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ABSTRACT

Metals are traditionally considered hard matter. However, it is well known that their atomic lattices may become dynamic and undergo
reconfigurations even well below the melting temperature. The innate atomic dynamics of metals is directly related to their bulk and surface
properties. Understanding their complex structural dynamics is, thus, important for many applications but is not easy. Here, we report deep-
potential molecular dynamics simulations allowing to resolve at an atomic resolution the complex dynamics of various types of copper (Cu)
surfaces, used as an example, near the Hiittig (~1/3 of melting) temperature. The development of deep neural network potential trained on
density functional theory calculations provides a dynamically accurate force field that we use to simulate large atomistic models of different Cu
surface types. A combination of high-dimensional structural descriptors and unsupervized machine learning allows identifying and tracking
all the atomic environments (AEs) emerging in the surfaces at finite temperatures. We can directly observe how AEs that are non-native in a
specific (ideal) surface, but that are, instead, typical of other surface types, continuously emerge/disappear in that surface in relevant regimes
in dynamic equilibrium with the native ones. Our analyses allow estimating the lifetime of all the AEs populating these Cu surfaces and to
reconstruct their dynamic interconversions networks. This reveals the elusive identity of these metal surfaces, which preserve their identity
only in part and in part transform into something else under relevant conditions. This also proposes a concept of “statistical identity” for
metal surfaces, which is key to understanding their behaviors and properties.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139010

I. INTRODUCTION enters a dynamic equilibrium in which the atoms may move in the

lattice.”

Metals are traditionally considered a reference material class
in hard matter. Their structure, characterized by crystalline solid
lattices with well-defined order and symmetries,’ imparts them
a variety of technologically relevant properties. Nonetheless, the
dynamics of metals is perhaps as much interesting but also far more
elusive.

It is known that metals may assume a non-trivial dynamic
behavior well below their melting temperature. Above the Hiittig
temperature (~1/3 of the melting temperature), their atomic surface

In particular, it has been experimentally observed that above
this temperature, metal surfaces may undergo different struc-
tural transformations, such as “deconstruction,” “preroughening,”
faceting, roughening, and surface premelting. However, although
a large number of experimental and theoretical studies focused on
these phenomena in the past,”® a general understanding is still
far from complete. Nonetheless, the appearance or disappearance
of specific atomic environments and their dynamic evolution on
a metal surface may be crucial in determining properties that are
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directly related to the structural features of their surface, such as e.g.,
their reactivity in heterogeneous catalysis.”"’

Obtaining an atomic-level insight into the dynamics of metals
is key to understanding their properties but is non-trivial. Widely
used for studying metals,' '® computational modeling holds con-
siderable potential in this sense. However, in several computational
approaches, such as in heterogeneous catalysis studies, metal sur-
faces are usually treated as static.''® Accounting for the atomic
dynamics of metal lattices, nevertheless, becomes crucial in those
conditions where this is a determinant for the material’s proper-
ties. As a notable example, Gazzarrini et al. demonstrated how
atoms’ mobility in copper (Cu) nanoparticles may produce varia-
tions in the number of vertex, edge, and face atoms, affecting the
nanoparticles’ efficiency in catalyzing CO, conversion to methane."”
Nelli et al. studied the dynamic diffusion of atomic impurities in
copper—cobalt icosahedral nanoparticles via metadynamics simula-
tions.”” These works offer important preliminary evidence of how
metal lattices cannot be simply studied as static materials, but in
certain regimes, these are rather complex systems where atoms are
in dynamic equilibrium and continuous exchange. Intriguingly, this
is close to what it has been recently seen in soft self-assembling
systems.l -

While disentangling such complex structural dynamics is non-
trivial, machine learning (ML) is useful to this end. On one hand,
ML potentials trained on quantum mechanical (QM) data offer
the opportunity to obtain accurate force fields allowing to reliably
simulate metals on relevant spatiotemporal scales. Since the pioneer-
ing work of Behler and Parrinello® that introduced the concept of
high-dimensional neural network potentials, different approaches
to build ML potentials have been developed in the last decade,”*’
allowing to investigate, with ab initio accuracy, systems of increas-
ing complexity (we refer the reader to Ref. 34 for a description of
various widely used methods). On the other hand, high-dimensional
descriptors and advanced statistical analyses are extremely useful to
unravel the complexity of dynamic molecular systems. For exam-
ple, unsupervized clustering of smooth overlap of atomic position
(SOAP) data®™ " extracted from molecular dynamics (MD) sim-
ulations recently allowed to reconstruct the structural/dynamical
complexity of a variety of molecular materials/systems”"" and to
build robust data-driven metrics’”"” for their classification.”’ Similar
data-driven approaches have been also recently used to explore the
mechanism of gold nanoparticles (NPs) melting.”’ In this work, we
report a data-driven approach that allows resolving, at an atomistic
resolution, the complex dynamics of metal surfaces under relevant
conditions. As an example of a dynamic metal widely used for
technological applications, we focus on Cu (the approach is nonethe-
less versatile and applicable to a variety of metals). An extensive
campaign of density functional theory (DFT)*! MD simulations gen-
erated Cu surface configurations and interaction energy data that we
used to train a deep neural network (NN) potential.’! This provided
a dynamically accurate atomistic force field allowing to simulate var-
ious types of Cu surfaces near the Hiittig temperature on relevant
spatiotemporal scales. Bottom-up and top-down SOAP-based anal-
yses reveal the atomic environments that statistically populate Cu
surfaces, including non-native atomic environments, typical of other
types of surfaces, which continuously emerge/resorb in the vari-
ous Cu surfaces in equilibrium conditions. This ultimately allows
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estimating an “equivalent identity” for such metal surfaces on a
purely statistical basis from the data emerging along the deep-
potential molecular dynamics (DPMD) simulations, changing the
way we look at such materials.

Il. RESULTS
A. Modeling the dynamics of copper surfaces

Here, we use Cu as an example of a dynamic metal widely
used for various applications.””"® We focus on the study of Cu
surface models at 500-700 K, just above the Hiittig temperature
(447 K for Cu). Noteworthy, although this is not central in this work,
such conditions are of interest, e.g., for catalytic applications (CO,
hydrogenation),””** where the structural/dynamical features of the
Cu surface are important.

Studying the structural dynamics of metal surfaces requires suf-
ficient accuracy in the treatment of the Cu-Cu interactions and, at
the same time, one needs to simulate these atomic systems on suffi-
ciently large spatiotemporal scales to prevent finite-size effects and
guarantee that microscopic dynamic transitions (and not only vibra-
tions) are sampled with sufficient statistics. Accurate DFT*! calcula-
tions are limited to timescales and sizes that are too short/small to
this end, whereas classical atomistic force fields” " may not guaran-
tee sufficient accuracy in the treatment of the structural dynamics of
the metal surface. To obtain a dynamically accurate atomistic force
field, we turned to ML. In particular, we developed an inter-atomic
interaction potential for Cu surfaces via training a deep NN on data
extracted from DFT calculations adopting the Deep Potential Molec-
ular Dynamics (DeePMD) scheme developed by Wang et al.’"”
[Fig. 1(a)].

A campaign of DFT MD simulations of small Cu FCC bulk,
(100), (110), (111), (211), and (210) surface environments con-
ducted at temperatures between 500 and 700 K [Fig. 1(b)] provided
a rich dataset of atomic configurations, forces, and energies used
to train a first guess NN potential. An active (iterative) learning
strategy "’ was then adopted to ensure a good sampling of the
reconstructed configurations in the Cu surface and the local atomic
transitions leading to such reconstructions. It is important to note
that, although the surface portions simulated at the DFT level used
for the training [Fig. 1(b): ~100 atoms, depending on the surface
type—sufficient to account up to the ~4 — 5 atom neighbors] are
smaller than the surfaces that are then simulated at atomistic level
[Figs. 1(c) and 1(d): containing ~2400 atoms], the iterative nature
of the approach and our tests demonstrate that the obtained poten-
tial is robust and reliable (see also Sec. IV for details). In fact, even
if the first trained NN potential initially contains DFT-level infor-
mation only on the small ideal surface patches (limited sampling),
the new conformations that are then discovered via DPMD simula-
tions using such incomplete NN potential are then re-simulated at
the DFT level and added to the DFT dataset. Such a process is con-
ducted iteratively, and at each iteration, the DFT data on the newly
discovered atomic configurations are added to the training set. The
training process ends when no new configurations are discovered in
the successive iterations, and the obtained NN force field can be thus
considered complete (the reduced spatial sampling is compensated
by temporal sampling guaranteed by the iterative DPMD simulation
scheme).
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FIG. 1. Atomistic DPMD simulations of Cu surfaces near the Hiittig temperature. (a) Scheme of the deep MD3' model developed in this work: atomic configurations and
energies obtained from DFT calculations have been used to train an inter-atomic NN potential for the Cu surfaces. (b) Atomistic models for bulk and surface Cu environments
(top view) used for the training (left: atoms are colored based on their coordination). DFT configurations and energies extracted in the temperature range of 500-700 K have
been used to train the Cu NN potential. (c) Starting ideal configurations of the Cu surface models investigated in this work: we compare the behaviors of (111), (211), (110),
and (210) Cu surfaces (atoms colored based on their coordination). (d) Cu surfaces after 150 ns of DPMD simulations at 700 K show structural rearrangements, atomic
mobility, and coordination changes (left-to-right, the surfaces are ordered according to their mobility).

To ensure that no residual spurious finite-size effects could
affect the trained NN force field, we also conducted additional tests
using larger surface patches than those shown in Fig. 1(b) (~600
atoms, six times larger). Nonetheless, these tests demonstrated that
the maximum deviation in the forces provided by the obtained NN
potential in the two cases is negligible (estimated forces within the
training error in 99.95% of the cases), confirming the robustness
and consistency of the obtained Cu NN potential. We also note that
the discovery-and-sampling approach adopted herein to create the
training dataset is based on the collection and sampling of configu-
rations along the DPMD simulations with a time frequency suitable
to effectively follow with fine-temporal resolution the motions of the
atoms on the surfaces. In particular, the DFT training set contains
information not only on the local minima configurations but also on
the intermediate configurations and on the transition barrier states
that are visited. In this way, the trained NN potential has DFT accu-
racy in reproducing both the energy differences and the transition
barriers between the various atomic configurations visited along the
DPMD simulations. This provides a structurally and dynamically

accurate force field having DFT precision in the treatment of the
atomic configurations (energies, forces, etc.) and of their dynamic
interconversion within the Cu surfaces (see Sec. IV for complete
details).

The NN potential was finally validated against some copper
bulk and surface properties. In particular, we calculated the lat-
tice constant, the vacancy, and interstitial formation energies of the
surface energies at 0 K of the unreconstructed (100), (110), (111),
(211), and (210). The values computed, given in Table S1, are in
good agreement with the values computed at the DFT level, with
the embedded atom model (EAM) of Mendelev et al.,”* and with
available experimental values.” ®’ To ascertain the reliability of the
NN potential, we calculated the surface energy of the (110) (1x 2)
missing-row reconstruction at 0 K and found it to be larger than that
of the unreconstructed (110) surface. This is in agreement with the
experimental evidence that the Cu(110) surface at low temperatures
does not undergo the (1 x 2) missing-row reconstruction typical of
other noble metals, e.g., Au and Ag. Finally, we computed the diffu-
sion barriers of single adatoms on the (100), (110), and (111). The
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results, given in Table S2, are in good agreement with available the-
oretical and experimental data.” "’ This last test validates the ability
of the potential to correctly reproduce the dynamic properties of the
surface atoms.

We used such NN potential to simulate large FCC (111), (211),
(110), and (210) surface models composed of 2400 Cu atoms [2304
for (210)] via DPMD simulations. All Cu surface models have depth
>15 A and replicate on the xy plane through periodic boundary con-
ditions, effectively modeling a portion of the bulk of infinite surfaces
[Fig. 1(c)]. During the DPMD simulations, the two bottom layers in
the surface models are kept fixed, while all other atoms are free to
move. Such a setup and system sizes prevent finite-size effects and
guarantee reliable modeling of the structural dynamics of these Cu
surfaces (see Sec. IV for details).

All systems underwent 150 ns of DPMD simulations at 500,
600, and 700 K, the last 75 ns of the simulations being representative
of the equilibrium of the surfaces (see the supplementary material,
Figs. S2-54, and Sec. 1V). Changes in the atoms’ colors in Fig. 1(d)
indicate changes in atomic coordination, atomic movements, and
reconfigurations along the DPMD simulations. The DPMD simula-
tions show how the various surfaces have different dynamic behav-
iors: (111) is substantially persistent/static, while (211) and (110)
surfaces are much more dynamic. The (210) surface is found the
most dynamic of the studied surfaces. These results are in agreement
with the order of stability determined by the corresponding surfaces
energies, and more importantly, with experimental evidence. For
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example, experimental studies proved that the (111) surface does not
undergo any structural modification or premelting below the melt-
ing temperature, but the surface enters a disordered state only at the
melting temperature.”"’

Regarding the (110) surface, a large body of experimental evi-
dence shows that this orientation is characterized by an increasing
disorder induced by thermal energy already at T > 550 K. This
degree of disorder could not be simply assigned to thermal anhar-
monicity because it was much larger and for this reason was named
“enhanced anharmonicity.””” Trayanov et al. attributed this phe-
nomenon to a missing-row type reconstruction, given the small
difference between the surface energies of the reconstructed and
unreconstructed surfaces.””* Our simulations confirm this interpre-
tation, as shown in Fig. S5. Here, we compare the snapshot of our
Cu(110) surface after 150 ns at 700 K with the corresponding ideal
(110) (1 x 2) and (1 x 3) reconstructions coloring the atoms accord-
ing to their coordination. The formation of a (1 x 3) missing-row
type reconstruction in the section highlighted by the dashed box can
be readily seen.

More recently, the Cu(211) surface has been the object of sev-
eral studies, given its reactivity toward the methanol synthesis."”””
Witte et al.”® found that upon oxygen adsorption already below
room temperature, the (211) surface also undergoes reconstruction
forming a (211) (2 x 1) surface. The same type of reconstruction is
observed in our simulations at 600 and 700 K. In Fig. S6, we com-
pare the ideal (211) (2 x 1) reconstructed surface with a snapshot of

FIG. 2. Dynamic diversity in a metal surface. (a) The Cu(210) surface after 150 ns of DPMD simulations at 500, 600, and 700 K (top-to-down). Atoms are colored based on
their coordination. (b) Relative diffusion velocity in the (210) surface at different temperatures: the Cu atoms are colored with the relative velocity, estimated for each atom
in the system as the atomic displacement in the time interval of At = 1500 ps (Ar/At, expressed in A ns="). Dark vs light colors in the snapshots identify static vs dynamic
regions on the Cu surfaces (bulk and sub-surface atoms are shown transparent for clarity). (c) Correlation between the average coordination number and velocity for the
atoms in the (210) surface at the three temperatures. Solid lines are exponential fits to guide the eye. (d) Histograms of the atomic velocity distributions in the (210) surface
at 500, 600, and 700 K. (e) Zoomed detail of the coordination analysis for the (210) surface at 700 K, highlighting the emergence of (100) and (111) domains along the

DPMD simulation (yellow and green details).
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the (211) surface after 150 ns at 700 K. As for the (110), in this case, a
reconstruction of the surface toward the (211) (2x 1) surface is easily
detectable.

From a dynamic perspective, the (210) surface is the most inter-
esting as it is found dynamic at all temperatures, with its dynamics
increasing with temperature [Fig. 2(a)]. Deeper microscopic analy-
ses reveal a considerable dynamic diversity in the behaviors of the
atoms in the (210) surface. While the temperature is set globally in
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these DPMD simulation (see Sec. IV for details), the data show that
there are atoms that move faster and atoms that are more static on
the surface. This can be inferred via estimating along the DPMD
the displacement of the individual atoms in the surface in the time
interval At = 1500 ps (Ar/At).

For example, bright atoms shown in Fig. 2(b) move by tens of
nanometers during the DPMD simulations, while black atoms just
vibrate around their lattice position.

FIG. 3. ML of atomic environments in the Cu(211) surface and of their dynamics. (a) Cu atoms on the (211) surface colored based on the SOAP environments emerging
along the equilibrium (last 75 ns) DPMD simulation at 700 K. (b) Hierarchical dendrogram connecting the 11 detected SOAP clusters, corresponding to six internal atomic
environments—five sub-surface (ss) and one bulk (b)—plus five surface environments (s). (c) Projection on the first two principal components of the SOAP data PCA with
density isolines. The colored dots indicate the position on the PCA of the native SOAP states present in the ideal (211) surface at the DPMD simulation start [(a), left: at
0 K]. (d) Unsupervized clustering (HDBSCAN*) of SOAP data identifies 11 main SOAP environments (microstates) that emerge at the equilibrium in the (211) surface at
700 K. (e) Transition matrix reporting the normalized probabilities (in %) for atoms to undergo transition between the SOAP clusters in a sampling time interval of df = 300
ps. (f) Free energy surface (FES) computed from the PCA of the SOAP density data (c). (g) PCA projection of the SOAP dataset colored based on atomic coordination. (f)
Transition matrix reporting the normalized probabilities (in %) for atomic transitions between the various coordination states along the DPMD (dt = 300 ps).
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While in these simulations the atomistic surface models are
thermostated and, on average, their temperature plateau to 500,
600, and 700 K, these analyses demonstrate that on a nanosecond
timescale window, the structure and dynamics on the surfaces is not
uniform. In particular, the plots in Fig. 2(b) show that these sur-
faces are dynamically diverse, being populated by domains that are
more static and others that are more dynamic. Still, it is notewor-
thy to add that all these domains are continuously destroyed and
formed with different timescales and are also in continuous dynamic
exchange with each other, as shown in detail in Figs. 3, 5, and 6.
The plots in Fig. 2(c) relate the average velocities and coordination
numbers of the atoms. The minimum atomic coordination increases
from ~6 (black data) to ~8 (in pink) while increasing the temper-
ature in the (210) surface. The histograms of the atomic velocity
distributions [Fig. 2(d)] indicate the variability with which the (210)
surface atoms move, a few having high relative mobility, while the
majority of them are more static. Figure 2(a) shows that at 500 K
(top), the ideal structure of the Cu(210) surface is better preserved
during the DPMD than at 700 K (bottom), where the increased
kinetic/thermal energy triggers more considerable disordering and
faceting, which in turn produces a surface configuration populated
by more stable atomic arrangements (facets) with increased coordi-
nation that corresponds to (111) facets (in green) and (100) facets
(in yellow). A zoom onto the (210) surface at 700 K [Fig. 2(e)] shows
how such green domains correspond to (111) islands, non-native
of this surface. Yellow-colored (100) square domains, non-native of
(210), are also visible. It is interesting to notice that similar results
were observed in the experimental work of Kirby et al.”” In partic-
ular, they detected a faceting phenomenon of the Cu(210) surface
induced by activated nitrogen already at room temperature. Another
interesting aspect revealed by our analysis comes from the com-
parison of the colored domains in Fig. 2(e) vs Fig. 2(b), which
provides an insight into the dynamic diversity of the surface, reveal-
ing how non-native (111) domains [Fig. 2(e), green] are more static,
while (100) ones (in yellow) correspond to more dynamic regions
in Fig. 2(b). Noteworthy, along the DPMD simulations, the atoms
change color dynamically in these Cu surfaces, demonstrating the
dynamic equilibrium present within them (see the supplementary
material, Movies S1 and S2).

B. Unsupervized machine learning of the structure
and dynamics of a copper surface

To obtain a more robust and general quantitative analysis,
we turned to an advanced data-driven approach recently proven
useful for reconstructing the structural/dynamical complexity of
various types of molecular systems.””*””"*” We use SOAP vectors as
high-dimensional descriptors of the local environments surround-
ing each atom in these surfaces. Calculation of the SOAP spectra
of all atoms along the DPMD simulations allows (i) to classify the
local atomic environments that populate/emerge within the Cu sur-
face in equilibrium conditions based on their levels of order/disorder
and similarity, and (ii) to reconstruct the entire Cu surface dynamics
(see Sec. IV for details).””***" Key advantages of such an analysis
are that the SOAP descriptor is agnostic’® and the analysis is unsu-
pervized and data-driven, i.e., it does not require prior knowledge of
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the systems, while the SOAP-detected environments s emerge directly
from the DPMD trajectories (bottom-up analysis).””"’

We perform our SOAP analysis on the DPMD trajectories of
the various simulated Cu surfaces (see the supplementary material,
Fig. S12). After 75 ns of DPMD, all surfaces reach a microscopic
equilibrium where the atomic environments populating the sys-
tems do not change anymore (see the supplementary material,
Figs. S2-S4). The last 75 ns of DPMD, representative of the equi-
librium of the modeled surfaces, are thus retained for the analyses.
From these, 250 snapshots—one every At = 300 ps—are extracted
and analyzed. In particular, we calculate the SOAP spectra of each
of the top-most 1300 atoms in the Cu surface, obtaining at each
DPMD sampled snapshot 1300 SOAP spectra representative of the
pristine arrangements/dynamics of the atomic surfaces in the stud-
ied regimes, and a dataset of 325000 SOAP spectra in total for
each simulated case (see Sec. IV). Unsupervized clustering of the
SOAP data via the Hierarchical Density-Based Spatial Clustermg
of Applications with Noise* (HDBSCAN™) algorithm’®”’ identi-
fies the main SOAP clusters (states/environments) populating the
equilibrium DPMD trajectories [Figs. 3(a) and 3(b)]. As an exam-
ple, HDBSCAN™ identifies 11 main SOAP clusters in the Cu(211)
surface at 700 K [Figs. 3(a) and 3(b)]. These correspond to the den-
sity peaks seen in the Principal Component Analysis (PCA) of the
SOAP data in Figs. 3(c) and 3(d), namely, to the most “visited”
atomic environments during the DPMD simulation. The dendro-
gram of Fig. 3(b) shows the adjacency between the detected SOAP
micro-clusters (based on their similarity), revealing three main
macro-groups: surface (s), sub-surface, and bulk (b) atomic environ-
ments. Shades of gray in Figs. 3(a) and 3(b) correspond to deeper
sub-surface layers connected to the bulk (light gray). Dark blue and
green identify states at the interface between sub-surface and sur-
face. Brighter colors identify the different surface states (s). The
colored dots on the PCA projection of Fig. 3(c) indicate which SOAP
states are present in the ideal (211) surface at 0 K (at DPMD start).
Comparing Figs. 3(c) and 3(d), it is clear how, in terms of external
surface states, only the orange, light-green, and blue SOAP environ-
ments are native of the ideal (211) surface (at 0 K). All other surface
environments that emerge along the DPMD at 700 K (yellow, cyan,
purple, etc.) are non-native states, which emerge with temperature.

Since the detected SOAP environments are well-sampled along
the DPMD, we know the clusters’ density at the equilibrium, and as
we have information on the SOAP environment each atom belongs
to at every sampled DPMD snapshot, we can reconstruct the dynam-
ics and thermodynamics of the Cu surface. The transition matrix of
Fig. 3(e) reports the normalized probabilities for an atom belong-
ing to a given SOAP environment at a time t to remain in that
environment (diagonal entries) or to undergo transition to a dif-
ferent SOAP environment (off-diagonal entries) at t + At (i.e., after
At =300 ps in this analysis) in the Cu(211) surface at 700 K. Such
transition matrices are non-symmetric as they are normalized to
have the rows summing to 100, while the raw non-normalized matri-
ces are conversely symmetric, as the Cu surface is at the equilibrium
(see the supplementary material, Fig. §10). In general, the higher
the numbers on the diagonal of the matrix, the more persistent is
the surface. Vice versa, the higher the off-diagonal probabilities,
the more probable are the atomic transition between the SOAP
states in At and the more dynamic is the surface. The fact that
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the transition matrix of Fig. 3(e) is rich of off-diagonal entries
demonstrates the rich dynamics present in this surface. From such
transition probabilities, one can estimate the characteristic transi-
tion rates/frequencies (i.e., by dividing the off-diagonal entries by
100 x At, being At =300 ps in the analyses reported herein). For
example, in the (211) surface at 700 K, the atoms belonging to
the purple SOAP environments undergo transition to blue with a
probability of ~6% every 300 ps, which corresponds to a transi-
tion rate of ~0.2 ns™" and transitions occurring in the timescale of
tens of nanoseconds (assuming a single-step transition). A consis-
tent dynamics is obtained even changing the temporal resolution
of the analysis (At), which proves the robustness of the obtained
results (see the supplementary material, Fig. $11)."% All entries
<1% should be taken as qualitative, as they refer to events observed
only sparsely along the DPMD.

This analysis shows there is no direct communication/exchange
between bulk and surface states, while these may communicate only
through intermediate sub-surface states. Even at 700 K, where the
(211) surface is considerably dynamic, the transitions occur on a
nanosecond timescale. This demonstrates how the (211) surface has
a “discrete” dynamics.

A similar “discrete” dynamics is observed for the (110) surface
[supplementary material, Figs. S12(a)-S12(e)]. In addition, here, the
atoms of the first layers move via jumps across different crystallo-
graphic positions. This type of motion is correlated with the fact that
when computing the g(r) of the surface the peak positions remain
unchanged; however, the surface atoms’ motion leads to a reduction
in the peak intensities and a more diffuse background, as shown in
Fig. §9. This type of atomic motion could explain the anomalous
reduction in the intensity peaks of Cu(110) at T > 550 K obtained
by diffraction experiments.”** This phenomenon was referred to as
“enhanced anharmonicity” since the only corresponding property
was an enhanced mean square displacement of the surface atoms.
However, here, we reinterpret this “enhanced anharmonicity,” sug-
gesting that its origin comes from the frequent jump-motion of the
surface atoms.

The same analysis for the other surfaces studied herein shows
that (210) is the most dynamic surface, with more fluid-like dynam-
ics [supplementary material, Figs. S12(f)-S12(1)]. This behavior is
also mirrored by a quasi-liquid-like g(r) at 700 K (see Fig. S9). On the
other hand, the (111) surface is more static: only sparse transitions
can be observed even at 700 K.

From the inverse exponential of the PCA density, it is also pos-
sible to estimate a pseudo free energy surface (FES) for the Cu(211)
surface model at 700 K [Fig. 3(f)]. Such FES shows how, at 700 K,
all surface SOAP states are separated from each other by relatively
low free energy barriers within ~10 — 15 kJ mol™! (10 k] mol™" cor-
responds to ~2 kT at 700 K). Their transitions can be thus efficiently
sampled during an equilibrium DPMD (see the supplementary
material, Movie S3). The SOAP analysis of Figs. 3(d)-3(f) reveals
how—since the SOAP states have characteristic lifetimes and transi-
tion rates, and are in continuous interchange with each other—at
700 K, the (211) surface has just an average configuration that is
purely statistical. The great flexibility and the agnostic nature of
such data-driven analysis come with the disadvantage of a non-
straightforward interpretation. There is no-straightforward corre-
spondence between the detected SOAP states and their physical
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differences. Figure 3(g) shows the same SOAP PCA colored accord-
ing to the coordination number of each atom. This shows how
the SOAP analysis captures very well differences in the coordi-
nation number between the atomic environments in the Cu sur-
face, while at the same time, a simple coordination analysis is less
sensitive—e.g., green domains in the PCA having the same coordi-
nation number (~9) but corresponding to different SOAP density
peaks [Fig. 3(g)].

From a broader perspective, this data-driven analysis shows
that such Cu surfaces possess a non-trivial structural/dynamical
complexity well below melting. At the same time, these results
underline the importance of relying on a structurally and dynami-
cally accurate force field (as the NN potential used herein) to obtain
meaningful insights on such a complexity. The fact that new states,
non-native/present in a given (ideal) surface, may appear at finite
temperature along the DPMD simulations poses fundamental ques-
tions on the elusive identity of these surfaces. For example, are the
new environments that emerge with a temperature closer to native
environments present in the ideal surface (at 0 K), or, e.g., to other
ones, native of different types of surfaces? To answer such questions,
we designed another complementary (top-down) analysis.

C. A dictionary of SOAP atomic environments

We created a dictionary of SOAP atomic environments by com-
puting the SOAP spectra for all atoms in the optimized Cu(111),
(110), (211), and (210) surfaces (at 0 K). The analysis identifies three
SOAP atomic environments in the ideal (111) surface—Fig. 4(a)
(yellow): one bulk (b11)), one sub-surface (ss111)), and one sur-
face environment (s(11)). The other surfaces are more structurally
diverse: the ideal (110) is characterized by five main SOAP atomic
environments (in red), while the ideal (210) and (211) are character-
ized by seven SOAP environments [Fig. 4(a): blue and green, respec-
tively]. In total, we obtain 22 distinct SOAP spectra characteristic of
the bulk, surface, and sub-surface atomic environments proper of
these ideal surfaces. We created a unique SOAP dataset containing
all these SOAP environments and computed from their characteris-
tic SOAP power spectra their mutual distances (dsoqp) in the global
high-dimensional SOAP feature space (see Sec. IV for details).””""’
Such dsoap metrics allows quantifying the similarity between the
various characteristic SOAP spectra, providing a rich data-driven
classification of all detected atomic environments present in these
ideal surfaces. The result is the distance matrix of Fig. 4(b). The col-
ors of the matrix cells represent the SOAP distance (dsoap) between
the various SOAP atomic environments: dark colors indicate very
similar environments (dsoup ~ 0), while light colors identify struc-
turally different atomic environments. The dendrogram adjacent to
the matrix [Fig. 4(b): left] shows the hierarchical clustering of the
various SOAP environments based on their similarity. The matrix
reveals dark macro-areas indicating SOAP environments that are
nearly identical in the various surfaces, i.e., bulk (b) environments
and some high-coordination sub-surface ones (ss). In general, deep
atomic environments are found quite similar in the various ideal
surfaces. The matrix also reveals non-obvious similarities between
the high, medium, and low-coordination surface environments, e.g.,
s(i1) V8 311y and sy, or sl(uo) vs sl(zm).
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FIG. 4. A SOAP dictionary for classifying atomic environments in Cu surfaces. (a) Hierarchical dendrograms for the SOAP environments detected in the different ideal Cu
surfaces (at 0 K): Cu(111) environments are shown in yellow, (211) in green, (110) in red, and (210) in blue. (b) Distance matrix: the color scale indicates the distance in
the high-dimensional SOAP feature space (dsoap) between all SOAP environments in the Cu surfaces. (c) Left: hierarchical dendrogram (in blue) showing the similarity
between all SOAP environments [also reported on the left of the dsosp matrix, (b)]. Right: same dendrogram cut at dsoap > 0.01 (in black). This results in grouping very
similar SOAP environments into common macro-clusters: e.g., bulk (b*), sub-surface (ss*), and surface (s*).

Figure 4(c) shows how the complete dendrogram (left, in blue)
can be cut in order to consider only detected SOAP distances greater
than a minimum value, offering the opportunity of a variable res-
olution in the analysis. For example, Fig. 4(c) (right) shows what
the dendrogram becomes when considering only dsap > 0.01 (in
black). At this level of resolution, the bulk environments of all sur-
faces are grouped in a single bulk state (b*). The same happens for
other very similar sub-surface (ss*) and surface (s*) environments.
While complete information is encoded in the pristine dendrogram,
this offers the opportunity to modulate the noise/relevance trade-off
of the analysis, focusing on differences that are really meaning-
ful (e.g., distinguishing between the bulk states of these surfaces is
useless, as these are identical SOAP environments). As it will be

demonstrated in Sec. I1 D, this is important, for example, when using
such SOAP data and dseqp metric to track the similarity between the
atomic environments emerging in the metal surface in equilibrium
conditions and those included in the SOAP dictionary (top-down
classification).

D. Dynamic reconstructions and statistical equivalent
identities of copper surfaces

Starting from the Cu(211) surface at 700 K, at each time step
along the DPMD simulation, we measure the dso,p distance between
the SOAP spectrum of each atom and all SOAP spectrum character-
istic environments present in the dictionary of Fig. 4. At each DPMD
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time step, each atom is then attributed to the closest SOAP environ- Since we are interested in surface reconstructions and dynam-
ment/class (smallest dsoqp) in the SOAP dictionary. This allows us ics, we next focus only on the five top-most layers of the simulated
to track the transformations in the surface along the DPMD and to surfaces (see Sec. IV). Figure 5(a) shows how the (211) surface,
estimate the reconstruction of non-native domains, their lifetime, ideally composed only of green native SOAP sites at 0 K (left),
and dynamics in terms of atomic transitions between them. convert into local non-native domains, proper of (111), (110), and

FIG. 5. Dynamic reconstructions and equivalent identity of a Cu(211) surface. (a) Cu(211) at 0 ns (left) and after 150 ns of DPMD at 700 K (right): SOAP environments native
to the ideal (211) surface are colored in green. Red, blue, and yellow colors identify non-native atomic domains, proper of (110), (210), and (111) surfaces, respectively. (b)
Populations of the native and non-native environments (in %) in the (211) surface at 700 K as a function of DPMD time. (c) Equilibrium composition of (211) at 700 K (%
and standard deviations) in terms of native (green) and non-native domains (yellow, blue, and red, combined in pink in the inset). (d) Breakdown of (211) composition at
700 K. Dashed lines indicate the composition at the DPMD start. (e) Transition matrix showing the probabilities for atomic transitions in (211) between native and non-native
environments at 700 K (within At = 300 ps). (f)—(I) Same analyses for the (211) surface at 600 K.
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(210) ideal surfaces (right: yellow, red, and blue, respectively), along
150 ns of DPMD at 700 K. The environment populations of Fig. 5(b)
show that the surface reaches a microscopic equilibrium along the
DPMD, being populated of native and non-native domains. Along
the DPMD, ~40% of native domains disappear, converting into
non-native domains [Figs. 5(b) and 5(c)]. On a statistical level, the
(211) surface thus preserves its own identity only by ~60% at 700 K
[Fig. 5(c): inset]. In particular, ~19% of the emerging domains corre-
spond to (111) environments, ~17% to (210), and ~6% to (110) ones
[Fig. 5(c)]. Such surface reconfiguration is rather fast in this system
[Fig. 5(b)]. Figure 5(d) shows a breakdown of the detailed native and
non-native environments that populate the surface in equilibrium
conditions. Among all the emerging non-native environments, s(11)
is the predominant one (~12%), followed by ss(111) and ss(3,4), both
constituting ~7% of the (211) surface at 700 K. While such an anal-
ysis provides detailed quantitative information on the composition,
structural diversity, and reconfiguration in the metal surface, it is
interesting to investigate the dynamical features of such phenomena.

The transition matrix of Fig. 5(¢) reports the normalized prob-
abilities for the atom transitions between native and non-native
environments in the (211) surface at 700 K (in At = 300 ps). The
diagonal entries show that only the native (green) and yellow (111)
domains have a residence probability >50%. This means that at the
temporal resolution of this analysis, these are somewhat persistent
domains. On the contrary, (210) and (110) atomic environments
have persistence probabilities well <50%. Such domains are consid-
erably more dynamic, and the atoms composing them have a higher
probability to re-convert into native domains (red-to-green and
blue-to-green transition probabilities ~42% — 43%) than to remain
there in At =300 ps. This provides a picture reminiscent to that
shown in Fig. 2 for the (210) surface, where, above the Hiittig tem-
perature, such dynamically diverse surface appears to be composed
of stable domains coexisting in equilibrium with more dynamic ones
(supplementary material, Movie $4).

Decreasing the temperature to 600 K, the behavior of (211) does
not change substantially [Figs. 5(f)-5(1)]. In general, the transfor-
mation of the (211) surface is rather similar, while it occurs slightly
slower at 600 K than at 700 K [Fig. 5(g)]. The appearance of (111)
domains is just slightly reduced than at 700 K [Figs. 5(h) and 5(i):
~12% at 600 K vs ~19% at 700 K]. The transition matrix shown
in Fig. 5(1) is also very similar to that shown in Fig. 5(e). This
demonstrates how the phenomena occurring in these regimes are
thermodynamically driven, being, e.g., the surface energy of (111)
lower than that of (211) (see Table S1). Conversely, the same analy-
sis demonstrated how the (211) surface appears as substantially static
at 500 K (Hiittig temperature of Cu: 447 K) in the same DPMD
timescales. In such a regime, the thermal bath is evidently insuffi-
cient to trigger the reconfiguration and the surface remains trapped
in the ideal (211) configuration (supplementary material, Fig. S13).
In Sec. II A, the similarity between the final state of the simulated
Cu(211) surface and the corresponding missing-row (211) (2 x 1)
reconstruction is highlighted. We deemed it interesting to analyze
with our SOAP-based approach the ideal (211) (2 x 1) reconstructed
surface, and noticeably, this surface shows a number of yellow (111)
atomic domains, which is in line with what has been observed for the
Cu(211) surface simulated at 700 K (see Fig. S8). This confirms the
ability of the present approach to detect (111) facets in reconstructed
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surfaces. The differences between the simulated and reconstructed
(211) surfaces originate from the actual motion of the atoms that
undergo frequent changes in their surrounding environment.

Comparing the behavior of the other Cu surfaces, the same
analysis reveals that the (110) surface is highly dynamic and substan-
tially unstable at 700 K [Figs. 6(a)-6(e)]. The snapshots of Fig. 6(a)
show how during 150 ns of DPMD, the surface becomes largely
populated with non-red colors and mainly green (211) domains
(supplementary material, Movie S5). Figure 6(b) indicates a sub-
stantial reconfiguration of the (110) surface. The instability of (110)
at 700 K is manifest in the fact that the surface is reconstructed
by ~85%. The native red environments drop to <20% of the sur-
face, reconstructing in large part (211) green domains [Fig. 6(c):
rising to ~50%]. Starting from an ideal (110) configuration, such a
surface evolves toward reconstructing a different, more stable sur-
face. Similar to what was observed for (210) at 700 K, the transition
matrix of Fig. 6(e) reveals how the residual red native domains are
also highly dynamic (survival probability <40%), which fits well
with their relatively high surface energy,””*" while the persistent
domains in this surface are non-native environments. As seen exper-
imentally for other metals,” *" also the Cu(110) surface appears
unstable at 700 K and reconstructs large surface domains struc-
turally/dynamically similar to the (211) surface ones (Fig. 5). In
addition, at 600 K, the (110) surface has a dynamics similar to that
of (211) at the same temperature, while the reconstruction of (211)
domains is much slower than at 700 K. Similar to (211), at 500 K,
the (110) surface is also substantially immobile and preserves its
identity: the thermal bath is insufficient to trigger the reconstruc-
tion in the timescales accessible via these DPMD simulations (see
the supplementary material, Fig. S14).

The emergence of a large number of green (211) atomic
domains can be quite puzzling. However, it can be explained
through a SOAP analysis of the missing-row (110) (1 x 3) recon-
structed surface. When coloring this surface with our SOAP-based
dictionary, we observe that the atoms of the surface are composed
mainly of green (211) and yellow (111) atomic domains. This evi-
dence shows that the atomic environments that are native to the
(110) (1x 3) reconstructed surface are actually very close in terms
of soap distance to those of the (211) surface (see Fig. S7).

The Cu(210) surface is more dynamic than both (211) and
(110) surfaces. Among all studied surfaces, (210) has the least coor-
dinated atoms: the 51(210) are the only atoms with coordination 6 in
the whole dataset [see Fig. 1(c)]. Figures 6(f)-6(1) show the analysis
for (210) at 500 K. Even so close to the Hiittig temperature, this sur-
face undergoes considerable reconstruction (see the supplementary
material, Movie S6). The (210) reconstructs non-native domains by
>60%, preserving its identity only by <40% [Figs. 6(g) and 6(h)].
Increasing the temperature to 600 or 700 K has the unique effect
of accelerating such reconfiguration, while the equilibrium popula-
tions remain substantially preserved (supplementary material, Fig.
S15). This fits well with the higher energy of this Cu surface.””"*
One difference is in the dynamics of such atomic environments. The
transition matrix of Fig. 6(1) shows diagonal entries very close to or
higher than 50%. At the resolution of our analysis, the dynamics that
emerges in this surface at 500 K is discrete (solid dynamics). Con-
versely, increasing the temperature to 700 K creates dynamically
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FIG. 6. Dynamic reconstructions and equivalent identity of other Cu surfaces. (a) Cu(110) at 0 ns (left) and after 150 ns of DPMD at 700 K (right): SOAP environments native
to ideal (110) are colored in red. Green, blue, and yellow colors identify non-native environments proper of (211), (210), and (111) surfaces, respectively. (b) Environment
populations in the (110) surface at 700 K as a function of DPMD time. (c) Equilibrium composition of (110) at 700 K (% and standard deviations). Inset: native domains in red
and non-native in pink. (d) Breakdown of (110) composition at 700 K. The dashed lines indicate the composition at DPMD start. (€) Transition matrix showing the probabilities

for atomic transitions in (110) at 700 K (within At = 300 ps). (f}—(I) Same analyses for the (210) surface at 500 K. Same analyses for surfaces at other temperatures are
reported in the supplementary material.

persistent solid-like domains—native blue (210) and non- The last case that we compare is the close-packed Cu(111) sur-
native green (211) domains—coexisting with dynamic domains face. Even the simple coordination analysis of Fig. 1 clearly shows
(supplementary material, Fig. S15). This also confirms that, in that this surface is very stable””** and does not undergo any consid-
this case, increasing the temperature does not generate a uniform erable reconstructions in such regimes. Even at 700 K, surface atoms
increase in the dynamics of atoms but the emergence of local with coordination #9 emerge only sparsely and as statistical local
dynamic domains and a non-uniform dynamically diverse surface. fluctuations, indicating vibrations rather than reconstructions.
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I1l. DISCUSSION

We report a data-driven approach that allows resolving at an
atomistic resolution the complex structural dynamics of metal sur-
faces above the Hiittig temperature. As a case study, we use Cu
surfaces. However, the approach is versatile and can be applied
to other metal systems. The approach provides a detailed micro-
scopic characterization of the atomic environments composing
such dynamically diverse surfaces, the rates with which these
emerge/disappear, their residence time, and persistence (see, e.g.,
Fig. 3). The development of a dictionary of SOAP atomic Cu
surface environments (Fig. 4) allows for a data-driven analysis
of the similarity/differences between the local motifs that appear
in dynamic equilibrium conditions on the different Cu surfaces
[Figs. 5, 6(c), 6(d), 6(h), and 6(i)]. This provides an exquisitely
statistical picture of these metal surfaces, and a data-driven esti-
mation of their “equivalent identity” in dynamic regimes (Figs. 5
and 6). Knowing what local environments emerge, how often, and
for how long is a prime requisite to understand what a metal sur-
face looks like and its properties in determined thermodynamic
conditions.

The developed NN potential allows dynamically reliable
DPMD simulations of relatively large Cu surface models composed
of 2,400 atoms (replicating on xy through periodic boundary con-
ditions). Noteworthy, the transition matrices of Figs. 5 and 6 show
transition probabilities ranging ~5% — 40% in At = 300 ps, revealing
arich microscopic dynamics in such metal surfaces with characteris-
tic times for the transitions between the various environments in the
order of nanoseconds. On a technical standpoint, this shows how
such simulations provide access to information extremely difficult
to attain with other approaches.

From a scientific point of view, metal surfaces in most cases
are still studied treating the surface as a rigid object; however, the
rich structural dynamics seen in these metallic materials at tempera-
ture regimes of 500-700 K in our simulations indicate that the actual
scenario is much more complex and that the intrinsic dynamics of
the metal surface must be explicitly accounted to understand surface
properties. In particular, it is intriguing to note that the results of
Figs. 3, 5, and 6 provide a picture of such metal surfaces that is quite
far from that of hard materials, revealing internal dynamic equilibria
and a structural/dynamical diversity that, in a sense, is reminiscent
of that of soft dynamic materials.”” "

In perspective, our data-driven approach offers remarkable
opportunities to relate the innate structural dynamics of metals
to their properties. While we are interested in resolving the com-
plex structural dynamics of metal surfaces per se, we envisage that
this will have a considerable impact on various fields, from the
study of their mechanical properties to, e.g., heterogeneous cataly-
sis, where the dynamical emergence of local atomic environments
with utterly different reactivities and survival lifetimes may have a
strong impact on the catalytic activity. """ In general, this
study reveals and resolves the complex dynamic character of met-
als in dynamic regimes, demonstrating how these cannot be simply
studied as static structures even far from the melting tempera-
ture. This changes the way we look at such materials, opening new
exciting directions toward data-driven statistical reinterpretations of
their properties.
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IV. METHODS

A. Neural network representation of the inter-atomic
interaction potential

The DFT database needed to train the Cu NN potential
was generated extracting configurations along ab initio molec-
ular dynamics (AIMD) trajectories of small Cu systems. Sim-
ulations were performed using the PWscf code of Quantum
ESPRESSO.” In these calculations, Perdew-Burke-Ernzerhof (PBE)
exchange-correlation density functional’ forces were used to prop-
agate the nuclear dynamics. Preliminary tests demonstrated that
this functional provides a reliable representation of the metal sur-
face, free of empirical corrections, and constitutes an ideal com-
promise between accuracy and computational cost. Moreover, the
same approach was also demonstrated as reliable for other metals,
e.g., for gold and silver surfaces.”* Ultrasoft Rappe-Rabe-Kaxiras-
Joannopoulos (RRK]J) pseudopotentials”™ replaced explicit core-
valence electron interactions, while electron density and wavefunc-
tions were expanded in plane-waves with energy cutoffs of 220 and
50 Ry, respectively. Occupation was treated by the cold smearing
technique of Marzari et al.”® with a Gaussian spreading of 0.01 Ry.
The Brillouin zone was sampled using a 2 x 2 x 2 Monkhost-Pack
k-point grid”” for the bulk structure while a 2 x 2 x 1 k-point grid
was used for the slab models.

Convergence against cutoff energy, Monkhost-Pack sampling,
and occupation was tested, and the setup described was chosen as
the best compromise between feasibility and accuracy. The AIMD
simulations were carried out with a time step of 1.0 fs in a con-
stant volume and temperature (NVT) ensemble using the stochastic
velocity rescaling thermostat of Bussi et al.”® In order to span a larger
portion of the configurational space, we simulated the systems at
temperatures ranging between 500 and 700 K.

The AIMD-simulated systems include both bulk and surface
structures. The bulk was modeled by a periodically repeated super-
cell of size 7.1638 x 7.1638 x 7.1638 A’ containing 32 atoms. For
surface calculations, four slabs models were used to construct the
(100), (110), (111), (211), and (210) copper surfaces. Slabs with a
different number of atomic layers were built and a vacuum layer was
set in the z direction. The first two bottom Cu layers were kept fixed
during optimization and AIMD simulations.

We trained the Cu NN potential using the DeePMD-kit
package.””” The smooth version of the deep potential model was
adopted, with a cutoff radius of 6.0 A. To remove the discontinuity
introduced by the cutoff, the 1/r term in the network construction
is smoothly switched-off by a cosine shape function from 1.0 to
6.0 A. The filter (embedding) network has three layers with (25, 50,
and 100) nodes/layer and the fitting net is composed of three lay-
ers, with 240 nodes each. The network is trained with the ADAM
optimizer,” with an exponentially decaying learning rate from
1.0 x 107 to 5.0 x 1078, The batch size was chosen as 4. The pre-
factors of the energy and the force terms in the loss function change
during the optimization process from 1 to 10 and from 1,000 to
1, respectively. The final model used for the production run was
trained for 10.0 x 10° steps (see the supplementary material, Fig. S1).

The choice of the training dataset is a crucial step in the train-
ing of an NN potential. For this reason, we used the configurations
collected along the DFT MD simulations to train a first “guess” Cu
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NN potential and we then used it to run several DPMD simulations
for the different surfaces at different temperatures. This allowed us
to explore a larger portion of the configurational space accessible
in the temperature range of interest (500-700 K) and to efficiently
extract new configurations to add to the training dataset, further
enriching the NN potential. This active learning protocol follows
the same procedure introduced by Deringer and Csdnyi™ and later
implemented in the DeepMD software package by Zhang et al.”’
Here, the criterion used to select new configurations is based on
the agreement on the forces’ predictions made by an ensemble of
four NN potentials, which have been trained on the same reference
dataset but with different initial weights. We measured the model
deviation as the maximum (over the force components) of the stan-
dard deviation on the forces predicted by such an ensemble of NN
potentials. Whenever the model deviation for one configuration was
in the range of [27-240 x 107*] eV/A, the corresponding structure
was included in the new training dataset. The iterative process con-
tinues until when no new configurations are visited so that the NN
potential can be considered “complete” for the sampled conditions.
A total of 10000 configurations were used for the training, and the
final root mean square errors of the NN potential on the testing
set are equal to 1.0 meV/atom for the energy and 40 meV/A for
the force.

To verify that the use of ~100 atom surface environment
patches (accounting up to the ~4 — 5th neighbor) for the training
allows providing a NN potential that is robust and complete (e.g.,
free from spurious finite-size effects), we also performed additional
tests using larger surface patches (~600 atoms) for the training. Our
tests demonstrated that the deviations in the forces and energies thus
estimated are systematically found within the training-testing errors,
confirming, thus, the robustness of the approach adopted for the
study of such systems and of the obtained NN potential.

Moreover, the fine sampling of atomic configurations and asso-
ciated energies guaranteed by the DFT MD calculations allowed to
include in the NN potential training dataset configurations corre-
sponding both to the local minima and transition states. In this way,
the obtained NN potential is trained to represent with DFT accu-
racy the differences in energy between different sampled configura-
tions, the transition barriers between them, and thus the transition
kinetics.

This provided us with an atomistic NN potential with DFT
precision in the treatment of the structure, energy, and dynam-
ics of Cu surfaces. The NN potential is also rich in that, thanks
to the inclusion of various types of surface environments in the
training set [Fig. 1(b)]. This is trained to cover a variety of atomic
configurations—from those, more stable, present in the FCC bulk
and (111) surface at 500 K, to those emerging, e.g., in the Cu(210)
surface, which is highly dynamic (and nearly pre-melted) at 700 K.
The use of a structurally and dynamically accurate Cu force field is
key in our case, as it allows us to reconstruct the internal atomic
dynamics of Cu surfaces in an accurate and reliable way. Nonethe-
less, on a qualitative point of view, rather similar internal dynamics
of the Cu surfaces has been obtained also in MD simulations using
a different general-purpose and widely used force field for copper
available in the literature,*”"'"" confirming how the rich internal
dynamics seen in our DMPD simulations is not exclusive of our NN
potential and is somehow innate in these surfaces at this regimes.
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B. Atomistic surface models and DPMD simulations

All production simulations have been conducted using FCC
Cu(111), (110), (210), and (211) surface models composed of 2,400
atoms [only (210) has 2304] replicating on the xy plane through
periodic boundary conditions, and having thickness >15 A. During
all simulations, the two bottom-most atomic layers were kept fixed
(these two layers are then not considered in all our analyses). Prelim-
inary tests demonstrated that such a size is large enough to prevent
finite-size effects on the structural dynamics of the surfaces with the
adopted setup.

All DPMD simulations were performed using a large-scale
atomic/molecular massively parallel simulator (LAMMPS).'’" The
temperature was controlled using the stochastic velocity rescaling
thermostat of Bussi et al.”® The integration time step used is 1 fs and
the relaxation time for the thermostat was set to 0.1 ps. Coordination
and velocity analyses of surface atoms were performed with OVITO
software.'’”> Coordination was calculated as the number of neighbors
within a certain cutoff (R = 3.1 A) that corresponds to the first
minimum of the Cu-Cu radial distribution function. Surface atoms’
velocities in the analysis of Fig. 2(b) were calculated as Ar/At, where
Ar was computed as the atomic position displacement within a cer-
tain time window At = 1500 ps. Both atomic coordination numbers
and velocities reported in Figs. 2(c) and 2(d) were averaged over the
second half of the trajectory.

C. Smooth overlap of atomic position

The Smooth Overlap of Atomic Position (SOAP) is a many-
body atomic descriptor, conceived to accurately reproduce particle
densities of a given system of interest.”” In our analyses, we center
one SOAP vector in each atom of the surface models. For each atom
at each time step, this provides a SOAP “power spectrum,” which is
a high-dimensional descriptor of the level of order/disorder in the
surrounding of each atom in the system. The advantage of the SOAP
descriptor is that it is general and abstract, and thus, it can also be
used in a flexible way, in principle, for other metals and other types
of molecular systems.”>”>""**

Given a system conformation I' in the 3D space, the local atomic
density, p;(T,7), is defined in the neighborhood of every SOAP cen-
ter within a spatial cutoff r.; the SOAP power spectrum can be
evaluated projecting p;(T, ) onto a basis of orthogonal radial func-
tions g, (r) and spherical harmonics Y}, (6, ¢), which for the ith can
be expressed as

pi(0,7) = > S d, (D)gu(r) Vi (6, 9), (1)

J€rcur nml

where c’n m are the spherical harmonics and radial functions’
expansions coefficient, with that j runs over all the sites within 7.

The SOAP power spectrum vector can be analytically derived®
from Eq. (1) and can be written as

/8 & . ,
(D) =7 ﬁm;f"’m(r)mlm(r)' (2)

Once SOAP feature vectors have been calculated, the similar-
ity between the various atomic environments can be inferred via a
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distance metric, as long as the dimensionality of the compared SOAP
vectors is the same, as in our case, where we used for #max, lmax = 8
(found effective and sensitive enough in our case).

More precisely, we can define a measure of the similarity
between two environments centered in two sites, building a linear
polynomial kernel of their density representations; this can be sim-
ply reduced to the dot product of power spectra, defined in Eq. (2).

The SOAP distance between two SOAP spectra d and b can be

calculated by
dsoar (4,b) = /227 (4.b), (3)

where, with the SOAP power spectrum representation that we are
. P ab
using, %(a,b) = ”EHHEH.

For all systems, the SOAP descriptors were calculated under
periodic boundary conditions along the xy dimensions using fmax
= 8 radial basis function and /max = 8 maximum number of spheri-
cal harmonics. The choice of the cutoff radius (rcyt) determines the
size and shape of the neighborhood considered in characterizing the
atomic environment for each SOAP center; in this work, we opted
for rewt = 6.0 A, the same cutoff adopted for the training of the Cu
NN potential. The remaining parameters were set to default values
of the DScribe library'®> employed in this analysis.

D. Bottom-up SOAP analysis

In the bottom-up production analyses, we did not include the
two bottom-most atomic layers (kept fixed) and the three closest
neighbor layers of the bulk, thus considering the first 1,300 atoms of
the Cu(211). This was done in order to guarantee the correct analysis
of the atomic dynamics in the simulated metal surface. We extracted
the characteristic SOAP spectra for each of the 1,300 Cu atoms in the
surfaces from 250 snapshots taken from the last 75 ns of DPMD sim-
ulations (one every At = 300 ps of simulation), corresponding in all
simulated cases to the equilibrated phase of the DPMD simulations.
In total, for the bottom-up analysis of Fig. 3, we obtain a dataset of
325000 SOAP power spectra in total.

The SOAP data output obtained from the DPMD trajectories
consists of a set of feature vectors of high dimensionality that, while
rich in information, are not convenient for visualization and classifi-
cation. To overcome these limitations, we opted to employ a widely
used dimensionality reduction method, performing the Principal
Component Analysis (PCA) algorithm in the implementation from
scikit-learn,'’* and to project the normalized SOAP vector on the
principal components (PCs). The data projected on the PCs are eas-
ier to visualize [we used the first two PCs in Figs. 3(c), 3(d), 3(f), and
3(g)] and are convenient for finding patterns in the data. More pre-
cisely, in the cases reported herein, the first three PCs account for
>98 % of the total variance in the simulated systems.

The SOAP data extracted from the last 75 ns of the DPMD sim-
ulations (equilibrated phase trajectories) have been then analyzed to
identify the most visited atomic environments in these systems. In
particular, unsupervised clustering of the SOAP data has been per-
formed using HDBSCAN™.”® Density-based clustering algorithms
identify clusters based on a search of high-density peaks surrounded
by regions where there is a lower density of points. The minimum
number of points in a neighborhood for a point to be recognized
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as a core point (min_samples) did not impact the results. In par-
ticular, the results of Fig. 3 are obtained using the default option,
with automatic set to the same value as min_cluster_size and the
default excess of mass (eom) as the cluster_selection_method. As the
clustering analysis is completely unsupervised, the detected clusters
emerge bottom-up directly from the second half (equilibrated phase)
of the DPMD trajectories.

E. Dictionary of SOAP atomic environments
and top-down analysis

Figures 4-6 show a top-down SOAP-based classification
method that allows tracking and classifying all the atomic environ-
ments that appear in the systems during the equilibrium DPMD
trajectories based on their similarity with reference environments
inserted in a SOAP dataset. As a first step, we minimized the ref-
erence structures of Cu(111), (110), (210), and (211) surface slabs.
For all these minimized reference surfaces, we calculate the char-
acteristic SOAP spectra of the atomic environments that compose
them. In this case, we obtained a total of 22 characteristic SOAP
spectra—Fig. 4: three for (111), five for (110), seven for (210), and
seven for (211). All these SOAP spectra have been then inserted into
a unique SOAP dictionary of atomic environments and used for our
classification analysis. Noteworthy, this approach is flexible and gen-
eral, and the dictionary can be, in principle, expanded by adding
other SOAP spectra characteristic of other atomic environments if
one wants to also compare other surface systems. We then hierarchi-
cally classified all of the dictionary entries using the SOAP distance®
and by using the complete method of the linkage algorithm, which
conserves the greater distances between the newly formed cluster
and the other elements. In this analysis, our main aim is to com-
pare the local atomic environments that emerge during the DPMD
simulations and to classify these environments using the dictionary
described in the dendrogram of Fig. 4(c) as a reference (on the
right, in black: for this analysis, we use a criterion of dsoap > 0.01).
For each atom in each simulation, we evaluated the SOAP distance
(dsoap) from each dictionary entry. We then assigned each atom to
the dictionary element with the lowest distance from it (i.e., smallest
dsoap). We applied this process to each atom [2,304 for the Cu(210)
and 2,400 for all other surfaces] along the entire 150 ns of DPMD
simulations (501 frames, one every At =300 ps), thus obtaining
1202 800 SOAP spectra for Cu(111), (211), and (110) surfaces, and
1154304 SOAP spectra for Cu(210). This allowed us to monitor the
microscopic equilibration in all surface models [Figs. 5 and 6(b)].
For all cases, we took the second half of the simulations (the last
75 ns and 250 frames of DPMD) as representative of the equilib-
rium configuration of the surfaces. The transition matrices of Figs. 5
and 6(b) are calculated by accumulating for each environment the
number of changes to other clusters (or to self), and then by normal-
izing each row in the matrix to have it summing to 100, obtaining
conditional probabilities for atoms belonging to a given class of
environments to undergo transition into a new environments class
(o to remain self) in At = 300 ps. Since in this analysis we are primar-
ily interested in the mutability and transformations of the surface,
only the SOAP data for the first top-most surface (s) layers of atoms
are retained, while all atoms belonging to bulk or to the ss" envi-
ronments at DPMD simulation start (in the ideal surfaces) are not
considered in the analysis.
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SUPPLEMENTARY MATERIAL

The supplementary material contains details about the vali-
dation of the NN potential; time-series of the populations of the
clusters determined by the bottom-up SOAP analysis for all the
surfaces investigated; a coordination and top-down SOAP-based
analyses of the reconstructed (110) (Ix 2), (110) (1x 3), and
(211) (2x 1) surfaces; the radial distribution function of the (111),
(110), (211), and (210) surfaces at T = 0, 500, and 700 K; and
additional details on the bottom-up and top-down SOAP-based
analyses.
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