different features were used to characterize the EEG
and different methods were employed to translate the recorded information. The selected
references are also summarized in Table 1, indicating main properties of the included
subjects, and Table 2, regarding experimental protocol and processing. The processing
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methods are based on filtering and classification methods introduced in Appendix A,
possibly with some modification (the reader is invited to refer to the references for details).
Selected studies focus on specific intrinsic abilities and BCI assessment, such as: Cognition
(e.g., memory, attention and motor imagery as a dynamic cognitive process in which
a movement is mentally simulated without actually being performed), vitality (e.g., a
reduction in energy in terms of fatigue), locomotor (physical movement), and sensory
domains (such as vibro-tactile stimulation and sensitivity).

Table 1. Participants’ characteristics in the included studies. Notation: NP = neuropsychological;
M = mean; SD = standard deviation.

Reference Number of
Participants

Females/Males
(%) Age Range Age in Years

M (±SD)
NP

Assessment Control Group

Li et al., 2022 [7] 20 70/30 66 no Younger adults

Goelz et al., 2021 [8] 26 61.5/38.5 55–65 no Younger adults

Chen et al., 2019 [9] 22 72.7/27.3 over 55 72 (±8.1) no Younger adults

Zich et al., 2017 [10] 37 55.6/44.4 62.6 (±5.7) yes Younger adults

Herweg et al., 2016 [11] 10 60/40 50–73 60 (±6.7) no no

Gomez-Pilar et al., 2016 [12] 63 65.1/34.9 60–81 yes Older adults
without training

Karch et al., 2015 [13] 52 70–75 73.3 yes Children and
younger adults

Lee et al., 2015 [14] 39 69.2/30.8 65.2(±2.8) yes Older adults
without training

Lee et al., 2013 [15] 31 60/40 65.1 (±2.9) yes Older adults
without training

Table 2. Selected studies taking into account intrinsic capacity evaluation and processing. FBCSP:
filter bank CSP. SWLDA: step-wise LDA.

Reference Intrinsic Capacity BCI Assessment Spatial
Filtering

Feature
Processing

Classification
(Translation)

Li et al., 2022 [7] Cognition and
Vitality Motor imagery ICA CNN

Goelz et al., 2021 [8] Sensory and
Locomotor

Visuo-motor
task ICA FBCSP LDA

Chen et al., 2019 [9] Sensory Vibro-tactile CSP CSP LDA

Zich et al., 2017 [10] Cognition Motor imagery CSP LDA

Herweg et al., 2016 [11] Sensory Tactile sensibility ERP SWLDA

Gomez-Pilar et al., 2016 [12] Cognition Motor imagery ICA,
Laplacian

Power of
EEG rhythms

Power of
EEG rhythms

Karch et al., 2015 [13] Cognition Working memory
performance CSP LDA

Lee et al., 2015 [14] Cognition Cognitive training
program CSP Power of

EEG rhythms
Score based on
CSP and PSD

Lee et al., 2013 [15] Cognition
Memory and

attention
training program

CSP Power of
EEG rhythms

Score based on
CSP and PSD

A further summary of the results and perspectives of the selected papers is shown in
Table S2 in Supplementary Materials.

3.2.1. Li et al., 2022 [7]

EEG characteristics are investigated during motor imagery (MI) by comparing young
and older adults. A total of 20 healthy individuals participated in the study, including
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10 young and 10 older adults. The authors analyzed both cognition and vitality by using
BCI to examine the differences in terms of fatigue level, in both groups using left and right
MI experiments. Fatigue is analyzed in terms of (1) discrimination of fatigue-sensitive
channels in the parietal area, (2) calculation of rhythm entropy (RE) in the frontal area,
and (3) assessment of synchronization of fatigue in the parietal lobe and EEG complexity
in the frontal area. Data are analyzed using TFR and quantified by event-related desyn-
chronization (ERD). Alpha, beta, and theta rhythms are extracted and used to quantify
fatigue. Moreover, the cognitive activity is quantified by RE. The PLV between parietal
and frontal lobes was also calculated. For the older population, a CNN is finally used for
classification. The results show that older adults are less affected by the degree of cognitive
fatigue during MI, compared to young participants. Nevertheless, MI energy is lower in
the older population, than in younger people.

3.2.2. Goelz et al., 2021 [8]

Possible age changes and differences in EEG data classification are investigated during
active visuo-motor tasks. A total of 26 healthy individuals participated in the study,
including 13 younger adults and 13 older adults. In this visuo-motor force control task,
while seated in front of a computer screen, participants had to follow a target with their hand
for five seconds by applying the required force. Force tracking was studied considering two
task characteristics (sinusoidal and constant) with the right or left hand. A dimensionality
reduction method called dynamic mode decomposition was used to extract brain network
patterns. The tasks were classified using LDA. While comparing performance and patterns
of brain activity between groups, authors found evidence of altered motor network function,
in older subjects, suggesting de-differentiated and compensatory brain activation. These
changes indicated less segregated activation of the motor brain network, even though they
showed higher classification performance on the task feature. The results confirm an age-
related reorganization of brain networks and show a correlation with task characteristics.

3.2.3. Chen et al., 2019 [9]

EEG response to vibro-tactile stimulation are studied in younger and older adults
addressing sensory capacity in order to clarify how age-related changes may affect the
EEG signal and thus the use of BCI in older subjects. A total of 22 healthy individuals
participated in the study, including 11 younger and 11 older adults. Authors analyzed
event-related desynchronization/synchronization (ERD/S), i.e., the percentage of EEG
power decrease/increase with respect to baseline, in order to explore cortical responses
to left or right vibro-tactile stimulation. EEG signals were processed by CSP and LDA as
classification algorithm. Results show decreased cortical lateralization of the somatosensory
cortex and an overall reduction in EEG power in older subjects. This resulted in lower
accuracy of BCI performance in classification based on spatial activation information.

3.2.4. Zich et al., 2017 [10]

Age-related changes in the neural correlates of both motor execution (ME) and MI
are studied, supported by EEG-based NF. A total of 37 healthy and cognitive preserved
individuals participated in the study, including 19 younger and 18 older subjects. A mul-
timodal neuroimaging system, focused on EEG event-related desynchronization (ERD%)
and concentrations of oxygenated (HbO) and deoxygenated hemoglobin (HbR), was used
in order to record simultaneously with functional near-infrared spectroscopy (fNIRS). Re-
sults of brain activity patterns show lower lateralization of ERD% and HbR concentration
during MI, but not ME, in older subjects compared with younger participants. ERD% and
hemodynamic measurements are significantly correlated, although there are no significant
amplitude correlations.
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3.2.5. Hewerg et al., 2016 [11]

This work studies whether training improves tactile event-related potential (ERP)-BCI
performance in a virtual wheelchair navigation task. A total of 10 healthy individuals
participated in the study, with no control group. Older subjects participated in five sessions
with calipers placed on the legs, abdomen, and back. The authors found that mean
accuracy and information transfer rate (ITR) increased from the first session to the last
session. The mean P300 amplitude went in the same direction, indicating improved
performance thanks to training with a tactile P300-BCI. The protocol used enabled learning
and significantly improved BCI performance (single trial accuracy and ITRs) and EEG
features (ERP amplitudes, area between curves), demonstrating the positive effect of
sensory training. Of particular note, authors found no plateau for ERP amplitudes, area
between curves, single-trial accuracy, or ITRs, suggesting that participants could benefit
from training. On the other hand, the effects of age-related changes in tactile perception on
BCI performance appeared to be negligible.

3.2.6. Gomez-Pilar et al., 2016 [12]

An NF training (NFT) with a motor imagery-based BCI (MI-BCI) was developed and
used to analyze possible cognitive function improvements in 63 healthy older adults. To
evaluate the effectiveness of NFT, the NFT group (31 subjects) that used this method and
the control group (32 subjects) that did not perform NFT were compared. To investigate
the effects of NFT, changes were analyzed both in the EEG spectrum using relative power
measures and in various cognitive functions using the Luria Adult Neuropsychological
Diagnosis (Luria- AND). The neuropsychological battery, which consists of nine subtests
assessing different cognitive functions (i.e., visuospatial orientation, language, memory,
reasoning, and attention), is administered before and after the NFT tasks. The between-
group results show that significant differences are found between the control group and
the NFT group in the Luria-AND values during the pretest. The within-group results show
(1) in the control group, no significant changes in any of the cognitive functions and (2) in
the NFT group, significant differences in all cognitive functions except attention.

3.2.7. Karch et al., 2015 [13]

A supervised learning approach is developed to derive person-specific models for
identifying and quantifying inter-individual differences in oscillatory EEG responses related
to mechanisms for selecting and maintaining working memory (WM). A total of 52 healthy
individuals participated in the study, including 20 children, 12 younger adults, and 20 older
subjects. Differences between groups in rhythmic neural activity in the alpha frequency
range were recorded, which were related to WM load and mechanisms for sustaining
attention. Results show that WM load and spatial attentional focus could be distinguished
in all age comparison groups based on EEG responses in the alpha range.

3.2.8. Lee et al., 2015 [14]

Acceptability, safety, and preliminary efficacy are investigated for an EEG-based BCI
cognitive training (CT) program in order to improve memory and attention in a Chinese-
speaking group of older adults. To test the effectiveness of the CT, 39 cognitive preserved
participants were randomly assigned to the intervention group (21 individuals) and the
control group (18 individuals). Participants attended BCI-based CT sessions three times
a week for 8 weeks; the control group received the same intervention after an 8-week
waiting period. An adapted version of the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) was used to compare performance before and after
training. This neuropsychological battery assesses several cognitive functions: memory,
visual-spatial/constructive skills, language, and attention. All subjects were also asked
to complete a usability and acceptability questionnaire, which included information on
adverse events after each session. Results show statistically significant improvements in
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attention and delayed memory before and after CT. Conversely, not statistically significant
changes are observed in immediate memory and visuospatial/constructive areas.

3.2.9. Lee et al., 2013 [15]

The feasibility of the BCI system with a task that incorporates CT in improving memory
and attention, previously used by the same authors in children with attention deficit
hyperactivity disorder [18]. To test the effectiveness of the training in English-speaking
group, 31 cognitive preserved older adults were randomly assigned to the intervention
group (15 individuals) and the control group (16 individuals). Participants attended
BCI-based CT sessions three times a week for 8 weeks; the control group received the
same intervention after an 8-week waiting period. An adapted version of the Repeatable
Battery for the Assessment of Neuropsychological Status (RBANS) was used to compare
performance before and after training. This neuropsychological battery assesses several
cognitive functions: memory, visual-spatial/constructive skills, language, and attention.
All subjects were also asked to complete a usability and acceptability questionnaire, which
included information on adverse events after each session. Results showed statistically
significant improvements in immediate memory, visuospatial/constructive, attention, and
delayed memory before and after CT.

4. Discussion

Aging induces a natural cognitive decline. Recent advances of technologies can help
counteracting this process, keeping older people mentally active and performing. Specifi-
cally, EEG reflects cortical activity and can be used to monitor a subject during a mental task.
Recent advances of technology is allowing flexible and real time applications (e.g., within
the Internet of Things framework [19]) and artificial intelligence approaches (including
machine learning, classification, deep learning, etc.) can extract useful information from
EEG and provide a feedback to the user, within BCI and NF applications.

In this review, we selected specific works from the recent literature discussing innova-
tive methods to support older people. The selected studies on innovative BCI technologies
analyzed different domains of intrinsic capacity in terms of cognition [7,10,12–15], vital-
ity [7], sensory [8,9,11], and locomotor capacities [8] to identify possible aging changes
and the potential effectiveness of CT to promote and maintain healthy aging. They docu-
ment that age-related differences are important to design properly a BCI [7–9,14,15] or a
NF for stroke patients [10,12]. Moreover, training is important for BCI performance [11].
Differences are found between younger and older subjects, e.g., a reduced lateralization
was documented in the latter [9,10]. However, all studies showed improvements in older
subjects performing the training. Different protocols can be adopted: MI [7,10,12], motor
control [8], tactile stimulation [9,11], or more complex mental activities [13–15].

A detailed discussion of the selected papers is provided below, by describing the
domains of intrinsic capacity, giving priority to the works that took into consideration,
primarily, cognition, and subordinately the other intrinsic capacities (that is, sensory and
locomotor capacities).

• The study by Li et al. [7], which addressed intrinsic capacity (both cognition and
vitality) during an MI task, showed that older people were less affected by the degree
of cognitive fatigue, although the classification accuracy of the MI data was lower
in older subjects compared to younger participants. Interestingly, the deep learning
method, which extracts data from the frontal and parietal channels, may be appropriate
for older individuals. Specifically, the authors found that classification accuracy on
MI tasks was set by CNN at an acceptable level of about 70%. This suggests that the
future prospects of BCI-MI in the older population need not to be based on SMR alone
and that the appropriate algorithms can be applied without obvious lateralization of
ERD. In fact, the CNN model based on fused spatial information greatly improves
classification accuracy and leads to longer training time, which can be successfully
used in healthy aging individuals. Therefore, it should be investigated whether these
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training sessions can support rehabilitation in aging people with neurological diseases,
such as stroke patients.

• In the EEG-fNIRS study by Zich et al. [10], which focused on intrinsic capacity in
relation to cognition, age-related changes in brain activity were analyzed in the neural
correlates of both MI and ME. During MI, older adults showed lower hemispheric
asymmetry of ERD% and HbR concentration than younger adults, reflecting greater
ipsilateral activity. In addition, compared with no feedback, EEG-based NF-enhanced
classification accuracy, thresholds, ERD% and HbR concentration for both contralateral
activity and lateralization degree in both age groups. Finally, significant modulation
correlations were found between ERD% and hemodynamic measurements, although
there were no significant amplitude correlations. Overall, the differences between the
observed effects for ERD%, HbR concentration and HbO concentration suggest that
the relationship between electrophysiological motor activity and hemodynamics is
far from clear. However, the results also support the idea that age-related changes
in MI should be taken into account when designing MI NF protocols for patients.
In particular, the influence of age should be carefully considered in the design of
neuro-rehabilitation protocols for stroke patients. These results suggest a complex
relationship between age and exercise-related activity in both EEG and hemodynamic
measurements.

• In another study using the MI-BCI technology, Gomez-Pilar et al. [12], dealing with
intrinsic capacity of cognition, showed promising results about the usefulness of NFT
to improve brain plasticity and consequently neuropsychological functions (such as
spatial awareness, language, and memory), which are the main concerns in older
adults. This study may be helpful in the development of new NFT based on MI strate-
gies. In particular, these data suggest the utility of BCI-based NFT in rehabilitating
some cognitive functions in terms of improving brain plasticity, which seems to affect
the older population.

• Karsch et al. [13] investigated inter-individual differences in brain-behavior mapping
by examining the degree of model individualization required to demonstrate the feasi-
bility of deriving person-specific models with different spatiotemporal information in
three age groups (i.e., children, younger adults, and older adults). The authors focused
on intrinsic capacity of cognition, i.e., mechanisms of selection and maintenance of
working memory. The results show the potential of a multivariate approach to provide
better discrimination than the classical non-person-specific models. Indeed, it allows
easier interpretation at both individual and group levels to classify patterns based on
rhythmic neural activity in the alpha frequency range across the lifespan. Specifically,
information maintained at WM and the focus of spatial attention contributed to iden-
tify and quantify differences across age groups based on the different spatiotemporal
properties of EEG recordings.

• Lee et al. [15] tested the potential of adapting an innovative computer-based BCI pro-
gram for CT to improve attention and memory in a group of healthy English-speaking
older adults. The authors, focusing on intrinsic capacity of cognition, demonstrated
the effectiveness of the CT program, particularly in improving immediate and delay
memory, attention, visuospatial, and global cognitive abilities. In a second randomized
controlled trial [14], the same authors investigated the generalizability of their system
and training task to a different language (i.e., Chinese-speaking) population of older
adults. In their studies [14,15], the BCI-based intervention showed promising results
in improving memory and attention. Future research should include participants with
mild and severe cognitive impairment. If proven effective in a larger sample, this
intervention could potentially serve to reduce, or even prevent, cognitive decline in
patients with mild or major neurocognitive disorders.

• Chen et al. [9] addressed intrinsic-sensory capacity by examining whether SMR elicited
by vibro-tactile stimulation shows differences in younger and healthy older adults.
Their results showed that age-related electrophysiological changes significantly affect
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SMR properties. Specifically, older subjects showed less lateralization in somatosen-
sory cortex in response to vibro-tactile stimulation compared to younger adults. These
age-related EEG changes reflected greater susceptibility to noise and interference and
resulted in lower BCI performance accuracy during classification. Future studies
should focus on the effects of aging on EEG signals. In addition, NFT methods to
improve cortical lateralization and algorithms not based solely on EEG lateralization
should be investigated.

• Herweg et al. [11] investigated the effects of age and training in healthy older adults
focusing on intrinsic sensory capacity and using a tactile stimulation protocol in a
navigation task. Results showed that tactile BCI performance could be valuable,
although age-related changes in somatosensory abilities were negligible. This protocol
enabled learning and significantly improved BCI performance and EEG characteristics,
demonstrating the positive effect of training. Future studies should focus on tactile
BCI development, considering specific stimulation design, individual characteristics,
and training. The results suggest that tactile BCIs can not only be a valid alternative
to visual and auditory tasks, but can also be used despite age-related changes in
somatosensory abilities.

• Goelz et al. [8] investigated intrinsic-sensory and locomotor capacities. The authors
analyzed the classification of fine motor movements in terms of age-related differences
in functional brain activity. Specifically, the authors compared the performance of
younger and older healthy adults on visuomotor tracking tasks using EEG recordings.
Results revealed electrophysiological brain activity patterns associated with an altered
sensorimotor network in older adults, suggesting reorganization of task-related brain
networks in response to task features. Future research on BCI applications should
consider age-related differences in the development of BCI and neurofeedback systems
when targeting the older population (e.g., in the selection of appropriate features and
algorithms).

In summary, the selected studies showed age-related differences as important features
for the design of BCI technologies [7–10,13] or the effectiveness of NFT in improving brain
plasticity and some neuropsychological functions [10,12]. In addition, CT [14,15] and
tactile [11] training are important for BCI performance.

We note as a limitation that different protocols were used in the included studies, such as
MI [7,10,12], motor control [8], tactile stimulation [9,11], or more complex mental tasks [13–15]
and focused on different domains (e.g., cognition, vitality, sensory, and motor skills). These
aspects did not allow us to adequately compare the collected data to better understand
age-related changes that could help improve the knowledge of BCI technologies to develop
new healthcare solutions for the older population. Thus, there is a clear need to explore this
important topic further in the future and to standardize the investigation techniques.

The perspective presented in our systematic review may lead to new challenges and
promising results in the detection of possible age changes in healthy individuals and in the
rehabilitation of patients with physical and cognitive impairments whose intrinsic capacity
may be impaired due to disease. Following the theoretical approach based on the World
Health Organization guidelines for healthy aging [1], future studies may be helpful to
demonstrate the effectiveness of rehabilitation treatments developed with new specific
technologies and devices based on BCI, such as those that support and improve cognitive
and physical abilities.

From the comprehensive person-centered perspective proposed in [1], “functional ca-
pacity” combines the interactions between a person’s physical and mental abilities (intrinsic
capacity) and the living environment. Considering this paradigm and the characteristics of
intrinsic capacity (locomotor and sensory capacity, vitality, and cognition), interventions
with BCI provide useful support for older people in their daily activities.

In particular, interventions with BCI provide useful support for maintaining and
achieving healthy aging, as shown by the studies analyzed in our review.
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Regarding patients, neuro-rehabilitative BCI applications offer interesting perspectives,
for example, in terms of cognitive and mental abilities of Alzheimer’s disease patients,
mobility, and fine motor skills of patients with Parkinson’s disease, or physical abilities of
patients with amyotrophic lateral sclerosis. In other neurological patients, BCI technologies
may be useful to improve communication/control, e.g., motor paralysis due to stroke,
spinal cord injury, or cerebral palsy [3].

5. Conclusions

Artificial intelligence approaches applied to EEG are useful to provide feedback to the
user in BCI and NF applications. In fact, EEG, reflecting cortical activity, can be used to
monitor a person during a mental task, which can be decoded by artificial intelligence to
provide the required feedback.

Recent advances in BCI technologies can help counteract the aging process and keep
older people healthy and active. Our systematic review, based on PRISMA guidelines,
employed strict selection criteria (i.e., innovative works on HMI in older adults using EEG
signals). The selected studies were helpful in identifying possible age-related changes and
the potential effectiveness of CT.

Future studies using BCI technology would help understand how a person develops
and maintains intrinsic abilities, to promote healthy aging and reduce the occurrence of
unfavorable aging trajectories. Finally, the use of HMI could help physically and cognitively
impaired individuals to support basic activities of daily living and reduce dependence on
care. The few but promising works identified testify to the need for further development of
EEG-based HMIs to counteract age-related decline.
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ALS amyotrophic lateral sclerosis
ANN artificial neural network
ApEn approximate entropy
AR autoregressive
ARMA autoregressive moving average
ARV average rectified value
BCI brain–computer interface
BSS blind source separation
CNN convolutional neural networks
CSP common spatial pattern
CT cognitive training
EEG electroencephalogram
FIR finite impulse response
HMI human–machine interaction
ICA independent component analysis
IIR infinite impulse response
ITR information transfer rate
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LDA linear discriminant analysis
LLE local linear embedding
MA moving average
MI motor-imagery
NF neurofeedback
NFT neurofeedback training
PAC phase amplitude coupling
PCA principal component analysis
PLV phase locking value
PRISMA Preferred Reporting Items for Systematic Review and Meta-Analyses
PSD power spectral density
RBANS Repeatable Battery for the Assessment of Neuropsychological Status
RMS root mean squared
SNR signal to noise ratio
SVM support vector machine
TFR time–frequency representations
WM working memory

Appendix A. Background on Data Processing and Classification

A short general and basic introduction to the processing methods which are most pop-
ular in applications is provided. Elements of signal conditioning, detection, pre-processing,
processing, and classification are discussed, focusing on the EEG. Many didactic text-
books and surveys are available on these general topics: signal processing [20,21], machine
learning [22], classification [23], and applications [24].

Appendix A.1. Signal Acquisition

Physiological data are detected by sensors. We are mostly interested to surface EEG,
so that the physiological data to be recorded refer to the cortical activity and the sensors are
electrodes placed on the scalp. The signal is detected by a standard cascade of systems that
include an amplifier with high input impedance (which should be much higher than that
of the skin-electrode contact to avoid voltage drop), a filter and an AD converter. The filter
allows only specific frequency components to pass, which is useful to reduce the amount of
recorded noise and to satisfy the requirements of sampling theory. Signal decomposition
into frequency components and sampling theory are introduced in the following sections.

Appendix A.2. Fourier Analysis

Every periodic signal can be written as a Fourier series, i.e., the sum of a constant and
sinusoids with frequencies, in multiples of the fundamental frequency (i.e., the reciprocal
of the period) of the original signal. If the signal x(t) is not a periodic function of time t, we
can make a limit as the period that reaches infinity [21], obtaining the Fourier transform, in
which the sum of the components of the Fourier series is substituted by an integral and the
frequency becomes a continuous variable

X( f ) =
∫ +∞

−∞
x(t)e−j2π f tdt (A1)

where f is the frequency and the sinusoids mentioned above arise from the complex
exponential e−j2π f t = cos(2π f t) − j sin(2π f t) (Euler formula). The Fourier transform
X( f ) indicates for each frequency the amplitude and the phase of the corresponding
sinusoidal component included in the signal x(t). By summing (through an integral) all
those components, the following inversion formula is obtained

x(t) =
∫ +∞

−∞
X( f )ej2π f td f (A2)



Bioengineering 2023, 10, 395 12 of 20

These relations hold for all signals of interest (e.g., those with finite energy) and
indicate a one-to-one correspondence so that our specific signal can be studied either in the
time or in the frequency domain.

In practice, the measurement is limited in time so that we cannot have access to the
original signal x(t) (which is unknown out of the time range of observation), but to a
perturbed version of it, obtained by a multiplication with an observation window, selecting
the data that have been acquired and putting to zero the rest. This perturbation introduces
some problems in the investigation of the Fourier transform of the original signal and some
limitations (e.g., we cannot observe very slow frequency components with periods longer
than the observation window).

Fourier transform is a complex function of frequency (in the sense that it includes
both a real and an imaginary part). Usually, only its power spectral density (PSD, i.e., the
modulus squared of the Fourier transform) is considered. When signals have properties
which change in time, i.e., they are not stationary, the PSD is not sufficient to characterize
them accurately, as it indicates only which frequency components are included, but not
when they are present. Time–frequency representations (TFR) have been introduced to
spit the signals into frequency components, indicating their power density as a function
of time and frequency [25]. An interesting alternative is using time-scale representations,
i.e., wavelet transform [26], in which the signal is decomposed into components which are
scaled versions of a specific waveform (mother wavelet, which has a finite time support, as
opposite to sinusoids).

When processing the signal by a linear system, superposition principle holds. It means
that different components can be studied separately (e.g., by amplifying some or attenuat-
ing others) and the output can be obtaining by summing up. Classical processing of signals
by removing specific components is called filtering: lowpass, bandpass, highpass, and
stopband filters remove frequency components out of the range of interest (indicated by the
name), which is left ideally unaltered. A value separating the pass- from the stop-band is
called cutoff frequency (more cutoff frequencies are defined in cases in which more bound-
aries between passband and attenuated regions are present, e.g., for the bandpass filter).

Appendix A.3. Sampling Theory

Physiological data are sampled with a constant sample rate fs, converting them in
digital form x[n] = x(nT), where T = 1/ fs is the sampling interval. The Fourier transform
of the sampled data is a periodic repetition of that of the original signal, with period
fs. The repetitions, called alias (from Latin), give high frequency components (aliasing
phenomenon) that should be removed to obtain the original signal from its sampled
version, using a lowpass filter with cutoff frequency lower than or equal to fs/2. The latter
is called Nyquist frequency and is the largest one that can be represented in a sampled
signal: it requires that two samples are acquired for each cycle of the component with
largest frequency. With a smaller sampling rate, the component would be confused with
another of lower frequency, contributing to aliasing. For this reason, before sampling, it is
better to remove components with frequency larger than Nyquist frequency by a so-called
anti-aliasing lowpass filter.

Appendix A.4. Filtering

EEG usually has useful information embedded within a great amount of noise. A
quantitative measure of this challenging condition is given by the signal to noise ratio (SNR),
which is the ratio between the energy of the signal and that of noise (usually measured in
dB). In order to increase the SNR, a pre-processing is applied through filtering.

Data are acquired by a sampling in time (discussed in the previous section) and space
(as a discrete distribution of electrodes are placed over the scalp). By combining those
samples, specific filters can be obtained, in order to enhance the components of interest and
reduce the effect of artifacts or noise.
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Appendix A.4.1. Temporal Filters and EEG Rhythms

Filtering in time is applied separately to each recorded signal, by defining the output
time series y[n] as the linear combination of the input signal x[n] at different time delays
and previous values of the output

y[n] = b0x[n] + b1x[n− 1] + . . . + bkx[n− k]− a1y[n− 1]− . . . − amy[n−m] (A3)

In this way, only present and past samples are used, obtaining a causal filter (which
means that no future sample is used to define the present output). If only input data are
used to define the output (i.e., all weights {ai} are zero), the filter is said moving average
(MA), as the same weighted average of samples is applied to subsequent portions of input
data. The weights constitute the samples of the so-called impulse response h[n] of the
filter. They are the output of the filter if the input is an impulse (i.e., a digital signal with a
single value equal to 1 and zero otherwise). The operation of multiplying the signal by the
impulse response translated in time and summing is called convolution

y[n] =
+∞

∑
k=−∞

h[n− k] x[k] (A4)

The use of past values of the output in the definition of the filter is called autoregression
(AR). By iterative substitution of the definition of delayed output values y[n− p] in terms
of inputs x[n− q] (p ≤ m, q ≤ k) we see that the impulse response is infinite for AR and
ARMA filters (i.e., those including only AR or both AR and MA filtering), in the sense that
it has infinite samples. This allows improve filtering performances over MA filters, but
with the risk of obtaining unstable results, as the convolution (A4) includes infinite terms
and could diverge. The terms finite impulse response (FIR) and infinite impulse response
(IIR) are used to denote these two classes of filters (i.e., MA is a FIR filter; AR and ARMA
are IIR filters).

By choosing properly the weights of the filter, it is possible to obtain approximations of
classical filters selecting specific frequency components to pass and others to be attenuated.
This way, we can perform important processing such as slow trend attenuation (by a
highpass filter), high frequency noise reduction (lowpass filter), powerline artifact removal
(selective stopband or notch filter), or EEG rhythm extraction (bandpass filter).

There are also temporal filters that are adapted to the signal to be processed. The
match filter has an impulse response that is equal to a template of interest to be found
within the signal (except for a flip of the time variable). The convolution (A4) computes
the correlation between the template and the signal (as a function of the time shift of the
template), which is high when a waveform similar to the template is found.

Another popular method, called averaging, is applied to extract evoked responses
from the noisy EEG: epochs of EEG centered on the event triggering the response are
extracted from the EEG trace and averaged; the evoked response is reinforced whereas the
asynchronous contributions (due either to noise or to other cortical activities) are reduced.

Appendix A.4.2. Spatial Filters and Selectivity

The signals from different electrodes can be linearly combined, making a spatial filter.
Different objectives can be achieved by spatial filtering. For example, a common mode
potential is usually present due to a capacitive coupling of the body with the powerline.
Moreover, due to the volume conduction, the potential reflecting the activity of a cortical
source spreads over the scalp, providing contributions to the recording of many electrodes
and reducing the possibility of localizing its position. Spatial filters can remove this common
mode potential by imposing that the sum of the weights is zero. For example, the average
surface potential recorded from all the electrodes can be used as reference (average reference
method), eliminating the common mode. Different combinations have also been proposed,
which are discrete versions of differential operators: the bipolar (i.e., the difference of
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signals from close electrodes) approximates the first derivative (which can be taken either in
longitudinal, i.e., cranio-caudal, or transverse direction), the double differential (difference
of two consecutive bipolar filters with the central electrode in common) is the discrete
version of the second derivative, the Laplacian filter (sum of longitudinal and transverse
double differential) resembles the Laplacian operator. They have better selectivity with
respect to an unipolar detection (i.e., from a single electrode): this means that they are
focused on the cortical activity which is under the center of the filter (said in an alternative
way, they have a smaller detection volume).

As an alternative to the above-mentioned filters, which have fixed weights, there are
others which are defined on the basis of the signal, in order to obtain specific objectives.

1. Principal component analysis (PCA [27]) chooses the weights in order to obtain output
signals that are orthogonal (i.e., uncorrelated) to each other.

2. Independent component analysis (ICA [27]) selects linear combinations that makes
the outputs statistically independent from each other.

3. Common spatial pattern (CSP [28]) is obtained by optimizing the filter in order to
separate the signal into the sum of components which show maximum difference of
the variances between two windows. An application is in enhancing the energy of
a specific target portion of data (e.g., the cortical potential of interest for a BCI) and
reducing that of the rest.

PCA and ICA found many applications to separate blindly different sources (blind
source separation—BSS) and to compress the data (by selecting only the most important
components contributing for a certain amount of energy or information included in the
data). Among the components that are identified, some could be due to artifacts (e.g., blinks
or muscle contractions) and can be removed.

Appendix A.5. Feature Processing and Classification

The above-mentioned method can be the basis for extracting useful information from
EEG data. Then, this information could be translated to some target output of interest,
indicating the condition of the user or a choice among different options.

Here, we briefly introduce how EEG features can be extracted and used to obtain
information on the user. Those features can be obtained by processing either directly
the EEG signals or source data. The latter are obtained by estimating the neural sources
generating the recorded EEGs, by solving a complicated inverse problem [29]. However, in
the following, we refer to processing directly the recorded EEG channels.

Appendix A.5.1. Feature Extraction

Different features can be estimated from each EEG channel, represented either in time
or in frequency domain.

• Time features can be the average rectified value (ARV) or the root mean squared
(RMS) of epochs of data, the height of peaks of evoked potentials, the number of
zero-crossings. More advanced features reflect the possible complexity of the data: for
example, approximate entropy (ApEn [30]), and fractal dimension [31].

• Interesting features extracted from a frequency representation of the signal are the
mean frequency, the median frequency or the power of different rhythms.

The topographical distribution of an index can provide useful information, e.g., on
a possible asymmetry across the hemispheres, or on specific responses (for example, the
amplitude of alpha rhythm has different meanings when found in occipital or frontal regions).

Moreover, bivariate indexes have been introduced to investigate the coupling of
different regions, i.e., the functional connectivity reflected by EEG [32]. Examples of
indexes are listed below.
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1. Cross-correlation quantifies a linear coupling of the EEGs from two channels. The
delay corresponding to the maximal cross-correlation can provide also some insight
on the causal relationship between the two signals.

2. Coherence provides information on correlation of oscillations as a function of their
frequency.

3. Nonlinear indexes indicate couplings at a statistical order larger than linear. For
example, mutual information [33] and transfer entropy [34] are based on Shannon
information theory and are zero for statistically independent inputs. Nonlinear inter-
dependence is based on the study of possible coupling during recurrences, i.e., when
the data show similar behavior [35].

4. Phase locking value (PLV) detects periods in which the phase delay of oscillations
from different channels remains constant (so that the oscillations are locked) [36].

5. Granger causality indicates a causal-effect relation between the EEGs from two chan-
nels, given in terms of the improved performance in predicting future samples of a
signal when information from the other is provided [37].

Bivariate indexes can be defined for each pair of EEG channels and their values can
be collected in an adjacency matrix. The information from this amount of data can be
summarized by topological indexes from graph theory [38]. A graph is a set of nodes
(i.e., EEG channels in our case) connected by edges (i.e., the bivariate indexes coupling pairs
of nodes). Many indexes have been proposed to characterize a graph, e.g., strength (sum of
the connections to a node), clustering (degree to which nodes in a graph cluster together),
efficiency (ability to exchange information), and characteristic path length (measure of how
information is transferred across the network).

Cross-frequency coupling explores possible relations between different rhythms [39].
It can be studied either within or between channels, obtaining univariate and bivariate
information, respectively. An example is the phase amplitude coupling (PAC), which
measures the relation between the amplitude envelop of a high-frequency rhythm (e.g.,
beta or gamma) and the phase of a low-frequency rhythm (e.g., alpha).

Appendix A.5.2. Feature Generation

Features can be either used directly or post-processed, generating other features. For
example, when extracting many features from the EEG, some of them can be redundant
and share common information. Moreover, features can be noisy. Thus, methods of dimen-
sionality reduction, such as the above-mentioned methods, PCA and ICA, are useful also
to process features: they can cancel out common information and select a few components
representing most of the useful content and attenuate noise. PCA and ICA are linear
methods, i.e., their components are linear combination of the inputs. Other alternative
methods have also been introduced to reduce the dimension of the dataset (thus summariz-
ing the information they contain) by a nonlinear processing, e.g., the local linear embedding
(LLE [40]).

All mentioned approaches are only based on the input data. Other methods process
the input data to help performing the classification. For example, the linear discriminant
analysis (LDA [41]) provides components (defined as linear combinations of the features)
that allows optimal discrimination of different output classes (in the sense that the between-
and within-class separation of data points are maximized and minimized, respectively).

Appendix A.5.3. Feature Selection

Not all features could be important to perform the classification, as there could be re-
dundancy among them, some could be irrelevant or they could even cause misclassification.
The goals of features selection are:

• Avoiding overfitting;
• Reducing the computational cost;
• Gaining a deeper insight into the classification/prediction model.
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Criteria for feature selection can be either based on intrinsic properties of the fea-
tures (filtering methods, as selecting components with high energetic or information con-
tent, provided by PCA and ICA, respectively) or on their contribution in improving the
performances of the classifier (wrapped approaches, e.g., measuring features providing
maximal information on the output class and with minimal redundancy among them, or
sequentially selecting/removing the most/least influential feature in the classification of a
training dataset).

Appendix A.5.4. Classification

The features obtained after the previous steps provide some indirect information
on the user’s intent, which should be translated to a target output, i.e., a command to a
device which could provide, for example, a feedback to the user, or the selection of an
answer to a question, or the displacement of a cursor to a screen [24]. The classification (or
translation) of input data into a useful command can be interpreted as the definition of a
mathematical model mapping input observations (i.e., vectors of features) into a specific
target output [23].

The model has parameters to be optimally chosen to obtain the output of interest.
Some training data (i.e., EEG features associated to known labeled outputs) are used in
supervised learning, in which the model parameters are selected to fit the output of interest
in terms of an optimization criterion (e.g., the minimization of the mean squared difference
between corrected output and model prediction).

Once fitted the training data, the model can be applied on test samples. The reliability
of the predictor on new test data is called generalization. There is a trade-off between an
optimal fitting of the training data (requiring a complex model) and generalization (as
simpler models are more robust, i.e., they have similar performances in the training and
test data). Thus, the simpler model allowing to decode the determinism contained into
the training data should be selected, in order to avoid to fit also the noise, which would
provide unstable and unpredictable behavior when testing new data. Different criteria
have been proposed to balance model fitting performance and complexity (e.g., Akaike
information criterion [42]). As an alternative, a portion of the training set could be used for
validation, in order to test the performance of the model in an external set (i.e., not used for
training); for example, in cross-validation, different portions of data are used to train and
validate the model in different iterations.

Different general classification problems are the identification of:

• A classification function to discriminate between discrete choices,
• A regression model to translate input observations into a continuous variable.

Many classification or regression models have been proposed in the literature. Some
of them are introduced below.

• Linear regression [43]. The output Y is approximated as a linear combination of the
inputs {Xi}i=1,··· ,N (N being the number of input features)

Y = w0 + w1X1 + · · ·+ wN XN (A5)

where the weights {wk}k=0,··· ,N are chosen optimally with respect to some criterion.
For example, imposing the minimum sum of squared error (considering all observa-
tions), the weights can be obtained analytically by pseudoinversion of the matrix A
including the features

A =


1 x11 · · · xN1
1 x12 · · · xN2
...

...
...

...
1 x1M · · · xNM

 (A6)
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where M is the number of observations and
{

xij
}

i=1,··· ,N;j=1,··· ,M are the elements of
the ith feature Xi. The problem can be written in matrix form as

Y = AW (A7)

where W is the vector including all weights. The solution with minimum squared
error is

W =
(

AT A
)−1

ATY (A8)

where
(

AT A
)−1 AT is the pseudoinverse of A (notice that ATY is the cross-correlation

of the input features and desired output,
(

AT A
)

represents the covariance between
features). A linear regression problem is also obtained if a polynomial expression or
another nonlinear function of the features is included as additional input to better
fit the data: more columns are included in the matrix A, but we still obtain a linear
problem with respect to the weights.

• Bayesian classifiers [43]. A probabilistic model is built based on the training data to
evaluate the probability of the input feature conditional to specific outputs P(XY).
Then, a priori information on the output probabilities P(Y) allows to obtain the
posterior probability of the output given the inputs, using Bayes theorem

P(YX) =
P(XY)P(Y)

P(X)
(A9)

The estimated output in the test set is given by the one with maximal posterior probability.
• Classification tree [44]. Decision trees are predictive models in which target variables

are the leaves of a tree. They can take a finite set of output values. They are multistage
systems, in which classes are rejected sequentially, until an accepted class is arrived
upon. Specifically, the feature space is sequentially split into clusters, corresponding
to classes. A set of questions is applied to individual features, which are compared to
threshold values, on the basis of which the decision tree branches. Different approaches
have been proposed to select the features and associated thresholds to split data until
reaching a decision on the estimated class.

• Support vector machine (SVM) [45]. A hyper-surface is searched that best separates
two classes (in the multi-class case, a combination of binary classifications is used).
Support vectors are specific observations (i.e., points in the space of input features) at
the border between two classes that define the lower and upper margins of a region
separating the two classes. This hyper-surface separating the two classes is chosen in
order to maximize the margin.

• Neural network [46]. An artificial neural network (ANN) is a biologically inspired
computational model consisting of a complex set of interconnections between basic
computational units, called neurons. Each neuron performs a nonlinear processing, by
a so-called activation function applied on the sum of a bias and a linear combination
of the input. The bias and the weights of the linear combinations defining the input
of each neuron of the network are the parameters to be selected to obtain a specific
objective, e.g., minimizing the mean-squared error in estimating the target output on a
training dataset. Different topologies of the networks have been considered, e.g., multi-
layer perceptron (with a forward structure of sequential layers of neurons, with each
layer obtaining input from the previous one and providing output to the following
one) with a different number of layers, recursive networks (with the output of one
layer of neurons providing inputs to a previous layer). Different learning algorithms
have been proposed: backpropagation or other methods related to the gradient of
the objective functional; evolutionary algorithms (e.g., genetic approaches or particle
swarm optimization) designed to prevent being stuck into a local minimum of the error
function. Deep learning approaches have been recently proposed showing exceptional
performances [47]. They are based on networks with many layers. Some of these
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layers can perform a convolution operation (convolutional neural networks—CNN)
with a kernel adapted to the data.

Appendix A.5.5. Performance Evaluation

An important problem of a classifier is generalization, i.e., the ability of working properly
on data which were not used for training. The generalization error has two main components.

1. Bias, related to the ability of the classifier to approximate the true model generating
the data. It is due to inaccurate assumptions or simplifications made by the classifier.

2. Variance, quantifying how much classifiers estimated from different training sets
differ from each other.

When the assumed model is too simple to represent all the relevant information
contained in the data, there is a high bias and low variance, with high training and test
errors, reflecting an underfitting of the true model generating the data. On the other hand,
there is overfitting when the model is too complex and fits irrelevant characteristics (noise)
in the data. In this case, the classifier shows low bias and high variance, with low training
error and high test error.

The best classification model should have a complexity which is in between the
conditions of underfitting and overfitting, so that to decode the determinism contained in
the data without fitting noisy perturbations. It is chosen either using a specific criterion to
be minimized, weighting both the error in fitting the data and the complexity (e.g., Akaike
information criterion [42]), or by separating the training data into two subsets (called
training and validation sets) in order to test directly the generalization of the classifier on
data not used for training (i.e., the validation set). Two methods of this latter type are the
cross-validation and Monte Carlo approaches.

Cross-validation is based on the following steps.

1. Split training data into k equal parts.
2. Train the model on k− 1 parts and calculate validation error on the kth one.
3. Repeat k times, using each data subset for validation once.

Monte Carlo approach requires the following steps.

1. Split training data randomly.
2. Fit the model on training data and calculate the validation error.
3. Repeat for many iterations (say 100 or 500) and take the average of the validation errors.

By these methods, the best classifier can be selected and its performances can be
estimated on a test set.
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Table S1. Excluded studies and reasons for the exclusion. 

Reference and Reason for Exclusion 

Schnakers C et al. Front Hum Neurosci. 2022;16:971315 
not original arti-

cle 
Engemann DA et al. Neuroimage. 2022;262:119521 inadequate topic 

Liu B et al. Sci Data. 2022;9(1):252 inadequate topic 

Belkacem AN et al. Front Hum Neurosci. 2022;16:881922 
not original arti-

cle 
Massetti N et al. J Alzheimers Dis. 2022;85(4):1639-1655 wrong procedure 

Sponheim C et al. J Neural Eng. 2021;18(6) wrong age group 

Rahman MM et al. Comput Biol Med. 2021;136:104696. 
not original arti-

cle 
Di Marco R et al. Methods Protoc. 2021;4(3):48 wrong age group 

Schmitz S. Front Sociol. 2021;6:651486 
not original arti-

cle 
Smith R et al. Sci Rep. 2021;11(1):10128. wrong age group 

Pavlov AN et al. Sensors (Basel). 2020;20(20):5843. 
not original arti-

cle 

Belkacem AN et al. Front Neurosci. 2020;14:692 
not original arti-

cle 

Marquez-Chin C et al. Biomed Eng Online. 2020;19(1):34 
not original arti-

cle 
Cell. 2020;181(1):22-23 wrong age group 

Welle EJ et al. J Neural Eng. 2020;17(2):026037 inadequate topic 

Ali JI et al. J Int Neuropsychol Soc. 2020;26(1):31-46 
not original arti-

cle 
Tang W et al. Artif Intell Med. 2020;102:101755. wrong age group 

Sepúlveda P et al. Anaesthesia. 2020;75(2):196-201 wrong age group 
Shim S et al. Biomed Mater Eng. 2020;30(5-6):497-507 wrong species 

Kang YN et al. IEEE Trans Neural Syst Rehabil Eng. 2019;27(6):1312-1319 inadequate topic 
Martins NRB et al. Front Neurosci. 2019; 13:112 wrong age group 

Beveridge R et al. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):572-581 wrong age group 

Classen S et al. 2019;39(2):97-107 
not original arti-

cle 
Woods V et al. J Neural Eng. 2018;15(6):066024 wrong species 

Luo J et al. J Neural Eng. 2018;15(5):056015 wrong age group 
Norton JJS et al. J Neural Eng. 2018;15(5):056012 wrong age group 

Semprini M et al. Front Neurol. 2018;9:21 
not original arti-

cle 
Brockmann PE et al. Eur J Paediatr Neurol. 2018;22(3):434-439 wrong age group 

Fu TM et al. Proc Natl Acad Sci U S A. 2017;114(47):E10046-E10055 wrong species 

Jiang Y et al. Front Aging Neurosci. 2017;9:52 
not original arti-

cle 

Rana M et al. Front Aging Neurosci. 2016;8:239 
not original arti-

cle 

Young KL et al. Accid Anal Prev. 2017;106:460-467 
not original arti-

cle 
Kober SE et al. Neurobiol Aging. 2016;40:127-137 wrong age group 

Wagner J et al. J Neurosci. 2016;36(7):2212-26 wrong age group 

Murphy MD et al. Front Cell Neurosci. 2016;9:497 
not original arti-

cle 
Hsu HT et al. IEEE Trans Neural Syst Rehabil Eng. 2016;24(5):603-15 wrong age group 

Reichert JL et al. Int J Psychophysiol. 2016;99:67-78 inadequate topic 
Goodman G et al. J Integr Neurosci. 2015;14(3):281-93 wrong age group 

Tseng KC et al. Sensors (Basel). 2015;15(3):5518-30 wrong age group 
Reichert JL et al. Clin Neurophysiol. 2015;126(11):2068-77 wrong age group 
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McCane LM et al. Clin Neurophysiol. 2015;126(11):2124-31 wrong age group 

Gomez-Pilar J et al. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3630-3 
not original arti-

cle 
Nuyujukian P et al. J Neural Eng. 2014;11(6):066003 wrong species 

Young BM et al. Expert Rev Med Devices. 2014;11(6):537-9 
not original arti-

cle 

Di Pino G et al. Front Syst Neurosci. 2014;8:109 
not original arti-

cle 
Mandal HS et al. Acta Biomater. 2014;10(6):2446-54 inadequate topic 

Ninaus M et al. Front Hum Neurosci. 2013;7:914 wrong age group 
Guggenmos DJ et al. Proc Natl Acad Sci USA. 2013;110(52):21177-82 wrong age group 

Aloise F et al. Clin EEG Neurosci. 2011;42(4):219-24 wrong age group 
Li Y et al. PLoS One. 2011;6(6):e20801 wrong age group 

Contreras-Vidal JL et al. Annu Int Conf IEEE Eng Med Biol Soc. 
2010;2010:2825-8 

not original arti-
cle 

Allison B et al. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):107-16 wrong age group 

Lin CT et al. Gerontology. 2010;56(1):112-9 
not original arti-

cle 
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Table S2. Results and perspectives of the papers fitting our selection criteria. 

Reference Results Perspectives 

Li et al., 2022 [7] 

Older adults are less affected by the degree of cogni-
tive fatigue during MI, compared to young partici-

pants. 
 

Nevertheless, MI energy is lower in the older popula-
tion, than in younger people. 

BCI-MI in the older population needs not to be 
based on SMR alone and the appropriate algo-
rithms can be applied without obvious laterali-

zation of ERD. 
 

CNN model based on fused spatial information 
greatly improves classification accuracy and 

leads to longer training time. 

Goelz et al., 2021 [8] 

The results confirm an age-related reorganization of 
brain networks and show a correlation with task char-
acteristics. Electrophysiological brain activity patterns 
associated with altered sensorimotor network in older 

adults, suggesting 
reorganization of task-related brain networks. 

Future research on BCI applications should 
consider age-related differences in the devel-
opment of BCI and NF systems when targeting 

the older population 
(e.g., in the selection of appropriate features 

and algorithms). 

Chen et al., 2019 [9] 

Decreased cortical lateralization of the somatosensory 
cortex and overall reduction in EEG power in older sub-
jects. This resulted in lower accuracy of BCI classifica-

tion based on spatial activation information. Older sub-
jects showed less lateralization in somatosensory cor-
tex in response to vibro-tactile stimulation compared 

to younger adults. 

Future studies should focus on the effects of 
ageing on EEG signals. 

 
In addition, NFT methods to improve cortical 
lateralization and algorithms not based solely 
on EEG lateralization should be investigated. 

These age-related EEG changes reflected 
greater susceptibility to noise and interfer-

ence. 

Zich et al., 2017 [10] 
Brain activity patterns show lower lateralization of 

ERD % and HbR concentration during MI, but not ME, 
in older subjects compared with younger participants. 

Age-related changes in MI should be taken 
into account when designing MI NF protocols 

for patients. The influence of age must be con-
sidered in the design of neuro-rehabilitation 
protocols for stroke patients. Complex rela-
tionship between age and exercise-related 

activity in both EEG and hemodynamic meas-
urements. 

Herweg et al, 2016 [11] 

Tactile BCI performance is valuable although age-re-
lated changes in somatosensory abilities are negligible. 

The protocol enabled learning and significantly im-
proved BCI performance and EEG characteristics, 

demonstrating the positive effect of training. 

Future studies should focus on tactile BCI de-
velopment, considering specific stimulation 

design, individual characteristics and training. 
Tactile BCIs can be a valid alternative to visual 

and auditory tasks. They can 
be used despite age-related changes in soma-

tosensory abilities. 

Gomez-Pilar et al., 2016 
[12] 

Usefulness of NF training with a motor imagery-based 
BCI in terms of improvements in all cognitive functions 

except attention. 

This study may be helpful in the development 
of new NF training based on MI strategies, 
useful in rehabilitating cognitive functions 

by improving brain plasticity and neuropsy-
chological functions, which seems to affect the 

older population. 

Karch et al., 2015 [13] 
WM load and spatial attentional focus could be distin-
guished in all age comparison groups based on EEG re-

sponses in alpha range. 

A multivariate approach provides better dis-
crimination than classical non-person-specific 

models, 
at both the individual and group levels. 

Lee et al., 2015 [14] 

Improvements in attention and delayed memory be-
fore and after CT. No significant changes observed 

in immediate memory and visuospatial/constructive 
areas. 

BCI-based intervention showed promising re-
sults 

 
in improving memory and attention. This in-

tervention could potentially reduce or prevent 
cognitive decline 
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in patients with mild or major neurocognitive 
disorders. 

Lee et al., 2013 [15] 
Significant improvements in immediate memory, 
visuospatial/constructive, attention and delayed 

memory before and after CT. 

BCI-based intervention showed promising re-
sults in improving memory and attention. This 
intervention could potentially reduce or pre-

vent cognitive decline 
in patients with mild or major neurocognitive 

disorders. 

 


