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Abstract: Using remotely-sensed Suomi National Polar-orbiting Partnership (NPP)-VIIRS (Visible
Infrared Imagery Radiometer Suite) night-time light (NTL) imagery between 2012 and 2016 and
electricity consumption data from the IEA World Energy Balance database, we assemble a five-year
panel dataset to evaluate if and to what extent NTL data are able to capture interannual changes
in electricity consumption within different countries worldwide. We analyze the strength of the
relationship both across World Bank income categories and between regional clusters, and we evaluate
the heterogeneity of the link for different sectors of consumption. Our results show that interannual
variation in nighttime light radiance is an effective proxy for predicting within-country changes in
power consumption across all sectors, but only in lower-middle income countries. The result is robust
to different econometric specifications. We discuss the key reasons behind this finding. The regions of
Sub-Saharan Africa, Middle-East and North Africa, Latin America and the Caribbeans, and East Asia
and the Pacific render a significant outcome, while changes in Europe, North America and South
Asia are not successfully predicted by NTL. The designed methodological steps to process the raw
data and the findings of the analysis improve the design and application of predictive models for
electricity consumption based on NTL at different spatio-temporal scales.

Keywords: electricity consumption; VIIRS; remote sensing; economic development; comparative
assessment

1. Introduction

Over the last 20 years, the release of open-access night-time light (NTL) data with worldwide
coverage has proven useful for estimating multiple aspects of human development at both a global [1]
and a local scale [2]. Different generations of data have been published by National Aeronautics
and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA)
(including the Defence Meteorological Satellite Program-Operational Linescan (DMSP-OLS), the
Visible Infrared Imagery Radiometer Suite–day-night band (VIIRS-DNB) [3], and the upcoming Black
Marble [4] products) and have been continuing to improve in data quality and increasing spatial
and temporal resolutions. Extensive research has been carried out on NTL data, in a large range of
applications, including as a proxy for electricity-related indicators (e.g., electricity demand [5–10],
power supply reliability and outages [11,12], household electrification [13–17], electricity demand
peaks visualisation [18]) and socio-economic development metrics (including economic growth [19],
poverty detection [20], inequality [21] and greenhouse gas emissions [22]).

At the same time, a growing demand for reliable data to support decision-makers has been
witnessed in recent years. The greatest roadblocks are found in the context of developing countries,
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where data availability is affected by a broad spectrum of issues, including the financial, technical,
or infrastructure constraints to collect and maintain up-to-date data, but also data quality issues.
This has been of particular relevance in the objective of tracking progress towards the United Nations’
Sustainable Development Goals. In response to such challenges, novel approaches to complement the
on-the-field data collection that is resource-consuming and often subject to potential errors are gaining
significance and international support (e.g., using remote sensing for measuring agricultural yield [23]
or monitoring deforestation [24]).

In this paper we present a number of exploratory findings in the prospect of using and validating
NTL-based tools for the monitoring of electricity consumption at different spatial and temporal
scales (as already explored in a number of recent contributions [8,25–27]). The necessity to carry our
exploratory analysis stems from a strong caveat characterizing approaches based on remotely-sensed
data, namely that they should be used in parallel and not in substitution of more precise methodologies,
as satellite output data may include some long-term, unaccounted-for bias which could significantly
affect the results. For this reason, a continuous validation of those data is strongly suggested, so as to
factor potential evolution of the energy system and data issues in the estimation model.

Specifically, we evaluate if and to which extent the increase in per-capita gross national income
(GNI) leads to a significant variation of the relation NTL vs electricity consumption in its different
components. Our hypothesis is that at higher levels of economic development, electricity consumption
reaches a threshold where the lighting component becomes a marginal share of the Total Final
Consumption. This is particualrly important given the forecasted growing importance of electricity in
the global energy mix [28]. We also analyze the strength of the relationship across regional clusters.
We run log-log regressions analysis, implementing pooled-OLS (ordinary least squares), country
fixed-effects, and country-year demeaning specifications. This is done subsetting observations for
each income category when testing the income hypothesis, and by creating interaction terms when
assessing the NTL-power consumption relationship across regional clusters.

The remainder of the paper is structured as follows: In Sections 2 and 3 we present the materials
collected and methods designed and applied, respectively, including a discussion of the data and of
the relative challenges which had to be tackled. Section 4 presents the log-log regression results
for income-categories and regions for total final consumption (TFC) of electricity. In Section 5,
the key findings and limitations of the study are discussed, and future research prospects are
highlighted. The Appendix A includes regression results across further power consumption sectors
and additional figures.

2. Materials

Remotely-sensed NTL data is derived from Suomi National Polar-orbiting Partnership
(NPP)-VIIRS (Visible Infrared Imager Radiometer Suite) monthly composites [3]. Images have been
retrieved for the period between April 2012 and December 2016. Each raster file has a resolution of
15-arc seconds, corresponding to 450 m at nadir. The data is partially pre-processed at the source, i.e.,
it comes with a two-step correction to be be cloud-free and lunar illuminance-free. In particular, the
day-night band (DNB) sensor collects data multiple times a day, both during the day and the night, and
aggregates such images in daily snapshots, which are then averaged into monthly composites at the
pixel-level, and days with cloud-cover disturbances are discarded. Each pixel contains information on
the mean detected radiance (expressed in μW · cm−2 · sr−1 units). As discussed in the literature [29–31],
irrespective of corrections, the raw data is affected by a range of issues which needs to be tackled by
an appropriate processing procedure. These are discussed in the Methods section.

Electricity consumption data has been collected by the IEA World Energy Balance database [32],
which represents the most reliable, standardized, and continuous available time series of energy data
worldwide. For this study the electricity final consumption has been considered, by analyzing: (1) total
final (shown in Figure 1), (2) residential and (3) commercial and public services consumption. The data
is available with annual detail, and the most recent with a worldwide coverage area for the year 2016.
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For this reason, as they are only partially overlapping with the night-time light data, the analysis
will be limited to the 2012–2016 period. Other sources provide more up-to-date information but on
a limited number of countries (mainly OECD countries), and therefore they are less useful for the
global scope of this research. The total number of countries considered amounts to 109, including 13
for Central and Eastern Europe, 11 in East Asia and the Pacific, 24 for Europe, 18 for Latin American
and the Caribbeans, 16 for the Middle East and North Africa, two for North America, five for South
Asia, and 20 for Sub-Saharan Africa). A caveat stems from the classification of the different typologies
of power consumption: While the IEA aims at providing standard-quality data, there might still be
differences in the accounting and categorization of power consumption between countries.

Figure 1. Average annual per-capita total final consumption of electricity (TFC), worldwide.

Finally, per-capita GNI (calculated with the World Bank Atlas method ( The Atlas conversion
factor for any year is the average of a country’s exchange rate for that year and its exchange rates
for the two preceding years, adjusted for the difference between the rate of inflation in the country
and international inflation; the objective of the adjustment is to reduce any changes to the exchange
rate caused by inflation. (The World Bank (2018))) is acquired for each year and each country from
the World Bank Data Portal (indicator NY.GNI.PCAP.CD). Based on thresholds reported for each
year [33], we create a categorical variable with income categories, resulting in low-income (on average,
n = 11), lower-middle income (n = 30), upper-middle income (n = 30), and high-income (n = 38)
countries clusters.

3. Methods

The NTL data processing has been implemented within the Google Earth Engine interface [34],
a cloud-computing Javascript console and interface for remotely sensed data elaboration (refer to the
Source code section for the repository hosting the script, which allows results reproduction, updating,
and parameters alteration). As discussed in [29], due to calibration issues in each monthly tile,
a number of cells contain very small, sometimes negative values (which in radiance terms do not make
sense), that are identified as sensor and calibration noise, rather than actual radiance. At the same time,
the radiance data is affected by the albedo of land surface (which can lead to the observed radiance
abnormally fluctuating across seasons due to vegetation phenology, snow, and ice cover [18,35]).
As shown in Table 1, removing pixels with very small radiance values—which cannot be identified
as stable anthropogenic light—lead to very significant drops in the light metrics. This is particularly
relevant in snow-covered countries. To cope with both issues, after an empirical assessment of cells
values across the world, cells with radiance value <0.25 have been set to zero.
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Table 1. Median sum of light in selected countries countries with and without floor correction.

Country Corrected Rpc
ct Non-Corrected Rpc

ct Percentage Change

Russia 0.229 0.694 −67.0%
Finland 0.322 0.651 −50.5%
Norway 0.258 0.609 −57.7%
Sweden 0.165 0.365 −54.8%
Iceland 1.855 4.641 −60.0%
Canada 0.413 1.758 −76.5%

In the same fashion, disproportionately large-value pixels (of several orders of magnitude) are
occasionally observed among a number of oil and gas-producing countries, mainly owing to flaring
activity not being filtered out by the processing algorithm (refer to [36]). In fact, observing Landsat or
Sentinel satellite imagery in the proximity of such pixels reveals the presence of extraction sites. Table 2
compares the median sum of light in top flaring producing countries (as according to data from the
World Bank’s Global Gas Flaring Reduction Partnership [37]) with and without the correction adopted
in this study, i.e., where we set all pixels with a radiance value > 300 to 0, and it shows how such
pixels in some countries (e.g., Algeria, Nigeria, Iraq and Iran) contribute to a very large share of the
total detected radiance, and thus are prone to bias the analysis. Interestingly, the same procedure does
not change drastically the value in two control oil and gas producing countries where substantially
less flaring is reported (United Kingdom or India).

Table 2. Mean sum of light with and without correction in top flaring countries and in control countries.

Country Corrected Rpc
ct Non-Corrected Rpc

ct Percentage Change

Algeria 0.068 0.110 −38.2%
Nigeria 0.004 0.005 −31.1%

Saudi Arabia 3.149 3.335 −5.6%
Iraq 0.088 0.224 −60.8%
Iran 0.062 0.097 −35.9%

Russia 0.219 0.254 −13.9%

United Kingdom 0.050 0.051 −0.7%
France 0.066 0.067 −1.7%
India 0.005 0.005 −1.5%

United States 0.140 0.142 −1.5%

Subsequently, the raster files’ projection has been adjusted to a world cylindrical equal area
(Lambert) projection (SR-ORG:8287) to enable a consistent computation, since the original file came
in the standard EPSG:4326 projection, where the pixel resolution is of 450 m (the linear resolution
equivalent of 15 arcseconds) at nadir but it changes as one moves away from the equator. The median
annual value at each pixel has been considered, and the sum of the total radiance within each country
has then been calculated for each country. The median has been favoured over the mean to discard
anomalous months in terms of detected radiance. The figure has been divided by the national
population, and has been defined as Rpc

ct . The annual values of Rpc
ct for each country are represented in

Figure 2.
The yearly country-level figures have then been joined with the IEA electricity consumption

database and with per-capita GNI measures. To assess the predictive power of NTL over actual
consumption levels, log-log regressions have been performed using the following general specification:

log(Electrct) = β1 log(NLct) + µc + ρt + εct (1)

where log(Electrct) is the natural logarithm of electric consumption for the given category, log(NLct) is
the natural logarithm of NTL, and β1 is the corresponding estimated regression coefficient. Given the
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log-log specification—the β1 regression coefficient is to be interpreted as the predicted % change in
electric consumption in response to a 1% change in NTL intensity. µc represents the country fixed-effects
(controlling for the mean level of NTL radiance in that country, allowing the regression coefficient
to be interpreted as a within-estimator), ρt are the year fixed-effects (controlling for world-wide year
events e.g., particularly snowy years affecting the albedo, or to changes in the satellite calibration),
εct is a vector of stochastic error terms, t are years, c are countries. Three comparative specifications,
including only the NTL coefficient, adding country fixed-effects, and adding also year fixed-effects,
have been run.

Figure 2. Average annual sum of light per capita, worldwide.

The main purpose of the analysis is investigating to which extent the yearly per-capita
average radiance is capable of predicting interannual variations across different sectorial per-capita
electricity consumption figures. Observations have been initially grouped into the income categories
defined by The World Bank (low-income, lower-middle income, upper-middle income, and
high-income economies).

The exercise has then been reiterated, but in this case the figures have been clustered by
macro-region, where the world has been split into seven macro-areas, including: Central and Eastern
Europe, Middle-East and North Africa, Sub-Saharan Africa, South Asia, East Asia and the Pacific, and
the Americas. In this, case interaction terms between the categorical variables for each region and
the log(NTL) variable have been introduced in the specification—as in Equation (2)—to assess the
heterogeneity in the effect across regional clusters.

log(Electrct) = β1 log(NLct) + φ2 log(NLct) · regionr + φ3regionr + µc + ρt + εct (2)

Here, β1 is the usual coefficient measuring the main effect of the log(NTL); φ3 is a vector of
coefficients representing the main effect estimators each region (regions are introduced as levels of a
categorical variable, with r identifying each region), while φ2 is the vector of coefficients quantifying
the interaction effects between the log(NTL) and each region, and thus representing the coefficients of
interest for our research question.

Along with the numerical analysis, plots and maps of the results have been produced to highlight
the main findings visually.
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4. Results

4.1. Subset Regressions by Income Category

Here we report the result of log-log regressions (with heteroskedasticity-robust standard errors)
run to assess the average explanatory power of NTL over the changes in the actual consumption levels
within World Bank-defined income categories. The coefficients of the log-log specifications express the
% change in the response variable as a result of a 1% change in the explanatory variable of interest,
and thus the slope. Differentiating the specification with respect to the response variable results in
δY
Y = β1

δX
X , where the βs measure the ceteris paribus % predicted change in the response variable

(here, electricity consumption) for a 1% change in the explanatory variable of interest, i.e., sum of
NTL radiance. This is what in economic terms is referred to as an elasticity. In both cases, reported
regressions are those run with TFC as the response variable. The Appendix A reports results for the
two other sub-categories of power consumption considered (commercial and public and residential).
Figure 3 shows the scatterplot and linear fit for the log-log specification by income category, where
each observation across the 2012–2016 period is reported for each country. Longitudinal regression
results for TFC are reported in Tables 3–6. Column 1 refers to a pooled OLS log-log specification,
column 2 adds country-fixed-effects (which can be interpreted as a demeaning factor, i.e., a set of
dummy variables controlling for the mean electricity consumption of each country), and column 3 also
includes year-fixed-effects.

Figure 3. Night-time light (NTL) vs. TFC by World Bank (WB) Income Category (annual values
between 2012–2016).

Regression results show that—when linking TFC and sum of NTL radiance in a pooled OLS
regression—the relationship is positive and highly significant across income categories, with estimates
in the 0.67–1.53 range. The highest coefficient is found for low-income countries (Table 3), and the
lowest for high-income countries (Table 6), highlighting a general gradual decoupling of the total
final electricity consumption from the lighting component across income categories. Nonetheless,
when switching to fixed-effects specifications and therefore looking at the within-country interannual
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variations, the high statistical significance of the NTL coefficient persists only for lower-middle income
countries (Table 3) and—limited to the country fixed-effects only specification—to upper-middle
income countries (Table 5). While detailed discussion of this finding is offered in the Discussion section,
we believe it likely reflects the fact that low-income countries might be affected by issues of data
quality and low interannual heterogeneity in the five-year period for which the data is available, while
in higher-middle and high income countries a decoupling in the relationship between light radiance
and actual power consumption is expected (as partially confirmed from the pooled OLS results).

Table 3. Low-income countries regression for TFC.

Dependent Variable:

Log of total final consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL (β1) 1.526 *** 0.398 0.177
(0.067) (0.263) (0.251)

Constant −6.662 ***
(0.696)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 50 50 50
R2 0.9153 0.9998 0.9999
Adjusted R2 0.9136 0.9998 0.9998
Residual Std. Error 0.329 (df = 48) 0.145 (df = 37) 0.126 (df = 33)
F Statistic 518.954 *** (df = 1; 48) 15,625.980 *** (df = 13; 37) 15,645.830 *** (df = 17; 33)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table 4. Lower-middle income countries regression for TFC.

Dependent Variable:

Log of total final consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL (β1) 0.912 *** 0.336 *** 0.233 ***
(0.036) (0.074) (0.059)

Constant −0.111
(0.445)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 147 147 147
R2 0.8174 0.9999 0.9999
Adjusted R2 0.8161 0.9999 0.9999
Residual Std. Error 0.599 (df = 145) 0.104 (df = 112) 0.080 (df = 108)
F Statistic 648.889 *** (df = 1; 145) 48,912.520 *** (df = 35; 112) 74,798.650 *** (df = 39; 108)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 5. Upper-middle income countries regression for TFC.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL (β1) 0.862 *** 0.129 * 0.039
(0.029) (0.071) (0.061)

Constant 0.255
(0.379)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 148 148 148
R2 0.8542 1.000 1.000
Adjusted R2 0.8532 1.000 1.000
Residual Std. Error 0.554 (df = 146) 0.065 (df = 113) 0.051 (df = 109)
F Statistic 855.698 *** (df = 1; 146) 127,312.800 *** (df = 35; 113) 186,778.500 *** (df = 39; 109)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table 6. High-income countries regression for TFC.

Dependent Variable:

Log of total final consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL (β1) 0.665 *** 0.005 0.001
(0.036) (0.004) (0.004)

Constant 3.482 ***
(0.483)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 191 191 191
R2 0.6479 1.000 1.000
Adjusted R2 0.6461 1.000 1.000
Residual Std. Error 0.913 (df = 189) 0.039 (df = 150) 0.036 (df = 146)
F Statistic 347.828 *** (df = 1; 189) 471,777.300 *** (df = 41; 150) 502,138.200 *** (df = 45; 146)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

It is necessary to remark that in regression specifications (1) (log-log), the log of NTL coefficients
show the ability to predict TFC from NTL, no matter the year or the country under analysis. Therefore,
the estimators reflect the slopes of the lines of Figure 3. On the other hand, for specifications (2)
(country fixed-effects, where the country-specific mean value across years is subtracted from each
observation), the regression coefficients show the average ability to predict TFC from NTL within each
country in that income category, i.e., they do not explain the overall heterogeneity in TFC, but only the
changes from year to year within each country (the coefficient is thus a within-estimator). Since in the
five-year period under examination we generally observe little variation within each country (at least
in relative terms, i.e., compared to the large amount of variation between countries), adding country
fixed-effects dramatically increases the fraction of total variance explained. Nonetheless, there still is
some residual standard error to be explained, and we test the capacity of NTL to address precisely that
residual (small relatively to the between county-heterogeneity, but here considered in absolute terms).
The fact that variables are not dropped due to potential multicollinearity is reassuring in this sense.
Figure 4 shows the analysis of specifications (2) with scatterplots and linear fits for (A) lower-middle
income and (B) high-income countries. In particular, it shows how the within-country variation in TFC
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for a number of lower-middle income countries (but not all of them) is predicted effectively by NTL,
while for the case of high-income countries, relationships appear flat, underpinning the (in)significance
of regression coefficients of specifications (2). Finally, when considering specifications (3) (country and
year fixed-effects), on the top of country fixed-effects we also add year dummies to control for those
factors which are constant to all countries in each year but change from year to year, i.e., mostly data
quality due to calibration of satellite.

Figure 4. NTL vs. TFC for (A) lower-middle income and (B) high-income countries (annual values
between 2012–2016). Each color represents a separate country.

Concerning regression diagnostics, it must be noted that the R2 coefficient being close to 1 in the
fixed-effect regression is caused by the limited amount of heterogeneity in the within-country data for
the change in the TFC of electricity between 2012 and 2016. Adding fixed-effects to the specification
makes the coefficient for the log of NTL fall substantially and the R2 go close to 1. The residual
standard error metric shows that there is indeed a fraction of unexplained heterogeneity (the R2 should
not be taken as a reference in this specific setting), the high statistical significance of the log(NTL)
coefficient even under the fixed-effects specification in the context of lower-middle income countries is
the most interesting result, because it shows that NTL are capable of capturing those small changes
in the level of consumption within countries between one year and the other. The F Statistic—useful
for comparing specifications as it sheds light on the significance of multiple coefficients at the same
time—underpins our results. For instance, for low-income countries it shows that switching from the
country-fixed-effects to the year and country-fixed-effects specification has a positive impact on the
capacity of the model to explain the response variable, and thus that year fixed-effects contribute to
explaining more variance than the country fixed-effects only.

Figure 5 shows the distribution of the share of commercial and public electricity consumption
(COMMPUB) and residential electricity consumption (RESIDENT) consumption over TFC by the
four income categories considered. It shows how—as income increases—the spread between the
two categories tends to close, with COMMPUB becoming dominant or comparable to RESIDENT in
high-income countries.

The graph supports the understanding of our results, as it sheds some light on the varying
significance of lighting across income categories. Detected NTL radiance stems from public street
and road lighting, and from private buildings. Satellite data has been found to be suitable to detect
both public [38,39] and indoor light [40], and therefore can potentially shed useful information on
both components.

However, it has to be remembered that differences exist across countries in the procedures to
collect and elaborate statistical data. For this reason, although the data are grouped in a common
framework, some potential minor differences remain in the sector classifications of energy consumption.
Thus, we believe that the use of total final consumption is a better indicator across multiple countries.
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For the same reason, to draw detailed conclusions on the type of lights that are actually captured
would require a more detailed analysis at country or local scale.

Figure 5. Share of electricity consumption sectors over TFC, by income category. Commercial and
public electricity consumption (COMMPUB), residential electricity consumption (RESIDENT).

4.2. Regional Clustering

To test if significant differences affect different regions of the world in the TFC-NTL relationship
(e.g., due to cultural, infrastructure and development clustering), here (Table 7) we report the results
of the regressions specifications implementing interaction terms between each macro-region and
NTL intensity. Similarly to income-category clustering, Figure 6 shows the scatterplot and linear
fit for the log-log specification by region, where values for each countries are averaged across the
2012–2016 period.

Results show that once fixed-effects are added, the main effect of the interaction term for log(NTL)
becomes insignificant, but the interaction effects across log(NTL) and region remains positive and
highly significant in Sub-Saharan Africa, Middle-East and North Africa, Latin America and the
Caribbeans, and East Asia and the Pacific, with elasticities in the 0.34–0.75 range. In particular,
the highest effect is found for East Asia and the Pacific and the lowest for Middle East and North
Africa. Conversely, interaction coefficients for North America, South Asia and Europe are insignificant.
Conversely, changes in Europe, North America and South Asia are not successfully predicted by NTL.

Comparing results with regressions for other consumption categories found in the Appendix A
reveals substantially similar patterns in terms of significance. The key discrepancies is that while
lower-middle income countries exhibit highly significant coefficients also for residential (0.21) and
commercial and public (0.34) sectors, RESIDENT AND COMMPUB coefficients for upper-middle
income countries are not significant even under the country-fixed-effects only specification. On the
other hand, we observe a 10% significant coefficient for the country-fixed-effects specification for
commercial and public consumption in high-income countries, although the observed coefficient (0.01)
is particularly low and thus not deemed a robust result. Across regional-level outcomes, for the case
of residential consumption, the same results that were found for TFC in terms of which interaction
term coefficients are observed for the RESIDENT variable as statistically significant. However, in
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this case only two regions exhibit a very high significance, namely East Asia and the Pacific (0.59),
and Sub-Saharan Africa (0.36). Conversely, with regards to commercial and public consumption,
only NTL in East Asia and the Pacific are found to be highly significant predictors of interannual,
within-country consumption level changes, with a 5% significant coefficient of 1.17.

Table 7. Region clustering regression for TFC.

Dependent Variable:

Log of total final consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL (β1) 0.741 *** 0.008 −0.034
(0.082) (0.074) (0.066)

Central and Eastern Europ 2.061 ** 11.906 *** 12.394 ***
(1.033) (0.962) (0.864)

East Asia and the Pacific −1.373 ** −0.378 3.179*
(0.690) (2.074) (1.828)

Europe 5.029 *** 12.952 *** 12.980 ***
(0.395) (0.107) (0.094)

Latin America and Caribbeans −1.329 *** −1.359 2.385
(0.474) (3.049) (2.677)

Middle East and North Africa 1.057 * 5.675 *** 5.888 ***
(0.603) (0.877) (0.759)

North America −5.697 16.870 *** 17.563 ***
(5.245) (1.088) (0.946)

South Asia −0.165 10.763 *** 12.294 ***
(0.778) (2.684) (2.350)

Sub-Saharan Africa −0.424 3.803 *** 6.296 ***
(0.474) (1.401) (1.238)

Log of NTL × East Asia and the Pacific 0.317 *** 0.966 *** 0.746 ***
(0.098) (0.167) (0.148)

Log of NTL × Europe −0.189 ** −0.003 0.033
(0.088) (0.074) (0.066)

Log of NTL × Latin America and Caribbeans 0.237 *** 0.950 *** 0.685 ***
(0.090) (0.257) (0.227)

Log of NTL × Middle East and North Africa 0.040 0.321 *** 0.340 ***
(0.094) (0.104) (0.091)

Log of NTL × North America 0.482 −0.033 −0.033
(0.315) (0.096) (0.084)

Log of NTL × South Asia 0.205 ** 0.128 0.055
(0.102) (0.207) (0.184)

Log of NTL × Sub-Saharan Africa 0.183 ** 0.514 *** 0.348 ***
(0.093) (0.136) (0.121)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 544 544 544
R2 0.0.9975 1.000 1.000
Adjusted R2 0.0.9974 1.000 1.000
Residual Std. Error 0.588 (df = 528) 0.079 (df = 427) 0.068 (df = 423)
F Statistic 13,010.400 *** (df = 16; 528) 98,231.090 *** (df = 117; 427) 127,478.000 *** (df = 121; 423)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Figure 6. NTL vs. TFC by region (average values 2012–2016).

5. Discussion and Conclusions

We have assessed the capacity of exploiting the interannual variation in VIIRS night-time light
radiance to predict changes in the national electricity consumption change during the 2012–2016
period. Our results for TFC have highlighted that the approach is successful in lower-middle income
countries, for which a 0.23 coefficient is found in the country-year demeaning specification, and only
partially in upper-middle income countries (country-fixed-effects coefficient of 0.13 only significant
at a 10% level), but not across other income categories. We believe that low-income countries might
be affected by (i) issues of data quality (ii) little interannual heterogeneity in the five-year period for
which the data is available, while in higher-middle and high income countries a decoupling in the
relationship between light radiance and actual power consumption is the hypothesized reason for the
insignificance of the regression coefficient. This result finds evidence in the pooled OLS specifications,
which look into overall changes and not into the within-country variation. Here, the magnitude of the
regression coefficient is declining as one moves up across income categories. This is in line with the
initial hypothesis. In a similar fashion, we have found that macro-regions where the relation does not
hold are those with the countries with the highest consumption and levels of per-capita incomes across
the world, namely North America and Europe, but also the exception of South Asia (including India,
Bangladesh, Pakistan, Sri Lanka, and Nepal). Conversely, the approach seems particularly suitable for
East Asia and Latin America, for which the highest and most significant coefficients are found.

Research Prospects

One of the key objectives of this paper has been to carry out exploratory analysis for the capacity
of NTL to predict the change in power consumption within a country. This is particularly interesting
in the perspective of applying the methodology at finer spatio-temporal scales (e.g., in a number
of developing countries at a monthly scale) and built an ad-hoc model which, once appropriately
calibrated on historical data, can produce continuous estimates of energy consumption as new data is
published. The upcoming release of a new generation of high-resolution, monthly NTL data product,
the VIIRS-based VNP 46 Black Marble [4], could allow mitigating a substantial part of the issues in the
raw data discussed in the Methods section of this paper. Furthermore, the validation with region or
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province level data on consumption in tight cooperation with local power supply utilities could render
the model even more effective and insightful for the specific location under examination. At the same
time, the national scale, yearly estimation approach could also be improved through the development
of better algorithms to clean data and remove non-electric detected light, such as flaring, calibration
noise, and albedo and land cover.
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Appendix A

Appendix A.1. Regression Tables

Table A1. Regression for COMMPUB—Low-income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL 1.104 *** 0.363 −0.021
(0.178) (0.611) (0.678)

Constant −4.234 **
(1.854)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 50 50 50
R2 0.4433 0.9984 0.9986
Adjusted R2 0.4317 0.9979 0.9978
Residual Std. Error 0.877 (df = 48) 0.336 (df = 37) 0.341 (df = 33)
F Statistic 38.223 *** (df = 1; 48) 1809.817 *** (df = 13; 37) 1344.745 *** (df = 17; 33)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

https://github.com/giacfalk/VIIRS_electricity_assessment
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Table A2. Regression for COMMPUB—Lower-middle income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL 0.853 *** 0.363 ** 0.336 **
(0.040) (0.140) (0.145)

Constant −1.122 **
(0.495)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 142 142 142
R2 0.7664 0.9997 0.9997
Adjusted R2 0.7647 0.9996 0.9996
Residual Std. Error 0.659 (df = 140) 0.192 (df = 109) 0.193 (df = 105)
F Statistic 459.267 *** (df = 1; 140) 10,607.090 *** (df = 33; 109) 9298.249 *** (df = 37; 105)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A3. Regression for COMMPUB—Higher-middle income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

Log of NTL 0.821 *** 0.028 0.051
(0.049) (0.311) (0.345)

Constant −0.685
(0.626)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 128 128 128
R2 0.6934 0.9994 0.9994
Adjusted R2 0.691 0.9992 0.9992
Residual Std. Error 0.850 (df = 126) 0.280 (df = 98) 0.284 (df = 94)
F Statistic 284.954 *** (df = 1; 126) 5373.881 *** (df = 30; 98) 4603.861 *** (df = 34; 94)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A4. Regression for COMMPUB—High-income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL 0.683 *** 0.010 * 0.006
(0.035) (0.005) (0.005)

Constant 1.990 ***
(0.474)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 191 191 191
R2 0.6683 1.000 1.000
Adjusted R2 0.6666 1.000 1.000
Residual Std. Error 0.897 (df = 189) 0.054 (df = 150) 0.048 (df = 146)
F Statistic 380.843 *** (df = 1; 189) 206,386.200 *** (df = 41; 150) 231,696.900 *** (df = 45; 146)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A5. Regression for COMMPUB—regional clustering.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

Log of NTL 0.844 *** 0.091 0.065
(0.107) (0.188) (0.196)

Central and Eastern Europ −0.876 7.451 *** 7.705 ***
(1.343) (2.135) (2.215)

East Asia and the Pacific −2.504 ** −9.202 −6.435
(0.980) (6.728) (6.910)

Europe 3.349 *** 11.354 *** 11.370 ***
(0.500) (0.271) (0.277)

Latin America and Caribbeans −2.670 *** 0.369 2.516
(0.599) (7.744) (7.873)

Middle East and North Africa −0.755 1.914 2.000
(0.782) (2.236) (2.237)

North America −11.767 * 15.299 *** 15.696 ***
(6.635) (2.764) (2.780)

South Asia −1.035 7.967 8.848
(0.984) (6.815) (6.909)

Sub-Saharan Africa −1.237 ** 9.765 *** 10.987 ***
(0.611) (3.210) (3.281)

Log of NTL × East Asia and the Pacific 0.197 1.351 ** 1.174 **
(0.130) (0.523) (0.539)

Log of NTL × Europe −0.258 ** −0.081 −0.060
(0.114) (0.189) (0.195)

Log of NTL × Latin America and Caribbeans 0.123 0.626 0.476
(0.117) (0.652) (0.668)

Log of NTL × Middle East and North Africa −0.034 0.387 0.403
(0.122) (0.264) (0.267)

Log of NTL × North America 0.659 * −0.085 −0.084
(0.399) (0.245) (0.247)

Log of NTL × South Asia 0.007 0.103 0.062
(0.131) (0.527) (0.543)

Log of NTL × Sub-Saharan Africa −0.005 −0.210 −0.300
(0.121) (0.350) (0.360)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 519 519 519
R2 0.9947 0.9997 0.9997
Adjusted R2 0.9946 0.9996 0.9996
Residual Std. Error 0.744 (df = 503) 0.201 (df = 407) 0.201 (df = 403)
F Statistic 5926.033 *** (df = 16; 503) 11,626.550 *** (df = 112; 407) 11,260.480 *** (df = 116; 403)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A6. Regression for RESIDENT—Low-income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL 1.127 *** 0.330 0.082
(0.097) (0.247) (0.215)

Constant −3.526 ***
(1.008)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 50 50 50
R2 0.7376 0.9998 0.9999
Adjusted R2 0.7322 0.9998 0.9998
Residual Std. Error 0.477 (df = 48) 0.136 (df = 37) 0.108 (df = 33)
F Statistic 134.948 *** (df = 1; 48) 13,997.790 *** (df = 13; 37) 16,915.650 *** (df = 17; 33)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A7. Regression for RESIDENT—Lower-middle income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

Log of NTL 0.915 *** 0.304 *** 0.205 ***
(0.033) (0.086) (0.073)

Constant −1.153 ***
(0.411)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 142 142 142
R2 0.8468 0.9999 0.9999
Adjusted R2 0.8457 0.9999 0.9999
Residual Std. Error 0.547 (df = 140) 0.118 (df = 109) 0.098 (df = 105)
F Statistic 767.618 *** (df = 1; 140) 32,611.740 *** (df = 33; 109) 42,417.700 *** (df = 37; 105)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A8. Regression for RESIDENT—Higher-middle income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

log(light_sum) 0.779 *** 0.164 ** 0.054
(0.028) (0.078) (0.061)

Constant 0.144
(0.355)

Country fixed effects? No Yes Yes
Year fixed effects? No No Yes
Observations 143 143 143
R2 0.8506 1.000 1.000
Adjusted R2 0.8495 1.000 1.000
Residual Std. Error 0.502 (df = 141) 0.072 (df = 109) 0.051 (df = 105)
F Statistic 802.566 *** (df = 1; 141) 85,751.280 *** (df = 34; 109) 151,812.900 *** (df = 38; 105)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A9. Regression for RESIDENT—High-income countries.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

log(light_sum) 0.713 *** 0.007 0.003
(0.037) (0.005) (0.005)

Constant 1.609 ***
(0.502)

Country fixed effects? No Yes Yes
Year fixed effects? No No Yes
Observations 191 191 191
R2 0.662 1.000 1.000
Adjusted R2 0.6602 1.000 1.000
Residual Std. Error 0.949 (df = 189) 0.048 (df = 150) 0.046 (df = 146)
F Statistic 370.164 *** (df = 1; 189) 260,361.200 *** (df = 41; 150) 251,062.300 *** (df = 45; 146)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A10. Regression for RESIDENT—regional clustering.

Dependent Variable:

Log of Total Final Consumption of electricity

(1) (2) (3)

(Log-log) (Country fixed-effects) (Country and year fixed-effects)

Log of NTL 0.631 *** 0.089 0.036
(0.088) (0.079) (0.074)

Central and Eastern Europ 2.358 ** 8.378 *** 8.924 ***
(1.101) (0.898) (0.835)

East Asia and the Pacific −0.643 −1.494 3.405
(0.803) (2.830) (2.604)

Europe 3.099 *** 11.871 *** 11.916 ***
(0.410) (0.114) (0.104)

Latin America and Caribbeans −1.435 *** −0.607 3.136
(0.491) (3.258) (2.967)

Middle East and North Africa 0.175 6.495 *** 6.675 ***
(0.641) (0.941) (0.843)

North America −7.725 15.752 *** 16.509 ***
(5.440) (1.163) (1.048)

South Asia 0.059 7.817 *** 9.257 ***
(0.807) (2.867) (2.603)

Sub-Saharan Africa −0.865 * 2.637 * 4.812 ***
(0.501) (1.350) (1.236)

Log of NTL × East Asia and the Pacific 0.287 *** 0.891 *** 0.585 ***
(0.107) (0.220) (0.203)

Log of NTL × Europe −0.032 −0.082 −0.037
(0.093) (0.080) (0.074)

Log of NTL × Latin America and Caribbeans 0.267*** 0.734 *** 0.481 *
(0.096) (0.274) (0.252)

Log of NTL × Middle East and North Africa 0.152 0.140 0.173 *
(0.100) (0.111) (0.101)

Log of NTL × North America 0.649 ** −0.107 −0.100
(0.327) (0.103) (0.093)

Log of NTL × South Asia 0.220 ** 0.207 0.152
(0.108) (0.222) (0.204)

Log of NTL × Sub-Saharan Africa 0.237 ** 0.511 *** 0.359 ***
(0.099) (0.147) (0.136)

Country fixed-effects? No Yes Yes
Year fixed-effects? No No Yes
Observations 519 519 519
R2 0.9965 0.9999 1.000
Adjusted R2 0.9964 0.9999 0.9999
Residual Std. Error 0.610 (df = 503) 0.085 (df = 407) 0.076 (df = 403)
F Statistic 9478.520 *** (df = 16; 503) 70,516.450 *** (df = 112; 407) 85,118.370 *** (df = 116; 403)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Appendix A.2. Additional Figures

Figure A1. NTL vs. RESIDENT for (A) lower-middle income and (B) high-income countries (annual
values between 2012–2016).

Figure A2. NTL vs. COMMPUB for (A) lower-middle income and (B) high-income countries (annual
values between 2012–2016).
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