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Abstract—This paper presents the most relevant results on
the investigation of possible uses of machine learning based
techniques for the processing of data in the field of Global
Navigation Satellite Systems. The work was performed under
funding of the European Space Agency and addressed different
kind of data present in the entire chain of the positioning
process, as well as different kind of machine learning approaches.
This paper presents the most promising results obtained for the
prediction of ionospheric maps for the correction of the related
error on the pseudorange measurement and for the forecast of
fast corrections normally present in the EGNOS messages, when
the latter might be missing. Results show how, based on the
historical data and the time correlation of the values, machine
learning methods outperformed simple regression algorithms,
improving the positioning performance at GNSS user level. The
work results also confirmed the validity of this approach for the
automatic detection of outliers due to ionospheric scintillation
phenomena.

Index Terms—Machine-learning, GNSS, Ionosphere, Position-
ing

I. INTRODUCTION

It is well known that machine learning (ML) methods
are a powerful tool demonstrating their value when dealing
with large amount of data. In particular, they show their
effectiveness for the prediction of future evolution of the
data series or to identify, in an automated way, “patterns” in
the data or outliers. The GNSS ML Demonstrator (GMLD)
aimed at investigating possible applications in the Global
Navigation Satellite System (GNSS) domain that could benefit
from ML capabilities, to improve some elements of the entire
GNSS process to provide better positioning, navigation, and
timing (PNT) services. Indeed, GNSS-based PNT has become
fundamental for a wide range of applications, from critical
infrastructures [1], [2] to intelligent transportation systems [3]–
[5], to name a few, and, nonetheless, an effective resource
for many other purposes [6]–[8]. Such ubiquity is therefore
fostering an increased need to access correct GNSS data.

This work has been developed in the framework of the activity “Machine-
Learning to model GNSS systems” funded by the European Space Agency
(NAVISP-EL1-035.02).

ML-based techniques have been investigated for GNSSs and
also proved their effectiveness on the receiver side [9], [10].
Nevertheless, this study aims at investigating and demonstrat-
ing the use of ML in the broader area of the GNSS domain.
In particular, one of the main goals of the investigation is to
improve the GNSS data that affect the quality of the GNSS
measurements used for the position estimation. Such data
might be either included in the navigation message or coming
from external sources, and be needed for the construction
of the pseudorange or to correct the latter from predictable
error contributions. When such pieces of information are either
missing—due to communication or demodulation issues—
or outdated, the impact on the estimation of the position,
velocity and time (PVT) could be disruptive. In the last years,
the improvement of GNSS data and measurements has been
pursued even by proposing space segment modernization [11],
[12] or alternative PNT systems [13], [14], but failing to
convey such information to users would still be a major waste
of system’s resources.

The investigated solutions aim at mitigating the impact of
these issues by predicting some parameters, when missing, or
implementing proper countermeasures at receiver level when
the presence of errors in the data or in the measurements
is detected/predicted (e.g. excluding some pseudoranges from
the PVT computation or adapting the receiver tracking loops
parameters). To this purpose we investigated a set of case-
studies of applications that implement ML models able to
predict missing information or the presence of possible error
sources. In particular, four applications have been identified
in order to cover a variety of diverse error sources, as well as
different data structures.

The first application targets the prediction of the orbital pa-
rameters at receiver level, when the broadcasted ephemeris are
not available, comparing the improvement of orbit prediction
with respect to basic regression or the use of old (but valid)
values. The second area investigated is the prediction of daily
maps of the ionosphere (TEC maps), while the third is the
estimation of the satellite-based augmentation system (SBAS)



correction parameters in the missed messages (fast and slow
corrections in particular). In order to investigate the potential
of automatic ML algorithms on large data series, the fourth
area of investigation is the detection of signal distortions due to
the presence of ionospheric scintillations and multipath [15].

In this work we focus on the most promising solutions
that were found for the prediction capabilities, reporting the
results of the second and third application. As for the detection
of outliers in the GNSS signals, the investigation confirmed
the ability of this method as already presented in the recent
scientific literature as for example in [16]–[21], even if more
efficient solutions were tested.

To deeply analyze the effectiveness of using the ML al-
gorithm for each specific GNSS application, it is important
to assess how the effect, for example, of a wrong prediction
of a parameter could affect the GNSS application and if, in
case of deviation, it still falls within an acceptable confidence
interval. The assessment is based on the generation of sce-
narios via simulation or real data that are processed by the
previously trained ML algorithms, or on the comparison of the
results with the current state-of-the-art methods. Such outputs
are compared with the expected performance to derive the
performance metrics values.

The paper is organized as follows: Section II will describe
the objectives and the methodology used in developing the
work. Section III and Section IV will describe the use of
ML algorithms to GNSS applications discussing the chosen
algorithms and the results obtained, regarding the prediction
of TEC maps and the prediction of fast corrections in SBAS
messages, respectively. Eventually, Section V will summarize
the conclusions and provide some insights on the future work.

II. PROBLEM DESCRIPTION AND APPROACH

The general object of this work has been to investigate the
use of ML techniques in the GNSS framework, as a mean
to alleviate the performance degradation effects of different
error sources that appear along the processing chain, from the
satellite transmission to the final PVT solution provided to
the user. The use of smart algorithms can then act at different
levels of the processing chain. The ML algorithm could work
at signal level (i.e. on the digital stream of samples at the
output of the front-end) to automatically assess the quality of
the received signal, but also act as a processor of the post-
correlation measurements (observables) to characterize the
operating environment, providing, meanwhile, prediction of
the future trends of the time-varying parameters. Furthermore,
ML algorithms could act on aiding data that are provided
by external sources to improve the PVT solution, either
mitigating error contribution through estimated corrections, or
easing the calculation of the solution (e.g. reduced TTFF, or
increased sensitivity). There is then a large variety of cases
that can be taken into account. Within this work, in order
to address different data structures, rates and complexity of
the data stream, applications to receiver observables, external
data sources, and raw signal samples processed by a software
GNSS receiver, were considered.

Figure 1 depicts a high level scheme of the GMLD im-
plementation showing the data sources, the main software
components, the data flows and the two different applica-
tion pipeline configurations (i.e. development and production)
needed to build the ML models and to run them inside the
application, respectively. The GMLD consists of the software
modules implementing the four selected applications plus
several other software modules that are used across applica-
tions and, therefore, can be shared among them. The shared
software modules provide capabilities to read and write GNSS
data and manage ML model definition, training, validation
and run. The input of the GMLD are files of GNSS data
products stored in several repositories that are accessed to
retrieve historical datasets. They are stored in raw format and
then pre-processed to feed the ML application pipeline. After
data ingestion and transformation, data are consumed by the
ML applications, which consist of the following three stages.
The data preprocessing block performs filtering, sampling,
and cleaning operations to prepare the data for the specific
application. It has the capability to read the GNSS data product
formats involved in the application and store preprocessed
data using intermediate formats that are suitable to feed the
subsequent stage. The feature extraction is dedicated to the
extraction of information which is provided as input to the
ML based models. Finally, the machine learning module im-
plements training and validation, in the development pipeline,
and prediction, in the production pipeline.

The software modules defined so far were implemented
and validated to fulfill the application objectives. They were
built using existing algorithm implementations available in
open source ML frameworks and libraries that are properly
instantiated, configured and tuned to reach the expected appli-
cation performance. ML applications are orchestrated through
a flow engine that allows to define, coordinate, and monitor the
production application pipeline and the other data management
flows. To record all the experiments of the training and
validation activities and to catalog the generated models, the
GMLD integrates a ML registry. The post-processing module
consists of a data product generator and other tools needed
to support the GNSS performance assessment. It is in charge
of reading the ML model output and generating the data
products according to the GNSS data products format (e.g.
RINEX). This module is useful to explore and analyse the
application output with external tools that are common in
the GNSS domain. The GMLD has a front-end based on
interactive computing technologies (i.e. Jupyter Notebook)
that is used for data exploration of all GMLD data, ML
models development from preprocessing to model validation,
and production application execution.

In addition to the standalone software, the applications have
been deployed into the GNSS Science Support Centre (GSSC)
platform [22]. For this purpose, each application has been
refactored in order to be independent from the GMLD software
components and integrated as GSSC DataLab tool.
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Fig. 1: Conceptual scheme of the demonstrator.

III. TEC MAPS PREDICITION

A. Application Description

It is known that total electron content (TEC) in ionosphere
is defined as the total number of electrons integrated along
the path from each GNSS satellite to the receiver. It is one
of several indicators of ionospheric variability that impacts
GNSS signals traveling through this layer of the athmosphere
and interacting with the free electrons.

The objective of this application is to predict global TEC
map sequences given the previous states of the ionosphere.
When looking at the temporal evolution of TEC maps, they
represent a time series of image frames, and the current status
maps can be inferred from the ionosphere previous states.
Temporal prediction of TEC maps is analogous to the well-
studied problem of future frame prediction in video. This topic
has recently received great attention by the ML community as
it is a challenging problem that substantially benefits from the
powerful representation learning capabilities of convolutional
neural networks (CNN). TEC maps have a simpler content
and smoother evolution than arbitrary video sequences and
therefore it is possible to leverage the knowledge and archi-
tectures recently developed for video frame prediction, such
as [23], [24] to effectively solve this task. In the approach
proposed, the TEC map is treated as a whole, and the objective
is the prediction of the entire map, exploiting the spatial and
temporal correlation among the different points of the grid.

B. State of the Art

Forecasting of the TEC maps on a daily basis is a service al-
ready provided by GNSS services. This forecasting is based on
classical regression methods, and recently methods based on
ML and NN have been proposed. In [25]–[27], a large number
of possible features are listed for this purpose: in addiction to

base parameters like TEC value, other time series such as first-
or second-time derivatives of TEC, some geomagnetic indices
(e.g., Dst, Kp, ap, and AE), solar activity parameters (e.g. solar
wind speed, sun spot number (SSN), solar flux index F10.7p,
etc.), the solar radio emission at particular wavelength, etc. are
considered. In [27], the authors extended forecasting TEC at a
global scale, and the technique they proposed makes use of the
NeQuick2 model [28] fed by an effective sunspot number R12
(R12eff), estimated by minimizing the root mean square error
(RMSE) between nonlinear autoregressive with external input
(NARX) neural network output and NeQuick2 applied at the
same Global Ionospheric Map (GIM) grid points. These ap-
proaches basically implement regression of parameters that can
be used to generate the TEC maps based on these estimated
indices injected in the ionospheric model (e.g. NeQuick). The
regression is applied on a selected grid of point from which
the values for the global map are extrapolated, by utilizing,
for example, NeQuick model as in [27], or by utilizing Bezier
surface-fitting technique [29].

As previously remarked, the proposed application under-
takes a different approach, treating each TEC map as a frame
of a video thus leveraging effective ML and NN methods
developed in the field of temporal motion (frame) prediction.
The proposed application can be seen as extension of the
approach proposed in [30], where a method based on deep
neural network (DNN) has been proposed by combining
several state-of-the-art architectures that process TEC maps
treated as images. On the other hand, instead of a recurrent
neural networks (RNN), the use of an architecture based on
ResNets enables a more flexible design in terms of the memory
model, the “prior” imposed on the data, and the ability to
simultaneously obtain predicted outputs at multiple future
time instants. The results presented in the following show



the capability to forecast at different time steps ahead, thus
making this method applicable in a potential GNSS service,
or in a receiver unable to get updated information neither from
a SBAS satellite nor from a third party service.

The series of samples of the maps at a given time of the
day can be used as an input for the forecast of the following
days, at the same epoch. Prediction of future TEC maps from a
buffer of past maps by means of frame prediction techniques
allows to exploit both the spatial and temporal correlations
present in the sequence, as illustrated in Figure 2.

Fig. 2: Conceptual scheme of the TEC map prediction.

C. Algorithm selection method

The ResNet backbone architecture was chosen from experi-
ence as a suitable approach, as it is used in a wide variety of
regression problems concerning images/videos (e.g., denoising
and super-resolution). In this type of problems, ResNets are
known to perform better than architectures without skip con-
nections or without normalization layers, as (roughly stated)
the skip connections enable each layer to learn just what
is not already present in the input, rather than learning a
model of the whole data [31]. Therefore, leveraging ResNets,
the model selection has been focused on how to exploit
the temporal correlation, rather than on the comparison of
different architectures (e.g., ResNet versus a conventional
CNN). Indeed, the scope of this preliminary approach was only
showing that it is possible to improve over conventional, non-
ML, approaches and that 3D convolutions over a multichannel
input where the channels are 2 hours apart are more effective at
short-term TEC prediction than the 2D convolution approach
that only uses the same hour of the day. Vice versa, it was also
shown that the latter is advantageous for long-term prediction.
Variations on this architecture, such as different connections,
number of layers, type of layers, hyperparameters, etc. have
been the subject of the design stage for this application. We an-
alyzed two candidate methods based on residual convolutional
neural networks. The two models are customized to the TEC
map prediction problem and make different assumptions about
spatio-temporal correlation patterns in TEC maps, leading to
different performance tradeoffs.

The first model concatenates TEC maps from the same
hour-of-the-day as time T from the last K days, resulting in
an input image with K channels. It is well known that due
to Earth’s rotation, the highest temporal correlation between

TEC maps can be found between maps that are 24 hours
apart. The model considers K maps each 24 hours apart to
capture long-term trends in the evolution of TEC. This K-
channel input image is then fed to a residual network such
as the one in Figure 3. A ResNet architecture composed of

Fig. 3: Neural network architecture. C: conv2D layer (model
1), conv3D layer (model 2); N: Batch Normalization; R:
ReLU non-linearity. Input and output tensor shapes follow the
channel-first dimensional convention.

alternating a 2D convolutional layer, batch normalization, and
ReLU non-linearity is used. We can notice that two residual
blocks of convolution, normalization, non-linearity are used to
build a deeper model. The output convolution returns an image
with two channels. Each channel is summed with the image
representing the TEC map at T-22 hours to generate the output
which can be interpreted as the predictions for time T+2 hours
and T+26 hours. This global skip connection allows to exploit
the strong correlation between the map at T-22 hours and the
future maps so that the neural network only has to estimate a
residual correction. The filters in the convolutional layers have
spatial size 5x5 to ensure that a sufficiently large receptive field
is available to extract meaningful spatial features.

The second model concatenates all the available past TEC
maps from T to T-K hours, creating an input image with
K channels. Notice that, in contrast to the first method,
even maps at hours-of-the-day that are different from the
target one are exploited. The reason for this choice is that
it allows better exploitation of short-term spatial and temporal
correlation patterns thanks to the smooth evolution of TEC
over temporally subsequent maps. In order to accomplish this,
this second model uses a neural network architecture similar to
the one in the first method but using 3D convolutional layers
instead of 2D convolutional ones (see Figure 3). Convolution
over the time dimension allows to track the smooth temporal
evolution of the features extracted by spatial convolution. This
justifies the need for the 3D operator in place of the 2D, which
would have merged all the time steps in the first layer, losing
descriptive power. As before, batch normalization and ReLU
non-linearities are used, and a global skip connection ensures
that the model only computes the residual with respect to the
T-22 hours map. The filters in the convolutional layers have
spatial size 5x5x5 to ensure that a sufficiently large receptive
field is available to extract meaningful spatial features, and
that its temporal extension is longer than 24 hours so that it
can capture the strong correlations with 24h periodicity.

Both models are trained by minimizing the mean squared
error (MSE) between the predictions and the ground truth TEC
maps at T+2 hours and T+26 hours, available in the training
set. During training, TEC maps sampled at steps of 2 hours



over the January 2001 - December 2003 time period were
used, while the testing stage was fed with the maps from
the January 2004 – December 2004 time period. It should be
remarked that both models have a modest number of trainable
parameters since the amount of training data is limited. Since
this amount cannot be increased by orders of magnitude to
what is typically available for video sequences, it is argued
that more sophisticated models in the video frame prediction
literature cannot be reliably trained or would not provide
significant advantages due to overfitting.

According to the preliminary analysis, both candidate ML
models provide improvements over the benchmark methods,
but they offer different tradeoffs. The second model design
favors the exploitation of the smooth temporal evolution via
3D convolution to extract short-term correlation patterns and,
therefore, it provides more accurate predictions for maps in
the near future. Vice versa, the first candidate model shows
slightly better performance on the long-term prediction of the
T+26 hours map. This is due to the design which targets
finding long-term trends, as previously mentioned. Hence, the
first model is recommended if there is an interest in long-
term prediction, while the second is preferable for short-term
prediction. The presented work favors short-term prediction,
and therefore the choice of the second model was done. In
particular, the final model manages also the presence of addi-
tional parameters, i.e. the sunspot number in our case. Input
data are prepared by creating additional layers of repeated
values to be stacked with the TEC maps, according to the
scheme in Figure 4, where Nx = 71 and Ny = 73 are the
dimensions of the TEC map, K is the number of previous
TEC maps to be used as input for the model, that is the length
of the TEC maps series. At each time step, a map containing
the repeated values of the series is created and added as an
additional layer. Combined data have thus input size (Nx, Ny ,
K, m) where m = 2 is the number of features of the ML
model in the channels-last convention, i.e. TEC and sunspot
number. Following this approach, it is easy to scale the input
size when more features are considered.

Fig. 4: Input data preparation for the final model.

D. Results
The dataset selection has been realized by considering the

maximum periods of the Solar Cycles 23 and 24 (e.g., Novem-
ber 2001 and April 2014), and 4-year datasets (i.e., 2001-
2004) have been created by processing downloaded CODE
IONEX data. Then, the datasets are divided into training
(70 %), validation (20 %), and test (10 %) sets. The results
shared in the following belong to the test results.

The analysis of the overall TEC prediction performance has
been carried out with respect to a ground truth of TEC maps
provided as an IGS product. The estimated maps provided by
the ML model have been used to compute the average vertical
ionospheric bias error (AVIBE) affecting the pseudorange.
The average error has been computed for each latitude and
longitude pair, on a grid of 71x73 points, averaging over 4279
subsequent observations of the TEC map. TEC maps have
been estimated as a forward prediction of 2 or 4 hours. The
common scenario settings are reported in Table I.

TABLE I: TEC maps prediction. Performance evaluation sce-
nario.

Parameter Value
Pseudorange measurement noise variance 0 m

User motion static
TEC map observations 4379

PVT method LMS
Forward prediction 2-4 hours

The resulting AVIBE has been drawn onto an Eckert map
projection. Figure 5a shows the AVIBE values for a 2 hours
forward prediction of the TEC map. The whole error map
can be aggregated into a mean absolute error (MAE) value
of 2.5105 TECU, which corresponds to a 40.8 cm of vertical
ionospheric bias. An additional analysis was also performed

(a) 2 hours forward prediction.

(b) 4 hours forward prediction.

Fig. 5: Average vertical ionospheric bias error. Average per-
formed over consecutive snapshots.

by characterizing the vertical ionospheric bias error for each
latitude. Hence, TEC values over the longitudinal coordinate
and consecutive snapshots were aggregated to perform a
statistical characterization, whose result is reported in the
boxplots of Figure 6a. This summary statistics highlights the
median value as the central red line mark, and the 25th and



75th percentiles indicated as the bottom and top edges of the
box, respectively. The whiskers extend to the most extreme
data points not considered outliers, and the outliers are plotted
individually using the ’+’ marker symbol. A similar analysis
was repeated for a 4 hours forward prediction. The Results are
shown in Figures 5b and 6b. In this case a slightly higher MAE
of 4.3 TECU is obtained over the whole map, corresponding
to a vertical ionospheric bias error of 69.7 cm.

The map representation of the AVIBE highlights how the
TEC is harder to be predicted in the equatorial region. The
equatorial region is subject to the most intense ionospheric
variations and the prediction of such a complex behaviour is
a harder task. Moreover, the statistical analyses showed that
this area is also subject to a more widespread distribution of
the estimation error. Even in the worst case however, all the
error in the 75th percentile are in the order of meters and even
the outliers are bounded to less than 12 and 15 meters for the
2 and 4 hours prediction, respectively.

The assessment of the performance (predicted vs. actual)
has been complemented evaluating the impact on the slant
TEC computation within the grid in order to use the classical
correction formula:

I(ρj) = 40.3
sTEC

f2
(1)

Given a TEC map, three different user positions on Earth
have been chosen to grant the analysis of three different case
studies:

i. a scenario where the user is located in correspondence of
the minimum vertical TEC prediction error (best case);

ii. a scenario in which the user is located where the vertical
TEC prediction error is maximum (worst case);

iii. a scenario in which the user is located in correspondence
to the mode value of the vertical TEC prediction error.

For all the case studies, a satellite with medium elevation
(38°-46°) has been selected, given the observation date and
time. After the selection of the satellite and the user location,
the ionospheric pierce point is computed. The grid points
surrounding the pierce point are interpolated and used to
compute the vertical ionospheric delay. The slant factor is
then computed and used to compute the slant delay. Given
a randomly selected snapshot of the predicted vertical TEC
(vTEC) map (see Figures 7a and 7a), the user position was
set at three different locations, as reported in Tables II and III
for 2 and 4 hours forward prediction. The elevation of the
selected satellites are also reported.

TABLE II: Scenario settings for each case study. 2 hours
forward prediction.

Case study User location (lat,lon) Selected satellite elev. (deg)
Best vTEC 84◦, -129◦ 46◦

Worst vTEC 9.4◦, -99◦ 46◦
Mode vTEC 82◦, -129◦ 46◦

The final results are reported in Table IV. This result has
no general validity, but provides a relevant evaluation of the

TABLE III: Scenario settings for each case study. 4 hours
forward prediction.

Case study User location (lat,lon) Selected satellite elev. (deg)
Best vTEC -48◦, -164◦ 42◦

Worst vTEC 7◦, -104◦ 38◦
Mode vTEC 82◦, -129◦ 44◦

impact of the prediction error once the slant factor is applied.
Over an entire TEC map, the worst prediction error led to a
slant ionospheric bias error of less than 6 meters for the 2
hours prediction case. While for the 4 hours prediction a 10.6
m error has been found.

TABLE IV: Slant ionospheric bias error for each case study.

Case Slant ionospheric bias error (cm)
study 2 hours 4 hours

Best vTEC 6.5 41.4
Worst vTEC 584.7 1060
Mode vTEC 9.7 113.9

IV. SBAS CORRECTIONS PREDICTION

A. Application Description

The SBAS navigation chain includes a network of reference
stations aiming at collecting some data from a space segment
(GPS and in the future Galileo) and a processing facility
implementing the navigation algorithms that process this data
to produce the SBAS navigation message. The processing
facility is in charge of estimating the satellite corrections, iono-
spheric model and error variance related terms by processing
all the data from the monitoring stating network. Moreover,
advanced models for satellite orbit determination, satellite
clock corrections, and integrity estimation are implemented
in the processing cycles of the SBAS. From time to time, the
user could miss some SBAS messages broadcasted. The use
of the old data yields an increased error. The prediction of
the parameters in the missing messages by utilizing the ML
algorithms can be used to fill the gaps in the information flow.
The main target users for this application, are non safety-of-
life (SoL) users of wide area differential corrections, such as,
for example, in the field of precision farming. In fact, SoL
applications have strict requirements on the reliability of the
data used for integrity assessment and the use of extrapolated
information is questionable and would need a deep assessment
of the algorithm confidence intervals that was out of the scope
of this work.

B. State of the Art

In [32], the orbit, clock and ionospheric corrections derived
from SBAS messages are comprehensively evaluated using
data collected from the SBAS systems (e.g., WAAS, EGNOS,
MSAS, GAGAN, SDCM) over 181 consecutive days. Mainly,
the SBAS corrections include satellite orbit correction, satellite
clock correction, and ionospheric correction. The satellite orbit
and clock corrections consist of long-term and fast correction



(a) 2 hours forward prediction.

(b) 4 hours forward prediction.

Fig. 6: Statistical characterization of vertical ionospheric bias error over longitude and consecutive snapshots.

data. The long-term corrections are intended to correct satellite
orbit errors and the slow-varying part of satellite clock errors,
while the fast corrections are designed to compensate for
rapidly changing part of GPS clock errors. Furthermore, in
the experimental tests and analysis, the number of missing
epochs for each SBAS satellite is counted and given in
detail, which constituted a basis for the development of this
application. In [33], Support Vector Machines (SVM) for long-
term GNSS clock offset prediction were investigated along
with polynomial regression, and Kalman filtering, and tested
for GPS and GLONASS satellites. It is also indicated that
the obtained results significantly improve the clock predictions
relative to extrapolation with the basic clock model of the last
obtained broadcast ephemerides.

C. Algorithm selection method
This problem is a typical case of a time series prediction for

forecasting the future values that can also be used to train a
regressive model able to provide the prediction of the missing
data. Only the corrections from satellites included in the PRN
mask are used to feed the ML algorithm. The prediction
of the trend of corrections over time has been approached
through supervised methods, three of which were considered
and compared, here listed in increasing order of complexity.

i. Linear regression, which is a type of supervised ML
algorithm, describes the relationship between a response
and predictors. The linearity in a linear regression model
refers to the linearity of the predictor coefficients β:

yi = β0 + β1Xi1 + ...+ βpXip + ϵi, i = 1, ..., n (2)



(a) 2 hours forward prediction.

(b) 4 hours forward prediction.

Fig. 7: Snapshot of a vertical TEC predicton map.

where yi is the i-th response and Xij is the i-th obser-
vation on the j-th predictor variable where j = 1, .., p.

ii. A multistep dense network learns an arbitrary model of
the relation between the past and the future samples;
the learned model is fixed, as there is no conditional
dependence on the past samples. In other terms, it is a
non-linear model without memory. A multi-step dense
model is a sequential model of which layers are given in
Table V. To address the issue of how the input features
are changing over time, the model needs access to mul-
tiple time steps when making predictions, as depicted in
Figure 8.

TABLE V: Main layers in the multi-step dense model archi-
tecture

No. Layer
1 Flattening
2 Deeply connected neural networks (NNs) layers
3 Batch normalization (BN)
4 Rectified linear unit (ReLU)

Fig. 8: Multi-step dense model architecture.

iii. Long short-term memory (LSTM) is a type of RNN well-
suited to make predictions based on time series data.
RNNs process a time series step-by-step, maintaining an
internal state from time-step to time-step, as depicted in
9. An RNN is a non-linear model with memory; indeed,
it can be seen as a machine with state, where the state is
changed as a function of the previously observed values
of the time series.

Fig. 9: RNN Architecture.

For the fast corrections, the results indicated that for the
cases in which the prediction time ahead is equal to or lower
than 8 seconds, the LSTM method performs better than the
linear regression and multi-step dense models. However, when
the prediction time increases, the accuracies of the linear
regression model is better than the LSTM and multi-step
dense models. For the slow corrections, the results are also
in line with the ones obtained for fast corrections. However,
in this case, multi-step dense performs better than the linear
regression algorithm for the cases in which the prediction time
ahead is equal to or lower than 60 seconds. If the prediction
time is at two-time steps ahead or closer (e.g., ≤ 8 s for fast
corrections, ≤ 60 s for slow corrections), LSTM method could
be the primary model. Whereas linear regression could be
a second choice for fast corrections, multi-step dense could
be preferred as a secondary method for slow corrections. For
more time-steps ahead prediction, linear regression could be
preferred as the primary model.

D. Results

European Geostationary Navigation Overlay Service (EG-
NOS) .ems files that belong to the period between October
16, 2020, and November 15, 2020, have been downloaded
from the EMS FTP service. They were decoded and parsed
into the different Message Types (MTs) and fed to the ML
engine. Then, the datasets were divided into training (70 %),
validation (20 %), and test (10 %) sets. The results shared in
the following belong to the test sets. For the sake of brevity, we
discuss hereafter the results on the fast correction prediction
performance.

The assessment of the model performance at a GNSS-
user level was performed by setting up a proper simulation
environment. Synthetic pseudoranges, corrected with SBAS
fast corrections, have been used to compute the user position.



Satellite positions and user location have been generated
consistently with such corrected pseudoranges. The given user
location is then used as a ground truth with respect to which
all the positioning errors are computed. The PVT computation
with such exact measurements allows to define

i. a “best case scenario”, where the SBAS messages are
received and pseudoranges are profitably corrected;

ii. a “worst case scenario” in which the SBAS corrections
are missing, and therefore the PVT is computed using
non-corrected pseudoranges, leading to positioning errors
that are proportional to the magnitude of such missed
corrections;

iii. a benchmark scenario, in which the SBAS corrections are
missing, but the corrections are estimated through a linear
extrapolation formula, as defined in [34]

PRcorr(t) = PRmeas(t)+PRC(tof )+RRC(tof )·(t−tof )
(3)

with

RRC(tof ) = (PRCcurrent − PRCprevious)/∆t (4)

where PR is the pseudorange, PRC is the fast correction,
RRC is the range-rate correction, tof is the time of the
last received correction and t is the current time;

iv. a scenario in which, despite the missed reception of SBAS
messages, the correction terms are predicted through a
ML approach.

The comparative analysis benchmarks the estimated user po-
sition comparing the predicted corrections (iv) to case (i-iii).
The SBAS corrections in (iii) and (iv) have been computed as
a forward prediction of 4, 8,12 and 16 s. Table VI summarizes
the common parameters for scenarios (i)-(iv).

TABLE VI: SBAS corrections prediction. Performance evalu-
ation scenario.

Parameter Value Notes
Pseudorange measurement

noise variance 0 m

User motion static
Observation time 20 hours 4 s step

PVT method LMS
Forward prediction 4-16 s

No. of satellites 6 corrections applied to all

The estimated user position is shown in a 3D ECEF frame in
Figure 10. It is worth noting that the position computed under
the circumstances of case (ii) (absence of fast corrections) is
more erratic around the true user position. Conversely, the
position estimated in case (iv) is more concentrated around
the true value. A better evaluation can be done by examining
the user position error over its spatial coordinates. Figure 11
shows the user state error for the ground truth case (i), while
Figures 12 and 13 show the user state error in scenarios (ii-iv)
for 4, 8, and 12, 16 seconds forward prediction, respectively.

The resulting MAE are also summarized in Table VII for
ease of comparison. Looking at MAE values, the prediction

Fig. 10: Estimated user position error in ECEF coordinates. 4
seconds prediction.

Fig. 11: User state estimation error. Ground truth scenario (i).
4 seconds forward prediction.

of the fast corrections can provide a MAE of position im-
provement of more than one order of magnitude, even for
a forward prediction interval of 16 seconds. Moreover, the
investigated methods outperform the MAE of user positions
obtained by linearly propagating old fast corrections (case
(iii)). Nonetheless, the performance gap becomes larger by
increasing the forward prediction window. This means that a
linear prediction is prone to a fast degradation with respect
to the proposed ML approach, which on the contrary shows
to cope well with longer burst of missing data. If we look at
the positioning errors plots in Figures 12 and 13, we can see
that, while the position computed without fast corrections is
fluctuating around a null error, the correction prediction leads
to position errors over spatial coordinates that are often very
close to zero. This behavior is consistent with what seen in



(a) 4 seconds forward prediction.

(b) 8 seconds forward prediction.

Fig. 12: User position estimation error. Case studies (ii-iv) comparison.

TABLE VII: MAE of user position estimation for different
case studies and forward prediction interval.

Forward MAE (m)
prediction Case (i) Case (ii) Case (iii) Case (iv)

4 s 1.7e-9 0.45 0.029 0.019
8 s 1.8e-9 0.45 0.048 0.021
12 s 1.8e-9 0.45 0.066 0.025
16 s 1.7e-9 0.45 0.084 0.028

Figure 10, for the 3D position. The technique used for the
correction prediction is not only effective from an average
performance point of view (MAE of few centimeters) but it
also provide an estimation that does not show evidence of

systematic errors.

V. CONCLUSION

The method for the estimation of the ionospheric maps
proposed provided satisfactory results, compared to the com-
plexity of the input data, which are the time series of the
previous TEC maps and sunspot number values. Other meth-
ods in the literature aimed at predicting the different variables
that are used to construct such a map. But as highlighted
while discussing the input data for this work, the retrieval
of historical time series of such parameters is not always
trivial. Results showed how TEC is harder to be predicted
in the equatorial region. The equatorial region is subject to
the most intense ionospheric variations and the prediction of



(a) 12 seconds forward prediction.

(b) 16 seconds forward prediction.

Fig. 13: User position estimation error. Case studies (ii-iv) comparison.

such a complex behaviour is a harder task. Moreover, the
statistical analyses showed that this area is also subject to a
more widespread distribution of the estimation error. A hybrid
approach in which the predicted TEC map is fine tuned by the
prediction of some geophysics parameters would be worth to
be investigated, with the specific goal of having a prediction
suitable also to the use in such areas of the world.

The results obtained for the fast corrections have demon-
strated the suitability of the method for non-SoL applications,
especially when compared to the absence of such corrections.
The results obtained suggest that could be interesting to
use ML based prediction for other kind of corrections, even
obtained by sources different from the EGNOS messages.
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