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Abstract: This work presents a novel strategy for detecting and localizing intra- or inter-laminar
damages in composite structures using surface-instrumented strain sensors. It is based on the real-
time reconstruction of structural displacements using the inverse Finite Element Method (iFEM). The
iFEM reconstructed displacements or strains are post-processed or ‘smoothed’ to establish a real-time
healthy structural baseline. As damage diagnosis is based on comparing damaged and healthy data
obtained using the iFEM, no prior data or information regarding the healthy state of the structure
is required. The approach is applied numerically on two carbon fiber-reinforced epoxy composite
structures: for delamination detection in a thin plate, and skin-spar debond detection in a wing box.
The influence of measurement noise and sensor locations on damage detection is also investigated.
The results demonstrate that the proposed approach is reliable and robust but requires strain sensors
proximal to the damage site to ensure accurate predictions.

Keywords: shape sensing; carbon fiber-reinforced polymer; composite plate; delamination detection;
fiber optics; inverse problem

1. Introduction

In recent decades, carbon fiber-reinforced polymer (CFRP) composites have emerged
as promising alternatives to metallic constructions, especially in weight-sensitive applica-
tions like aircraft. Their high specific stiffness and strength guarantee low structural weight,
leading to reduced fuel consumption, lower operational costs, and low environmental
impact. Additionally, their superior durability, corrosion, and fatigue properties lead to
low maintenance requirements [1]. However, a key limitation of composites is their failure
and fatigue behavior, which are quite different and more complex than in metals [2,3].
The damage mechanisms in composites depend on the matrix and fiber materials used,
composite layup, loading conditions, and environmental exposure [4]. Among the envi-
ronmental factors, moisture absorption by the epoxy resin or at the fiber-matrix interface
leads to a degradation of mechanical strength and integrity [1]. Similar degradation is also
seen when CFRP composites are exposed to elevated temperatures due to the oxidation
of the carbon fiber and resin decomposition. These effects are further exacerbated by the
presence of sustained cyclic loads [5]. Finally, low-velocity impacts can also lead to internal
delamination with barely any visible marks on the structural surface, thus going unde-
tected. In this context, efficient structural health monitoring (SHM) of aircraft structures can
identify such damage before they lead to catastrophic failures. SHM systems process data
measured by a network of sensors mounted on the structure (or even embedded in the case
of composites) to make real-time predictions of structural integrity [6]. SHM introduces
a more condition-based maintenance (CBM) philosophy whereby structural integrity is
assessed during operation, and maintenance activities are only executed when there is a
potential risk to the structure. Such a maintenance approach reduces costs, lowers human
effort, and improves overall structural safety [7].
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Small and efficient sensing technologies are a key ingredient for SHM, and fiber optic
strain sensors play a key role in these developments. They offer small size, flexibility, high
sensitivity, durability, and high measurement density and can play an important role in
real-time aircraft monitoring [8]. Damage or delamination detection based on fiber Bragg
grating (FBG) or distributed fiber optic sensors have been an active area of research [9],
some of which include the use of pattern recognition techniques to analyze the measured
strain field [10], strain mapping for global monitoring [11], and measuring the dynamic
strain profile for capturing changes in the strain mode shapes due to damage [12]. Efforts
have also used distributed sensing for skin-stinger debond detection [13], and impact area
estimation in composites [14]. Recently, self-sensing composites with embedded carbon
nanotubes for monitoring strains have also emerged [15]. However, a key limitation of
strain-based approaches is that strain changes due to damage are highly localized, requiring
a high-density strain sensor network for accurate results [11].

The inverse problem of ’shape sensing’ presents an interesting opportunity to develop
systems that obey such a real-time monitoring paradigm [16]. Shape-sensing methods
can reconstruct the structure’s continuous displacement field using discrete strain mea-
surements in real-time. Furthermore, these displacement results can be used to compute
the strain or stress fields, forming the basis of an efficient SHM system for damage detec-
tion, prognosis, and fatigue monitoring. Existing literature on shape sensing is vast [16],
with the use of basis functions [17,18] and integrating the measured strains [19,20] forming
some interesting solution approaches. However, in recent years, shape sensing based
on a variational principle has perhaps found the greatest acceptance. Work on this topic
was pioneered by Tessler and Spangler [21,22], who proposed the inverse Finite Element
Method (iFEM) for the shape sensing of plate or shell structures.

iFEM is a variationally-based approach that uses the finite-element-discretization
framework and the strain-displacement relations for shape sensing [22]. Initial work by
Tessler et al. [23] focused on the development of two-dimensional (2D) inverse elements
based on Mindlin theory [24] for monitoring plates or shells, such as the three-node shell
iMIN3. Over the years, additional higher-order elements for shells [25,26] and multi-layered
composite or sandwich structures [27,28] have been developed. These development have
also led to its application for various metallic and composite structures. Some of these
efforts include the deformation monitoring of wing-like geometries [29], helicopter tail
panels [30], stiffened panels [31,32], and wing boxes [33]. Experimental investigations
include the shape sensing of a wing-shaped sandwich structure [34], and a carbon fiber
reinforced polymer (CFRP) and aluminum honeycomb sandwich panel using distributed
fiber-optic sensors [35].

The success of iFEM has also inspired SHM methodologies based on it [36]. They
have been applied for detecting damages in beams [37,38], thin plates [39,40], aircraft
wings [41], and monitoring offshore wind turbine structures [42,43]. Approaches to char-
acterize the damage include coupling iFEM with convolutional neural networks for de-
tection and localization [44], peridynamics for crack propagation monitoring [45], and
physics-based pre-extrapolation for reconstructing displacements and strains around dis-
continuities [46]. iFEM has also been demonstrated for damage monitoring in composite
structures [47–49]. Specifically, Colombo et al. [48] applied iFEM for detecting impact
damages in composite panels under compressive loads, while Kefal et al. [49] investigated
intra-lamina damage detection using surface and embedded sensors. This latter work
used iFEM-based strain sensing in conjunction with a priori healthy baseline for detecting
damage. Despite the promise of these efforts, they are also plagued by certain limitations.
Although damage detection approaches usually rely on data from a system model or
healthy state of the structure, such information is rarely available [49]. Also, in the case of
composites, embedding sensor within the structure presents its own difficulties, while the
need for excessive experimental strain measurements [48] is another limitation.

This work aims to combine recent advances in distributed fiber optic sensors with the
capabilities of the iFEM for displacement sensing using surface strain measurements to
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propose a novel damage detection and fatigue monitoring strategy for composite structures.
Rather than a system model or a priori sensor measurements of the healthy structure, this
work uses a dynamic baseline estimated in real-time from the iFEM results to formulate a
damage index. As the iFEM is inherently independent of the structure’s material properties
or operational conditions, the use of a real-time baseline further improves the practical
viability of the strategy. This work also attempts to assess the reliability and robustness
of the method by investigating the influence of structural operational conditions, mea-
surement noise, sensor configurations used, geometrical complexity of the structure, and
type of composite failure on damage diagnosis. A key challenge of composites is their
numerous intra- and inter-lamina failure modes. Hence, two damage scenarios are investi-
gated in this work: delamination in vibrating composite plates and skin-spar debonding
in wing boxes. Such a comprehensive investigation aims to provide a clear delineation
between the achievements and limitations of the method, paving the way for future efforts
and developments.

The paper is organized as follows. The theoretical formulation of the 2D iFEM and the
methodology used to establish a healthy baseline is briefly discussed in Section 2. Section 3
presents a numerical study on a vibrating composite plate, where the proposed approach
is applied for delamination detection. A comprehensive investigation of the various
parameters that influence damage detection is presented, with results demonstrating the
accuracy and robustness of the method, specifically for damage close to the plate surface
or when excited at high frequencies. These conclusions are further evaluated in Section 4
where the method is applied for debond detection in a composite wing box. This section is
also promising, highlighting the ability of the method in monitoring geometrically-complex
structures and various composite failure scenarios. Finally, Section 5 concludes with the
main achievements and limitations of the research and topics for future work.

2. Methodology

The theoretical formulation of the 2D iFEM, originally proposed by Tessler and Span-
gler [22], is briefly recounted here. Subsequently, the smoothing methodology used to
establish a structural baseline from the iFEM results is also discussed. Finally, details of the
damage detection strategy are presented.

2.1. Inverse Finite Element Method

Considering a plate or shell structure defined in the three-dimensional (3D) Cartesian
coordinate frame (x, y, z) ⊂ R3 (shown in Figure 1). The plate mid-plane is defined by the
orthogonal coordinates, x ≡ (x, y), with plane normal along the z-axis. The plate has a
thickness 2t (where z ∈ [−t, t]), and a mid-plane area A (located at z = 0).

2.1.1. Mindlin Plate Kinematics

The 2D iFEM for plates or shells is based on the kinematic assumptions of Mindlin
theory [24]. The Cartesian components of the displacement vector can be represented in
terms of the kinematic variables, u ≡ {u, v, w, θx, θy}T , as

ux = u(x) + zθy(x) , uy = v(x)− zθx(x) , uz = w(x) (1)

where ux, uy, and uz are the displacements of any plate point in the x, y, and z-directions,
respectively. The kinematic variables, u and v, are the mid-plane surface displacements in
the x and y-directions; w is the transverse deflection averaged across the plate thickness;
and θx and θy are the rotations of the section normal about the x and y-axes, respectively.
The kinematic variables of the plate are shown in Figure 1.
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Figure 1. Illustration of the plate structure: (a) kinematic variables used to represent the deformations,
and (b) strain sensors instrumented on the top and bottom surfaces of the plate.

Using Equation (1), the strain field is computed from the linear strain-displace-
ment relations:


εxx
εyy
γxy

 =


ux,x
uy,y

ux,y + uy,x

 =


u,x
v,y

u,y + v,x

+ z


θy,x
−θx,y

−θx,x + θy,y

 = e(u) + zk(u) (2)

where strain measures, e(u) and k(u), represent the in-plane stretching and curvature of
the plate mid-plane. The transverse shear strains based on Mindlin theory are given as{

γxz
γyz

}
=

{
uz,x + ux,z
uz,y + uy,z

}
=

{
w,x + θy
w,y − θx

}
= g(u) (3)

where g(u) are the transverse shear strain measures of the plate. These eight strain mea-
sures, e, k, and g, form the analytical part of the 2D iFEM error functional.

2.1.2. Experimental Strain Measures

The plate is assumed to be instrumented with strain sensors (strain gauges or fiber
optics) at N discrete locations xi = (x, y)i, where i = 1, ..., N (see Figure 1). The sensors
are mounted both on the top, z = t, and bottom, z = −t, surfaces of the plate, measuring
strains ε+i = {ε+xx, ε+yy, γ+

xy}T
i and ε−i = {ε−xx, ε−yy, γ−xy}T

i , respectively. The strain measures
in the reference mid-plane coordinates of the plate can be computed from the experimental
strain measurements as

eε
i =

1
2


ε+xx
ε+yy
γ+

xy

+


ε−xx
ε−yy
γ−xy




i

, kε
i =

1
2t


ε+xx
ε+yy
γ+

xy

−


ε−xx
ε−yy
γ−xy




i

(4)

The transverse shear strains, gε, cannot be computed directly from experimental
strains. However, based on the equilibrium equation, gε can be computed indirectly from
the first derivatives of kε. More details regarding this procedure are provided in Ref. [22].

2.1.3. Least-Squares Error Functional

The 2D iFEM formulation is based on the finite element framework where the struc-
tural domain is discretized using a series of inverse finite elements with elemental areas,



Materials 2023, 16, 1969 5 of 21

Ae. For each inverse element, e, a weighted least-squares error functional between the
analytical and experimental strain measures is defined as

Φe(ue) ≡ wmΦm(ue) + wbΦb(u
e) + wsΦs(ue) (5)

where ue is the vector of nodal degrees-of-freedom (DOF) of each element, Φm, Φb, and
Φs are the individual element error functionals based on the membrane, curvature, and
transverse shear strain measures, respectively, and wm, wb, and ws, are row vectors of
weighting coefficients. The individual error functionals are written as

Φm ≡


φ1
φ2
φ3

 =
1

Ae

∫
Ae
[e(ue)− eε]2dA , Φb ≡


φ4
φ5
φ6

 =
(2t)2

Ae

∫
Ae
[k(ue)− kε]2dA

Φs ≡
{

φ7
φ8

}
=

1
Ae

∫
Ae
[g(ue)− gε]2dA

(6)

The vectors of weighting coefficients control the degree of enforcement between
the analytical and experimental sectional strains in the element error functional, thus
influencing the individual element contribution to the global error functional. In cases
where experimental strain measures are known, the weighting coefficients are set to unity
(wm = wb = {1, 1, 1} and ws = {1, 1}). However, as gε cannot be computed directly from
experimental strains, the corresponding weighting coefficients are set to a small value
(ws = {10−5, 10−5}), and the squared norm has the following form:

Φs ≡
{

φ7
φ8

}
=

1
Ae

∫
Ae
[g(ue)]2dA (7)

Equation (7) can be interpreted as a weak enforcement of the Kirchhoff (zero transverse
shear) constraint. Hence, it is consistent with application to thin plates where the transverse
shear deformations are much smaller than those due to the bending. The displacements
and strains within an element are approximated by interpolating the nodal DOF using
anisoparametric shape functions [25]. The iFEM solution involves minimizing the element
functional of Equation (5) with respect to ue, resulting in a set of linear algebraic equa-
tions. Assembling element contributions using the appropriate local-to-global coordinate
transformations, the global matrices of the structure are obtained:

KU = F (8)

where the matrix K is only a function of the strain-sensor positions and F is a function of
the sensor positions and measured experimental strains.

Similar to the direct FEM, the boundary conditions are applied to constrain against
rigid-body motion and ensure a non-singular system matrix. Subsequently, K can be
inverted, and Equation (8) solved to obtain the reconstructed nodal displacements, U.
Once inverted, K does not need to be recomputed. The present work uses the four-node
quadrilateral element iQS4 [25], with C0-continuous anisoparametric interpolations. For
more details on the element formulation and the 2D iFEM, refer to Refs. [22,25].

As iFEM is based on the strain-displacement relations, it is independent of the material
properties or operational conditions of the structure. Additionally, the adoption of the
finite element discretization framework to model structures allows complex geometries
to be modeled and analyzed in a computationally efficient manner. However, iFEM
accuracy is influenced by the accuracy of the measured strains and the complexity of the
strain distribution investigated. While measurement errors and environmental factors
influence the former, the latter depends on the fidelity of the iFEM mesh in modeling the
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strains. Complex strain distributions require a high-fidelity mesh or higher-order inverse
elements (with an associated increase in strain measurements required), increasing the
computational cost of the analysis. iFEM is also influenced by the number and location
of the strain measurements, and the boundary conditions applied. Conditions that could
lead to a breakdown of the iFEM analysis include a lack of sufficient strain measurements
to accurately describe the analyzed strain field (or the relevant strain components) or no
measures at key locations of the structure (e.g., close to or in elements where the nodal DOF
are constrained). Additionally, the absence of boundary conditions to constraint against
the rigid-body motion also leads to erroneous iFEM results.

2.2. Smoothing Element Analysis

The presence of damage on a structure is usually assessed by comparing its current
state to a healthy baseline. However, prior knowledge of a baseline requires access to an
accurate system model or experimental data from the healthy structure, which is rarely
available. The present work circumvents this limitation by computing a baseline from
the iFEM results by smoothing local perturbations due to damage in the reconstructed
displacements or strains. Although various smoothing methodologies exist in the literature
(some are explored by Oboe et al. [50]), the smoothing element analysis (SEA) is used
in the present work. The SEA is a variational method proposed for ‘smoothing’ finite
element-derived non-smooth stress fields [51], allowing for more accurate recovery of
boundary stresses and posterior error estimation. An improved SEA formulation [52],
where an additional contribution due to second-order derivatives of the smoothed quantity
is introduced in the variational statement to improve reliability, is discussed here. An
interesting application in this regard was proposed by Kefal et al. [53] where the SEA was
combined with the iFEM for the efficient shape sensing of composite structures.

The SEA is based on the finite-element framework where the 2D region of interest,
Ω = x = (x, y), is discretized using smoothing finite elements (where Ωe represents the
domain of element e). The SEA can be used to smooth or interpolate scalar quantities,
e.g., unidirectional strains εε

i measured within Ω, and compute a smoothed C1-continuous
field, εs, with C0-continuous derivatives, δs

x and δs
y. This is accomplished by minimizing a

penalized-discrete-least-squares error functional that, for each element, is formulated as

Φe
s =

1
n

n

∑
i=1

(εε
i − εs(xi))

2 + α
∫

Ωe
[(εs

,x − δs
x)

2 + (εs
,y − δs

y)
2]dΩ

+ βΩe
∫

Ωe
[(δs

x,x)
2 + (δs

y,y)
2 +

1
2
(δs

x,y + δs
y,x)

2]dΩ

(9)

where n is the total number of strain measurements per smoothing element, and α and
β are dimensionless parameters that control the smoothing procedure. Anisoparametric
shape functions are used to interpolate the nodal DOF of each smoothing element, with εs

interpolated quadratically and δs
x and δs

y linearly. Minimizing Equation (9) with respect to
the nodal DOF leads to a set of linear algebraic equations for the element. The global system
of equations is obtained by assembling contributions from all the elements. Subsequently,
the equations can be solved to obtain the nodal components of the smoothed scalar field.

The first term of Equation (9) represents the squared error between the smoothed and
measured strains, the second term is related to the first-order derivatives of the smoothed
strains, while the third term controls the second-order derivatives of the smoothed strain
field. Parameter, α, is used to control the continuity of εs derivatives in the second
term, i.e., εs approaches C1-continuity as the value of α tends to infinity. The optimal
choice of α depends on the problem under consideration and is investigated further in
Section 3. Similarly, β controls the severity of constraints on the second-order derivatives
of εs depending on the perceived accuracy of the measured strains, i.e., in the case of noisy
measurements, a high value of β can be used to filter the data. In the present work, it is set
to a small value (β = 10−5).
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The SEA is a purely mathematical approach to smoothing, dependent only on the
input data, element discretization, and parameter values used. Interested readers are
encouraged to refer to Refs. [51,52] for further details or discussions on the SEA.

2.3. Damage Detection Using the iFEM and SEA

The combined iFEM-SEA damage detection strategy is described as follows:

• The iFEM is used to reconstruct the full-field structural displacements from discrete
in-situ strain-sensor measurements;

• Equation (2) is used to compute the in-plane strains eiFEM and curvatures kiFEM from
the reconstructed displacements;

• The SEA is used to smooth strain perturbations due to damage and establish a healthy
baseline (eSEA and kSEA) of the structure;

• The damaged and healthy strains are used to compute a damage index that effectively
detects both the presence and location of damage in the structure.

A damage index, ID, defined as the difference between the damaged and healthy state
of the structure, is proposed:

ID ≡ |κiFEM
p − κSEA

p | (10)

where κp is the component of curvature associated with the primary bending direction of
the structure. Alternatively, the principal or Von Mises curvatures can be used in more
complex deformation scenarios. A curvature-based damage index is employed because
structures primarily undergoing bending deformation are investigated in this work.

Additionally, a normalized damage index, In
D ∈ [0, 1], for assessing the structure under

different load magnitudes or operational conditions is also used:

In
D =

ID − (ID)min
(ID)max − (ID)min

(11)

where subscripts (∗)min and (∗)max are the minima and maxima of the damage index field.
At this stage, it is also useful to consider some of the merits and limitations of the

proposed strategy. As the iFEM is used to reconstruct the damaged strain field, damage de-
tection is independent of the material properties and operational conditions of the structure.
Similarly, as the SEA is used to compute a real-time baseline, no prior data or measurements
on the healthy structure are required. Given that SEA is a purely mathematical tool, it
preserves the inherent advantages of the iFEM as well. However, as strain is the physical
quantity measured, the instrumented sensors should measure strain perturbations due to
the damage for the method to be effective. Hence, it can be considered a local monitoring
strategy employed in cases where the sensors are located close to the damage site, or the
damage causes strain perturbations that influence sensors placed far away. Finally, the
values of hyper-parameters used to control the iFEM and SEA significantly affect the results
obtained and should be selected appropriately. These effects are investigated in more detail
in the following sections.

3. Numerical Study on a Composite Plate

This section numerically demonstrates the proposed iFEM-SEA strategy for detecting
delamination in a cantilevered composite plate. Assuming the plate to be vibrating under
cyclic loads, damage detection is assessed for the various vibrational mode shapes of
the plate. The study aims to analyze the various factors that influence damage detection
performance, such as the plate mode shape analyzed, the fidelity of the smoothing mesh
used, SEA hyper-parameters, damage location, measurement noise, and proximity of the
strain sensors to the damage site.
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The carbon–epoxy composite plate used for the study (shown in Figure 2) has a length
L = 380 mm, width W = 300 mm, thickness 2t = 2 mm, and is built of eight equal-
thickness layers with a symmetric material layup (0/45/–45/90)s. The lamina material prop-
erties are provided in Table 1. The plate is initially modelled with a delamination of size
dL = 20 mm at the interface of the first two layers (l1–l2), and located at (xd, yd) = (155,195) mm.
The effect of the delamination position is studied later on in this section.

380mm

𝑥

𝑦

𝑥𝑑

𝑦𝑑

3
0
0
m
m

𝑑𝐿 𝑙1
𝑙2
𝑙3
𝑙4
𝑙5
𝑙6
𝑙7
𝑙8

Delamination

Figure 2. Illustration of the cantilevered composite plate with the parameters used to describe the
delamination size and location.

Table 1. The elastic material constants of the carbon fiber-reinforced epoxy composite lamina

Young’s Modulus (GPa) Shear Modulus (GPa) Poisson’s Ratio Density (kg/m3)
E1 E2 = E3 G12 = G13 G23 ν12 = ν13 ν23 ρ

125 6.1 3.4 3.5 0.33 0.33 1446.2

In the absence of an experimental plate model, a high-fidelity FE model (developed
in ABAQUS) is used to study the mechanical behavior of the damaged plate. The FE
strains are used as inputs for the iFEM analysis, and the FE displacements are the reference
for iFEM comparisons. The plate is modeled using 4560 S4R elements, a four-node shell
element in ABAQUS based on the first-order shear deformation theory (FSDT) with a bi-
linear displacement field and reduced integration. The FE mesh chosen ensures a relatively
fine discretization at the damaged region, with the delaminated area meshed using 16 shell
elements. The delamination is modeled using the approach outlined by Ju et al. [54],
where the upper and lower layers are meshed separately and the nodes are allowed to
vibrate independently. The continuity of the displacements and rotations is satisfied at the
delamination junctions. Numerous works in literature deal with predicting the mechanical
behavior of damaged composite plates. Some interesting works include the modeling of
the buckling behavior of normal or functionally-graded laminates with ply cracks [55,56].
Interested readers are encouraged to refer to these works for further details. The iFEM
model uses the same discretization scheme and is modeled using the four-node inverse shell
iQS4 [25], with bi-quadratic displacement interpolations and bi-linear rotations. In contrast
to the direct FE model, the inverse mesh is developed with no separation of element layers
at the delamination site.

The plate is instrumented with a 2 m long distributed fiber optic strain sensor, as
shown in Figure 3. The sensor measures longitudinal strains (ε+xx) along five sensing lines
( fi, where i = 1, ..., 5) on the plate top surface. These sensing lines are positioned along the
center of the shell elements and measure the centroidal strains of each instrumented element.
In its current state, sensing line f4 overlaps the damage site on the plate. The proximity
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of the strain sensors to the delamination site is varied, and its consequent influence on
damage detection is studied later in this section.

(𝐚) (𝐛)

𝑦 = 292.5 𝑚𝑚

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑦 = 197.5 𝑚𝑚

𝑦 = 147.5 𝑚𝑚

𝑦 = 97.5 𝑚𝑚

𝑦 = 7.5 𝑚𝑚

𝑥

𝑦

Figure 3. The discretization scheme for the plate: (a) FE/iFEM mesh with the fiber optic sensor paths
shown, and (b) the 15× 15 smoothing mesh using 900 SEA3 [51] elements.

3.1. Vibration Mode Shape Reconstruction

Among the vibrational mode shapes, plate bending offers the highest potential for
exciting the delamination and generating local strain perturbations. Also, as the fiber
measures only longitudinal strains, iFEM accuracy for reconstructing the bending mode
shapes is expected to be greater than for the in-plane or torsional modes. Alternatively,
strain rosettes can be used instead of fiber optic sensors. In this case, the availability of
triaxial strains is expected to produce more accurate results, with its associated difficulties
of instrumentation and wiring. Given these practical considerations and the marginal gain
in accuracy for the bending modes, fiber optic sensors are considered the ideal choice for
the present study. The first three bending modes are considered: mode 1 at 17.15 Hz, mode
8 at 301.8 Hz, and mode 14 at 590.7 Hz. The iFEM analysis uses strains measured by all
five sensing lines ( f1−5). For all elements with no strain measurements, a low value of
weighting coefficient (w = 10−5) is used to formulate the corresponding element error
functional. The contour plots of iFEM mode shapes compared against the reference FE
results are shown in Figure 4.

With increasing mode number, the mode shapes are more complex, and the accuracy
of the iFEM reconstruction decreases correspondingly. Results for the first mode are
very accurate with a percentage error in nodal deflection, werr < 0.5% (where werr =
100× (wFE − wiFEM)/(wFE)max). For the two higher modes, the tip errors are ∼ 10%, with
lower errors∼ 3% close to the fiber lines. Given the sensor configuration used, these results
are considered reasonable. As the next stage of damage detection, Equation (2) is used to
compute the damaged strain field over the plate top surface from the iFEM results.
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Figure 4. Reference FE and reconstructed iFEM mode shapes for (a,b) mode 1, (c,d) mode 8, and
(e,f) mode 14.

3.2. Strain Smoothing Using the SEA

As the second stage of damage detection, the iFEM reconstructed damaged strain field
is processed using the SEA to establish a healthy baseline. However, as the smoothing mesh
and the value of hyper-parameters used affects the SEA results, they have to be optimally
chosen a priori. To avoid biases associated with the choice of sensor positions, iFEM results
from the full-field case are used for this specific study, i.e., when all inverse elements are
instrumented with strain gauges oriented longitudinally.

Three smoothing mesh discretization schemes are used for this study, with 5, 10,
and 15 subdivisions along the plate edge, respectively. The meshes use the three-node
smoothing element SEA3 [52] arranged in a cross-diagonal pattern as shown in Figure 3.
Similarly, among the hyper-parameters, only α is analyzed because it directly affects the
continuity of the smoothed strains. As the analysis does not use noisy data, parameter β is
set to a small value (10−5). Two key features characterize an ideal SEA analysis: accurately
capturing healthy or undamaged strains across the plate and filtering or smoothing the
strain peaks and discontinuities near the damage site. The influence of the mesh on the SEA
results is shown in Figure 5, where it is compared against the reference iFEM strains. The
choice of an optimal mesh is a difficult balance between a low-fidelity mesh that smooths
over both healthy and damaged strain peaks and a high-fidelity one that accurately captures
both. The results of Figure 5 highlights the 15× 15 mesh to be an ideal compromise.
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Figure 5. iFEM and SEA results (using α = 1000) for various smoothing meshes compared along
(left) the plate root (x = 2.5 mm) and (right) across the delamination (x = 162.5 mm).

The influence of α on the SEA results is shown in Figure 6. Similar to the previous
case, an optimal value of α should neither be too high, as C1-continuity is rigidly enforced
and the results smooth over both healthy and damaged strain peaks, nor too low to avoid
piece-wise continuous results that accurately captures all peaks. The value of α = 100 is
considered an ideal compromise in this case. Based on the results of this study, a 15× 15
smoothing composed of SEA3 elements and a parameter value of α = 100 is used for all
subsequent SEA analyses.
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Figure 6. iFEM and SEA results (using 15× 15 SEA3) for various values of α compared along (left)
the plate root (x = 2.5 mm) and (right) across the delamination (x = 162.5 mm).

In conclusion, an optimal choice of the SEA parameters depend on the complexity of
the strain field distribution, the noise level in the strain measurements, and the nature of
the damage investigated. Hence, prior knowledge of these factors is required to make an
optimal choice. Once these parameters are estimated for a specific SHM application, no
further changes or corrections are required over the operational life of the structure. In this
sense, it can be considered a necessary calibration of the method.

3.3. Delamination Detection

The iFEM results of Section 3.1 are smoothed using the 15 × 15 SEA3 smoothing
mesh to establish a healthy baseline. Subsequently, the damaged and baseline results
are used to compute the damage index (κp = κx) based on Equation (10). Four different
damage cases, varying the in-plane and through-thickness (inter-lamina) position of the
delamination, are investigated to understand the effect of damage location on the proposed
strategy. These cases are described in Table 2. Additionally, delamination detection as a
function of the reconstructed vibrational mode shape is studied. The results from these
studies are presented as line plots of ID along sections that intersect the damage location:
x = 162.5 mm and y = 197.5 mm for cases 1 and 2, and x = 72.5 mm and y = 197.5 mm for
cases 3 and 4. These results are shown in Figures 7–10.
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Table 2. Details of the four delamination cases analyzed

Case xd (mm) yd (mm) dL (mm) Lamina Interface

1 155 195 20 l1–l2
2 155 195 20 l3–l4
3 65 195 20 l1–l2
4 65 195 20 l3–l4
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Figure 7. Damage index plots along y = 197.5 mm for (left) damage case 1 and (right) mode 8 (the
vertical red line indicates the damage site).
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Figure 8. Damage index plots along x = 162.5 mm for (left) damage case 1 and (right) mode 8.

The results from damage cases 1 and 2 provide two key conclusions. First, all three
bending modes excite the delamination, as indicated by the ID peaks at the damage site.
It is also evident that the peaks corresponding to the higher modes are more prominent. This
is due to the greater local excitation of the plate in the higher modes but at the cost of minor
ID peaks at undamaged regions. The loss of iFEM accuracy with the increasing complexity
of the higher modes explains these minor peaks, with probable misinterpretation of the
damaged site as the obvious consequence. Among the three modes investigated, mode 8
provides a good compromise between these considerations. A second conclusion regards
the through-thickness position of the damage. Delamination close to the plate surface
produces a greater curvature gradient, leading to higher strain perturbations measured by
the sensors and a greater ID peak for damage case 1 over 2.
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Figure 9. Damage index plots along y = 197.5 mm for (left) damage case 3 and (right) mode 8.
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Figure 10. Damage index plots along x = 72.5 mm for (left) damage case 3 and (right) mode 8.

These conclusions are reinforced by the results for damage cases 3 and 4. They also pro-
vide further insight. As plate bending produces the highest curvatures close to the clamped
end or at local deflection peaks, delamination close to the clamp produces a higher ID peak
than those further away. This is evident when comparing the ID peaks in Figures 8 and 10.
A limitation is the erroneous damage index peaks observed close to the clamped end in
Figures 7 and 9. These peaks are related to the inability of the SEA to accurately smooth the
high strain gradients close to the clamp (also seen in Figure 5). Using a finer smoothing
mesh close to the clamp is one way of circumventing this issue.

The results of the present study demonstrate the ability of the proposed method to
detect delamination damages in vibrating composite plates. Furthermore, detection is
easier for the higher modes when the delamination is close to the plate surface and to the
clamped end. Contour plots of ID for the two best cases are shown in Figure 11.
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Figure 11. The damage index contour plots of mode 8 for damage case (a) 1 and (b) 3.
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3.4. Sensitivity to Measurement Noise

Despite the promise of previous results, they are obtained using numerical data
measured by sensors instrumented over the damaged site. Practical scenarios are always
less ideal with additional influences or difficulties, some of which are the primary focus of
the present and following section.

The numerical strains are artificially contaminated with random noise, added as a
percentage of the strain magnitude. The aim of the study is to simulate sensor measurement,
instrumentation, or experimental errors in a practical laboratory setting. The noise is
introduced based on a Gaussian distribution with zero mean and the value of three standard
deviations varying from 5% to 15%. The subject of the present study is the plate results
for damaged case 3 and vibrating at mode 8. The noisy strains are the input for the iFEM
analysis, and the subsequent damage detection steps are followed. The results for different
noise levels are shown in Figure 12.
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Figure 12. Damage index plots along (left) y = 197.5 mm and (right) x = 72.5 mm for different
noise levels.

The damage detection results demonstrate good robustness up to a noise level of 10%,
where the most prominent ID peak is still discernible at x = 72.5 mm. At higher noise levels,
this is no longer the case. Multiple peaks are evident at this stage, and the damage position
can no longer be accurately identified. The surface strain perturbations produced by inter-
laminar damage (like delamination) are lower than intra-laminar damage (like fiber/matrix
cracking or lamina failure). Hence, using the current damage detection strategy, the former
damage is expected to be more noise-sensitive.

An additional tool in such cases involves the SEA parameter β. Using a high value for
β can suppress significant curvature discontinuities in the measured strains and filter the
influence of random noise. However, a high value might also filter strain discontinuities
associated with the damage. Additional studies are required to establish an ideal value.

3.5. Sensitivity to Sensor Location

A final study investigates the influence of sensor proximity to the delamination on
damage detection. Previous iFEM analyses used in-situ strains based on Figure 3, where
fiber line f4 overlapped the delamination. Various new sensor configurations are simulated
by shifting the position of fiber lines f2(y− ∆y) and f4(y + ∆y) symmetrically outward
from the central line f3. The parameter ∆y represents the change in the vertical coordinate
with respect to the original fiber position. Line f4 is shifted from ∆y = 5 mm, where it is
still within the delaminated region, to ∆y = 10− 15 mm, where it is no longer in contact
with it. The present study also investigates plate vibrating under mode 8 with a damage
based on case 3. The results are shown in Figure 13.
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Figure 13. Damage index plots along (left) y = 197.5 mm and (right) x = 72.5 mm for different
fiber locations.

The results show that the damage index peaks reduce in magnitude as the fiber
is moved further away from the delamination site. This reduction is attributed to the
highly localized nature of the damaged strain field produced by delamination and the low
magnitude of strain perturbations measured by sensors placed further away. This study
also reinforces another general conclusion of strain-based damage detection approaches,
i.e., sensors must be instrumented close to the damage site to detect damage reliably. In
this case, the optimal locations of strain sensors are a function of the damage type and the
noise level in the measured strains. They are also influenced by the geometrical complexity
of the structure, which is the subject of investigation in the next section.

4. Numerical Studies on a Composite Wing Box

The proposed strategy is also applied for monitoring damages in more complex
aerospace structures. The structure analyzed in this case is a composite wing box composed
of a top and bottom skin and stiffened with four longitudinal spars having an I cross-
section. The skin, spar webs, and caps are 2 mm thick and have a symmetric material layup
(0/45/–45/90)s with lamina properties given in Table 1. The wing box is instrumented with
distributed fiber optic strain sensors along four sensing lines per skin, with sensors placed
on both the top and bottom skin surfaces. The geometric dimensions and sensor locations
are given in Figure 14. The wing box is clamped at the root and loaded transversally
at the tip by coupling the DOF of the tip nodes, essentially simulating a rib. A load of
magnitude Fy = 1000 N is applied. The present study investigates skin-spar debonding
in the wing box. The debond is introduced between the upper skin and the outer spar, as
shown in Figure 14. Three damage cases are analyzed, as described in Table 3, each varying
the surface area (dL × dW) of the debond. The fiber optic sensors are positioned to avoid
overlapping the debonded region, with the most proximal sensing line on the upper skin
located 10 mm away.

Table 3. The different skin-spar debond cases investigated.

Case xd (mm) yd (mm) dL (mm) dW (mm)

1 500 210 320 60
2 500 210 200 60
3 500 210 120 60
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Figure 14. Illustration of the composite wing box showing the (a) geometric dimensions, (b) position
of the fiber optic sensors, and the debonded area on the top skin (all dimensions are in mm).

A high-fidelity FE model of the wing box is developed in ABAQUS to simulate its
mechanical behavior. The wing box is modeled using 5600 S4R elements, as shown in
Figure 15. Over the debonded region, the skin and the spar cap are meshed separately using
64 shell elements, with displacement and rotation continuity maintained at the debond
junctions [54]. An additional contact constraint is also introduced between skin and spar
elements to avoid intersections during deformation. The FE strains are used as inputs
for the iFEM analysis, and the FE displacements are the reference for comparisons. The
iFEM model uses the same element discretization scheme as the direct model but employs
the inverse shell element iQS4 [25]. Only the upper and lower skins of the wing box are
assessed for debond detection, where the iFEM results are smoothed using a 10× 10 SEA3
smoothing mesh shown in Figure 15.

(𝐚) (𝐛)
Loaded nodes

Debonded elements

Figure 15. Element discretization for the (a) FE and inverse iFEM models, and (b) smoothing model
of the wing box upper skin (10× 10 SEA3 mesh).

4.1. Deformation Reconstruction

The transverse tip load applied produces wing box bending and compression of the top
skin. The compressive forces over the debond lead to localized in-plane strain or curvature
peaks at the debond interfaces. The iFEM reconstructed deflection field for damage case 1
is compared with the reference FE results in Figure 16. The iFEM results report a maximum
error of ∼9.6% close to the outer ends of the top or bottom skin (where no strain sensors
are located) and ∼7% at the spar tips. These results, achieved only using longitudinal
strain measurements, are deemed promising from the perspective of displacement or strain
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sensing and damage detection. Although optimizing the position of the fiber lines can
further improve the accuracy of iFEM results [33], such investigations are not the focus of
the present study.
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Figure 16. Deflection contours of (a) FE and (b) iFEM results for damage case 1 (units in mm).

4.2. Skin-Spar Debond Detection

The iFEM reconstructed strains are processed using the SEA to establish a healthy
baseline, and subsequently to compute the damage index (κp = κx). The contour plots of
iFEM reconstructed curvature and the damage index over the top skin for damage case 1 are
shown in Figure 17. The results indicate two damage index peaks at the debond junctions,
corresponding to the locations of high curvature gradients. However, the results are also
populated by erroneous peaks near the root and tip where the SEA does not accurately
smooth undamaged strain gradients. These peaks negatively impact the lower limit of
debond size that the proposed approach can reliably detect. As discussed in Section 3.3,
adopting a fine smoothing mesh at these locations provides a strategy to eliminate the
erroneous peaks.
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Figure 17. Contours of (a) iFEM reconstructed curvature and (b) damage index for case 1.

The 300 mm long debond described by damage case 1 represents significant damage
(approximately 32% of the spar length), having a considerable influence on wing box
strength. Smaller debond sizes, as described by cases 2 and 3, provide a more realistic
picture of barely visible damages initiated by impacts on the structure by external projectiles.
The damage index contour plots for these cases are shown in Figure 18 where, despite the
smaller damage region, ID peaks corresponding to the debond junctions are seen. The
relative magnitude of the peaks is also lower and is explained by the lower curvature
gradients at the site. These results aid in demonstrating the viability of the proposed
approach for delamination or debond detection. The key requirement for the proposed
approach is that internal damages should produce a measurable change in the surface strain
field of the structure. If the above condition is satisfied, the nature of the damage (intra- or
inter-layer) should not be an impediment to damage detection. When analyzing intra-layer
damages, fiber breakage is expected to have a more pronounced effect on surface strains
than matrix cracking and fiber-matrix interface debonding, and hence should be more
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easily detectable. This does directly imply the improbability of detecting matrix cracking
and interface debonding, but rather, further studies are required to reach a more accurate
conclusion.
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Figure 18. Contour plots of the damage index for damage case (a) 2 and (b) 3.

iFEM is independent of the material properties or operational conditions of the struc-
ture and it is unaffected by environmental factors as well. However, as strain is the physical
quantity measured, environmental factors that influence strain can negatively affect the
results obtained. Global temperature or humidity variations (affecting the whole structure)
will not affect the proposed approach, while local variations can be problematic. Perhaps,
the principal effect is local strain changes due to temperature variations. Local thermal
strain changes might be misconstrued as being due to damages, leading to an erroneous
displacement reconstruction and damage diagnosis. However, strategies exist to counter
this limitation, such as the analytical modeling of the strain–temperature relationship or the
use of temperature-compensated fiber optic strain sensors to simultaneously measure both
elastic and thermal strain contributions. This latter solution is perhaps the more viable strat-
egy. Furthermore, evaluating the stability or reliability of the damage detection approach
requires a multi-parameter analysis involving all factors that influence the method. Metrics
such as the probability of detection (POD) is useful in this regard to form an objective
assessment of damage detection performance

Aside from its capabilities as an effective damage detection tool, the accuracy of the
iFEM in reconstructing the displacements demonstrates its potential for simultaneous
strain or stress sensing. In such cases, damage diagnosis can be combined with real-time
prognosis or predictions of delamination or debond evolution based on the strain or stress
time histories experienced by the structure. Developing such an integrated monitoring
approach for all possible composite layups and damage or failure scenarios is a challenging
problem and is the focus of future investigations.

5. Conclusions

This work presented a damage detection strategy based on the inverse Finite Ele-
ment Method for detecting and monitoring intra- or inter-lamina damages in composite
structures. The iFEM is initially used to reconstruct structural displacements and strains
from surface strain-sensor measurements. Subsequently, the SEA is used to smooth the
iFEM results and establish a real-time baseline. A comparison of the damaged and healthy
data is used to predict the presence and location of the damage on the structure. The
proposed approach is demonstrated numerically for delamination detection in a vibrating
composite plate where the effect of damage location and operational conditions are studied.
The results demonstrate that plates with delamination close to the plate surface, close to
the clamped end, or when excited at higher frequencies produced the highest damaged
surface strain perturbation. Consequently, this led to the best damage detection results.
Additionally, the study demonstrated the method’s robustness to measurement noise and
the depreciating damage detection performance with increased sensor distance from the
damage site. The method’s viability for more complex structures is assessed through a nu-
merical study on a composite wing box subjected to a concentrated tip load. Here, wing box
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failure due to skin-spar debonding initiated by compressive loads on the upper skin was
studied. Using a curvature-based damage index and sensor measurements directly from
the damage site, the results demonstrated reliable detection of debond interfaces across a
range of damage sizes. A possible limitation is the erroneous damage index peaks at the
clamped end, attributed to the improper smoothing of the healthy strains near the root. The
choice of an optimal smoothing mesh can produce better results. These numerical studies
were promising and demonstrate the proposed approach to be a reliable and robust SHM
strategy requiring no information regarding the structure’s material properties, operational
conditions, or healthy baseline state.

Despite the promising results, a key limitation is that strain sensors placed close to the
damage site are required to ensure accurate predictions. Hence, it can be considered a local,
rather than global, structural monitoring approach. Alternatively, strain pre-extrapolation
or virtual sensing techniques can further reduce the number of sensors required without
depreciating the method’s accuracy. Furthermore, the real-time strain or stress-sensing
capability of the iFEM can be further exploited. From the perspective of damage prognosis
and fatigue monitoring, the reconstructed strains and stresses can be used to make real-time
estimates of the remaining operational life of the structure. Such investigations are the
subject of future work.
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