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A B S T R A C T   

Advanced data analysis techniques are of paramount importance for the Structural Health Monitoring (SHM) of 
civil buildings and infrastructures. In particular, Automated Operational Modal Analysis (AOMA) algorithms are 
necessary for the output-only monitoring of such massive and large structures. The unsupervised estimation of 
their modal parameters from ambient vibrations enables assessing their integrity efficiently and continuously. 
This is particularly important for reinforced concrete (RC) bridges, which need constant maintenance. In this 
context, the classic cluster-based, multi-stage approach is effective in cleaning the stabilisation diagram and 
discerning stable and unstable modes. However, due to the shortcomings of binary classification with (k = 2)- 
means clustering, the labelling between ‘possibly physical’ and ‘certainly spurious’ modes may not be completely 
reliable. The procedure described here applies Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) to bypass this limitation. This allows, among other advantages, to automatically detect and remove 
outliers, differently from the traditional techniques. The algorithm is fully automated, including the data-driven 
setting of DBSCAN parameters. Its viability is tested here on a real, full-scale case study, the Z24 road bridge 
dataset.   

1. Introduction 

Bridges and transport infrastructures are one of the most important 
factors for the well-functioning of a country’s economic activities. 
During their long-lasting service time, civil infrastructures should meet 
safety and reliability requirements accounting for continuous traffic 
loads and extreme environmental conditions such as floods, earth
quakes, storms, etc. Yet, since the number of aged and damaged in
frastructures is consistently increasing over the years, their constant 
monitoring is of paramount importance. In the last years, rapid ad
vancements in sensor technologies led to the development of robust and 
efficient Structural Health Monitoring (SHM) techniques based on 
vibrational measurements [1–3], acoustic emission [4], fiber optic 
sensors[5,6], etc. However, despite these important achievements and 
progresses in SHM systems, some challenges (e.g., measurement errors, 
the ability to detect the changes with high level of confidence, the 
dependence on sensor and storage system, the reliability and validation 
of the results, etc.) are still matter of discussion and further research is 

needed. 
Most vibration-based techniques rely on System Identification (SI) 

methods. Indeed, in many standard applications, SHM often reduces to 
tracking the identified modes of vibration in the time, frequency, or joint 
time–frequency domain. According to the classic Statistical Pattern 
Recognition framework, any substantial deviation from the expected 
behaviour could be linked to the occurrence of damage. 

This is the basis of Vibration-Based Inspection (VBI). Indeed, vibra
tional signal processing has been extensively proven as a viable tool for 
damage detection in many applications, ranging from leak detection in 
pipelines [7,8] to fault detection in electric machines [9] and asyn
chronous motors [10]. For mechanical and aerospace applications, 
generally, the needed dynamic tests can be done in controlled envi
ronments, e.g. during laboratory experiments, where both the excitation 
and the output signals are simultaneously recorded. Instead, only the 
output response is available for most civil engineering purposes, given 
that is not possible to excite massive structures such as large multi-span 
road bridges. For this reason, Ambient Vibration (AV) tests and output- 
only SI are widely applied. This framework is conventionally referred to 
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as Operational Modal Analysis (OMA) and can be applied to basically 
any typology of road, rail, or pedestrian bridge – see e.g. [11] and [12] 
for concrete deck superstructures supported by steel girders, [13,14] 
and [15] for cable-stayed bridges, [16] for masonry arch bridges, [17] 
for concrete arch bridges, and [18] for prestressed multi-span concrete 
bridges. 

The remainder of this paper is organised as follows. Section 2 de
scribes the theoretical background of this research study. In Section 3, 
the main aspects of the complete AOMA algorithm in general, and of the 
DBSCAN-based step in particular, are reported. Section 4 describes the 
case study of interest. Section 5 details, step-by-step, the application of 
the AOMA algorithm to the Z24 dataset, showing the intermediate and 
final results. A comparison with the identifications from the authors of 
the original dataset is included as well, for direct comparability. Finally, 
the Conclusions (Section 6) end this paper. 

2. Theoretical background 

2.1. Current state of OMA and AOMA procedures 

The main issues for OMA are that  

I. the number of relevant vibration modes is not known a priori;  
II. the input AV force has a very low amplitude, so many modes are 

weakly excited;  
III. output-only recordings from AV tests are noisy. 

Due to point (I), the common strategy is to perform SI with many 
model orders, starting from a low value n = nmin and increasing over an 
arbitrary range up to a given n = nmax. This approach leads to a large set 
of identifications, which need to be properly interpreted. In fact, this 
strategy is purposely intended to err on the side of safety. 

On the one hand, the overestimated model orders are more likely to 
identify even weakly excited modes. This solves the issue of point (II). 
On the other hand, with noisy data, spurious modes arise due to several 
reasons (characteristics of excitation, measurement inaccuracies, etc) 
unrelated to the physics of the target structure. 

The interpretation of the results is generally accomplished through a 
stabilisation diagram [19], plotting the identified natural frequencies 
and damping ratios vs. the model orders. The rationale is simple: stable 
modes – i.e. the ones recurring in most of the model orders with almost 
unchanged parameters – are more likely to be physically meaningful, 

while randomly distributed identifications are, conversely, most likely 
noise-induced. 

Thus, the main aim of Automated OMA (AOMA) is to perform the 
clearing and interpretation of the stabilisation diagram in an unsuper
vised fashion, taking all the identified poles in input and providing the 
extracted modes in output without manual user interaction. 

In this regard, the classic procedure was clearly defined in [20], with 
a multi-stage clustering approach. Their proposed approach consists of 
[20]:  

1. Single-pole validation criteria;  
2. Clustering and cluster-wide validation criteria;  
3. Estimation of the modal parameters representative of each remaining 

cluster. 

This 3-step process is nowadays widely accepted by the SI and SHM 
communities. The number and relevance of AOMA applications that 
follow it have multiplied over the years, including examples of imple
mentations for the permanent monitoring of complex structures [21]. 
The same framework has been then further developed and improved by 
many authors in the following years. Some examples include the works 
of [22] and [23]. 

Departing from the complete set of identified poles, all these algo
rithms firstly apply the single-mode criteria. These are intended to 
determine if a particular pole is certainly spurious or not. This is ach
ieved by utilising Hard and Soft Validation Criteria (HVC and SVC, 
respectively). HVC yield, by definition, to a binary answer (e.g. stable or 
not) and are generally defined a priori, according to first principles. SVC, 
on the other hand, return a continuous range of values [20]. Therefore, a 
threshold must be defined, separating the poles between the two groups 
– likely mathematical from likely physical. This thresholding is conve
niently data-driven, to adapt to the case study of interest. 

HVC and SVC are commonly deemed as efficient in the current sci
entific and technical literature; overall, they have been applied for 
almost a decade with few changes (mainly regarding the proper selec
tion of features for SVC, as investigated by [22]). 

The second step of the procedure (clustering and cluster validation 
criteria) is, however, more prone to practical issues – mainly, the risk of 
labelling some remaining misidentified spurious poles as physically 
meaningful. 

Indeed, after HVC and SVC, all the poles that, on their own, were 
deemed stable (and thus not obviously mathematical) are stored. 

Nomenclature 

fs sampling frequency 
i number of block rows in the data Hankel matrix 
j number of block columns of the same 
n model order, corresponding to the number of poles 

identified 
ln number of poles belonging to the n -th model order 
λp eigenvalue of the generic p-th pole. 
fp natural frequency of the same 
ξp damping ratio of the same 
φp array representing the mode shape of the same 
ν = 1 − MAC

(
φp,φq

)
complementary of the Modal Assurance 

Criterion defined between φp and φq 

dn
p array of distances between the p-th pole of the n-th model 

order and all the poles of the following model order (n+ 2) 
Δλ, Δf ,Δξ,ΔMPD absolute difference between the eigenvalues/ 

natural frequencies/damping ratios/Mean Phase Deviation 
of the p-th pole of the n-th model order and the closest 

neighbouring q-th pole of the following model order (n+
2) 

Δλn, etc array of the absolute differences for each pole of the n-th 
model order 

Δλ,etc array of the absolute differences for each pole of each 
model order 

γ parameter for the Box-Cox transformation 
h Box-Cox transformation of Δλ,Δf ,Δξ, ΔMPD, and ν 
μ mean of h 
σ standard deviation of the same. 
z z-score of the values of h 
k number of means for the k-means clustering 
d̃ distance threshold for hierarchical clustering (dendrogram 

cut-off) 
Sil(p) Silhouette value of the generic p-th pole 
MinPts minimum number of points required to form a dense 

cluster in DBSCAN 
ε search distance around a point in DBSCAN 
κ κ -distance graph for DBSCAN  
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Nevertheless, as said, these remaining poles are in large part still 
spurious. To identify and discard them, the solution envisioned by [20] 
and followed by most researchers is a second sifting step. The idea is that 
densely and more populated clusters are most likely related to physical 
modes that are ideally identified at each model order from a certain 
model order forward. In contrast, sparsely and less populated clusters 
are expected, with good confidence, to be made up of spurious modes. 

2.2. Problem statement 

Clustering and cluster-wide classification are generally performed by 
(agglomerative) hierarchical clustering, followed by a binary classifi
cation between less and more populated clusters. In the original 
framework of [20], this binary classification is performed by means of 
(k = 2)-means clustering. 

However, this approach (hierarchical clustering plus binary classi
fication) presents three well-known shortcomings:  

I. It focuses on cluster population rather than cluster population 
density;  

II. The k-means algorithm is known to be biased to split the feature 
domain into (here, k = 2) sets of mostly equal size [22,24];  

III. It only deals with clusters of spurious poles and not with the 
single mathematical poles closer to the physical ones. 

The issue of point (I) regards the distinction between weakly excited 
and spurious modes. As mentioned, this is the most compelling issue in 
the current AOMA state of the art. Weakly excited modes tend to be 
identifiable only at high model orders; thus, they form clusters with 
relatively low population, but generally high density (as they remain 
stable for higher model orders). On the other hand, spurious modes 
occupy all the space in the feature domain between actual (physical) 
modes. If a large enough region is considered, this may result in a cluster 
with very low density yet enough poles to have a larger population than 
weakly excited modes’ clusters. 

The issue of point (II) concerns how, in the standard AOMA pro
cedure, the k-means-based binary classification works. Basically, it de
fines a ‘Certainly Mathematical’ (CM) centroid and its ‘Possibly/ 
Probably Physical’ (PP) counterpart [22]. The distance between these 
two points in the multi-dimensional feature space of interest is then 
computed. Whichever cluster is closer to one centroid than to the other 
is included in that group. 

This implies that any cluster (even slightly) closer to the PP centroid 
should be physical. However, it was proved in previous studies [16] that 
clusters much closer to the PP centroid than to the CM one can still be 
spurious, as there is no guarantee that the boundary between these two 
regions necessarily falls exactly halfway. In many applications, this can 
lead to misidentifying CM clusters as PP clusters or (unlikely) vice versa. 

Importantly, it must be remarked that 2-means clustering is already 
applied in the SVC phase, to classify the single poles as stable or unstable 
and discard the latter. This first use suffers from the same issue – a 
tendency to overestimate the number of stable poles, as they generally 
are much less than the unstable ones. Yet, this issue is not critical since 
the sifting at the single pole level is then followed by further selection at 
the cluster level. That is to say, the redundancy of the multi-stage pro
cedure allows for some tolerance in the earlier stages. 

Point (III) reports the final (and relatively minor) disadvantage of the 
classic approach. The spurious poles that are far from their peers but 
close to PP poles end up being included in their nearby clusters. Thus, 
they remain as outliers in a cluster otherwise made entirely of legitimate 
identifications. Hence, they need to be further removed in a subsequent, 
distinct step, as e.g. described in the section 3.6 of Neu et al. [22]. 
Otherwise, they can skew the modal parameters estimated from the 
corresponding cluster. 

In conclusion, the AOMA procedure applied and discussed here is 
intended to retain the best practices introduced by [20,22] and in 

previous research works, while dealing with the aforementioned issues. 

2.3. The proposed DBSCAN-based procedure 

The AOMA algorithm described here replaces the hierarchical and k- 
means clustering with a density-based clustering strategy. In particular, 
the Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN, [25]) is utilised. DBSCAN was already applied, in a different 
fashion, for Operational Modal Analysis by Tronci et al. [26]. The main 
difference with that work is that the approach presented here is 
completely data-driven, including for the definition of the DBSCAN 
parameters, thanks to the use of a heuristic method and a clustering 
evaluation index. 

This DBSCAN-based procedure is intended to perform a threefold 
task:  

I. the clustering of the poles remaining in the cleansed stabilisation 
diagram;  

II. the removal of the clusters entirely made by mathematical poles;  
III. the removal of outliers close to the remaining PP clusters. 

As it will be shown, not only DBSCAN can incorporate these three 
stages in a single step but it is also not affected by the aforementioned 
typical issues of k-means clustering. Indeed, the main difference be
tween DBSCAN and other more classic algorithms is that mathematical 
poles are directly identified as noise and discarded in the clustering 
phase. Besides, this approach results to be a less complicated and faster 
alternative than the conventional approach (as it will be shown in the 
presented case study). 

However, DBSCAN needs to specify two parameters that are usually 
estimated manually accordingly with the distribution of points and the 
quantity of noise. As mentioned, in the proposed algorithm this selection 
is instead data-driven and fully automated. 

The Z24 [27], one of the most renowned case studies in bridge 
monitoring, is used as an example. It will be shown  

(i) how the algorithm can correctly identify the modal parameters of 
the target structure under changing environmental conditions 
and levels of damage, and  

(ii) how these estimations can be used for vibration-based damage 
assessment, according to the most classic approach of following 
the downward frequency shift. 

3. Methodology 

As mentioned in the previous sections, the AOMA procedure 
described here mainly follows the multi-staged framework described by 
[20]. Indeed, many aspects of the AOMA implementations by [20] and 
[22] were previously tested and validated in [23]. All the components of 
these algorithms that were deemed as already efficient and optimised 
were thus retained for this work as well. These will be recalled here to 
make this discussion self-sustained; however, the reader is redirected to 
the respective references for further technical details, as well as for the 
theoretical and practical justification of each step. Only the main dif
ferences from these references will be highlighted and thoroughly 
commented upon. Particularly, the focus will be on the main novelty i.e. 
the inclusion of the Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) in the overall process. 

3.1. Recalls on SSI 

The Stochastic Subspace Identification (SSI) algorithm is considered 
among the best and most used techniques for output-only identification 
– see e.g. [28]. A detailed discussion can be found in the book of Van 
Overschee & De Moor [29]. 

Four parameters are required for SSI: the number of block rows (i) 
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and block columns (j) in the Hankel matrix, the minimum order model 
(nmin), and the maximum one (nmax). 

Regarding j, this is conventionally set as: 

j = s − 2i+ 1 (1) 

for s data samples. Conversely, there is no agreed-upon formulation 
for i, as many textbooks report slightly different ‘rules of thumb’ for this 
purpose. For reasons specified in [23], here 

i = fs/2 (2) 

is considered, where fs is the sampling frequency. Eq. (2) is equiva
lent to the formulation proposed by [30] assuming the first natural 
frequency of the inspected structure to be 1 Hz. As it will be shown in 
the results, this assumption does not hold true for the application (where 
f0 ≅ 4 Hz); yet, it errs on the side of caution. 

Regarding the range of model orders nmin − nmax, its optimisation is 
still a matter of research, not yet totally solved. Some considerations in 
this regard can be found in [23] and [16]. For this specific application, 
nmin = 10 and nmax = 160 are considered, also for consistency with the 
same case study as investigated in [20]. For convention, the model order 
corresponds to the number of identified poles. Being these poles all 
complex conjugate pairs (as will be seen in the next subsection), n is 
increased in steps of two (nmin, nmin + 2,⋯,nmax). 

3.2. Hard validation criteria (HVC) 

Due to their importance, the Hard and Soft Validation Criteria are 
here described in detail. 

For the HVC, the criteria suggested by [20] were retained: 

0% ≤ ξp ≤ 20% (3)  

Re
(
λp
)
≤ 0 (4)  

Im
(
λp
)
∕= 0 (5) 

For each p-th pole of any n-th model order, where ξp is its corre
sponding damping ratio and λp its eigenvalue. The underlying assump
tion of Eq. (3) is that the viscous damping of real mechanics systems 
cannot physically be negative nor exceed very large values (set here at 
20% in accordance with [31,32]). Eq. (4) and (5) restrict the research to 
decaying oscillations only, for obvious reasons. 

3.3. Soft validation criteria (SVC) 

Following the first sifting step, the aim of the SVC is to binary classify 
the remaining poles as stable or not. This requires a data-driven com
parison between the identifications of different model orders. In this 
regard, the five comparison parameters suggested by [22] as the most 
statistically reliable are considered. These include the absolute differ
ence between the eigenvalues 

Δλ =
⃒
⃒λp − λq

⃒
⃒ (6) 

the natural frequencies 

Δf =
⃒
⃒fp − fq

⃒
⃒ (7) 

and the damping ratios 

Δξ =
⃒
⃒ξp − ξq

⃒
⃒ (8) 

In addition, two measures based on the mode shapes φ are employed: 
the Mean Phase Deviation 

ΔMPD =
⃒
⃒MPD

(
φp

)
− MPD(φq)

⃒
⃒ (9) 

with MPD(φ) as defined in [33], and the Modal Assurance Criterion, 
according to its classic definition [34] 

MAC
(
φp,φq

)
=

[φp
*φq]

2

[
φp

*φp
][

φq
*φq

] (10) 

Where * denotes the transposed conjugate vector. For all these pa
rameters except the MAC, absolute (rather than relative) difference are 
employed, for reasons detailed in [23]. For the latter term, it is also set 

ν = 1 − MAC
(
φp,φq

)
(11) 

such that 0 indicates total similarity and 1 total dissimilarity. 
Eqs. (6)–(9) and (11) are computed between each p-th pole of any 

n-th model order and a selected pole of the following (n + 2)-th model 
order. This selection can be done by minimising the distance 

dn
p = Δf *

p + vp (12) 

i.e. picking the ‘neighbouring’ pole q that satisfies 

q = argmin(dn
p) (13) 

where both Δf *
p and vp are calculated between p and all the ln+2 poles 

identified with the model order n+2 (ln+2 can be depurated from all the 
identifications discarded at the HVC step for computational efficiency). 
This results in two arrays of dimension Δf *

p,vp ∈ R1×ln+2 . The formulation 
of Δf *

p is the same as of Eq. (7) but min–max normalised, for consistency 
with the other terms in vp (that is to say, it must be Δf* ∈ [0,1]). 

Eq. (12) is a variation of the classic formulation 

dn
p = Δλ*

p + vp (14) 

proposed in [20]. The concept is to replace the complex-valued 
distance between eigenvalues with the real-valued distance between 
frequencies, as these latter ones can be generally identified more reliably 
(that is to say, they are not affected by the higher variability of damping 
estimates) [23]. 

Once the neighbouring pole q is selected, the vectors of comparison 
parameters can be defined (for each pole and each model order). By way 
of example, for Δλ, one obtains 

Δλn = [Δλn
1,Δλn

2,⋯,Δλn
p,⋯,Δλn

ln ] (15) 

for all the poles identified with the model order n; concatenating all 
the vectors from all model orders into one array returns 

Δλ = [Δλnmin ,Δλnmin+2,⋯Δλnmax ] (16) 

The same process can be applied to the other four comparison pa
rameters as well. 

At this point, one could directly apply (k = 2)-means clustering to 
the 5-dimensional space defined by the terms of Δλ, Δf , Δξ, ΔMPD, and 
ν, to classify stable and unstable modes. However, before doing so, a 
further intermediate step – recommended by [22] – is applied in the 
implementation proposed here. 

In fact, k-means clustering assumes approximately normally 
distributed variables. Thus,a Box-Cox transformation [35] is used to 
enforce the statistical distribution of all comparison parameters to 
closely resemble a Gaussian model. Considering again Δλ as an example, 
this can be obtained as. 

h(γ) =
{
(Δλ − 1)/γ

lnγ
γ ∕= 0
γ = 0 (17) 

where the parameter γ can be inferred by maximising the profile log- 
likelihood as described in [35]. Then, the resulting distribution h is 
standardised as 

z =
h − μ

σ (18) 

where μ is the mean of h and σ is the standard deviation of the same. 
This guarantees that the z-scores in Eq. (18) are normally distributed as 
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z ∼ N (0, 1). As above, this process needs to be repeated for Δf , Δξ, 
ΔMPD, and ν as well. The obtained arrays are then used for the second 
sifting step. 

3.4. Density-Based clustering 

As mentioned before, the HVC and SVC can be seen as single pole- 
level selection stages. In the classic approach proposed by [20] and 
followed (among others) by [22] and [23], the remaining poles would be 
firstly grouped through agglomerative hierarchical clustering. The 
principle of this approach is to obtain a nested sequence of clusters, 
where each pole is added sequentially to a hierarchical tree until they 
are all included in a single group. Thanks to a data-driven threshold, a 
cut-off distance is then defined and the dendrogram is stopped before 
unifying completely. Thus, a finite set of clusters (more than one) is 
defined. 

At this step, the resulting clusters would be further sifted according 
to their population. (k = 2)-means clustering is applied again for this 
aim, returning two options: the aforementioned ‘certainly spurious’ and 
‘possibly physical’ classes [20]. 

Instead, a non-parametric density-based clustering algorithm, the 
DBSCAN, is applied here. The main theoretical aspects of these two al
ternatives can be qualitatively compared as discussed in Table 1. 

The rationale for the DBSCAN is that the clusters can be defined over 
dense, connected regions of data surrounded by less populated regions, 
inhabited only by outliers and noise. A detailed description of the 
DBSCAN algorithm can be found in the original works of [25]; in brief, 
the main steps are:  

1. For each (still unlabelled) pole p in the identification’s dataset, 
consider its ε-neighbourhood (i.e. the other poles that are included in 
a region of radius ε around it).  

2. Density check: if at least MinPts poles (including p itself) are within 
this distance ε from it, define a new cluster C, label p as a core point of 

C, and define all the other MinPts − 1 poles as directly reachable from 
p. If not, label p as a noise point.  

3. Expand the cluster C including all the poles that are (not directly) 
reachable from p. A pole q is said to be reachable if it exists at least 
one path of poles between p and q that are directly reachable from 
one another. Any pole between p and q is, by definition, a core point.  

4. If q does not directly reach any other pole, label it as a border point.  
5. When all paths arising from p end in a border point, move to the next 

unlabeled pole (if any remain). 

Therefore, once all poles are labelled, these will necessarily be core 
points (the inside of each cluster), border points (its edge), or un
reachable noise points/outliers. 

3.5. Automatic (data-driven) setting of DBSCAN parameters 

The main requirement for the user is the selection of the two input 
parameters, MinPts and ε. Noteworthy, if MinPts ≤ 2, DBSCAN will re
turn the same results as hierarchical clustering (with the single link 
metric), considering a dendrogram cut at a height ̃d = ε. Therefore, one 
must choose (at least) MinPts ≥ 3. 

To make the proposed algorithm fully automated, a data-driven and 
data-adaptive strategy is here applied for these two settings. 

3.5.1. Determination of MinPts via Silhouette index 
MinPts represents the desired minimum cluster size. The general 

advice is to use higher values for noisy datasets and a lower threshold for 
clean and highly dense data. However, this profoundly affects the results 
and thus should not be left to the user arbitrariness but estimated from 
the data themselves. No specific guideline was found in the existing 
scientific literature for the aim of this setting in the specific field of 
dynamic System Identification. Thus, the procedure described herein
after was tested. This relies on the Silhouette Index, a measurement 
described in [37] to evaluate the goodness of fit for clustering applica
tions. Briefly, for each cluster, this can be defined by the ratio 

Sil(p) =
b(p) − av(p)

max(b(p) − av(p))
(19) 

where b(p) is a measure of dissimilarity – defined in detail in [37] – 
calculated between the p-th pole and the closest pole of the same cluster. 
av(p) is the average of the same measure computed for all the other poles 
in the same group. A good clustering will result in Sil(p)→1 ∀p except for 
noise points. In fact, they are included in a distinct noise cluster, which 
encompasses all outliers. Since these are scattered throughout the whole 
f − ξ − n space, their corresponding Silhouette values are all expected to 
be negative, meaning that they are closer to poles belonging to other 
clusters than to other elements of the same group (i.e. other outliers). 

The iterative procedure can be then defined as follows: 

1. Run DBSCAN with MinPts = ⌊N/5⌋ as a first attempt (where ⎣ ⎦ in
dicates the floor function and N is the number of model orders 
considered between nmin and nmax.).  

2. Perform the density-based clustering.  
3. Compute, for each pole in each cluster, the Silhouette coefficients; 

then sum all values up.  
4. Iterate steps 2 and 3, increasing MinPts until a maximum value of 

MinPts = ⌊N/3⌋ is reached.  
5. Select MinPts according to the maximum value of Silhouette 

coefficients. 

This proposed workflow requires several iterations, yet it takes 
advantage of the lower computational requirements of DBSCAN (this 
will be better discussed in the Results section). The lower limit for 
MinPts, defined in step 1, is generally higher than the minimum value 
suggested by [38] for generic uses, independently of the application 

Table 1 
Qualitative comparison of hierarchical and density-based clustering.   

Agglomerative hierarchical DBSCAN 

Working 
principle 

The average linkage method  
[36] considers the distance 
between every point and 
every other point. It can 
return more or less densely 
populated clusters. 

DBSCAN groups together 
closely-packed points, 
classifying them (for each 
cluster) as core points, border 
points, or (if not included in 
any cluster) noise data. 

Required 
parameters 

d̃: threshold distance between 
distinct poles. 

ε: search distance around a 
point 
MinPts: minimum number of 
points required to form a 
density cluster 

Advantages The hierarchical 
representation can be very 
informative and easy to 
visualise. 
It can adapt to complex shapes 
(generally not needed here).  
It can discern non-linearly 

separable clusters (differently 
from k-means).  
It is more adapt when 

representing datasets that are 
actually hierarchically 
structured (not the case here). 
It does not require defining a 
priori the number of clusters. 

It has built-in capabilities to 
recognise and discard noise 
and outliers.Can adapt to 
complex shapes (generally not 
needed here).  
It can discern non-linearly 

separable clusters (differently 
from k-means).  
It does not require defining a 
priori the number of clusters. 
It is computationally more 
efficient than hierarchical 
clustering (depends on ε but 
reaches O(N2) only in the 
worst case) 

Disadvantages It is particularly sensitive to 
noise and outliers. 
It is computationally intensive 
with run-time complexity of 
O(N2) for N data. 

It faces difficulties in finding 
clusters with varying 
densities.  
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domain. In that work, it was suggested to consider at least MinPts = 2D, 
where D is the dimensionality of the space where the clustering is per
formed. However, the authors of the original algorithm explicitly state 
that “for datasets that have a lot of noise, that are very large, that are 
high dimensional, or that have many duplicates it may improve results 
to increase MinPts” [39]. The application for SI falls into these cate
gories, especially due to the very large number of spurious modes. The 
maximum limit, on the other hand, is largely overestimated for 
precaution. 

3.5.2. Determination of ε via elbow Rule. 
ε can be set by using a κ-distance graph, plotting the distance to the κ 

nearest neighbours, ordered from the largest to the smallest value [39]. 
These will form a bi- or multi-linear distribution, with (at least one) 
pronounced ‘elbow’. The corresponding value can be seen as an optimal 
setting for the search distance; this concept is known as the elbow rule. 

Many authors – e.g. [38] – suggest using κ = MinPts − 1 for a given 
value of MinPts. However, this has two main limitations: (1) it is 
dependent on MinPts, thus requiring to be computed for each iteration; 
(2) due to the larger-than-usual values of MinPts applied in this domain, 
the suggested value of κ would be excessively high. It was proven in this 
application and similar previous applications [40] that κ = 2, i.e. the 
minimum possible, produced a clearly visible knee, leading to good 

results, as will be discussed later in the Results. 

3.6. Estimation of cluster-wide modal parameters. 

Finally, the estimation of the modal parameters representative of 
each remaining cluster follows the recommendations of [16] and [23], 
assigning to each of them their mean values f and ξ. 

4. Case study: The Z24 road bridge 

The case study of interest concerns a reinforced concrete (RC) road 
bridge, more specifically, a typical example of a post-tensioned concrete 
two-cell box-girder bridge [41]. This was located in the canton of Bern 
(Switzerland), between the municipalities of Utzenstorf and Koppigen, 
where the road overpassed the Bern-Zurich section of the A1 national 
highway. For brevity, only the main characteristics of the Z24 bridge, its 
sensor setup, and the experimental campaign will be recalled here. All 
the details about the structure and the monitoring system can be found 
in [41,42,43], and [27]. 

4.1. Bridge description 

The Z24 bridge (Fig. 1) consisted of three spans, a main (central) one 

Fig. 1. The Z24 bridge case study. From top to bottom: frontal view (the red frame indicates the damaged pier); side and plan view; crack pattern. The green arrows 
indicate the sensors’ location and direction. The global directions are longitudinal (L), transverse (T), and vertical (V) as shown in the reference frame. Adapted from 
[44] and [45]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

M. Civera et al.                                                                                                                                                                                                                                  



Measurement 208 (2023) 112451

7

of 30 m and two side spans of 14 m. The two intermediate supports were 
made of concrete piers clamped into the girders, while both abutments 
consisted of two rows of three pinned concrete columns, again clamped 
into the girders [41]. The axes of the piers were not exactly perpen
dicular to the longitudinal girder axis, making the bridge slightly skewed 
(this generated some mixed bending-torsion vibrational modes to arise). 

4.2. Experimental campaigns 

The road bridge was deemed for demolition in 1997, due to the need 
for a larger side span for the new railway under construction parallelly 
to the A1 highway. Since the bridge had no known structural issues, it 
was decided to artificially introduce damage on its eastern pier (high
lighted in red in Fig. 1), with incremental steps, to monitor the evolution 
of its vibrational response. Thus, the bridge was permanently monitored, 
with hourly recordings, for ten months, from 11 November 1997 to 11 
September 1998 [41]. Thus, two phases were considered [46]:  

I. From November till the end of July, the bridge was assumed to 
remain intact and unaltered, with no visible signs of changing 
structural conditions. This prolonged observation period allowed 
capturing many seasonal effects, especially freeze-induced deck 
stiffening, which affected noticeably the vibrational response of the 
target system.  

II. The damage test procedure started in early August 1998 and led to 
the progressive lowering of the pier on the Koppinger side up to − 95 
mm (reached on 18 August 1998); this was intended to mimic 
erosion or subsoil settlement. 

Other further damage scenarios were applied afterwards; these are 
detailed in [46]. Due to the inserted damage, the bridge was closed to 
traffic during the whole duration of the experimental campaign. In 
operating conditions, the presence of traffic loads would cause differ
ences in the vibration amplitude and natural frequencies [47]. 

4.3. Experimental settings 

The bridge was instrumented with many sensors reading the external 
temperature, humidity, wind speed etc. These are not recalled here since 
they are beyond the scope of this study. Of the 16 accelerometers orig
inally deployed for long-term vibration inspection, only eight channels 
(marked by the green arrows in Fig. 1) survived for the whole duration 
of the permanent monitoring. The other accelerometers failed during the 
operation period. All the acquisitions included in the database are made 
up of 65,536 data points, with a sampling frequency fs = 100 Hz and a 
duration of each acquisition equal to slightly less than 11′. A noteworthy 
aspect is that all measurements (a total of 5652 acquisitions corre
sponding, as mentioned, to ten months of hourly recordings [41]) 
accounted for over 6 Gb of data. These have been collected on a hard 
disk and then stored on 10 CDs after compression. Indeed, data storage is 
a relevant practical issue that can present a limitation to field applica
tions. While not directly addressed in this article, this point will be the 
aim of future research works. 

5. Guided example and results 

The signals analysed with the AOMA procedure were obtained from 
the following acquisitions:  

1. Acquisition 03B01, 24 November 1997, time 01:00, day 13  
2. Acquisition 04G18, 06 December 1997, time 18:00, day 25  
3. Acquisition 12E09, 29 January 1998, time 09:00, day 79  
4. Acquisition 20D00, 25 March 1998, time 00:00, day 134  
5. Acquisition 33E11, 25 June 1998, time 11:00, day 226  
6. Acquisition 43A08, 30 August 1998, time 08:00, day 292 

Th first five signals represent five instances before damage, corre
sponding to different weather and temperature conditions. The last 
(sixth) signal, Acquisition 43A08, corresponds to the post-damage con
ditions, specifically to the last day after the complete lowering of the pier 
(95 mm) and before the failure of the concrete hinge [46]. This induced 
the formation of the crack pattern depicted in Fig. 1 in the beam girder 
[45]. Thus, it is representative of the largest lowering-induced effects 
before the structural configuration of the bridge was modified 
irremediably. 

All signals were pre-processed by detrending and lowpass filtering 
them with a cut-off frequency of 40 Hz. For conciseness, only the first 
one (Acquisition 03B01) will be detailed step-by-step in its intermediate 
results. 

5.1. Step 0 – SSI 

The SSI parameters were set as described previously in the Meth
odology section, leading to the identification of 3230 poles, represented 
in Fig. 2.a. 

5.2. Step 1 – HVC 

During the first sifting phase, 44 poles were removed due to negative 
damping values and 608 poles due to excessively high values (ξ > 20%). 
No identification was found to have a null imaginary part. Hence, 2578 
poles passed this step; these are portrayed in Fig. 2.b. 

5.3. Step 2 – SVC 

The distribution of stable and unstable poles for each pair of features, 
as obtained from the application of the k-means clustering, is described 
graphically in Fig. 3. Please note that, for all subplots on the lower left 
triangle, the distances along the x- and y-axes are expressed in terms of 
standard deviations due to the z-score standardisation (see [23] for a 
related discussion). Stable and unstable values are reported in red and in 
blue, respectively. The black crosses indicate the respective centroids. 
Since all the feature vectors have been transformed through the Box-Cox 
transformation, they closely resemble a normal distribution, so the 
resulting sets are approximately equal in size. The upper right triangle 
reports the corresponding correlation coefficients, while the distribu
tions of the single features are on the main diagonal. 

This second round of sifting resulted in 1236 poles deemed as stable 
(indicated by the red circles in Fig. 4). These were passed to the next 
stage, while the unstable poles (black crosses in Fig. 4) were discarded. 

5.4. Step 3 – Application of DBSCAN 

The DBSCAN parameters (MinPts and ε) were set according to the 
procedure discussed previously, finding MinPts = 15 and ε = 0.0075 for 
κ = 2. In this regard, Fig. 5 shows how considering larger values of κ 
-distance resulted in increasingly less pronounced elbows for equal 
MinPts and other settings. Overall, these alternatives proved to be less 
effective, causing multiple nearby modes to be included in a single 
cluster. 

The corresponding Silhouette values are portrayed in Fig. 6.a. The 
label ‘-1′ corresponds to the outliers and noise points, dispersed in the 
f − ξ − n domain surrounding the other clusters. The distribution along 
the identified clusters of the remaining poles is reported in Fig. 6.b. 
Finally, the resulting poles are reported in Fig. 7. The black ‘× ’ indicates 
the spurious poles (cluster − 1), while the other poles are marked by ‘◦’ 
(coloured accordingly to their group). 

5.5. Step 4 – Estimate of cluster-wide modal parameters and final results. 

The cleared stabilisation and order-frequency-damping ratio dia
grams are depicted in Fig. 8. The poles shown there correspond to the 
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Fig. 2. (a) Poles identified from SSI. (b) Remaining poles after HVC. From top to bottom: stabilisation diagram and damping vs frequency diagram. Note that the 
range of damping values has been restricted to 0–0.2 for (b). 

Fig. 3. The influence of the selection parameters on the 2-means 5-dimensional clustering process. Red: stable poles. Blue: unstable ones. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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modes enlisted in Table 2. Due to the position of the accelerometers (as 
seen in Fig. 1, only measurements from the side spans were available), 
the mode shapes could not be identified. Hence, only the eigen
frequencies and damping ratios were investigated. As said in the 
Methodology section, the mean natural frequency f and damping ratio ξ 
were deemed representative of their respective clusters. 

For comparison, the values reported in [46] are included. Consider, 

however, that these target values were obtained from a collection of 
‘shaker, ambient, and drop weight tests’ (as stated in [46]); many of the 
modes reported there were not visible even in the raw data (i.e. in the 
SSI identifications) as extracted from AV tests only (specifically, acqui
sition 03B01). In fact, the use of a controlled input, while impractical, 
allows for better identification, especially of weakly-excited modes that 
are too small to be identifiable with small amplitude ambient vibrations. 

Furthermore, the exact value of the natural frequencies is highly 

Fig. 4. Remaining poles after SVC. a) stabilisation diagram b) damping and frequency diagram.  

Fig. 5. Two examples estimated values of ε for increasing κ: (a) κ = 2 and (b) κ = 15.  

Fig. 6. (a) Silhouette values for the obtained clusters. (b) Cluster distribution of the poles deemed as physically meaningful.  
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affected by the external temperature (this point as well will be discussed 
later in detail). Hence, without further information about the environ
mental and structural conditions, the comparison reported in Table 2 
can be only considered qualitatively indicative. 

The modes identified here are, nevertheless, comparable with the 
one presented in [20], which were extracted from AOMA identifications 
only (but related to the damaged scenario, as will be seen in the next 
section). Specifically, the first, second, and third bending modes were 
identified at f1 = 4.02, f7 = 12.26, and f8 = 13.20 Hz, respectively. The 
higher bending modes, expected at f11 ≅ 19.7 Hz and f13 ≅ 33.2 Hz, 
were not identified, most probably due to their weaker excitation. 
However, these two modes are not mentioned in [20] as well. The first 
and the second lateral modes were encountered at f2 = 5.14 Hz and f3 =

5.99 Hz; the third one, expected at f4 ≅ 8.4 Hz, was not found. As 
before, the most probable explanation is that lateral modes are very 
weakly excited; [20] does not report either the 2nd or the 3rd lateral 
mode. f5 = 10.06 Hz and f6 = 10.89 Hz are two closely spaced mixed 
bending-torsion modes, caused by the slight skewness of the bridge 
supports [41]. Their identification was stated as particularly compelling 
in [46]. These two specific modes represent a relevant benchmark also 
for potential applications to other bridge structure types, e.g. cable- 
stayed bridges, that are notoriously subject to couplings between deck 
and cable modes as well as flexural–torsional modal coupling issues for 
specific complex geometries [48]. 

Finally, out of the four higher torsional modes (f9, f10, f12, and f14), 
only f12 = 26.54 Hz was identified. None of these higher modes is 
mentioned in [20]. 

5.6. Computational efficiency 

For each iteration between MinPts = ⌊N/5⌋ and MinPts = ⌊N/3⌋, the 
DBSCAN algorithm run (on average) for 0.0046 ± 0.0028 s. The 
(agglomerative) hierarchical clustering, run on the same case study and 
stopped at the data-driven threshold, lasted 0.1847 s, i.e. several orders 
of magnitude slower (this includes three components: the definition of 
the agglomerative cluster tree, 0.0163 s, the definition of the threshold 
distance d̃, 0.1509 s, and the clustering itself, 0.0175 s). 

Furthermore, when comparing the proposed algorithm to the classic 
procedure, one should consider that the DBSCAN (faster to run on its 
own) was iterated for increasing values to MinPts. However, for 
continuous monitoring, it is possible to run the estimation of MinPts only 
once. The optimised value can be then set and left untouched for future 
identifications on the same target structure. In this case, the procedure 
becomes slightly more efficient, with a total elapsed time of 16.40 s 
(averaged over 5 runs; in comparison to 17.99 s for the DBSCAN-based 
approach with MinPts optimisation and 19.30 s for Hierarchical-based 
AOMA). 

Fig. 7. Poles labelled as physical (∘) or spurious (×).  

Fig. 8. Modes identified from the undamaged structure (Acquisition 03B01). (a): stabilisation diagram; (b): damping vs frequency diagram.  

Table 2 
Comparison between the eigenfrequencies (left) and the damping ratios (right) 
as estimated from Acquisition 43A08 (undamaged scenario) and the values re
ported in [46] for unspecified structural conditions.   

DBSCAN-based, 
Acquisition 03B01 
[Hz] 
(difference from 
target) 

Target 
values  
[46] 
[Hz]  

DBSCAN-based, 
Acquisition 03B01 
[-] 
(difference from 
target) 

Target 
values  
[46] 
[-] 

f1 4.02 
(+3.85 %)  

3.87 ξ1 0.012 
(+34.44%)  

0.009 

f2 5.14 
(+6.57 %)  

4.82 ξ2 0.022 
(+26.88%)  

0.017 

f3 5.99 
(− 10.89 %)  

6.72 ξ3 0.079 (+107.63%)  0.038 

f4 n.a.  8.36 ξ4 n.a.  0.094 
f5 10.06 

(+2.95 %)  
9.77 ξ5 0.025 

(+54.06%)  
0.016 

f6 10.89 
(+3.71 %)  

10.50 ξ6 0.022 
(+58.57%)  

0.014 

f7 12.26 
(-1.29 %)  

12.42 ξ7 0.045 
(+41.41%)  

0.032 

f8 13.20 
(-0.08 %)  

13.21 ξ8 0.022 
(-52.84%)  

0.047 

f9 n.a.  17.52 ξ9 n.a.  0.036 
f10 n.a.  19.27 ξ10 n.a.  0.025 
f11 n.a.  19.65 ξ11 n.a.  0.055 
f12 26.54 

(-0.38 %)  
26.64 ξ12 0.039 

(+25.55%)  
0.031 

f13 n.a.  33.18 ξ13 n.a.  0.043 
f14 n.a.  37.25 ξ14 n.a.  0.039  
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Hence, both cases (with and without MinPts optimisation) overper
form the classic hierarchical clustering-based AOMA. Nevertheless, this 
is not mainly due to the difference between hierarchical and density- 
based clustering. The most relevant contribution is made by the addi
tional steps of the first case (2-means clustering between possibly 
physical and certainly spurious poles and outlier removal). The three 
non-optimised algorithms were run under similar conditions on Mat
Lab® R2020b, using an Intel® Core™ i7-7700HQ CPU with a 2.80 GHz 
base frequency. Please consider, however, that processing time is a 
relative metric and depends on the actual implementation and the spe
cific software and hardware. 

5.7. Use in damage assessment and comparison with state-of-the-art 
procedures. 

As mentioned in the previous section, it is possible to directly 
compare the values of the identified natural frequencies and damping 
ratios with the estimates reported in [20]. 

Even if the dates corresponding to the reported results are not 
explicitly stated in this original document, it is evident that these refer to 
the most damaged conditions. For this reason, their results (obtained by 
analysing nine different setups and identifying six common modes, 
deemed as representative of the structure) are here compared with the 
estimates obtained from the last acquisition (43A08). The identified 
values show strong similarities (see Table 3). The modes are numbered 
according to the list provided by [46] and already utilised in Table 2. As 
previously said, the second and third lateral modes, as well as all modes 
above 14 Hz, were not reported by [20]. 

Moreover, to directly establish the contribution of the density-based 
clustering approach, the results obtained by applying the algorithm 
described in [23] on the same recording are here included as well. This 

hierarchical clustering-based alternative applies the same HVC and SVC, 
hence, the intermediate results are identical before the application of 
DBSCAN. 

One can see that the values reported in Table 3 represent a noticeable 
shift from their counterparts presented in Table 2. This variation is 
graphically portrayed in Fig. 9. As can be seen, some decreases are 
noticeable in four natural frequencies of interest (Δf1 = -3.23%; Δf2 =

-7.59%; Δf5 = -1.79%; and Δf6 = -4.78%). Apart from the fifth mode, 
all the other shifts exceeded 3% of the original value. This can be seen as 
a good indicator of occurring damage. Smaller variations cannot be 
unequivocally related to it as they can be due to statistical fluctuations of 
the material properties [49]. Conversely, the two remaining higher 
modes increase (Δf7 = + 0.65% andΔf8 = + 2.05%). Neither of these 
two, however, seems to indicate a statistically relevant deviation ac
cording to the 3% threshold considered above. 

Overall, this validates the use of the proposed algorithm for 
frequency-based damage detection (FBDD). The damping ratios, on the 
other hand, are supposed to increase with the occurrence of damage 
[50]. However, this is well-known to be a much less reliable damage 
index [51], especially for large and complex systems. In the case 
investigated here, an upward trend can be seen for the first (Δξ1 = +

7.44%), sixth (Δξ6 = + 12.61%), and eighth modes (Δξ8 = + 57.89%). 
However, an inverse behaviour is evident for the second mode (Δξ2 =

-2.64%) and especially for the fifth and seventh ones (Δξ5 = -47.26% 
and Δξ7 = -42.54%). This confirms the limitations of Δξ as a damage- 
sensitive feature for bridge monitoring [16]. 

5.8. Effectiveness under changing environmental conditions. 

It is well-known that damage-unrelated phenomena, such as 
changing environmental and boundary conditions, can significantly 
affect the modal parameters of concrete bridges, altering their expected 
response under damaged conditions [52,53]. In particular, temperature- 
induced frequency shifts can largely exceed damage-induced effects 
[54]. Thus, on the one hand, the effects of temperature changes should 
be adequately considered and (if possible) compensated in the results. In 
this regard, it has been proved in the scientific literature [1] that per
manent monitoring systems can be complemented with temperature 
sensors, to compensate for the large influence of the temperature on the 
natural frequency estimates. In absence of dedicated sensors, a possible 
solution is described e.g. in [55]. On the other hand, the precise esti
mation of these fluctuations is strongly required for any AOMA pro
cedure, independently of its specific application. 

To this aim, the evolution of four natural frequencies of interest is 
plotted in Fig. 10, as a function of time from the 1st till the 250th day of 
monitoring. The black lines are the original estimates as reported by 
[41]. Those results are limited to the 3–13 Hz frequency range, which 
encompasses the four main modes (i.e. the first bending, the fist lateral, 
and the two mixed bending-torsion ones). Therefore, for consistency, 
only these modes are considered here as well; the coloured dots repre
sent the eigenfrequencies obtained with the DBSCAN-based AOMA al
gorithm. The corresponding natural frequencies and damping ratios are 
reported in Table 4 (except for the first point on day 13, which was 
already presented in Table 2). 

The Z24 bridge underwent several different weather conditions 
throughout its year-long monitoring. Indeed, this dataset is well-known 
not only for the damage artificially inserted into its pier but also for the 
different environmental conditions encountered throughout the whole 
monitoring period. The most significant effect was cold-induced stiff
ening, which resulted in time-limited increases in the natural fre
quencies. The most relevant event happened from 20 January 1998 to 
13 February 1998, with a prolonged acute freezing event. As can be 
seen, the several acquisitions considered here match well both this 
major and some other minor freezing events. 

Clearly, for all acquisitions, the four eigenfrequencies included in the 
range of interest reported by [41] are correctly identified with the 

Table 3 
Comparison between the eigenfrequencies (top) and the damping ratios (bot
tom) estimated from applying the DBSCAN-based and the Hierarchical 
Clustering-based algorithms on Acquisition 43A08 (damaged scenario), bench
marked against the values reported in [20].   

DBSCAN-based, 
Acquisition 43A08 
[Hz] 
(difference from target) 

Hierarchical clustering, 
Acquisition 43A08 
[Hz] 
(difference from target) 

Target values [20] 
[-] 

f1 3.89 
(+0.78%) 

3.89 
(+0.78%)) 

3.86 

f2 4.75 
(-3.06%) 

4.74 
(-3.27%) 

4.90 

f5 9.88 
(+1.23%) 

9.89 
(+1.33%) 

9.76 

f6 10.37 
(+0.68%) 

10.39 
(+0.87%) 

10.30 

f7 12.34 
(-0.56%) 

12.34 
(-0.56%) 

12.41 

f8 13.47 
(+1.89%) 

13.47 
(+1.89%) 

13.22   

DBSCAN-based, 
Acquisition 43A08 
[-] 
(difference from target) 

Hierarchical Clustering, 
Acquisition 43A08 
[-] 
(difference from target) 

Target values [20] 
[-] 

ξ1 0.013 
(+62.50%) 

0.013 
(+62.50%) 

0.008 

ξ2 0.021 
(+50.00%) 

0.021 
(+50.00%) 

0.014 

ξ5 0.013 
(-7.14%) 

0.015 
(+7.14%) 

0.014 

ξ6 0.025 
(+92.31%) 

0.025 
(+92.31%) 

0.013 

ξ7 0.026 
(-7.14%) 

0.026 
(-7.14%) 

0.028 

ξ8 0.035 
(+2.94%) 

0.031 
(-8.82%) 

0.034  
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Fig. 9. Shifts in the natural frequencies and damping ratios from (a) the undamaged (Acquisition 03B01) to (b) the damaged (Acquisition 43A48) scenarios, as 
identified from the DBSCAN-based AOMA procedure. 

Fig. 10. The frequencies of the four modes considered by [41] from the first till the 250th day of monitoring, compared to the same frequencies as identified with the 
DBSCAN-based AOMA algorithm (coloured dots). 
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proposed AOMA procedure. That proves its encouraging performances 
in all weather and environmental conditions. 

5.9. Further investigation of the effects of measurement noise 

For long-term bridge monitoring, the structural responses are 
measured under variable operating conditions, resulting in datasets 
recorded with various noise levels. Hence, it is necessary to prove the 
robustness of the estimated MinPts and ε under such different noise 
levels. To illustrate the effects of varying noise on the setting of the two 
parameters (and consequently on the identified outcomes), six cases are 
considered here. Departing from the experimental acquisition 03B01 
(already affected by its actual measurement noise), +0.001%, +0.01%, 
+0.1%, +1%, +10%, and + 30% additive white Gaussian noise was 
added (as a percentage of the original signal amplitude). The results are 
enlisted in Table 5, alongside the identifications from the unaltered 
signal as previously reported in Table 2. Note that the modes not iden
tified with the unaltered signal are omitted for brevity. As can be seen, 
MinPts does not suffer any variation, even for the highest levels of 
artificially added noise. ε, on the other hand, increases from 0.0075 to 
0.0249 (in particular, more than doubling from + 10% to + 30%). The 
effects of the more distorted signals can be seen in the results as well. 
The first bending mode f1 and the first mixed bending/torsional mode f5 
are both consistently identified for all noise levels, even if with a sig
nificant decrease in the accuracy of the estimated damping ratios 
(largely overestimated in the first case and underestimated in the second 
one). The first and second lateral modes (f2 and f3) are identifiable up to 
+ 10% and + 1% noise respectively, in both cases also with consistent 
damping estimates. Higher bending and mixed bending-torsion modes, 
instead, become unidentifiable even with low levels of added noise. 
Conversely, the pure torsional mode f12 remains clearly visible even at 
+ 10%, with quite reliable results in terms of natural frequency and 

damping ratios. 

6. Conclusions 

This research dealt with Automated Operational Modal Analysis, 
proposing a new application for bridge monitoring. The main novelty of 
the AOMA method discussed here is the inclusion of a fully automatic 
density-based clustering. That represents a major difference from other 
pre-existing approaches which rely on hierarchical and (k = 2)-means 
clustering. The details about the similarities and distinctions with other 
closely-related works have been reported and thoroughly discussed. The 
experimental evidence – validated on the Z24 case study – confirms 
what was expected from the DBSCAN theory, that is to say:  

• The data points (i.e. the poles) can be easily clustered according to 
their distance from one another.  

• By properly (and automatically) selecting the DBSCAN parameters, 
the clustering can be limited to the densest areas. Thus, the obtained 
groups are more likely to correspond to physically meaningful 
modes. The other, unclustered poles are automatically labelled as 
spurious and rejected. This property removes the need for a dedi
cated step to binary classify clusters based on the number of poles 
included inside them, as it is required instead in the traditional 
approach with (k = 2)-means after hierarchical clustering.  

• The density-based approach is naturally capable of recognising and 
removing outliers in the surroundings of each remaining (physically 
meaningful) cluster. 

Therefore, in comparison to the conventional hierarchical clustering 
procedure, DBSCAN can perform three tasks at once (grouping similar 
modes in the cleared stabilisation diagram, selecting the final set of 
clusters related to physical modes, and removing outliers from the 
remaining clusters). This application was here fully automated by 
making the setting of DBSCAN parameters (ε and MinPts) data-driven as 
well, resorting to the Elbow Rule and the Silhouette Index. Future 
studies will involve the application and validation of this procedure in 
other compelling structures and infrastructures with different building 
materials, e.g. long-span cable-stayed bridges. 
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Table 4 
Natural frequencies and damping ratios for the modes of interest and the five 
recordings (04G18, 12E09, 20D00, 33E11, and 43A08).   

04G18 12E09 20D00 33E11 

f1 4.01 4.43 3.98 3.88 
f2 5.09 5.41 5.13 5.12 
f5 10.18 10.77 10.19 9.84 
f6 10.74 11.68 10.72 10.44  

04G18 12E09 20D00 33E11 
ξ1 0.011 0.010 0.015 0.011 
ξ2 0.032 0.028 0.009 0.022 
ξ5 0.021 0.016 0.015 0.013 
ξ6 0.022 0.023 0.026 0.011  

Table 5 
Trends of MinPts, ε, and the identified natural frequencies and damping ratios for increasing levels of additive white Gaussian noise. Acquisition 03B01.   

unaltered þ0.001% þ0.01% þ0.1% þ1% þ10% þ30% 

estimated DBSCAN parameters MinPts 15 15 15 15 15 15 15  
ε 0.0075 0.0075 0.0076 0.0102 0.0109 0.0110 0.0249 

first pure bending mode f1 4.02 4.02 4.01 4.01 4.01 4.02 4.59 
ξ1 0.012 0.012 0.012 0.016 0.013 0.013 0.020 

first lateral mode f2 5.14 5.14 5.14 5.14 5.14 5.14 n.a. 
ξ2 0.022 0.022 0.021 0.022 0.022 0.021 

second lateral mode f3 5.99 5.99 5.98 5.98 6.09 n.a. n.a. 
ξ3 0.079 0.079 0.079 0.069 0.077 

first bending-torsion mode f5 10.06 10.06 10.06 10.07 10.06 10.06 10.05 
ξ5 0.025 0.023 0.021 0.025 0.020 0.018 0.014 

second bending-torsion mode f6 10.89 10.89 10.90 n.a. n.a. n.a. n.a. 
ξ6 0.022 0.022 0.022 

second pure bending mode f7 12.26 12.25 n.a. n.a n.a n.a n.a 
ξ7 0.045 0.037 

third pure bending mode f8 13.20 13.12 13.02 n.a. n.a. n.a. n.a. 
ξ8 0.022 0.028 0.027 

pure torsional mode f12 26.54 26.54 26.53 26.56 26.57 26.50 n.a. 
ξ12 0.039 0.040 0.040 0.039 0.040 0.033  
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