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Abstract

The dynamic behaviour of a structure plays a crucial role in its function in many technical
areas and its knowledge is important from the preliminary design phase with a significant
impact on safety, performance and comfort. It is a matter of fact that stability considera-
tions are a fundamental and inevitable topic in the design of many engineering structures
employed in various fields. The concept of stability is intrinsically a dynamical one, and
the formal analogy between buckling and vibration has stimulated the use of the vibration
(dynamic) approach as a standard procedure in the design of structures to get important
information to characterize buckling behaviours. One of the most important and employed
non-destructive methods to compute large-scale aerospace structures’ critical buckling load
is the Vibration Correlation Technique (VCT). This method computes the buckling load
and the equivalent boundary conditions by interpolating the natural frequencies of the
structures for progressively increasing applied loadings without reaching instabilities.
In this context, the present work intends to propose an advance toward the efficient im-
plementation of a novel numerical approach for carrying out nonlinear vibration-buckling
investigations of isotropic, classical composite and variable-angle-tow (VAT) composite
beam, plate and shell structures subjected to different mechanical and thermal loadings
in order to predict buckling loads, to characterize the natural frequencies variation for
progressively increasing loadings and to provide an efficient means for the verification of
the experimental VCT results.
The dynamic characteristics of any structure are inherently a property of the equilibrium
conditions. For this reason, the availability of accurate mathematical models able to
deal with higher-order phenomena, which may occur within the structure, is of pivotal
relevance. The presented nonlinear approach is formulated in the well-established Carrera
Unified Formulation (CUF) framework. Basically, the CUF, by using an index notation,
allows to unify all the theories of structures in a single formula and to formulate very
refined beam, plate and shell models in a simple way. According to CUF, the 3D displace-
ment field can be expressed as an arbitrary expansion of the generalized displacements.
Depending on the choice of the polynomials employed in the expansion, various classes of
beam, plate and shell models can be implemented. In detail, both Taylor-like (TE) and



vi

Lagrange (LE) polynomials are considered for developing the kinematic expansion. With
this procedure, the nonlinear governing equations and the relative finite element arrays of
the one-dimensional (1D) and two-dimensional (2D) theories are formulated in terms
of Fundamental Nuclei (FNs). FNs represent the basic building blocks of the proposed
formulation. All Green-Lagrange strain components are employed because far nonlinear
regimes are investigated. Furthermore, the geometrical nonlinear equations are written
in a total Lagrangian framework and solved with an opportune Newton-Raphson method
along with a path-following approach based on the arc-length constraint.
The importance of correctly choosing the structural theory, kinematic model and nonlinear
strain measure model to perform accurate analyses is remarked through various numer-
ical results. In detail, the need to adopt higher-order and full nonlinear strain models
is emphasized in the analyses in order to accurately evaluate the 3D stress fields and
undamped nonlinear dynamic responses of isotropic and composite structures. Several
examples for different equilibrium conditions in the moderate and large displacement fields
are proposed. The validity of the presented formulation is demonstrated and important
modal aberrations as a consequence of the loading, the nonlinear equilibrium state, and
the material anisotropy are discussed. The results document the excellent accuracy and
reliability of the presented methodology and show the potentialities of this numerical tool
able to analyze cases that are difficult to study experimentally.

Keywords: Finite Element Method; Carrera Unified Formulation; Higher-order beam/plate/shell
models; Isotropic material; Composite material; Variable stiffness composites; Geometri-
cal nonlinearity; Buckling; Large-deflection; Post-buckling; Vibration analysis; Vibration
Correlation Technique; Nonlinear dynamic response.
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Chapter 1

Introduction

1.1 Structural dynamics and stability

Aerospace structures are usually required to operate in particular conditions that take
into account mechanical and thermal loadings. This characteristic, associated with the
need to save weight and material and have high performance in new structures and
machines, has led to the consideration of stability problems more and more important.
Typically, structures show failures primarily due to material failure or structural instability.
Generally speaking, stability considerations are a crucial and inevitable topic in the design
of many engineering structures, employed in various fields, for example, aeronautical,
space, civil, mechanical or naval engineering. In this context, the designer faces numerous
structural problems related to the stability of the various components. Consequently,
several studies have investigated the instability behaviours of the beam, plate and shell
structures, both theoretically and experimentally [1–3].

The main goal of the structural problems is to derive configurations of loaded systems
that satisfies the equilibrium conditions, compatibility, and load-displacement relation-
ships of materials. For this purpose, it is required to examine whether the resulting
equilibrium configurations are stable and, then, consider the structure satisfactory from a
structural point of view. The stability loss due to compressive loadings is typically called
structural or geometrical instability, generally called as buckling. The latter phenomenon
consists of sudden changes of equilibrium configurations at certain critical loads. The
evaluation of the buckling load is equivalent to finding that load under which the structure
exhibits a stable equilibrium state, but if perturbed, it moves away from this position,
becoming unstable. Buckling failures are potentially very dangerous and can facilitate
the collapse of several types of engineering structures [4]. It should be emphasized that in
any type of stability loss, changes in geometries or configurations involve the introduction
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of new additional forces or changes in the nature of forces that existed in undeformed
structures. In terms of new forces that arise during the structural stability loss, a classifi-
cation of instability can be given as follows: 1. Flexural buckling; 2. Torsional buckling;
3. Torsional-flexural buckling; 4. Snap-through buckling. Furthermore, instability, which
refers to the buckling of structures under static loads, is called static buckling, while it is
defined as dynamic buckling if dynamic loads are considered. An extensive discussion on
the fundamentals of stability theory can be found in Ref. [5].

In linear mechanics of deformable bodies, the displacement is proportional to the load.
However, the essence of buckling is a disproportionate increase in displacements resulting
from a small increase in loads. As a consequence, buckling analyses are a subtopic of
nonlinear rather than linear mechanics. Therefore, buckling is a nonlinear phenomenon
and that linearized analyses are used only for reasons of analytical convenience. Never-
theless, a linearized analysis gives suitable results for design use for many applications.
Nevertheless, there are three typical situations where nonlinear analyses are needed:

1. A linearized analysis indicates the loading level in which a new deformation pattern
begins to develop. It also determines the initial mode of this pattern, but it gives
no information about the shape of the secondary path;

2. In some cases, pre-buckling nonlinearity must be considered to accurately determine
the critical load. In such cases, the stability equation for determining the bifurcation
point are linear, but the variable coefficients in stability equations are governed by
the nonlinear equations of equilibrium;

3. Lastly, in more general cases, stability losses occur at a limit point instead of at a
bifurcation point. In such cases, the buckling load has to be determined by solving
the nonlinear equilibrium equations.

In this research, stress and strain are assumed to obey the law of Hooke. Consequently,
the nonlinearity is purely geometrical. The collapse load of structures is usually defined
by a maximum in the load-displacement curves. To find such a maximum, the governing
nonlinear differential equations are solved for a stepwise increasing load or displacement,
typically the Newton-Raphson (NR) approach. A detailed discussion of the NR method
and other similar approaches is presented in Ref. [6]. Analytical solutions of these
equations generally cannot be obtained [7].

Structural instability analyses have been studied for many centuries. Euler [8] intro-
duced the critical load concept of elastic structures in which the equilibrium bifurcates,
also providing the solutions of buckling loads of column structures with various con-
straints. However, the critical loads calculated by the latter could not be experimentally
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demonstrated. The reason of this lack was discussed by Young [9], who explained that
imperfections such as initial curvature, initial bending moments or load eccentricity play
a crucial role in the stability problem. Consequently, he obtained a formula that is
now known as the magnification factor for deflections and bending moments in column
structures due to axial loading. Then, Kirchhoff [10] explained the theory of geometrically
nonlinear large-deflections and developed an elegant solution for deflection curves, called
the elastica, in terms of elliptic integrals. The effect of shear, that occurs in column
structures with a low effective shear stiffness, was demonstrated by Engesser [11]. Over
the years, many efforts have been focused on studying the stability of beam, plate and
shell structures by trying to formulate new methods to accurately predict buckling and
still today it is a challenge among researchers and scientists [12–16].

It is common knowledge that buckling does not always mean failures. Thus, it is
also needed to investigate post-buckling behaviours and vibration features of buckled
thin-walled structures under various loadings. In addition, there is also analogies between
post-buckling and nonlinear vibration. For example, the typically unstable post-buckling
equilibrium curve of shell structures, represented by a negative slope of nonlinear paths,
compared to the linear characteristic, corresponds to the softening vibration behaviour.
This often observed behaviour shows how the vibration frequency decreases as the
amplitude vibration increases. Vibrational analyses of structures is not only a relevant
topic in itself, but known the connections between the vibrational behaviour and that
of deformation, it is widely used as an approach to study the stability of a structure.
Although the vibration behaviours of these structures has significant applications in
structural engineering, the available literature on this topic is generally limited to the
pre-buckling regime [17, 18], whereas researches on the thin-walled structures vibrations
in post-buckling regimes have not received detailed investigation.

The concept of stability is intrinsically a dynamical one. The formal analogies between
buckling and vibrations have stimulated the use of the vibration (dynamic) approach as
a standard procedure in the design of structures to get informations which are important
to characterize the buckling behaviours [19, 20]. The analytical or qualitative methods
are almost always approximate and, therefore, even a physical analysis of the vibration
systems is more difficult if nonlinear; these solution methods must be integrated by digital
or analogue calculation techniques. On the other hand, numerical methods have led to
the understanding of new phenomena in the field of strongly nonlinear systems. Similarly,
solution stability investigations are also more difficult because the existence of multiple
stable solutions is common in nonlinear systems. If natural frequencies of a structure
coincides with the frequency of external excitations, a phenomenon known as resonance
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occurs, which leads to excessive deformation and failures. Due to the devastating effects
that vibrations can have on structures, vibration analysis has become a crucial step in
the design of many engineering systems in order to study and characterize the natural
frequency variation under different loading conditions. In detail, the resonance frequencies
of nonlinear systems change with the vibration amplitudes. For very small amplitudes,
they coincide with the natural frequencies of the linear approximations. For larger
amplitudes, the resonance frequencies decrease with amplitudes for softening systems
and increase with amplitudes for hardening systems.

A number of different approaches, analytical, numerical and experimental, have been
used for determining critical conditions through vibration data for elastic structures
which are subjected to instability. Especially, the experimental campaign continues to be
indispensable for the design and validation of methodologies of the modern structures.
Nevertheless, one of the objectives of researchers over the years was to reduce both the
time and cost of operations of these complex tests to derive the buckling loads. One of the
effective methods is to adopt non-destructive experimental tests to assess critical loads of
structures. Southwell developed one of the first non-destructive approaches to compute
buckling loads of a simple structure, such as thin beam [21], which was improved by
Galletly and Reynolds [22] to be also applicable for stiffened cylindrical shell structures.
One of the most studied non-destructive methodologies that offer a valid alternative to
the conventional classic stress tests adopted by the aerospace industries for the assessment
of buckling is the Vibration Correlation Technique (VCT). The latter appears to be a
promising approach for non-destructive buckling estimation in experiments. The main
characteristic of these methods is that of not having the need to load the structure up to
instability.

The concept of vibration-buckling correlation was considered at the beginning of the
20th century by Sommerfeld [23], but only in the 1950s, some experimental investigations
were carried out by Chu [24], Lurie [25], and Meier [26], among others. Readers are
referred to [3] for a meticulous review of the theories, applications, experimental setup,
and results of VCT approaches on different structures. For a clearer evaluation of VCT
applications on beam, plate and shell structures, it is significant to divide the method
according to its purpose: 1. identification of actual boundary conditions and 2. direct
prediction of buckling load.

By comparing theoretical and experimental results, significant discrepancies were
noticed. The cause of this is linked to the presence of imperfections in the real structure,
observed for the first time as early as the early 1900s by Southwell [21]. For example,
buckling loads of thin-walled composite structures are very imperfection sensitive, and
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their reliable identification requires knowledge of the worst realistic imperfections. Nu-
merous studies have shown that the force-carrying capacity may be significantly improved
by using composite structures. Nevertheless, the imperfection sensitivity is still not fully
understood and improved design guidelines for such materials still do not exist. As
a consequence, several projects were conducted to investigate the buckling behaviour
of such imperfection-sensitive structures. Flügge [27] and Donnell [28] were the first
authors to explain formulations by taking into account the effects of initial geometric
imperfections, but the nonlinear analyses failed to calculate the experimental buckling
loads. Flügge’s and Donnell’s theories prove a gradual appearance of buckles with an
increase in the compressive loadings, while in the experiments, buckling is typically
characterized by a sudden dynamic buckling event and a corresponding reduction in the
force. Since buckling is a phenomenon that occurs dynamically, many researchers have
been involved in the evaluation of the nonlinear transient response to characterize and
understand the dynamic behaviour of structures under time-dependent loadings. For
example, Budiansky [29] examined the concept of the buckling of elastic strictures under
time-dependent loads. Chamis [30] provided several analyses on dynamic buckling and
post-buckling of composite shell models. Numerical dynamic analyses on thin-walled lam-
inated composite cylindrical shells under longitudinal impact loadings were performed by
Chitra and Priyadarsini [31] through the commercial software Abaqus. Buckling analyses
of fiber-reinforced composite shell structures with four plies subjected to impulsive axial
compressive loadings were conducted by Bisagni [32]. An interesting monograph on the
study of buckling and post-buckling behaviours of thin-walled structures under static or
dynamic loadings is the book of Kubiak [33].

Since the limitations of analytical approaches, many efforts were concentrated on
the development of numerical methods able to provide accurate solutions in order to
verify the experimental results and provide important preliminary results. In most
practical problems, the solution demands the application of approximated computational
methodologies. The advent of the Finite Element Method (FEM) [34] has overcome many
of these difficulties. Several problems in stability and vibration analyses of structures may
be very complex due to initial geometric imperfections, geometry, anisotropy, nonlinearity,
and the number of degrees of freedom, and their solution can require powerful formulations.
The earliest nonlinear finite element (FE) analyses were carried out by Oden [35] and
Zienkiewicz [36]. Over the years, many research efforts have focused on improving
effective formulations that can accurately perform nonlinear static and dynamic analyses
[37–39] in order to give reliable and valid tools for developing new designs and providing
a means of verification of the experimental tests.
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1.2 Scope and outline

In view of the aforementioned issues in stability investigations, a rigorous and efficient
modelling technique is indispensable for engineers to exploit the potential of engineering
structures better. In this context, the present thesis represents an advance toward the
efficient implementation of numerical methods to accurately carry out nonlinear vibration-
buckling investigations of isotropic and composite beam, plate and shell structures,
including geometrical nonlinearity. A broad range of problems is considered during this
research period, including stress analyses, buckling analyses, free-vibration analyses,
vibration analyses of mechanically- and thermally-loaded structures, transient analyses
and multibody analyses.

The focus of this work is on the implementation of a novel modelling framework,
based on a unified formulation of structural theories and the FEM, able to describe
buckling behaviours, examined in terms of static, load-displacement curves, and dynamic,
vibration-buckling correlation or time response, for different structures. Emphasis is on
understanding the behaviour of the structure, considering different geometries, material
properties, boundary conditions and loadings, and the evaluation of the buckling loads,
natural frequencies variation and stresses distribution.

The founding basis of this research is based on the principle that the vibration is
a property of the state of equilibrium. Consequently, in order to be able to carry out
accurate analyses on the vibrations of loaded structures and to characterize in detail
how these modes vary, it is mandatory to correctly calculate the state of equilibrium. To
achieve this last aspect, it is essential to have an efficient method capable of capturing
all the complex nonlinear phenomena that may occur within a structure. Therefore, an
approach which takes into account higher-order phenomena is needed.

In this context, the presented linear and nonlinear studies are conducted by using
the Carrera Unified Formulation (CUF) [40]. CUF was implemented first for plate and
shell models [41, 42] and, subsequently, also for beams [43]. The main novelty of CUF
models turns out to be that the order of the theory is a free parameter or may be an
input of analyses and it may be chosen performing convergence studies. CUF may also
be assumed as a tool to assess the accuracy of any structural model in a unified manner.
For the sake of completeness, the reader is referred to [44–52] for the application of the
CUF in different engineering problems.

The main novelties of this thesis are: (i) Several kinematic assumptions for beams,
plates and shells are implemented and compared regarding the numerical accuracy and
efficiency for the computation of the three-dimensional (3D) stress fields in generic
isotropic and laminated structures subjected to large displacements and rotations; (ii) the
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effect of various geometrically nonlinear strain measures on the response of isotropic and
composite structures is investigated; (iii) some advances in the nonlinear vibration analysis
of beam, plate and shell models are discussed, studying the effect of pre-stress states on
the natural frequencies; (iv) analytical and numerical vibration-buckling correlation of
mechanically- and thermally-loaded structures are presented; (v) new static and dynamic
benchmark cases for isotropic, laminated composite and variable-angle-tow beam, plate
and shell structures are proposed through refined FE modelling.

The thesis is composed of six chapters that describe the development of a platform,
using higher-order structural numerical models, for geometrically nonlinear static and
dynamic analyses of isotropic and composite beams, plates and shell subjected to
mechanical or thermal loading. The general layout of the present research is as follows:

• Chapter 2 starts with a brief discussion of the Vibration Correlation Technique
(VCT). After that, a brief bibliographic survey on classical and refined structural
theories for beam, plate and shell structures and the related analytical solution
formulations for computing the critical load through vibration data is provided.

• Chapter 3 introduces the higher-order one-dimensional (1D) and two-dimensional
(2D) models adopted in this research. The presented methodology is formulated
in the CUF domain. Within the CUF, the beam, plate and shell kinematics are
expressed as the generic expansion of the generalized displacements employing
arbitrary cross-sectional and thickness functions. Depending on the choice of
functions type and order, various beam, plate and shell theories may be derived. In
the present work, both the Lagrange-like (LE) and Taylor-like (TE) polynomials are
considered. To study the reinforced structures, the component-wise (CW) method
is adopted. When laminated composite structures are analyzed, the Layerwise
(LW) and Equivalent-Single-Layer (ESL) kinematics are adopted. According to
CUF and introducing the FEM, the nonlinear governing equations are expressed in
a general but unified and compact manner in terms of Fundamental Nuclei (FNs),
which stand for the basic building blocks of the proposed theory, by exploiting the
Principle of Virtual Displacements (PVD).

• Chapter 4 presents geometrically nonlinear static and nonlinear dynamic formula-
tions employed in this research to study different problems. Furthermore, some
numerical examples are presented to highlight the importance of correctly choosing
the structural theory, kinematic model and nonlinear strain measures model in
order to perform accurate analyses, in terms of large-deflections, post-buckling
and dynamic response in the time domain. The need to adopt higher-order and
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full nonlinear models is emphasized in the analysis to accurately evaluate the 3D
stress fields and nonlinear transient responses in isotropic and composite structures.
Once the best model has been chosen, this methodology will be used to perform
the vibration problem of the loaded structures, the main theme of this thesis.

• Chapter 5 discusses some of the results obtained. The interest is primarily focused
on the efficiency and reliability of the presented numerical approach when applied
to vibration analysis of pre-stressed thin-walled structures in the highly nonlinear
regime. In particular, the virtual VCT results compared to the experimental one
showed excellent accuracy and reliability of the presented approach. Results showed
the potential of refined 1D and 2D theories to reduce the computational costs of
real problems simulation without drastically compromising the accuracy.

• Chapter 6 gives a summary of the present work and some concluding remarks
to highlight the major outcomes of this thesis. Some research ideas are proposed
as topics for future investigations based on the developments achieved during the
scope of the current PhD program.

• Appendix A provides other results of important nonlinear problems studied during
this research work. In detail, first, large-deflection and post-buckling analyses are
investigated in a total Lagrangian domain by using the NR method with a path-
following method based on the arc-length constraints. Then, several beam and plate
structures with different initial configurations, loadings and boundary conditions are
investigated to prove the accuracy and capability of the presented nonlinear dynamic
methodology. Results are compared to commercial FEM software solutions and
with results found in the available literature. Dynamic analyses are performed over
different time intervals using the HHT-α methods. Furthermore, the latter method
is also employed in the proposed multibody tool, where Lagrange multipliers are
adopted to model mechanical systems with constraints. Some preliminary simple
multibody problems are presented to show the capability of the proposed CUF-
based multibody tool, where the main advantage is to consider flexible components
simply and with high accuracy. As is well known, the computational analysis
cost is related directly to the size of the time step, which has to be adopted
for accuracy and stability. For this reason, convergence analyses of the mesh
approximation and time step size are performed for each case study. Note that for
all the considered examples, damping is neglected and higher-order beam/plate
models are adopted. Particular emphasis is related to the importance of choosing
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the appropriate kinematic theory to accurately describe the dynamic behaviours of
the considered structure.

• Appendix B lists journal articles and conference proceedings which resulted during
the course of the present work.



Chapter 2

Buckling prediction from vibration
data

This chapter intends first to provide an overview of the relevant literature devoted to
estimating the critical buckling load through vibration measurements and then a review
on the development of 1D and 2D theories and the analytical resolution based on the
dynamic approach to derive buckling loads through vibration data for the Euler-Bernoulli
beam (E-B), Kirchhoff plate and cylindrical shell structure, assuming simply-supported
boundary conditions.

It is well-known that the differential equations governing 3D elasticity problems may
be resolved analytically only for a limited number of cases. In fact, the solution to 3D
problems in closed-form is impossible in the general case relating to any geometries,
boundaries and load conditions. Therefore, it is necessary to introduce simplifying
hypotheses to move from 3D to 2D and 1D and solve the problem in an approximate
form. Different analytical approaches are employed to solve stability problems of certain
systems, such as the imperfection criterion, the Euler criterion, the Lagrange criterion
and the dynamic (vibration) criterion [53]. Unlike the previous criteria, the latter also
takes into account the inertia forces and allows to compute critical loads by analyzing the
variation of structure’s vibrations. In addition, the dynamic criterion must be employed
if non-conservative forces are applied.

Analytical evaluations of critical loads can be obtained only for some simple structures
under certain load and constraint conditions. For this reason, several experimental and
numerical methods were developed over the years to derive an accurate procedure for
predicting critical load and structural behaviour.
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2.1 State of art: Vibration Correlation Technique

Over the years, several researchers have simultaneously focused on the problems of vibra-
tion and elastic stability [54]. Several studies investigated both phenomena to understand
the effects on the vibration responses triggered by the local or global instabilities, see
[3, 55–57]. A detailed evaluation of the dynamic behaviour (i.e., modal shapes and natural
frequencies) is required for a reliable design and verification of the working structure. In
addition, it can be pointed out that the equilibrium state and the pre-stress condition of
a structure highly affect its modal characteristic. For example, when large displacement
and rotations occur within a working service of a component, its equilibrium conditions
change, so it is expected that its dynamic properties change as well. For this reason, it is
crucial to investigate the changing of modal shapes and natural frequencies in the case
of geometrical nonlinear situations, i.e., when the equilibrium condition is far from the
trivial states (u = 0).

The idea of using the natural frequencies variation of an axially-loaded structure
to identify critical buckling loads (Pcr) appeared at the beginning of the 20th century
from the work of Sommerfeld [23], in which he observed that the first natural frequency
of a cantilever beam with a variable mass at the free end decreases approaching zero
as the mass was increased up to the amount required to buckle the structure. Various
analytical formulations that relate the applied loads and natural frequencies for the
different structures have been established. Among others, the foundation of the VCT is
considered the work developed by Massonnet [58], in which the linear relation between
the applied loadings and the squared loaded natural frequencies for simply-supported
beam, plate and cylindrical shell structures was demonstrated. It reads:

f2 + P = 1 (2.1)

in which f indicates the loaded natural frequency and P the axially applied force. This
study represents the basis of experimental non-destructive procedures that have been
proposed in the last decades to predict the buckling load from the pre-buckling regime.
Among the different techniques that were developed, the Southwell plot affirmed on static
responses and the VCT based on vibrational responses are the most used.

The Southwell plot [59] represents the first non-destructive method, which appeared in
the early 1930s, for computing the critical load based on measurements of a simple beam
structure. Next, the practicality of this methodology was promptly verified by Donnell
[60], in which the approach was demonstrated valid for any nth theoretical buckling loads,
and Fisher [61], where the technique was validated for rectangular spars subjected to
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combined loadings, typically found in aeronautical applications. Subsequently, several
authors improved the method and extensively studied its applicability. For instance,
Horton et al. [62] thoroughly examined the application for column and plate structures,
demonstrating that the methodology is valid for structures with deformations of less
than half the thickness. A modified form of the Southwell plot to investigate the lateral-
torsional buckling of columns was explained by Stratford et al. [63, 64]. The Southwell
plot is employed to investigate the buckling of plate structures with some inherent
limitations, due to the nonlinear extensional strains, which influence the exact value of
the load. Readers are referred to [2, 60, 65] for some applications on plate structures.

On the other hand, in the early 1950s the classic VCT was established at the Caltech
University for the direct estimation of critical loads and equivalent boundary conditions
by interpolating the natural frequencies of the structures for increasing applied loadings
without reaching instability conditions [24, 25, 66]. VCT is a powerful approach, specially
for structures with unknown or imperfect boundary conditions in which analytical or
numerical solutions to the problem are not available. This technique consists in plotting
the experimental data in the classical characteristic graph, f2 vs P, and then applying a
linear relationship of best fit, see Fig. 2.1, to extrapolate the buckling load value when
the natural frequency reaches zero.

Exp. Points

Best fit linear line

f2, [Hz]

P, [N]

Fig. 2.1 Calculation of predicted buckling load using the VCT.

VCTs were applied to columns-beams [67–69] for decades by reaching maturity in
industrial applicability, while further improvements are still being developed for plate
and shell structures. In fact, this methodology is simple for studying beams with different
constraints, in which the first vibration mode shapes are still similar to the corresponding
buckling mode shapes. The curve f2 −P, linear for simply-supported constraints, deviates
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slightly from linearity for different boundary conditions, allowing VCT based on the best
linear fit to be successfully used [70]. In contrast, the applicability of this approach to
derive the buckling of plate and shell models is not straightforward. Studies have shown
that even for simply-supported plates the curves deviate from linearity resulting in poor
estimates of instability [25]. Particularly, this technique is not yet mature and suitable
for curved panels or cylindrical shells with imperfections or unstable buckling behaviours.
In this context, different VCT tests were carried out over the years. Mandal [71] analyzed
different 2D structures with simply-supported boundary conditions by analyzing the mode
changes with increasing progressive loadings. Experimental and numerical investigations
for flat stiffened carbon fiber-reinforced polymer panels were conducted by Chaves-Vargas
et al. [72] to predict the critical load using the classic VCT with a deviation of 5%
compared to the experimental value. Kennedy and Lo [73] evaluated the reliability of
the VCT to evaluate shear buckling loads of simply-supported plate structures. Several
identical spherical shell structures subjected to static external pressure were tested by
Okubo and Whittier [74]. The analysis proved that extrapolating the nonlinear relation
between f2 and P to the abscissa would lead to appropriate estimations of critical loads.
At the Technion, researchers noted that the method is essentially a curve fit of the
experimental data, and thus a new formula for linking the frequency and applied load
was convenient for those cases that present a sharp bend close to the buckling load [3]:

fq = A − BP (2.2)

in which A and B denote fitting constants and the exponent q leads the extrapolated
load level to match exactly the experimental buckling load. The parameter q is an
empirical value calculated from experimental data. By adopting this new formula, Segal
[75] carried out different studies on stiffened cylinders calculating the optimal value qOP T

in terms of geometric characteristics. A new relation between the natural frequencies
and the applied compression loadings was presented by Souza et al. [76, 77]. In this
work, a modified graph in terms of the parametric forms (1 − P)2 and 1 − f4 was adopted.
Therefore, the new relationship is:

(1 − P)2 + (1 + ζ2)(1 − f4) = 1 (2.3)

in which ζ2 stands for the square of the drop of buckling loads due to the initial
imperfections. Recently, a second-order equation to represent the classic characteristic
chart was formulated by Abramovich et al. [78]. Different metallic and composite curved
panels were tested to confirm the validity of these approaches. A semi-analytical VCT
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formulation to calculate critical loads of shell structures was suggested by Jansen et al.
[79]. Arbelo et al. [80, 81] implemented an empirical-VCT based on the considerations
done by Souza by using the applied force in the parametric form (1 − P)2 as a quadratic
function of the loaded natural frequency represented as 1− f2. This second-order equation
occurs through a best-fit procedure, from which ζ2 is extrapolated as a minimum, see
Fig. 2.2 and Ref. [81]. Singhtanadgid and Sukajit [82] obtained from the differential

Fig. 2.2 Trend of (1 − P)2 as a function of 1 − f2 as established in Ref. [81].

governing equations the link between applied loading and natural frequency of plates.
Next, Skukis et al. [83] assessed the suitability of the VCT for estimating instability in
metal shells subjected to compression. The experimental prediction of the buckling loads
was compared with the numerical solutions. The experimental verification of the VCT
robustness to investigate the buckling of laminated shells was carried out by Franzoni et
al. [84]. The same author [85] provided analytical and numerical verifications of the VCT
to calculate the critical loads of imperfection-sensitive isotropic shells. Other interesting
studies were presented in [57, 86, 87].

A brief review of the works carried out on the vibration-buckling correlation of beam,
plate and shell models is reported in the following sections, including simple analytical
resolutions.

2.2 Beam

Beam models were developed extensively over the last several decades for structural
design and analyses of thin structures. One of the advantages of these models is to reduce
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the 3D problem to a set of 1D variables, which depend only on the beam axis coordinate.
Clearly, 1D (beam) structural theories are simpler and more computationally efficient
than 2D (plate/shell) ones or 3D (solid) elastic solutions.

The first beam model was presented by Euler and Bernoulli (EBBT) [88]. This method
together with those of de Saint-Venant [89] and Timoshenko (TBT) [90] represent the
classical theories of the beam. The first two theories do not account for transverse
shear deformations, whereas the latter assumes a uniform shear distribution along the
cross-section of the beam model. An interesting comparison between EBBT and TBT
was presented in [91]. These models give reasonably good results when thin, solid
section and homogeneous structures are subject to flexure. Nevertheless, analyses of
deep, thin-walled, open section beam structures can require more sophisticated theories
to obtain sufficiently accurate results [92]. In order to overcome their limits, many
theories were proposed in the literature including the introduction of the shear correction
factors [93, 94], rotary inertia [95], warping effects [96, 97], the Saint-Venant based 3D
solutions and the implementation of the Proper Generalized Decompositions (PGD)
method [98, 99], Variational Asymptotic Beam Sectional Analysis (VABS) based on the
Variational Asymptotic Method (VAM) [100], the Generalized Beam Theory [101] and
the CUF [102]. Detailed considerations on higher-order beam theories were provided by
Washizu [103]. Other important works on higher-order beams are those published by
Kapania and Raciti [104, 105] and Carrera et al. [106].

Stability and dynamic analyses of beams are one of the most important parts of the
structural design process. In particular, several engineering structures are subjected to
axial loadings in their applications. Therefore, accurate predictions of dynamic responses
and buckling loads are of crucial importance. For this reason, several researchers have
studied the linear and nonlinear vibration behaviour of beams subjected to mechanical
or thermal loads, both experimentally and theoretically. For instance, one of the earlier
works in this context was presented by Srinivasan [107], in which the Ritz-Galerkin
technique is used to compute the governing nonlinear differential equation of dynamic
equilibrium for forced vibration of simply-supported structures. A semi-analytical theory
for studying the nonlinear dynamic analyses of simply-supported and clamped beams
was presented by Azrar et al. [108, 109], in which Hamilton’s principle, spectral analysis,
Lagrange’s equation, and harmonic balance methods are employed. Natural frequencies
of Timoshenko beam structures were studied by Abramovich [110]. Piana et al. [111]
provided a comparison between numerical and experimental results for thin-walled non-
symmetric cruciform beams subjected to compressive loads. A 1D FE model to perform
the forced nonlinear vibration analysis of laminated beam structures was developed by
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Elkaimbillah et al. [112]. The effect of axial loadings on forced vibrations of beam
structures was provided by Virgin and Plaut [113]. Experimental and numerical vibration
correlation of pre-stress reinforced composite aeronautical structures was explained by
Cabral et al. [114]. Free-vibration analyses of composite Timoshenko beams subjected to
axial loadings was performed by Banerjee [115] adopting the dynamic stiffness method.
By considering the coupling of flexural and torsional vibration modes, several analytical
approaches were formulated to derive the buckling and vibrations of thin-walled composite
structures [116–118]. Results of experimental tests were compared by advanced FE models
employing the CUF. For example, a virtual VCT approach was presented by Pagani et
al. [119] to evaluate the nonlinear vibrations of metallic and laminated beam structures.
An efficient CUF-based method for the evaluation of vibrations and buckling loads of
thin-walled structures subjected to axial loadings was provided by Augello et al. [120].
Accurate refined FE approaches to carry out numerical VCT analyses for laminated 1D
structures under compressive loadings were shown in [121]. The amount of work available
in the literature on experiments on thermal instability is not, however, large. As an
example, various experiments in heated composite plate structures were performed by
Gutiérrez Alvarez and Bisagni [122]. Murphy [123] carried out thermal buckling analyses
for clamped, rectangular plates by considering energy considerations and experimental
investigations. Bhagat and Yeyaraj [124] carried out various experiment tests to evaluate
the effect of non-uniform temperature distributions on the thermal buckling of shell
structures. Jeyaraj [125] provided free-vibration and buckling analyses of metallic plates
with thermal pre-stress. Finally, the topic of mode jumping or mode change through
mechanically or thermally induced instability has been addressed on limited occasions
[126].

2.2.1 Analytical formulation

A beam is a 1D structure in which the axial extension, L, is predominant when compared
to other dimensions (a,h) orthogonal to it. Typically, this geometry is represented by
means of a Cartesian reference system (x,y,z), where the y-axis indicates the beam axis
and the plane x − z is the cross-section, as illustrated in Fig. 2.3. In the following
mathematical considerations, the EBBT beam model with simply-supported conditions
is assumed. Starting from the a priori hypotheses for the Euler-Bernoulli beam, the
displacement, strain and stress field is derived. Thus, the nonlinear equilibrium equations
are obtained in the dynamic case. Then, by considering the dynamic criterion, buckling
loads are computed in relation to natural frequencies.
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Fig. 2.3 Geometry and reference system of a beam.

Displacement, strain and stress field

The EBBT is described from the following a priori assumptions:

• the cross-section is rigid on its plane x − z;

• the cross-section rotates around a neutral surface remaining plane;

• the cross-section remains orthogonal to the neutral surface during deformation.

Therefore, Euler and Bernoulli consider negligible the deformation of the cross-section
compared to the undergone deformation. Namely:



ϵxx = ∂u
∂x

= 0

ϵzz = ∂w
∂z

= 0

γxz = ϵxz = ∂u
∂z

+ ∂w
∂x

= 0

(2.4)

Upon these assumptions, the in-plane displacements ux and uz depend only on the
coordinate y. The displacement field of the EBBT is then:



u(x, y, z) = us(y)

v(x, y, z) = vs(y) + φz(y)x + φx(y)z

w(x, y, z) = ws(y)

(2.5)

in which φz and φx indicate the rotation angles along the z− and x-axis. By considering
the third assumption, one has:

γxy = γyz = 0 (2.6)
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Equations 2.5 and 2.6 allow to obtained the rotation angles in relation to the in-plane
displacements: 

γxy = ϵxy = ∂v
∂x

+ ∂u
∂y

= φz + ∂us

∂y
⇒ φz = ∂us

∂y

γyz = γyz = ∂v

∂z
+ ∂w

∂y
= φx + ∂ws

∂y
⇒ φx = ∂ws

∂y

(2.7)

By substituting Eq. 2.7 in Eq. 2.5, the displacement field may be rewritten as follows:


u(x, y, z) = us(y)

v(x, y, z) = vs(y) − ∂us

∂y
x − ∂ws

∂y
z

w(x, y, z) = ws(y)

(2.8)

Regarding the strain field, the EBBT accounts for the axial strain only. Hence:

ϵyy = ∂v

∂y
= v,y = ∂vs

∂y
− ∂2us

∂y2 x − ∂2ws

∂y2 z (2.9)

in which the first term represents the membrane deformation and the other, being the
second-order derivatives of the transverse displacements, are the curvatures.

Since the aim of this section is computing the buckling load through analytical
procedure, geometrical nonlinearities are included. Particularly, the classical von Kármán
1D nonlinear approximation is adopted.

ϵyy = ϵl
yy + ϵnl

yy = v,y +1
2w,2y (2.10)

The deformation is related to stress via the Hooke’s law:

σyy = Eϵyy (2.11)

where E stands for the Young’s modulus.
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Nonlinear governing equilibrium equation

Upon the E-B hypotheses, the stress resultants that affect the normal stress σyy are only
N , Mx and Mz.

N =
∫

A σyy dA

Mx =
∫

A σyyz dA

Mz =
∫

A σyyx dA

(2.12)

where A represents the beam cross-section area.
The PVD is exploited to express the nonlinear governing equilibrium equations. It

states that the sum of all the virtual work made by the internal, external and inertial
forces existing in the system in any arbitrary infinitesimal virtual displacements satisfying
the prescribed geometrical constraints is zero. Thus,

δLint = δLext + δLdyn (2.13)

where δLint, δLext and δLdyn are the virtual variation of the strain energy, external
loadings and dynamic work.. Their expressions are given below:

δLint =
∫

V

(
σyyδϵl

yy + σyyδϵnl
yy

)
dV

δLext =
∫

l pzδw dl

δLdyn =
∫

V ρ(üδu + v̈δv + ẅδw) dV

(2.14)

in which V denotes the volume (dV = dA dz), pz indicates the applied external load along
the z-axis, ρ represents the density and the superposed dots stand for time differentiation.

Buckling and vibrations of the beam under compressive loading

Consider the problem displayed in Fig. 2.4 and the E-B displacement field in the in-plane
case.

To derive the nonlinear equilibrium equations of the considered problem in an explicit
form, each contribution has to be evaluated. In the subsequent mathematical operations,
the integration by parts was carried out, shifting the derivatives from the virtual variations
of the displacements to the stress characteristics.
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Fig. 2.4 Beam subjected to compressive loadings.

The contributions for the virtual strain energy are expressed as follows:

∫∫∫
V σyyδϵl

yy dA dy =
∫

l

∫
A σyy(δvs, y − zδws,yy) dA dl =

=
∫

l(Nyδvs,y − Mxδws,yy) dl = −
∫

l(Ny,y δvs + Mx,yy δws) dl+

+
∫

η(Nyδvs − Mxδws,y +Mx,y δws) dη

∫∫∫
V σyyδϵnl

yy dA dy =
∫

V σyyδ(1
2w,2y) dV =

∫
V σyyws,y δws,y dV =

=
∫

l Nyws,y δws,y = −
∫

l(Nyws,y ),y δws dl +
∫

η Nyws,y δws dη

(2.15)

Regarding the virtual dynamic work, one has:

∫∫∫
V ρ(üδu + v̈δv + ẅδw) dV =

∫
V [ρüsδus + ρ(v̈s − zẅs,y )(δvs − zws,y ) + ρẅsδws] dV =

=
∫

V [ρüsδus + ρv̈sδvs − ρzv̈sδws,y − ρzẅs,y δvs + ρz2ẅs,y δws,y + ρẅsδws] dV =

=
∫

l[I0üsδus + (I0v̈s − I1ẅs,y )δvs + I0ẅsδws + (−I1v̈s + I2ẅs,y )δws,y] dl =

= −
∫

l[I0üsδus + (I0v̈s − I1ẅs,y )δvs + I0ẅsδws + (−I1v̈s, y + I2ẅs,yy )δws] dl+

+
∫

η(−I1v̈s + I2ẅs,y )δws dη

(2.16)
where (I0, I1, I2) =

∫
A ρ(1, z, z2) dA are the mass, static moment and moment of inertia

per unit length.
Upon evaluating each contribution, the nonlinear equilibrium equations in the dynamic

case for the considered problem are written as follows:
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
Ny,y δvs = (I0v̈s − I1ẅs,y )

Mx,yy +(N̄yws,yy ) = I0ẅs + (−I1v̈s,y +I2ẅs,yy )
(2.17)

where the Ny = N̄y is considered constant on the beam only for the nonlinear
contribution.

Initial hypotheses are formulated to derive critical buckling load using the dynamic
criterion. These assumptions are:

• pz = 0;

• [B] = 0, no coupling between the membrane and flexural-torsional effects. [B]
represents the coupling matrix;

• I1 = I2 = 0.

and the Navier method is used to compute the closed-form solution of the proposed
governing equations under the specific conditions of geometry, boundary and material in
which this resolution is valid. Therefore, according to the Navier approach, the following
harmonic assumptions are done for displacements:

u(x; t) = Usin(αx)eiωt

w(x; t) = Wcos(αx)eiωt

(2.18)

where the terms α = mπ
L

, in which m denotes the half-wave number along the beam-axis.
Equation 2.18 indicates the displacement field of a simply-supported beam and it

satisfies the following boundary condition:


u(0) = u(L) = 0

v(0) = v(L) = 0

w(0) = w(L) = 0

(2.19)

Upon the assumptions made, one has:

Ny = EAvs,y

Mx = −EIxws,yy

(2.20)
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By substituting Eq. 2.20 in Eq. 2.17 and omitting the mathematical passages, the
final form of the equation used to compute buckling loads is:

(−EIxα4 − N̄y + I0ω
2)Wcos(αx)eiωt = 0

⇒ ω2 = α4EIx+α2N̄y

I0

(2.21)

The latter equation provides a relation between applied loadings and natural frequencies.
The critical load value is shown in Fig. 2.5.

2

Ny

2

2=0

Ny=
2EIx

Fig. 2.5 The evaluation of the buckling load value through dynamic criterion. Euler-
Bernoulli beam.

2.3 Plate

The modelling of a structure employing 2D elements turns out to be a classic problem
in structure theory. Generally speaking, the plate is a special limiting case of the shell
without curvature. The plate thickness is small compared with the surface dimensions and
may be either constant or variable. Plate structures, in particular those in composite, are
being increasingly employed in aerospace industries as well as in other fields. For example,
the plates are adopted on surfaces in aircraft wings, plate girder webs, bridges, buildings
or ship hulls. Different shapes and sizes are considered, e.g., circular or rectangular plates,
thin or thick plates. In particular, thin plate structures, usually adopted in aerospace
engineering, are very stiff for in-plane loadings, but they are quite flexible in bending. A
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good understanding of their static and dynamic structural responses, deformation and
stress distribution, natural frequencies variation and buckling behaviours under different
loads and boundary conditions is needed to use them efficiently.

Several approaches have been used for eliminating the thickness coordinate (z). One
of the most used is to adopt axiomatic assumptions on the unknowns in the z-direction
by imposing a polynomial expansion. The classical mathematical formulations of plate
structures were provided by Love-Kirchhoff [127] and Reissner-Mindlin [128, 129]. The
first model, called Kirchhoff–Love plate Theory [130], does not consider the shear stress,
whereas it is included in the second one, called First Shear Deformation Theory (FSDT)
[131], but are assumed constant along the structure thickness. Both models may lead
to very inaccurate results as far as the local response of thick laminated structures is
concerned.

In the works of Carrera [132, 133], the importance of adopting higher-order models
for performing reliable analysis of multi-layered structures was highlighted. Furthermore,
the importance of describing the inter-laminar stresses accurately was studied by many
researchers [134, 135, 133]. As a consequence, it was observed that both transversal dis-
placements and stresses must be continuous to obtain reliable results. These requirements
are referred to as C0

z requirement.
Several high-order shear deformation theories (HSDTs) that involve higher-order

terms in Taylor’s expansions of the displacement in thickness coordinates were formulated
to overcome the FSDT limitations. For instance, the first to present improved theories for
plates was Hildebrand et al. [136]. Librescu [137] formulated higher-order displacement-
based shear deformation theories for studying composite plates. Lo et al. [138, 139]
provided a closed-form solution for composite plates with a higher-order model that
include the effect of transverse deformations. Putcha and Reddy [140] formulated a mixed
shear flexible FE based on a higher-order theory. Recently, Carrera [141–145] provided
refined 2D models able to evaluate laminated composite plates with high accuracy.

As previously mentioned, when structures are subject to axial loads, they may
experience a loss of stability that is manifested in the local growth of motion in the
vicinity of equilibrium leading to buckling. Especially, the plates often have significant
post-buckled strength [146]. This suggests that dynamic behaviour in the post-buckled
regime may also be of interest. Furthermore, plates may exhibit large deflections that
result in a coupling between the in-plane and bending deformations like for beams.
Contrary to the beams, plates have additional capacity to resist loads beyond their
buckling state and their failure load is much higher. Failure loads for plates may be found
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by analyzing their post-buckling behaviour. For this reason, it is crucial to accurately
introduce nonlinearities for carrying out reliable analyses of plate structures.

The topic of nonlinear static and transient analysis of plates has a vivid interest in the
literature. A short overview of some studies on plates will now be given. Von Kármán
[147] extended the Kirchhoff method to study the finite deformation of 2D structures,
taking into account geometrical nonlinearities. Chu and Herrmann [148] were the pioneers
in nonlinear vibration analyses of plate structures. Reddy [149] provided nonlinear plate
theories that include cubic terms in the surface kinematics. One of the most interesting
aspects of plates is that they can show jumps in their post-buckled equilibrium behaviour
if high compressive loads are applied [150, 151]. This secondary bifurcation is associated
with an interaction between buckling modes and is often referred to as mode jumping
[152, 153] and has received a particular interest in the literature [154, 155]. Tracking the
movement of natural frequencies before and during this phenomenon can shed light on
this interesting aspect of the dynamics of axially loaded structures. Interest in mode
jumping was initiated by the classic study of Stein [150]. Stein noticed that the plate
would suddenly jump to a different buckled equilibrium configuration in the post-buckled
regime. This typically corresponds to an often sudden change of the wave-number of
the buckled form. It may also happen that on subsequent unloading, the system may
not follow the original path: Hysteresis occurs [156]. By using trigonometric formulas
provided by Fourier, Navier [157] obtained the exact vibration solutions for rectangular
plates with simply-supported edges. Then, Poisson [158] extended Navier’s study to
circular plates. The extended plate theory which considered the combined bending and
stretching actions of plates was attributed to Kirchhoff [127]. An extensive collection of
theoretical and experimental solutions for the buckling of plates is available in the six-part
Handbook for Structural Stability, published by the National Advisory Committee for
Aeronautics [159]. In addition, a large amount of similar material has been made available
in the recent book by Baker et al. [160]. Vibration analyses of different plates considering
various sets of constraints are examined in the Leissa’s book [161]. The literature review
on nonlinear plate vibrations is provided by Chia [162, 163]. In addition, nonlinear
vibrations of rectangular composite flat panels were thoroughly studied by Noor et al.
[164] and Harras et al. [165]. Many theoretical studies on the large amplitude vibrations
of plate structures are available in the literature, however, the experimental results are
not numerous. Some experimental results are provided by Amabili [166, 167]. Buckling
prediction of plates using the VCT was provided by Abramovich et al. [78]. VCT results
for the buckling load prediction of sandwich plates structures with iso-grid cores can be
found in [168]. In this context, the following sections will provide both an analytical
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formulation and numerical methodology to evaluate the critical buckling load using the
vibration data.

2.3.1 Analytical formulation

In the following mathematical considerations, a plate model, illustrated in Fig. 2.6, with
simply-supported conditions is assumed.

a
b

x
h

y

z

Fig. 2.6 Geometry and reference system of a plate.

Starting from the a priori hypotheses for the Kirchhoff theory, the displacement,
strain and stress field is derived. Thus, the nonlinear equilibrium equations are obtained
in the dynamic case. Then, by considering the dynamic criterion, the buckling load
values are computed in relation to natural frequencies.

Displacement, strain and stress field

The Kirchhoff plate theory derives from the following assumptions:

1. transverse normal segments remain straight after deformation. Namely, the dis-
placement in the plane u and v are linear with respect to z;

2. such segments do not lengthen and shorten: ϵzz = 0;

3. they remain orthogonal to the average surface when they rotate: γxz = ϵxz = 0,
γyz = ϵyz = 0.
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According to these hypotheses, holds:

u(x, y, z) = u0(x, y) + φx(x, y)z

v(x, y, z) = v0(x, y) + φy(x, y)z

w(x, y, z) = w0(x, y)

(2.22)

in which φx and φy denote the rotations of the transverse normals around the x and y

axis. The strain-displacement relation are:

ϵxx = ∂u
∂x

= u,x

ϵyy = ∂v
∂y

= v,y

ϵzz = ∂w
∂z

= w,z

ϵxz = ∂u
∂z

+ ∂w
∂x

= u,z +w,x

ϵyz = ∂v
∂z

+ ∂w
∂y

= v,z +w,y

ϵxy = ∂u
∂y

+ ∂v
∂x

= u,y +v,x

(2.23)

in which a compact notation to indicate derivatives is employed (e.g., u,x stands for the
derivative of u as a function of x).

On the basis of the hypotheses, the angles of rotation can be obtained as derivatives
of the transverse displacements. Namely:


ϵxz = u,z +w,x = φx + w0,x = 0 ⇒ φx = −w0,x

ϵyz = v,z +w,y = φy + w0,y = 0 ⇒ φy = −w0,y

(2.24)
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Therefore, the displacement field of the Kirchhoff plate model is:

u(x, y, z) = u0(x, y) − w0,x (x, y)

v(x, y, z) = v0(x, y) − w0,y (x, y)

w(x, y, z) = w0(x, y)

(2.25)

By substituting Eq. 2.25 in Eq. 2.23 and considering Eq. 2.24, one obtains the only
deformations in the plane included by the Kirchhoff model. Thus:



ϵxx = u0,x −zw0,xx = ϵ0
xx + zkxx

ϵyy = v0,y −zw0,yy = ϵ0
yy + zkyy

ϵxy = u0,y −zw0,xy +v0,x −zw0,xy = ϵ0
xy + zkxy

(2.26)

The deformation vector can be seen as composed of one part that has the physical
meaning of membrane deformations (ϵ0) and the other of flexural ones (k).

The nonlinearity is included because one is interested in post-buckling problems. In
particular, the classical von Kármán 2D nonlinear approximation is considered. The
strain-displacement may be rewritten as:



ϵxx = u,x +1
2w2,x = ϵl

xx + ϵnl
xx

ϵyy = v,y +1
2w2,y = ϵl

yy + ϵnl
yy

ϵxy = u,y +v,x +w,x w,y = ϵl
xy + ϵnl

xy

(2.27)

in which ϵl indicates the linear components of the strain, while ϵnl the nonlinear ones,
respectively.

Since a plane tension state (σzz = σxz = σyz = 0) is considered for the Kirchhoff plate
model, the stress-strain relation is:

{σ} = [C] {ϵ} (2.28)

in which C represents material elastic matrix.
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Nonlinear governing equilibrium equation

By considering the assumptions done, the internal forces acting on a plate are illustrated
in Fig. 2.7. These represent forces and moments per unit of length, Hence:

Fig. 2.7 Internal forces in the Kirchhoff plate.

Nx =
∫ h/2

−h/2 σxx dz, Mx =
∫ h/2

−h/2 σxxz dz

Ny =
∫ h/2

−h/2 σyy dz, My =
∫ h/2

−h/2 σyyz dz

Nxy =
∫ h/2

−h/2 σxy dz, Mxy =
∫ h/2

−h/2 σxyz dz

(2.29)

Consider pure mechanical problems, the PVD is exploited to derive the nonlinear
equations. Thus:

δLint = δLext + δLdyn (2.30)
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where δLint, δLext and δLdyn are the virtual variation of the strain energy, external
loadings and dynamic work. Their expressions are given below:

δLint =
∫

V [(σxxδϵl
xx + σyyδϵl

yy + σxyδϵl
xy) + (σxxδϵnl

xx + σyyδϵnl
yy + σxyδϵnl

xy)] dV

δLext =
∫

Ω pzδw dΩ

δLdyn =
∫

V ρ(üδu + v̈δv + ẅδw) dV

(2.31)

in which V denotes the volume (dV = dΩ dz), Ω indicates the surface, pz is the applied
external load along the z-axis, ρ represents the density and the superposed dots stands
for time differentiation.

In order to solve these equations, each single contribution has to be computed.
Regarding the contributions of the strain energy virtual variation, one obtains:

∫∫∫
V σxxδϵl

xx dΩ dz =
∫

Ω(Nxδu,0x −Mxδw,xx) dΩ =

= −
∫

Ω(Nx,x δu0 + Mx,xx δw0) δΩ +
∫

Γ(Nxδu0 − Mxδw,0x + Mx,x δw0) dΓ

∫∫∫
V σyyδϵl

yy dΩ dz =
∫

Ω(Nyδv,0y −Myδw,yy) dΩ =

= −
∫

Ω(Ny,y δv0 + My,yy δw0) δΩ +
∫

Γ(Nyδv0 − Myδw,0y + My,y δw0) dΓ

∫∫∫
V σxyδϵl

xy dΩ dz =
∫

Ω(Nxyδu,0y +Nxyδv,0x −2Mxyδw,xy
0) dΩ =

= −
∫

Ω(Nxy,y δu0 + Nxy,x δv0 + 2Mxy,xy δw0) dΩ +

∫
Γ(Nxyδu0 + Nxyδv0 − 2Mxyδw,0x + 2Mxy,y δw0) dΓ

(2.32)
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∫∫∫
V σxxδϵnl

xx dΩ dz =
∫

V σxxδ(1
2w,2x ) dΩ dz =

∫
V σxxw,0x δw,0xdΩdz =

=
∫

Ω Nxw,0x δw,0x dΩ = −
∫

Ω(Nxw,0x ),x δw0 dΩ +
∫

Γ(Nxw,0x )δw0 dΓ

∫∫∫
V σyyδϵnl

yy dΩ dz =
∫

V σyyδ(1
2w,2y ) dΩ dz =

∫
V σyyw,0y δw,0ydΩdz =

=
∫

Ω Nyw,0y δw,0y dΩ = −
∫

Ω(Nyw,0y ),y δw0 dΩ +
∫

Γ(Nyw,0y )δw0 dΓ

∫∫∫
V σxyδϵnl

xy dΩ dz =
∫

V σxyδ(w,0x w,0y ) dV =
∫

Ω Nxy(w,0x δw,0y + w,0y δw,0x) dΩ =

= −
∫

Ω[(Nxyw,0x ),y )δw0 + (Nxyw,0y ),x δw0] dΩ+

+
∫

Γ[(Nxyw,0x )δw0 + (Nxyw,0y )δw0] dΓ
(2.33)

Since the dynamic procedure is considered, the virtual variation of the dynamic work
is evaluated.

δLdyn =
∫

V [ρ(ü0 − zẅ,0x )(δu0 − zδw,0x) + ρ(v̈0 − zẅ,0y )(δv0 − zδw,0y) + ρẅ0δw0] dV =

=
∫

V [ρü0δu0 − ρzẅ0δu0 − zρẅ,0x δu0 + ρz2ẅ,0x δw,x +ρv̈0δv0 − ρzẅδv0−

−zρẅδv0 − zρẅ,y δv0 + ρz2ẅ,y δw,y +ρẅ0δw0] dv =
∫

Ω[(I0ü
0 − I1ẅ,x )δu0+

+(I0v̈
0 − I1ẅ,y )δv0 + I0ẅ

0δw0 + (−I1ü
0 + I2ẅ,x )δw,0x+

+(−I1v̈
0 + I2ẅ,0y )δw,0y dΩ = −

∫
Ω[(I0ü

0 − I1ẅ,0x)δu0 + (I0v̈
0 − I1ẅ,y)δv0+

+I0ẅ
0δw0 + (I1ü,0x −I2ẅ,xx +I1v̈,0y −I2ẅ,0yy )δw0] dΩ+

+
∫

Γ[(−I1ü
0 + I2ẅ,0x )δw0 + (−I1v̈

0 + I2ẅ,y )δw0] dΓ
(2.34)

where (I0, I1, I2) =
∫

z ρ(1, z, z2) dz represent the mass, static moment and moment of
inertia per unit of area.

Upon evaluating each contribution, the nonlinear equations in the dynamic case are
written as follows:
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

Nx,x +Nxy,y = I0ü
0 − I1ẅ,x

Nxy,x +Ny,y = I0v̈
0 − I1ẅ,y

−Mx,xx −My,yy −2Mxy,xy = −I0ẅ
0 − I1(ü,0x +v̈,0y ) + I2(ẅ,0xx −ẅ,0yy ) +

+[(Nxw,0x ),x +(Nyw,0y ),y +(Nxyw,0x ),y +(Nxyw,0y ),x ] − pz

(2.35)

Consider the Nx = N̄x, Ny = N̄y, Nxy = N̄xy constant on the plate only for the
nonlinear contribution. Namely:

Nx,x +Nxy,y = I0ü
0 − I1ẅ,x

Nxy,x +Ny,y = I0v̈
0 − I1ẅ,y

−Mx,xx −My,yy −2Mxy,xy = −I0ẅ
0 − I1(ü,0x +v̈,0y ) + I2(ẅ,0xx −ẅ,0yy ) + [(N̄xw,0x ),x +

+(N̄yw,0y ),y +(N̄xyw,0x ),y +(N̄xyw,0y ),x ] − pz

(2.36)
Then, both the nonlinear equilibrium equations and stability equations are examined

to calculate the buckling load. 
δL = 0

δ2L = 0
(2.37)

Evaluating the buckling load value is equivalent to finding the values of N̄x, N̄y, N̄xy

that satisfy the stability equation.

Buckling of the plate under compressive loadings

Consider the problem illustrated in Fig. 2.8. The constitutive equations of the Kirchhoff
plate are: 

{N} = [A] {ϵ0} + [B] {k}

{M} = [B] {ϵ0} + [D] {k}
(2.38)
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Fig. 2.8 Plate subjected to compressive loadings.

in which [A] represents the membrane stiffness matrix, [B] is coupling matrix and [D]
indicates the flexural-torsional stiffness matrix.

To compute the critical buckling load through the dynamic criterion, initial hypotheses
are made. These assumptions are:

• pz = 0;

• [B] = 0, no coupling between the membrane and flexural-torsional effects;

• I1 = I2 = 0.

Furthermore, the stability equation of the considered problem is:

− Mx,xx −My,yy −2Mxy,xy = −I0ẅ
0 + N̄xw,0xx (2.39)

The Navier method is employed to compute the closed-form solution of the proposed
governing equations for the particular geometry, boundary and material condition in
which this resolution is valid. Therefore, according to the Navier approach, the following
harmonic assumptions are done for the displacements:

w(x, y; t) = Wsin(αx)sin(βy)eiωt (2.40)

where the terms α = mπ
b

and β = nπ
a

, in which m and n stand for the half-wave number
along the x-axis and y-axis.
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Equation 2.40 indicates the displacement field of a simply-supported plate and it
satisfies the following boundary condition:


x = 0, a → w0 = 0, Mx = 0

y = 0, b → w0 = 0, My = 0
(2.41)

By omitting the mathematical passages and neglecting the terms that are not involved
in this problem, the final form of the equation used to compute the critical buckling load
is:

[−D11α
4 − D22β

4 − 2(D12 + 2D66)α2β2 + I0ω
2 − α2N̄x]Wsin(αx)sin(βy)eiωt = 0

⇒ ω2 = D(α4+β4+2α2β2)−α2N̄x

I0
(2.42)

where D = D11 = D22 = D12 + 2D66 = Eh3

12(1−ν2) The latter equation provides a relation
between the applied loads and natural frequencies. Finally, the critical load value is
shown in Fig. 2.9.

2

Nx

Nx=D(
2+2 2+ 4/ 2)

2

2=0

Fig. 2.9 The evaluation of the buckling load value through dynamic criterion. Kirchhoff
plate.
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2.4 Shell

Nowadays, shell models are used extensively in various engineering fields, for instance, in
aerospace and civil engineering, among others. The main feature of these structures is
to achieve large displacements and rotations without having plasticity. This ability is
an aspect of fundamental importance if linked to the industrial need to produce more
advantageous structures in terms of costs and performances. Basically, shells are curved
lightweight constructions that can support external forces with high efficiency. Their
exceptional mechanical properties are due to the curvature, which generates the coupling
between the membrane and the flexural behaviours, both in single and double curve
models. In addition, the shell structures, even if they undergo large displacements
and rotations when extreme external forces are applied, still preserve the post-buckling
stiffness.

The literature about shells theories is large [169–171]. The works of Poisson [158],
Love [172], Mindlin [129], Kirchhoff [173], Reissner [174] and Cauchy [175] are the classical
formulations available in the literature. Over the years, several higher-order 2D theories
were formulated to overcome the drawbacks of the classical studies’ hypotheses. For
example, Reddy [176] developed a refined through-the-thickness kinematics, accounting
for higher-order shear deformations, to study 2D laminated structures. Mashat et al.
[177] carried out an assessment of the relevance of displacement variables in refined
theories for isotropic and multi-layered shell structures, employing axiomatic/asymptotic
techniques. The refined theories of shells were unified by Carrera in his early work [42].
The reader is referred to [178, 179] for other significant analyses on shell theories.

The complexity of the shell structure analyses is related to curvature. In fact, a
modification of the curvature may produce a totally different force and, therefore, different
behaviours of the structure [180]. Moreover, the shells collapse due to buckling long
before the material’s failure strength is reached due to the optimal distribution of the
material. Due to their geometry, these structures may present large displacements, as a
function of the shell thickness, associated with small strains before the collapse. Therefore,
nowadays, there is a vivid interest in the buckling behaviours of shell structures. Most
shell stability problems, as they are posed in practical engineering, cannot be solved
analytically. Consequently, numerical methods must be applied.

The shell structures are often subjected to dynamic loadings that cause vibrations;
vibration amplitudes of the order of the thickness of the shell may be easily achieved in
several applications. If the vibration amplitude is small enough, the dynamics of a shell
can be adequately predicted by linear analyses. On the other hand, if the amplitude is of
the order of the shell thickness, nonlinear effects should be considered. In this context,
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Donnell [28] provided nonlinear theories of circular cylindrical shell structures considering
the simplifying shallow-shell hypothesis. Novozhilov [181] established a nonlinear theory
for doubly curved shell models with constant curvature. Additional nonlinear shell theories
were provided by Naghdi and Nordgren [182], employing the Kirchhoff hypotheses, and
by Libai and Simmonds [183]. A linear higher-order shear deformation theory of the
shell was formulated by Reddy and Liu [176]. This theory was extended to nonlinear
deformations by Dennis and Palazotto [184]. Studies comparing the results for nonlinear
vibrations of circular cylindrical shells with various constraints are limited. In fact, most
of the literature deals with simply-supported boundary conditions. Not many studies on
shells with different constraints are available. Matsuzaki and Kobayashi [185] analyzed
large amplitude vibrations of clamped circular cylindrical shell structures theoretically
and experimentally. In addition, different analyses of circular cylindrical shells with
various boundary conditions were carefully performed by Amabili [186]. Numerically
predicted responses of orthogrid-stiffened circular cylinders under compressive loadings
were evaluated by Haynie and Hilburger [187] to compare several lower bound buckling
load prediction methods. Horton et al. [188] presented non-destructive procedure to
determine the buckling loads of shells. The buckling loads prediction of cylindrical shell
structures under compression based on a non-destructive methodology was provided
by Fan [189]. In detail, the 3D representation of probe force, probe displacement and
prescribed axial load are determined via the repeatedly probing the shell under different
prescribed axial loads. Consequently, the critical buckling load of the shell is predicted
by the fitting curve which reflects the relation between the maximum probe force and the
prescribed axial load. The same approach was used by Hutchinson and Thompson [190] to
evaluate the buckling of entire spherical shell structures subjected to combined pressure.
Readers are referred to [191] for details about the probing technique. For completeness,
reviews on nonlinear vibrations of shell structures may be found in [192, 193].

2.4.1 Analytical formulation

Preliminaries

Typically, the shell geometry is represented using an orthogonal curvilinear reference
system (α, β, z), as shown in Fig. 2.10, where α − β denote the surface and z indicates
the thickness. Consider shells with constant thickness and constant radii of curvature
Rα and Rβ throughout the Ω domain.

If P is a generic point on the reference curved surface Ω, it is identified by the position
vector rΩ = rΩ(α, β). The coordinates α and β coincide with the curvature lines of the
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β

R

α

Rα

Ω

Fig. 2.10 Representative geometry and reference system of the doubly-curved shell model.

mean surface and the unit vectors in the directions α and β are indicated respectively
with a and b:

a = 1
A

∂r

∂α
b = 1

B

∂r

∂β
(2.43)

where:
A2 = ∂r

∂α
· ∂r

∂α
B2 = ∂r

∂β
· ∂r

∂β
(2.44)

A and B stand for the coefficients of the first fundamental form of shell reference surface.
If we consider two points of coordinate (α, β) and (α + dα, β + dβ) arbitrarily near

to each other and both lying on the surface, the increment of the vector ds in moving
from the first point to the second one is defined as follows:

ds2 = dr · dr = A2(dα)2 + B2(dβ)2 (2.45)

The unit vector perpendicular to the mean surface is denoted by n, and is chosen in such
a way as to form a right-handed orthogonal system.

n = a × b (2.46)

Therefore, the generic position of the point P outside the reference surface of the shell is
identified by the following vector:

r = rΩ(α, β) + ζn(α, β) (2.47)
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in which ζ represents the distance of the point from the reference surface. From Eq. 2.47,
the vectors of the local basis are obtained as follows:

g1 = ∂u
∂α

= A
(
1 + ζ

Rα

)
a

g2 = ∂u
∂β

= B
(
1 + ζ

Rβ

)
b

g3 = ∂u
∂ζ

= {n}

(2.48)

with:
g11 = A2

(
1 + ζ

Rα

)2
, g22 = B2

(
1 + ζ

Rβ

)2
, g33 = 1,

g23 = g31 = g12 = 0
(2.49)

The volume of a fundamental element is:

dV = AB

(
1 + ζ

Rα

)(
1 + ζ

Rβ

)
dα dβ dη (2.50)

Finally, the relations that link the local Cartesian reference system to the orthogonal
curvilinear coordinates are the following:

dx = A

(
1 + ζ

Rα

)
dα, dy = B

(
1 + ζ

Rβ

)
dβ, dz = ζ (2.51)

If the radii of curvature Rα and Rβ are supposed to be constant throughout domain Ω,
the coefficients A and B are equal to 1. Thus:

Hα =
(

1 + ζ

Rα

)
, Hβ =

(
1 + ζ

Rβ

)
(2.52)

Displacement, strain and stress field

One of the most commonly used models to describe shell structures is the Koiter method
which is based on Kirchhoff-Love (KL) hypotheses. In this model,transverse strains are
negligible with respect to the other components of the strain. The following are the
hypotheses introduced by Kirchhoff-Love:

• Thin shells are considered: the thickness h is negligible compared to the other two
dimensions, h

a
, h

b
≪ 1;

• h is constant;
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• ϵzz ≪ ϵαα, ϵββ;

• ϵαz = ϵβz = 0.

According to Koiter’s model, the displacement field is the following:

u(α, β, z) = u0(α, β) + zφα(α, β)

v(α, β, z) = v0(α, β) + zφβ(α, β)

w(α, β, z) = w0(α, β)

(2.53)

where φα and φβ represent the rotations of the transverse normals around the α and β

axis. The strain-displacement relation are expressed as follows:


ϵαα = 1
Hα

(
u,α + w

Rα

)

ϵββ = 1
Hβ

(
v,β + w

Rβ

)

ϵzz = w,z

ϵαz = u,z − u
HαRα

+ w,α
Hα

ϵβz = v,z − v
RβHβ

+ w,β
Hβ

ϵαβ = v,α
Hα

+ u,β
Hβ

(2.54)

Upon the KL assumptions, one has:

ϵzz = 0 → w = w0(α, β)

ϵαz = 0 → φα = u0

Rα
− w,α

ϵβz = 0 → φβ = v0

Rβ
− w,β

(2.55)
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Therefore, the displacement field of the shell may be rewritten as:

u(α, β, z) = u0(α, β) + z
[

u0(α,β)
Rα

− w,0α (α, β)
]

v(α, β, z) = v0(α, β) + z
[

v0(α,β)
Rβ

− w,0β (α, β)
]

w(α, β, z) = w0(α, β)

(2.56)

By introducing the geometrical nonlinearities, the classical von Kármán 2D nonlinear
approximation are considered. The strain-displacement relation in general curvilinear
coordinates are:

ϵαα = 1
Hα

(
u,0α +z u,0α

Rα
− zw,0αα + w0

Rα

)
+ 1

2
(w,0α)2

H2
α

ϵββ = 1
Hβ

(
v,0β +z

v,0β
Rβ

− zw,0ββ + w0

Rβ

)
+ 1

2
(w,0β)2

H2
β

ϵαβ = u,0β
Hβ

+ v,0α
Hα

+ z v,0α
HαRβ

+ z
u,0β

HβRα
− z

w,0αβ

Hβ
− z

w,0βα

Hα
+ w,0αw,0β

HαHβ

(2.57)

The stress vector is obtained from the constitutive equations.

{σ} = [C] {ϵ} (2.58)

Nonlinear governing equilibrium equations

The internal forces acting on the shell are the following:

Nα =
∫ h/2

−h/2 σααHβ dz, Mα =
∫ h/2

−h/2 zσααHβ dz

Nβ =
∫ h/2

−h/2 σββHα dz, Mβ =
∫ h/2

−h/2 zσββHα dz

Nαβ =
∫ h/2

−h/2 σαβHβ dz, Mαβ =
∫ h/2

−h/2 zσαβHβ dz

Nβα =
∫ h/2

−h/2 σβαHα dz, Mβα =
∫ h/2

−h/2 zσβαHα dz

(2.59)

The PVD is employed to obtain the nonlinear equations. Namely:

δLint = δLext + δLdyn (2.60)
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Their expressions for a shell structures are:

δLint =
∫

V (σααδϵαα + σββδϵββ + σαβδϵβα) HαHβ dV

δLext =
∫

A pzδwHαHβ dα dβ

δLdyn =
∫

V ρ(üδu + v̈δv + ẅδw)HαHβ dV

(2.61)

in which dV = dα dβ dz (dΩ = dα dβ).
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To derive the nonlinear equilibrium equations of the considered shell problem in an
explicit form, each contribution has to be evaluated.∫∫∫

V (σααδϵαα)HαHβ dα dβ dz =
∫

V

{
σααδ

[
1

Hα

(
u,0α +z u,0α

Rα
− zw,0αα + w0

Rα

)
+ 1

2
(w,0α)2

H2
α

]}
HαHβdα dβ dz =

∫
V

(
σαα

δu,0α
Hα

+ σααz δu,0α
HαRα

− σααz δw,0αα
Hα

+ σαα
δw0

RαHα
+ σαα

δ(w,0α)2

2H2
α

)
HαHβ dα dβ dz =

∫
Ω

(
Nαδu,0α + Mα

δu,0α
Rα

− Mαδw,0αα + Nα
δw0

Rα
+ Nαw,0αδw,0α

Hα

)
dΩ =

= −
∫

Ω

(
Nα,α δu0 − Mα,α

δu0

Rα
+ Mα,αα δw0 + Nα

δw0

Rα
+ (Nαw,0α),α

Hα
δw0

)
dΩ +

+
∫

Γ

(
Nαδu0 + Mα

δu0

Rα
− Mαδw,0α + Mα,α δw0 + (Nαw,α)

Hα
δw0

)
dΓ

∫∫∫
V (σββδϵββ)HαHβ dα dβ dz =

∫
V

{
σββδ

[
1

Hβ

(
v,0β +z

v,0β
Rβ

− zw,0ββ + w0

Rβ

)
+ 1

2
(w,0β)2

H2
β

]}
HαHβ

dα dβ dz =
∫

V

(
σββ

δv,0β
Hβ

+ σββz
δv,0β

HβRβ
− σββz

δw,0ββ

Hβ
+ σββ

δw0

RβHβ
+ σββ

δ(w,0β)2

2H2
β

)
HαHβ dα

dβ dz =
∫

Ω

(
Nβδv,0β + Mβ

δv,0β
Rβ

− Mβδw,0ββ + Nβ
δw0

Rβ
+ Nβw,0β

Hβ
δw,0β

)
dΩ =

= −
∫

Ω

(
Nβ,β δv0 − Mβ,β

δv0

Rβ
+ Mβ,ββ δw0 + Nβ

δw0

Rβ
+ (Nβw,0β),β

Hβ
δw0

)
dΩ +

+
∫

Γ

(
Nβδu0 + Mβ

δu0

Rβ
− Mβδw,0β + Mβ,β δw0 + (Nβw,β)

Hβ
δw0

)
dΓ

∫∫∫
V (σαβδϵαβ)HαHβ dα dβ dz =

∫
V

[
σαβδ

(
u,0β
Hβ

+ v,0α
Hα

+ z v,0α
HαRβ

+ z
u,0β

HβRα
− z

w,0αβ

Hβ
− z

w,0βα

Hα
+ w,0αw,0β

HαHβ

)]

HαHβ dV =
∫

V [σαβ
δu,0β
Hβ

+ σαβ
δv,0α
Hα

+ σαβz δv,0α
HαRβ

+ σαβz
δu,0β

HβRα
− σαβz

δw,0αβ

Hβ
− σαβz

δw,0βα

Hα
+

+σαβ
δ(w,0αw,0β)

HαHβ
]HαHβ dV =

∫
Ω(Nβαδu,0β + Nαβδv,0α + Mαβ δv,0α

Rβ
+ Mβα

δu,0β
Rα

− Mβαδw,0αβ +

−Mαβδw,0βα + Nαβ
δw,0βδw,0α

Hβ
Nβα

δw,0αδw,0β
Hα

) dΩ = −
∫

Ω[Nβα,β δu0 + Nαβ,α δv0 − Mαβ,α
δv0

Rβ
+

−Mβα,β
δu0

Rα
+ Mβα,αβ δw0 + Mαβ,βα δw0 + 1

Hβ
(Nαβw,0β ),α δw0 + 1

Hα
(Nβαw,0α ),β δw0] dΩ +

+
∫

Γ(Nβαδu0 + Nαβδv0 + Mαβ
δv0

Rβ
+ Mβα

δu0

Rα
− Mβαδw,0α + Mβα,β δw0 − Mαβδw,0β+

+Mαβ,α δw0 + 1
Hβ

(Nαβδw,0β)δw0 + 1
Hα

(Nβαδw,0α)δw0 dΓ
(2.62)
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Regarding the virtual variation of the dynamic work, one has:∫∫∫
V ρ(üδu + v̈δv + ẅδw)HαHβ dV =

∫
V [ρ(ü0 + z( ü0

Rα
− ẅ,0α ))(δu0 + z( δu0

Rα
− δw,0α)) + ρ(v̈0 +

+z( v̈0

Rβ
− ẅ0,β ))(δv0 + z( δv0

Rβ
− δw,0β)) + ρ(ẅ0)(δw0)]HαHβ dV =

∫
Ω[(I0ü0 + 2I1

ü0

Rα
+ I2

ü0

R2
α

+

−I1ẅ,0α −I2
ẅ,α
Rα

)δu0 + (I0v̈0 + 2I1
v̈0

Rβ
+ I2

v̈0

R2
β

− I1ẅ,0β −I2
ẅ,β
Rβ

)δv0 + I0ẅ0δw0 + (−I1ü0 − I1
ü0

Rα
+

+I2ẅ,0α )δw,0α + (−I1v̈0 − I1
v̈0

Rβ
+ I2ẅ,0β )δw,β

0]HαHβ dΩ = −
∫

Ω[(I0ü0 + 2I1
ü0

Rα
+ I2

ü0

R2
α

+

−I1ẅ,0α −I2
ẅ,α
Rα

)δu0 + (I0v̈0 + 2I1
v̈0

Rβ
+ I2

v̈0

R2
β

− I1ẅ,0β −I2
ẅ,β
Rβ

)δv0 + I0ẅ0δw0 + (−I1ü,0α −I1
ü,0α
Rα

+

+I2ẅ,0αα −I1v̈,0β −I1
v̈,0β
Rβ

+ I2ẅ,0ββ )δw0]HαHβ dΩ +
∫

Γ[(−I1ü0 − I1
ü0

Rα
+ I2ẅ,0α −I1v̈0+

−I1
v̈0

Rβ
+ I2ẅ,0β )δw0]HαHβ dΓ

(2.63)
where (I0, I1, I2) =

∫
z ρ(1, z, z2) dz stand for the mass, static moment and moment of

inertia per unit of length.
Upon evaluating each contribution, the nonlinear equilibrium equations in the dynamic

case are written as follows:



−Nα,α −Nβα,β +Mα,α
Rα

+ Mβα,β
Rα

= (−I0ü
0 − 2I1

ü0

Rα
− I2

ü0

R2
α

+ I1ẅ,0α +I2
ẅ,α
Rα

)HαHβ

−Nβ,β −Nαβ,α +Mβ ,β
Rβ

+ Mαβ ,α
Rβ

= (−I0v̈
0 − 2I1

v̈0

Rβ
− I2

v̈0

R2
β

+ I1ẅ,0β +I2
ẅ,β
Rβ

)HαHβ

−Mα,αα −Nα

Rα
− (N̄αw,0αα)

Hα
− Mβ,ββ −Nβ

Rβ
− (N̄βw,0ββ)

Hβ
− Mβα,αβ −Mαβ,βα +

− 1
Hβ

(N̄αβw,0βα ) − 1
Hα

(N̄βαw,0αβ ) = pz + (−I0ẅ
0 + I1ü,0α +I1

ü,0α
Rα

− I2ẅ,0αα +

+I1v̈,0β +I1
v̈,0β
Rβ

− I2ẅ,0ββ )HαHβ

(2.64)

in which the Nα = N̄α, Nβ = N̄β, Nαβ = N̄αβ are considered constant on the shell
only for the nonlinear contribution.
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Buckling of a cylindrical shell

Figure 2.11 depicts the considered problem, in which Hα = 1 is assumed, including the
boundary conditions (S = simply-supported, F = free) applied and the highlighted part
representing the area subjected to compressive loadings. Especially, the classical problem
of the cylindrical bending ( ∂

∂α
= 0) is considered in the following resolution.

α

β

S

S

F

F

Fig. 2.11 Cylindrical shell.

In order to compute the critical buckling load through the dynamic criterion, initial
hypotheses are made. These assumptions are:

• pz = 0;

• [B] = 0, no coupling between the membrane and flexural-torsional effects;

• I1 = I2 = 0.

By introducing the Navier method and considering simply-supported boundary conditions,
one has:

u(α, β; t) = Ucos(ζα)sin(ηβ)eiωt

v(α, β; t) = V sin(ζα)cos(ηβ)eiωt

w(α, β; t) = Wsin(ζα)sin(ηβ)eiωt

(2.65)


α = 0, a → w0 = 0, Mα = 0

β = 0, b → w0 = 0, Mβ = 0
(2.66)

where the terms ζ = mπ
a

and η = nπ
b

, in which m and n are the half-wave number along
the α-axis and β-axis and a and b stand for the lengths along the α- and β-direction,
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respectively. Therefore, the relation between natural frequencies and external applied
loadings is obtained by solving the following system:


−Nβ,β +Mβ ,β

Rβ
= −I0v̈

0Hβ

−Mβ,ββ −Nβ

Rβ
= −I0ẅ

0Hβ + N̄β

Hβ
w,0ββ

(2.67)

Omitting mathematical passages, the final form of the equation to calculate the natural
frequency variation as a function of the different applied loads is:

ω4
(
−I2

0 H2
β

)
+ ω2

(
AI0η

2 − DI0Hβη2

HβR2
β

+ I0Dη4 − I0A
R2

β
+ I0N̄βη2

)
− ADη6

H2
β

+ A2η2

R2
β

H2
β

+

−AN̄βη4

H2
β

+ + D2η6

H2
β

R2
β

− ADη2

R4
β

H2
β

+ DN̄βη4

R2
β

H2
β

+ DAη4

R2
β

H2
β

− A2η2

R2
β

Hβ
− D2η6

R2
β

H2
β

+ ADη4

R2
β

H2
β

= 0
(2.68)

where A = Eh
1−ν2 .

2.5 Validation examples

In this section, the analytical solutions for 1D and 2D example cases compared to
numerical results obtained using Abaqus [194] are reported to prove the validity and
reliability of previously shown formulations.

Beam A simply-supported square beam structure under compressive load in the y-
direction is presented as the first validation example. The structure has the following
geometrical data: length, L, equal to 100 m and the side, a = h, of the square cross-section
is 1 m. The material properties for this structure are the following: E = 70 GPa, ν =
0.3 and ρ = 2700 kg/m3. The structure is modelled via the commercial software Abaqus,
modelling the beam structures by employing 10 B32 beam elements.

Figure 2.12 shows the first natural frequency variation with respect to the applied
compressive loadings with the comparison between the numerical solution and the
analytical one. Table 2.1 shows the linearized buckling load of the beam structure under
compressive loadings with the comparison with the analytical solution. In addition, Fig.
2.13 illustrates the first buckling mode shape.

Plate The second validation case deals with a simply-supported square plate under
compressive loadings. The geometrical and material data are the following: a = b =
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Fig. 2.12 The first natural frequency variation vs the applied compression. Beam structure.

Method Buckling Load
Numerical 5.67×106

Analytical 5.75×106

Table 2.1 The linearized bucking load in [N] of the beam structure.

Fig. 2.13 First buckling mode shape of the beam structure under compressive loadings.
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10 m, h = 0.1 m, E = 70 GPa, ν = 0.3 and ρ = 2700 kg/m3. The numerical solution
is obtained employing the commercial software Abaqus, modelling the structure with
10×10 S4R shell elements.

Figure 2.14 provides the first natural frequency variation versus applied compressive
loadings with the comparison between the numerical solution and the analytical one.
Table 2.2 illustrates the comparison between the linearized critical buckling load obtained
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Fig. 2.14 The first natural frequency variation versus the applied compressive loading.
Plate structure.

numerically and the analytical solution for the plate structure under compressive loadings,
whereas the first buckling mode shape is displayed in Fig. 2.15.

Method Buckling Load
Numerical 2.51×106

Analytical 2.58×106

Table 2.2 The linearized bucking load in [N/m] of the plate structure.

Shell Finally, the following case deals with a simply-supported cylindrical shell under
compressive loadings. The material and geometrical data of the cylindrical shell are the
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Fig. 2.15 First buckling mode shape of the plate structure under compressive loadings.

following: E= 70 GPa and ν = 0.3, and L = 508 mm, Rβ = 2540 mm, θ = 0.1 rad and
thickness equal to 5.08 mm. The numerical solution is obtained using the commercial
software Abaqus, modelling the structure with 20×20 S4R shell elements. Table 2.3
shows the comparison between the linearized critical buckling load obtained numerically
and the analytical solution for the cylindrical shell structure under compressive loadings.
For completeness, Fig. 2.16 depicts the natural frequency variation of the first three

Method Buckling Load
Numerical 32.1
Analytical 35.0

Table 2.3 The linearized bucking load in [N/mm] of the cylindrical shell structure.

modes for increasing applied loads, including the mode shapes.

2.6 Limitations of the analytical method

Analytical formulations for the buckling evaluation using the dynamic criterion were
presented. In particular, simply-supported boundary conditions were considered. Analyt-
ical solutions to complex dynamics problems with more sophisticated geometries and
boundary conditions are mathematically laborious, so that many simplifying assumptions
may be required to achieve a closed-form solution for such problems. Of course, when
closed-form solutions can be derived, analytical ones are preferred. Nevertheless, when an
exact closed-form solution cannot be obtained, alternative solution techniques, including
semi-analytical and numerical methods, are essential. Specifically, numerical solutions
based on the FEM are the best alternative.
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Fig. 2.16 The natural frequency variation of the first three modes as a function of the
applied compressive loads. Cylindrical shell structure.

The approach used in the analytical dynamic criterion to evaluate buckling loads
by exploiting the trend of natural frequencies is the basis of the VCT. This method
is a non-destructive approaches used in aerospace industries to predict the buckling
load. This technique computes the critical loads and equivalent boundary conditions by
interpolating the natural frequencies of the structures for increasing applied loadings
without reaching instability. However, even this experimental method shows limitations,
for example, the evaluation of structures under thermal or shear loads.

One of the main limitations of the analytical theory is that it may only be used for
structures with specific boundary and loadings conditions. Moreover, transcendental
governing equations can be simplified into an algebraic system of equations only if the
axial motions are decoupled from the transversal ones. This is possible only if the material
coupling is absent, i.e., if the structure is homogeneous or the laminae of the composite
structure are isotropic, or the resulting laminate is symmetric and balanced cross-ply.
Another limitation is related to the assumptions introduced to compute the solution in
closed-form by using the Navier method.
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Therefore, in the following chapters, a novel numerical methodology will be proposed,
which will overcome all of the above limitations to address the general case without
restrictions.



Chapter 3

Derivation of higher-order 1D and
2D models using CUF

This chapter introduces the Carrera Unified Formulation (CUF) and its application
in the straightforward development of 1D (beam) and 2D (plate, shell) higher-order
models in a hierarchical and automatic manner within a finite element domain. Basically,
CUF, using an index notation, allows to unify all the theories of structures in a single
formula and to formulate very refined models in a simple way. The fundamental concept
of the framework is the introduction of expansion functions, in addition to standard
finite element interpolation functions, to enrich the kinematic description of the beam
cross-section and plate/shell thickness. This approach leads to 1D and 2D CUF models,
which are similar to 3D solid-FEA in terms of solution accuracy, but require considerably
less computational effort [40].
First, the notation, geometry and displacement, stress and strain vectors are defined.
Then, the geometrical and material relations and the nonlinear governing equations are
expressed, including the explicit form of the matrices. For brevity, some details were
omitted, but interested readers may find them in [34, 103].

3.1 Preliminaries

Consider beam and plate models described by employing a Cartesian system (x,y,z),
whereas an orthogonal curvilinear system (α,β,z) for shells, as depicted in Fig. 3.1. In
detail, for a beam the y indicates the beam axis and x − z the cross-section, while for a
plate and shell model the x−y and α−β denotes the two in-plane directions, respectively,
and z stands for the through-the-thickness direction. The choice of the cross-section or
thickness is arbitrary since it does not affect the following theoretical formulation.
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Fig. 3.1 Representative geometry and reference system of the (a) beam, (b) plate and (c)
doubly-curved shell.
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Consider the 3D displacement vector of a generic point within the structural domain,
which may be expressed as follows:

Beam, P late : u(x, y, z; t)k = {uk
x uk

y uk
z}T

Shell : u(α, β, z; t)k = {uk
α uk

β uk
z}T

(3.1)

in which the superscript k is the kth-layer if a laminated structure is considered and T is
the transpose operator. Stresses, σ, and strains, ϵ, are expressed in vectorial form with
no loss of generality,

Beam, P late : ϵk = {ϵk
xx ϵk

yy ϵk
zz ϵk

xz ϵk
yz ϵk

xy}T

σk = {σk
xx σk

yy σk
zz σk

xz σk
yz σk

xy}T

Shell : ϵk = {ϵk
αα ϵk

ββ ϵk
zz ϵk

αz ϵk
βz ϵk

αβ}T

σk = {σk
αα σk

ββ σk
zz σk

αz σk
βz σk

αβ}T

(3.2)

When dealing with large displacements/rotations of highly flexible structures, accurate
definitions of strains and stresses are needed to carry out reliable nonlinear analyses. The
Lagrangian formulations are typically used in the pure geometrically nonlinear analyses.
There are two incremental Lagrangian formulations that are adopted to compute the
deformation and stress states in continuum problems: 1. the total Lagrangian (TL)
formulation and 2. the updated Lagrangian (UL) formulation. In detail, in the first
approach, strains are written in terms of the undeformed configuration. In the second
approach, strains are expressed as a function of deformed configurations in the UL
approach. A detailed description of the many advantages of adopting a Lagrangian
method is given in Pai’s book [195].

Hence, the proposed nonlinear methodology is developed using the TL formulations
and employs the Green-Lagrange (GL) strain tensor ϵ, that is work-conjugate to the
Second Piola-Kirchhoff (PK2) stress tensor σ. The displacement-strain relations are
written as:

ϵk = ϵk
l + ϵk

nl = (bl + bnl)uk (3.3)
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in which bl and bnl are the 6×3 linear and nonlinear differential operators and they are
defined for beam, plate and shell model as follows:

Beam, P late : bl =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



P11
1
2 (∂x)2 P12

1
2 (∂x)2 P13

1
2 (∂x)2

P21
1
2 (∂y)2 P22

1
2 (∂y)2 P23

1
2 (∂y)2

P31
1
2 (∂z)2 P32

1
2 (∂z)2 P33

1
2 (∂z)2

P41∂x ∂z P42∂x ∂z P43∂x ∂z

P51∂y ∂z P52∂y ∂z P53∂y ∂z

P61∂x ∂y P62∂x ∂y P63∂x ∂y



Shell :

bl =



∂α

Hα

0 1
HαRα

0 ∂β

Hβ

1
HβRβ

0 0 ∂z

∂z − 1
HαRα

0 ∂α

Hα

0 ∂z − 1
HβRβ

∂β

Hβ

∂β

Hβ

∂α

Hα

0



,

bnl =



P11
1

2H2
α

[
(∂α)2 + 2uz∂α

Rα

+ uα

R2
α

]
P12

(∂α)2

2H2
α

P13
1

2H2
α

[
(∂α)2 − 2uα∂α

Rα

+ uz

R2
α

]

P21
(∂β)2

2H2
β

P22
1

2H2
β

[
(∂β)2 + 2uz∂β

Rβ

+ uβ

R2
β

]
P23

1
2H2

β

[
(∂β)2 − 2uβ∂β

Rβ

+ uz

R2
β

]

P31
1
2 (∂z)2 P32

1
2 (∂z)2 P33

1
2 (∂z)2

P41
1

Hα

(
∂α ∂z + uz∂z

Rα

)
P42

∂α ∂z

Hα

P43
1

Hα

(
∂α ∂z − uα∂z

Rα

)

P51
∂β ∂z

Hβ

P52
1

Hβ

(
∂β ∂z + uz∂z

Rβ

)
P53

1
Hβ

(
∂β ∂z − uβ∂z

Rβ

)

P61
1

HαHβ

(
∂α ∂β + uz∂β

Rα

+ uβ

RαRβ

)
P62

1
HαHβ

(
∂α ∂β + uz∂α

Rβ

)
P63

1
HαHβ

(
∂α ∂β − uα∂β

Rα

− uβ∂α

Rβ

)


(3.4)



3.1 Preliminaries 57

where Pij(i = 1 − 6, j = 1 − 3) indicate the parameters assumed to simplify or tune the
nonlinear strain measures and ∂x stands for the derivative along the x direction, so that
∂x = ∂(·)

∂x
. The same symbol is considered for α, β, y and z directions.

Over the years, researchers have developed several approximate geometrically nonlinear
models for 1D and 2D structures from simplifications of the full 3D geometrical relations.
For example, the von Kármán strain theory for 2D structures represents the classic
geometrically nonlinear model, see [196]. Considering small rotations, the hypotheses
of 2D von Kármán models state that only the nonlinear terms of Eq. 3.4, which are
associated with the in-plane partial derivatives of the transverse displacements, cannot be
neglected. Therefore, the only non-zero components of geometrically nonlinear strains are
P13, P23, and P63 ̸= 0. By adding the P31 and P32 components, the nonlinear shear effects
are included. According to the von Kármán hypotheses, in the case of 1D models, the
only non-zero component is P23 ̸= 0. The P32 strain component should also be activated
if the nonlinear shear effects are considered. For completeness, various geometrically
nonlinear strain measures are displayed in Fig. 3.2, in which the black dots denote
the activated nonlinear strain components with reference to the matrix bnl in Eq. 3.4.
Therefore, it is possible to derive different geometrically nonlinear models by cancelling

FULL Green-Lagrange LINEAR 1D von Kármán

1D von Kármán with shear 2D von Kármán 2D von Kármán with shear

Fig. 3.2 Different geometrically nonlinear strain models.

or adding different nonlinear strain terms from or into the CUF FNs in order to evaluate
their effect on the static and transient nonlinear response is investigated.

The stress-strain relation may be expressed employing the material properties. In the
present research, the material properties are assumed linear and, therefore, Hooke’s law
is considered. Its compact vectorial form is:

σk = σk
l + σk

nl = Ck(ϵk
l + ϵk

nl) (3.5)
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in which Ck stands for the material linear elastic matrix. In orthotropic material case,
the matrix Ck is:

Ck =



Ck
11 Ck

12 Ck
13 0 0 Ck

16

Ck
22 Ck

23 0 0 Ck
26

Ck
33 0 0 Ck

36

Ck
44 Ck

45 0

Ck
55 0

sym Ck
66



(3.6)

where the coefficients depend on the Young moduli E, the Poisson ratios ν, the shear
moduli G and the fiber angle orientation θ [197].

By considering variable-angle-tow (VAT) composite structures, the fiber has a general
orientation function of the space coordinates, i.e., θ(x, y) or θ(α, β). As a result, we get:

σk = C̃kϵk (3.7)

where:
C̃k = T TCkT (3.8)

where T is the rotation matrix [198].
In VAT structures, the orientation angle of the fiber is allowed to change continuously

along a curvilinear path on each ply. So, the laminate has a different stiffness value in
each position. In the present thesis, VAT composite plate and shell structures with a
linear fiber angle variation over the lamina are analyzed, see Fig. 3.3a, in which the
expression given by Gürdal [199] is employed. It reads:

θ(x′) = Φ + T0 + (T1 − T0)
d

|x′| (3.9)

where the fiber path has a rotation of an angle Φ with respect to a certain reference
direction placed at an arbitrary point O, see Fig. 3.3b. The fiber orientation angle at
this point is T0 and varies along a direction x′ oriented by angle Φ from the original
coordinate axis x. The fiber orientation assumes the value T1 at a characteristic distance
d from the reference point. By considering this rotation angle, the fiber orientation path
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Fig. 3.3 Generic representation of a VAT model.

θ(x, y) can be formulated as θ(x′), where x′ = x cosΦ + y sinΦ. The parameter d is
commonly equals to a/2 or b/2 when Φ= 0◦ or Φ= 90◦, while a and b denote the width
and length of the 2D structure.

It should be highlighted that, as a finite element approximation is used in this work,
fibre angle is allowed to vary at each Gauss point in the plate or shell element. So,
the FE arrays can be derived by integrating the material elastic coefficients coherently
with the shape function approximation order. On the contrary, the lamination angle is
assumed generally constant in the entire element domain in FE models of VAT structures
modelled with commercial software. Therefore, the proposed methodology ensures a
more accurate and efficient modelling and analysis of VAT structures [200].

3.2 Carrera Unified Formulation

The development of advanced models capable of addressing various structural analyses
was a topic of great interest in the structural community for decades. In overcoming
some of the aforementioned issues of classical theories, the CUF was introduced as a
generator of structural theories for beams, plates and shells [40]. According to CUF, the
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3D displacement field is described as follows:

Beam : uk(x, y, z; t) = F k
τ (x, z)uk

τ (y; t), τ = 1, . . . , M

Plate : uk(x, y, z; t) = F k
τ (z)uk

τ (x, y; t), τ = 1, . . . , M

Shell : uk(α, β, z; t) = F k
τ (z)uk

τ (α, β; t), τ = 1, . . . , M

(3.10)

in which Fτ stands for a set of functions of the cross-section coordinates x and z for beams
and thickness expansion functions for plate and shell models, respectively, uτ represents
the generalized displacement vector, M denotes the order of the expansion, t indicates
time and the repeated index τ stands for summation. In detail, the parameters Fτ and
M are provided by the user as inputs and define the structural theory adopted in the
model. Two classes of expansion functions have emerged in recent years as ideal choices
due to their various capabilities: the Taylor Expansion (TE) and Lagrange Expansion
(LE). When laminated composite structures are analyzed, the Layerwise (LW), based on
the LE, and Equivalent-Single-Layer (ESL), using the TE, approaches are adopted. Note
that the acronym LEN (LW) and TEN (ESL), used in this thesis, indicate LE and TE of
order N assumed in the x − z cross-section or z direction, respectively.

The TE class considers the Taylor series of the kind x − z as cross-sectional or z as
thickness expansion functions Fτ . This results in a hierarchical basis function, where the
polynomial order N is user-defined. For instance, the first-order Taylor expansion (TE1)
for 1D and 2D models is reported below:

1D :
ux = ux1 + xux2 + zux3

uy = uy1 + xuy2 + zuy3

uz = uz1 + xuz2 + zuz3

2D :
ux = ux1 + zux2

uy = uy1 + zuy2

uz = uz1 + zuz2

(3.11)

Classical beam/plate/shell theories may be derived as special cases of the first-order
theory by the selective removal of certain terms. For brevity, further details of TE class
can be found in [43, 201].

LE models use Lagrange polynomials to build 1D and 2D higher-order theories and
the isoparametric formulation is exploited to deals with arbitrary geometries. LE are
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Fig. 3.4 Lagrange expansion on the (a) cross-section (1D) and (b) thickness (2D).

employed as Fτ functions over the cross-section for beams and thickness direction for
plates and shells. In this work, three types of polynomial sets were employed for both 1D
and 2D models, as shown in Fig. 3.4. In detail, four-point polynomials (L4), nine-point
polynomials (L9), and sixteen-point polynomials (L16) were adopted to build linear to
higher-order kinematics beam models. On the other hand, the acronym LDN (Lagrange
expansion, Displacement-based theory with the order N) will be assumed to refer to
specific refined plates or shells. For instance, LD1, LD2, and LD3 represent linear
(two-node), quadratic (three-node), and cubic (four-node) Lagrange expansion functions,
respectively. They are used in the z-direction in order to generate linear to higher-order
kinematics CUF 2D models. For clarity, an illustrative example of the interpolation
function is reported below for the case of an L9 beam model:

Fτ = 1
4(r2 + rrτ )(s2 + ssτ ) τ = 1, 3, 5, 7

Fτ = 1
2s2

τ (s2 − ssτ )(1 − r2) + 1
2r2

τ (r2 − rrτ )(1 − s2) τ = 2, 4, 6, 8

Fτ = (1 − r2)(1 − s2) τ = 9

(3.12)
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in which r and s vary from -1 to +1, while rτ and sτ are the coordinates of the 9 points
whose numbering and location in the natural coordinate frame are depicted in Fig. 3.4.
LE use only displacement unknowns; i.e., it have only displacements as degrees of freedom
[202]. This allows us to impose displacement continuity among components in a natural
manner and without adopting mathematical artifices. In addition, the LE formulation
was considered to implement the Component-Wise method [203–205]. In the CW domain,
each component of the structure can be approximated independently via 1D models with
higher-order approximation. Generally speaking, this approach divides the cross-section
in different sub-domains, for example, stringers and panels, as reported in Fig 3.5.

z
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x

z

y

x

z

z

y

y

x

x

Reinforced 
structure

Component-
wise approach

The cross-section of
each component is
modelled with LE

polynomials

B4

Fig. 3.5 A reinforced structure modelled using the CW approach.

As previously mentioned, ESL and LW approaches are typically employed when
dealing with laminated structures. Considering the ESL approach, the cross-section is
treated as a single domain in which the cross-sectional functions Fτ are defined and the
stresses are computed considering the resulting strains in each layer in the displacement-
based models. Therefore, the stiffness matrix is derived through the homogenization
technique of the properties of each layer by summing the contributions of each layer. Due
to the heterogeneity of multi-layered structures, ESL models lead to continuous transverse
deformations across the thickness and discontinuous transverse stresses at the interfaces
of the layers. Given such a defect, ESL models are still widely employed due to their
intrinsic simplicity and fairly good performance. In detail, ESL theories show reliable
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results of global responses (fundamental vibration frequencies, transverse deflections),
but they are often inaccurate for 3D stress distribution evaluations. For clarity, Fig. 3.6a
illustrates the general behaviour of the primary variables in the z-direction of a 2D (plate
or shell) structure.

ESL LW(a) (b)

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

N=1 N=2 N=3 LD1 LD2

Fig. 3.6 (a) ESL and (b) LW behaviours of the primary variables through-the-thickness
of a 2D model.

Differently, LW theories divide and expand the displacement field within each material
layer. Therefore, the continuity of displacements is guaranteed at the interface level to
accurately evaluate the deformation and stress distributions. In this way, the homoge-
nization is performed at the interface layer. Then, by adopting LE, the displacements on
each interpolation are assumed as unknowns, and displacements at each interface obey
the compatibility conditions, as depicted in Fig. 3.6b [198]. For completeness, differences
in the assembly procedure by using the ESL and LW for a 2D structure are reported in
Fig. 3.7.

3.3 Finite Element Method

The FEM is employed to solve the structural problem due to its superior versatility
compared to other analytical and numerical approaches [34]. Independently of the used
beam, plate and shell model kinematics, the FEM is utilized to discretize the generalized
displacement vector along the y-axis (beam) or in the x − y (plate) or α − β (shell) plane,
as follows:

Beam : uk
τ (y; t) = Ni(y)qk

τi(t), i = 1, . . . , Nn

Plate : uk
τ (x, y; t) = Ni(x, y)qk

τi(t), i = 1, . . . , Nn

Shell : uk
τ (α, β; t) = Ni(α, β)qk

τi(t), i = 1, . . . , Nn

(3.13)
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Fig. 3.7 Assembling technique of the stiffness matrix of the 2D model using ESL and LW
methods. τ and s stand for the two indexes exploited to assemble the matrices.

where Ni denotes the shape functions, qτi represents the unknown nodal variables, Nn

stands for the number of nodes per element and the i indicates summation. In this
research, classical 1D FEs with two (B2), three (B3) and four nodes (B4), i.e., linear,
quadratic and cubic approximation along the beam axis, are employed, whereas the
classical 2D FEs with four-node linear (Q4), nine-node quadratic (Q9) and sixteen-node
cubic (Q16) are adopted for the shape functions in the x − y or α − β plane.

For the sake of completeness, the CUF and FEM model approximation of typical 1D
and 2D structures is illustrated in Fig. 3.8. Combining the FE approximation in Eq.
3.13 and CUF in EQ. 3.10, the 3D displacement field becomes:

Beam : uk(x, y, z; t) = F k
τ (x, z)Ni(y)qk

τ (t), τ = 1, . . . , M i = 1, . . . , Nn

Plate : uk(x, y, z; t) = F k
τ (z)Ni(x, y)qk

τ (t), τ = 1, . . . , M i = 1, . . . , Nn

Shell : uk(α, β, z; t) = F k
τ (z)Ni(α, β)qk

τ (t), τ = 1, . . . , M i = 1, . . . , Nn

(3.14)
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Fig. 3.8 CUF and FEM (a) 1D and (b) 2D model approximations.
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Finally, by substituting the CUF (Eq. 3.10) and FEM (Eq. 3.13) equations into Eq.
3.4, the strain vector may be expressed as follows:

ϵk = (bl + bnl)(F k
τ Ni)qk

τi = (Bk
l + Bk

nl)qk
τi (3.15)

where Bk
l and Bk

nl stand for the linear and nonlinear algebraic matrices [206].
In the linear thermoelasticity, the elastic strain vector ϵk

e is equal to:

ϵk
e = ϵk − ϵk

T (3.16)

where ϵk represents the total strain vector, see Eq. 3.15, and ϵk
T is the strain vector due

to the temperature change ∆T = T − T0, that is:

ϵk
T = αk∆T (3.17)

in which T0 indicates the reference temperature and α stands for the linear thermal
expansion coefficients vector. Consequently, it is possible to define a new constitutive
law given by:

σk = σk
H − σk

T = Ckϵk − βk∆T (3.18)

in which the subscript H indicates the quantities relating to Hooke’s law, whereas T

those relating to thermal deformation. In Eq. 3.18, βk indicates the vector of the
stress-temperature moduli. It reads:

βk = Ckαk (3.19)

3.4 Nonlinear governing equations and explicit form
of matrices

Consider elastic structures that undergo large displacements and rotations. To accurately
assess the analysis in these structures, nonlinear analyses must be performed. Therefore,
to derive the nonlinear governing equations of the elasticity problem, the PVD is used. It
states that for all kinematically admissible virtual displacements, a body is in equilibrium
if the virtual work done by the internal stresses and inertial loads equals to the work
done by the external loads:

δLint = δLext − δLine (3.20)
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where δLint, δLext and δLine represent the virtual variation of the strain energy, the
virtual variation of the work of external loads and the virtual variation of the inertia
loads. Their expressions are given in the explicit form below. The virtual variation of
the strain energy is:

δLint =
∫

V δϵkT
σk dV =

∫
V δϵkT

Ckϵk dV =
∫

V δqk
sj

T(Bk
l + 2Bk

nl)TCk(Bk
l + Bk

nl)qk
τi dV =

= δqk
sj

T
Kijτs

0
k
qk

τi + δqk
sj

T
Kijτs

lnl

k
qk

τi + δqk
sj

T
Kijτs

nll

k
qk

τi + δqk
sj

T
Kijτs

nlnl

k
qk

τi

= δqk
sj

T
Kijτs

S

k
qk

τi

(3.21)
where V is the volume of the body, Kijτs

S

k represents the secant stiffness matrix, Kijτs
0

k

indicates the linear contribution of Kijτs
S

k and Kijτs
lnl

k, Kijτs
nll

k and Kijτs
nlnl

k are the nonlinear
components of order 1 and 2, respectively. In detail, they read:

Kijτs
0

k =
∫

V Bk
l

T
CkBk

l dV

Kijτs
lnl

k =
∫

V Bk
l

T
CkBk

nl dV

Kijτs
nll

k = 2
∫

V Bk
nl

T
CkBk

l dV

Kijτs
nll

k = 2
∫

V Bk
nl

T
CkBk

nl dV

(3.22)

These components are expressed in the form of CUF 3×3 FNs. The FN s are independent
of the theory approximation and may be expanded against Fτ approximation (τ , s = 1,
... ,M) and Ni shape functions (i, j = 1, ... ,Nn) to derive the final stiffness matrix of
any higher-order model. The superscripts i, j, τ, s stand for the four indexes exploited to
assemble the matrices. Figure 3.9 depicts the CUF assembly technique to build a matrix
of the node, of the element and, finally, the global stiffness matrix KS by exploiting
the FNs. For completeness, the nine component of the 3×3 FN of the Kijτs

0
k[r, c] for

a plate model are provided below, where r and c denote the row and column number
(r,c = 1,2,3), respectively. Although derivation is made for plate models below, it should
be emphasized that similar relations hold for beam and shell models. For clarity, the
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Fig. 3.9 CUF assembly technique.

superscript k was omitted and < (·) >=
∫

V (·) dV .

Kijτs
0 [1, 1] = < C11Fτ FsNi,xNj,x > + < C44Fτ,zFs,zNiNj > + < C66Fτ FsNi,yNj,y >

Kijτs
0 [1, 2] = < C66Fτ FsNi,yNj,x > + < C12Fτ FsNi,xNj,y >

Kijτs
0 [1, 3] = < C13Fτ Fs,zNi,xNj > + < C44Fτ,zFsNiNj,x >

Kijτs
0 [2, 1] = < C12Fτ FsNi,yNj,x > + < C66Fτ FsNi,xNj,y >

Kijτs
0 [2, 2] = < C66Fτ FsNi,xNj,x > + < C55Fτ,zFs,zNiNj > + < C22Fτ FsNi,yNj,y >

Kijτs
0 [2, 3] = < C23Fτ Fs,zNi,yNj > + < C55Fτ,zFsNiNj,y >

Kijτs
0 [3, 1] = < C44Fτ Fs,zNi,xNj > + < C13Fτ,zFsNiNj,x >

Kijτs
0 [3, 2] = < C55Fτ Fs,zNi,yNj > + < C23Fτ,zFsNiNj,y >

Kijτs
0 [3, 3] = < C44Fτ FsNi,xNj,x > + < C33Fτ,zFs,zNiNj > + < C55Fτ FsNi,yNj,y >

(3.23)
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Similarly, the components of the FN of Kijτs
nll

k[r, c] are:

Kijτs
nll [r, 1] = < u,x[r]C11Fτ FsNi,xNj,x > + < u,x[r]C44Fτ,zFs,zNiNj > +

+ < u,x[r]C66Fτ FsNi,yNj,y > + < u,y[r]C66Fτ FsNi,xNj,y > +

+ < u,x[r]C12Fτ FsNi,yNj,x > + < u,z[r]C44Fτ Fs,zNi,xNj > +

+ < u,z[r]C13Fτ,zFsNiNj,x >

Kijτs
nll [r, 2] = < u,x[r]C12Fτ FsNi,xNj,y > + < u,x[r]C66Fτ FsNi,yNj,x > +

+ < u,y[r]C66Fτ FsNi,xNj,x > + < u,y[r]C55Fτ,zFs,zNiNj > +

+ < u,y[r]C22Fτ FsNi,yNj,y > + < u,z[r]C23Fτ,zFsNiNj,y > +

+ < u,z[r]C55Fτ Fs,zNi,yNj >

Kijτs
nll [r, 3] = < u,x[r]C13Fτ Fs,zNi,xNj > + < u,x[r]C44Fτ,zFsNiNj,x > +

+ < u,y[r]C55Fτ,zFsNiNj,y > + < u,y[r]C23Fτ Fs,zNi,yNj > +

+ < u,z[r]C44Fτ FsNi,xNj,x > + < u,z[r]C33Fτ,zFs,zNiNj > +

+ < u,z[r]C55Fτ FsNi,yNj,y >

(3.24)

where u,x[r] represents the r-th component of vector δu
δx

; for example, u,x[2] = uy,x .
The same applies to u,y[r] and u,z[r]. The components of Kijτs

lnl

k[r, c] are not written
here, but they are easily derived from Kijτs

nll

k[r, c]. In fact, it is evident from Eq. 3.22

that
(

Kijτs
lnl

k
)T

= 1
2Kijτs

nll

k. Finally, the generic component [r, c] of the matrix Kijτs
nlnl

k is
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written as:

2 × Kijτs
nlnl [r, c] = < u,x[r]u,x[c]C11Fτ FsNi,xNj,x > + < u,x[r]u,x[c]C44Fτ,zFs,zNiNj > +

+ < u,x[r]u,x[c]C66Fτ FsNi,yNj,y > + < u,y[r]u,y[c]C66Fτ FsNi,xNj,x > +

+ < u,y[r]u,y[c]C55Fτ,zFs,zNiNj > + < u,y[r]u,y[c]C22Fτ FsNi,yNj,y > +

+ < u,z[r]u,z[c]C44Fτ FsNi,xNj,x > + < u,z[r]u,z[c]C33Fτ,zFs,zNiNj > +

+ < u,z[r]u,z[c]C55Fτ FsNi,yNj,y > + < u,x[r]u,y[c]C12Fτ FsNi,xNj,y > +

+ < u,x[r]u,y[c]C66Fτ FsNi,yNj,x > + < u,y[r]u,x[c]C12Fτ FsNi,yNj,x > +

+ < u,y[r]u,x[c]C66Fτ FsNi,xNj,y > + < u,x[r]u,z[c]C13Fτ Fs,zNi,xNj > +

+ < u,x[r]u,z[c]C44Fτ,zFsNiNj,x > + < u,z[r]u,x[c]C13Fτ,zFsNiNj,x > +

+ < u,z[r]u,x[c]C44Fτ Fs,zNi,xNj > + < u,y[r]u,z[c]C23Fτ Fs,zNi,yNj > +

+ < u,y[r]u,z[c]C55Fτ,zFsNiNj,y > + < u,z[r]u,y[c]C55Fτ Fs,zNi,yNj > +

+ < u,z[r]u,y[c]C23Fτ,zFsNiNj,y >

(3.25)
Following the structure of the derivation of the virtual internal strain energy, the

virtual variation of the inertial loads may be defined as:

δLine =
∫

V
δukT

ρük dV = δqk
sj

T
M ijτsk

q̈k
τi (3.26)

where M ijτsk indicates the FN of the mass matrix, that is assumed to be linear, ρ

denotes the material density, q̈k
τi stands for the nodal acceleration vector and the dot

indicates δ/δt. The matrix M ijτsk only has three components on the diagonal that are
not zero, whereas the ones outside the diagonal are null.

M ijτsk =
∫

v
NjF

k
s ρNiF

k
τ dV (3.27)



3.4 Nonlinear governing equations and explicit form of matrices 71

The FNs will be expanded with respect to the indices τ, s, i, j in order to build the global
mass matrix M .

The virtual variation of the work due to external loads is defined as:

δLext =
∫

V δuTg dV +
∫

S δuTb dS +
∫

l δuTr dl + δuTPm =

= δqT
sj (
∫

V NiFτ g dV +
∫

S NiFτ b dS +
∫

l NiFτ r dl + NiFτ Pm) =

= δqT
sjpsj

(3.28)

in which g is the body force acting on the volume V , b is the surface force acting on
the surface S, r is the line force acting on a line l, and Pm is a point force acting at a
point m. psj stands for the FN of the external equivalent nodal force vector. After the
assembly operation, the global external nodal force vector F is obtained.

By substituting Eqs. 3.21, 3.26, and 3.28 into Eq. 3.20, after simple mathematical
operations, considering undamped problems and the mass matrix constant, the nonlinear
governing equations of the elasticity problem read as:

Mq̈(t) + KSq(t) = F (t) (3.29)

The governing equations of the elasticity problem expressed in Eq. 3.29 are now
separately considered in the next chapter for geometrically nonlinear static analysis, free
vibration analysis around nonlinear equilibrium states and dynamic response analysis.



Chapter 4

Nonlinear static and dynamic
formulations

The governing differential equations are expressed by substituting the explicit expressions
of the virtual variations of the internal, inertial and external works into the PVD. Several
problems are studied and they are derived as particular cases of Eq. 3.29. For clarity,
although derivation is performed for plate models in this chapter, it should be underlined
that similar relations hold for beam and shell ones.

4.1 Geometrically nonlinear static analysis

When static structural analyses are performed, the contribution of the virtual work of
inertial loadings is neglected in the PVD. Hence:

δLint = δLext (4.1)

As a result, after some mathematical operations, the nonlinear static equilibrium equations
in a compact vectorial form read as:

KSq − F = 0 (4.2)

4.1.1 Tangent stiffness matrix

As far as the tangent stiffness matrix Kijτs
T

k is concerned, the linearization of the
equilibrium equations has to be performed. Conservative loadings are assumed in this
research so that the linearization of the work made by the external loads is null. As a
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consequence, the linearization of the internal loads is performed as follows:

δ(δLint) =
∫

V δ(δϵkT
σk) dV =

∫
V (δϵkT

δσk) + (δ(δϵT)σk) dV =

= δqk
sj

T ∫
V (Bk

l + 2Bk
nl)TCk(Bk

l + Bk
nl) dV δqk

τi + δqk
sj

T ∫
V B∗

nl
kT

σk dV δqk
τi =

= δqk
sj

T(Kijτs
0

k + 2Kijτs
lnl

k + Kijτs
nll

k + 2Kijτs
nlnl

k + Kijτs
σ

k)δqk
τi =

= δqk
sj

T(Kijτs
0

k + Kijτs
T 1

k + Kijτs
σ

k)δqk
τi =

= δqk
sj

T
Kijτs

T

k
δqk

τi

(4.3)
in which Kijτs

T 1
k = 2Kijτs

lnl

k + Kijτs
nll

k + 2Kijτs
nlnl

k stands for the nonlinear contribution of
the FN of the tangent stiffness matrix due to the linearization of the Hooke’s law, Kijτs

0
k

indicates the linear component of the Kijτs
T

k and Kijτs
σ

k = Kijτs
σl

k + Kijτs
σnl

k represents
the so-called geometric stiffness matrix. The complete expression of the matrix B∗

nl
k is

provided below. For clarity, the superscript k was omitted.

B∗
nl =



Fτ FsNi,xNj,x Fτ FsNi,xNj,x Fτ FsNi,xNj,x

Fτ FsNi,yNj,y Fτ FsNi,yNj,y Fτ FsNi,yNj,y

Fτ,zFs,zNiNj Fτ,zFs,zNiNj Fτ,zFs,zNiNj

Fτ Fs,zNi,xNj + Fτ,zFsNiNj,x Fτ Fs,zNi,xNj + Fτ,zFsNiNj,x Fτ Fs,zNi,xNj + Fτ,zFsNiNj,x

Fτ,zFsNiNj,y + Fτ Fs,zNi,yNj Fτ,zFsNiNj,y + Fτ Fs,zNi,yNj Fτ,zFsNiNj,y + Fτ Fs,zNi,yNj

Fτ FsNi,xNj,y + Fτ FsNi,yNj,x Fτ FsNi,xNj,y + Fτ FsNi,yNj,x Fτ FsNi,xNj,y + Fτ FsNi,yNj,x


(4.4)
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For completeness, the Kijτs
σ

k contribution in terms of FN is expressed as follows:

Kijτs
σ

k =
∫

V (σk
xxF k

τ F k
s Ni,xNj,x + σk

yyF k
τ F k

s Ni,yNj,y + σk
zzF k

τ,z
F k

s,z
NiNj + σk

xyF k
τ F k

s Ni,xNj,y+

+σk
xyF k

τ F k
s Ni,yNj,x + σk

xzF k
τ F k

s,z
Ni,xNj + +σk

xzF k
τ,z

F k
s NiNj,x + σk

yzF k
τ,z

F k
s NiNj,y+

+σk
yzF k

τ F k
s,z

Ni,yNj)I dV

(4.5)
where I denotes the 3×3 identity matrix.

4.1.2 Newton-Raphson linearization scheme

In this research, geometrical nonlinear equations are expressed in a TL framework and
computed with a NR linearization scheme based on the arc-length constraint [207]. The
NR-based solution algorithms are the most commonly employed routines for solving
nonlinear problems. They are iterative solution schemes and can be used under either
displacement, load control or sophisticated numerical procedure. According to the NR
approach, Eq. 4.2 is written as:

ϕres = KSq − F = 0 (4.6)

in which ϕres denotes the vector of the residual nodal forces (unbalanced nodal force
vector). Equation 4.6 may be linearized by expanding ϕres in Taylor’s series about a
known solution (q, F ). It reads:

ϕres(q + δq, F + δF ) = ϕres(q, F ) + ∂ϕres

∂q
δq + ∂ϕres

∂F
δλFref = 0 (4.7)

where ∂ϕres

∂q
= KT , −∂ϕres

∂F
stands for the matrix I and it was assumed that the load varies

directly with the vector of the reference loadings Fref , that it has a rate of change equal
to the load parameter λ, i.e., F = λFref . For clarity, the reference loading represents the
initial load value. Therefore, we can rewrite in compact form:

KT δq = δλFref − ϕres (4.8)

Since the load-scaling parameter, λ, is considered a variable, an additional governing
equation is required and this is provided by a constraint relationship c(δq, δλ) to give
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the final system as: KT δq = δλFref − ϕres

c(δq, δλ) = 0
(4.9)

Different incremental methods may be implemented depending on the constraint equation
assumed. For instance, one can impose the condition δλ = 0 or δq = 0, corresponding to
the load-control and displacement-control methods. However, these methods fail in the
presence of highly nonlinear behaviours, e.g., snap-through or snap-back behaviour. In
the present thesis, a method of a path-following type based on the arc-length scheme
is implemented, and the constraint condition involves both displacement and load
parameters.

The path-following constraint was employed for the first time in the CUF by Pagani
and Carrera [208]. The details, along with the adopted notation, of the path-following
constraint method are shown in Fig. 4.1. In detail:

• δn
m(·) indicates the finite variation, where m is the number of reached load step and

n the iteration within the mth load step. It can be stated that δn
m(·) = (·)n

m − (·)n−1
m

and (·)m = (·)m−1 +∑
n δn

m(·);

• n = 0 represents the initial condition, so that δ0
mq is the initial linear solution and

δ0
mλ denotes the initial increment of the load parameter;

• ϕn
mres

indicates the vector of the residual nodal forces at the nth iteration (of the
mth load step).

• tn
m = tn−1

m + δn
mt = tn−1

m + (δn
mq + δn

mλ Fref) relates the current solution to the
previous one.

Consequently, the equilibrium reached at each iteration is obtained by the intersection
of the linearized governing equation and the constraint equation c(δq, δλ) = 0. The
arc-length method as developed by Crisfield [209] is used. Thus, the initial arc-length
value ∆l0

m is equal to the radius of a sphere, representing the constraint relationship.
It means that |tn

m| is equal to the square of the arc-length. Therefore, the system of
equation expressed in Eq. 4.9 becomes:


KT δn

mq = δn
mλ Fref − ϕn

mres

tnT

m tn
m = (∆l0

m)2
(4.10)

This procedure would require the inversion of the tangent stiffness matrix, which could be
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Fig. 4.1 The adopted incremental scheme of arc-length type.

computationally heavy. For this reason, the Batoz and Dhatt [210] approach is employed,
and the finite displacement vector could be rewritten as:

δn
mq = δn

mλ q̄n
m + δn

mq̂ (4.11)

in which q̄n
m and δn

mq̂ denote the solutions of the linear systems below:


KT q̄n
m = Fref

KT δn
mq̂ = −ϕn

mres

(4.12)

Thus, introducing Eq. 4.11 into the system Eq. 4.10, the following equation can be
obtained.

a (δn
mλ)2 + 2 b δn

mλ + c = 0 (4.13)
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in which:

a = q̄nT
m q̄n

m + F T
ref Fref

b = (qn−1
m − qm−1)T q̄n

m + q̄nT
m δn

mq̂ + (λn−1
m − λm−1) F T

refFref

c =
(
(qn−1

m − qm−1) + δn
mq̂
)T (

(qn−1
m − qm−1) + δn

mq̂
)
+

+(λn−1
m − λm−1)2 F T

refFref − (∆l0
m)2

(4.14)

Equation (4.13) returns two solutions of the load parameter δn
mλ, so the problem arises

which of the solutions should be chosen. The solution that gives a positive angle is
the one to choose, being the one that allows us to calculate the next solution If both
solutions give positive angles, the appropriate one is the closest to the linearized solution
of Eq. (4.13), i.e., δn

mλ = − c
b
. In the case of snap-back behaviours, a sign function of the

predictor load factor was implemented. In the present research, the solution closest to
the one of the linearized constraint equation, δn

mλcl. δn
mλcl is computed by linearizing the

constraint relationship c(δq, δλ) = 0, as done for the equilibrium equations. An iterative
cycle in each load step allows to reach the convergence of the solution, satisfying that
the ratio between the calculated displacement increment and the previous one is less
than a certain predefined tolerance, and then continue with the next step. For the sake
of completeness, the explicit linearization of the constraint equation is provided in [207].

4.2 Trivial-linearized and full nonlinear vibration anal-
ysis

The characterization of the natural frequencies variation of beam, plate and shell struc-
tures for progressively increasing applied compression loadings is an engineering problem
that attracts considerable interest. Because the modal behaviours of structures are not
a property of the geometric and mechanical characteristics but are properties of the
equilibrium states, eigenfrequencies and eigenmodes may suffer abrupt aberrations in
deep nonlinear regimes [211]. Several changes in dynamic responses through structural
parameter variations are usually characterized in plots of the eigenvalue loci over the
parameter range of interest. The most important mode aberration phenomena concern
the mode jumping, crossing and veering, among others. These phenomena have been
extensively studied and observed in the literature. For instance, particular interest was
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given to the phenomenon of veering. One of the first occurrences of the veering in the lit-
erature is due to Leissa [212]. The author demonstrated the occurrence of this behaviour
by applying the Ritz-Galerkin method to the classical eigenvalue problem to compute
the free natural frequencies of a clamped rectangular membrane. Then, many other
authors analytically found or experimentally observed veering phenomenon. For example,
Doll and Mote [213] studying vessels under pressure, Nair and Durvasula [214] in the
study of plate vibrations and important contributions on the relations between eigenvalue
veering and mode localization were provided by Pierre [215] and Natsiavas [216]. In these
works, the perturbation method was applied to carry out these investigations in order
to predict the occurrence of strong localization and eigenvalue loci veering, which are
two manifestations of the same phenomenon. In detail, mode veering is characterized
by the sharp transition of two loci of converging eigenvalue to new trajectories. After
veering, each locus continues on the path before followed by the other. In addition to the
rapid change in sensitivity to eigenvalues, it has long been known that the mode shapes
undergo violent changes as they veer, described elegantly by Leissa [212]: “figuratively
speaking, a dragonfly one instant, a butterfly the next, and something indescribable in
between”. Therefore, it is of fundamental importance to have a tool that may accurately
predict and describe how the vibration modes change for each state of equilibrium.

In this context, vibration analyses are performed around a linearized (non-trivial)
equilibrium state along the nonlinear curve. For reasons of clarity, the superscript k was
omitted in this section.

δ(δLint + δLine − δLext) = δqT
sj(K

ijτs
0 + Kijτs

T 1 + Kijτs
σ )δqτi + δqT

sjM
ijτsδq̈τi =

= δqT
sjK

ijτs
T δqτi + δqT

sjM
ijτsδq̈τi = 0

(4.15)
In order to derive Eq. 4.15, the mass matrix is considered linear and δ2Lext = 0 (loading
is conservative).

In summary, the present methodology for studying vibrations around nonlinear
equilibrium states may be explained in the following steps:

• Firstly, the static geometrical nonlinear problem is solved by using the NR method
based on the arc-length scheme.

• Once the nonlinear equilibrium curve is computed, the KT is calculated in each
states of interest, as illustrated in Fig. 4.2, where α = arctan(∆P/∆u).

• After that, by considering the incremental linearized equilibrium condition of Eq.
4.15 and assuming harmonic displacements around non-trivial equilibrium states
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along the nonlinear path,

δqτi(t) = δq̃τie
iωt

δq̈τi(t) = −ω2δq̃τie
iωt

(4.16)

the equations of motion are simplified into linear eigenvalue problems from which
it is possible to compute natural frequencies and mode shapes:

(Kijτs
T − ω2M ijτs)δq̃τi = 0 (4.17)

where ω is the natural frequency and δq̃τi represent the eigenvector.

• For clarity, it is important to highlight how the nonlinear vibrations investigated
in this work show low amplitudes; as a consequence, it is legitimate to adopt a
linearization around the state of equilibrium for the resolution of these problems.

If the complete form of the tangent stiffness matrix is used, the method is called
full nonlinear approach. Differently, in the case of small rotations and linear stable
pre-buckling, a simplified method, called trivial linearized approach, based on the
linearization around trivial (q = 0) equilibrium state is employed. In this case, the
tangent stiffness matrix Kijτs

T may be approximated as the sum of the linear stiffness
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(
Kijτs

0 = Kijτs
S (qτi = 0)

)
and the linear geometric (pre-stress) contribution (Kijτs

σl
):

Kijτs
T ≈ Kijτs

0 + λKijτs
σl

(4.18)

in which λ stands for the increasing load factor. The trivial linearized method is performed
by substituting Eq. 4.18 in Eq. 4.15, where the KT 1 tends to 0 because the δq are small.

If thermal loadings are considered, a new constitutive law and definition of the
geometric stiffness matrix are required, see Chapter 3. In detail:

δLint =
∫

V δϵe
T(Cϵ − β∆T ) dV =

∫
V δqsj

TBT(CBqτi − β∆T ) dV =

=
∫

V δqsj
TBT(CBqτi) dV −

∫
V δqsj

TBT(β∆T ) dV =

= δqsj
TKijτs

S qτi − δqsj
TFT sj

(4.19)

δ(δLint) =
∫

V δ(δϵT)σl dV =
∫

V δqsj
TB∗

nl
Tσl dV = δqsj

T ∫
V B∗

nl
TCϵ dV δqτi +

− δqsj
T ∫

V B∗
nl

Tβ∆T dV δqτi = δqsj
TKσδqτi − δqsj

TKσT δqτi

(4.20)
in which FT sj is the thermal load vector, that is an artificial force for modelling thermal
expansion and the KσT represents the new term of the geometric stiffness matrix due
to the thermal contribution. For clarity, it should be emphasized once again that only
linear contributions are taken into account.

In the CUF domain, it is possible to consider both a coupled and uncoupled formulation
performing static, quasi-static, and dynamic analyses and apply any static, dynamic,
or transient thermal loads. The reader is referred to [217] for a detailed description of
thermoelastic analyses using the CUF. In this work, for simplicity, high-speed thermo-
mechanical loads have not been considered. Therefore, it has been possible to adopt a
dynamic uncoupled thermoelasticity formulation. In particular, a constant thermal load
on the entire structure was applied in the following thermal analyses.

4.3 Transient analysis

In the more general case, both internal, external and inertial energy contributions are
accounted for. Therefore, for time response analyses, the PVD holds:

δLint = δLext − δLine (4.21)
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where in the FEM form the undamped dynamic problem becomes:

Mq̈(t) + KSq(t) = F (t) (4.22)

A numerical technique is required in order to compute the solution of this equation in
the time domain.

Over the years, many research efforts have focused on improving effective algorithms
that can accurately perform dynamic analyses. However, in practical analysis of dynamic
responses, we are interested in some effective numerical methods, that may be divided in
two main categories: 1. direct integration and 2. mode superposition. Regarding the
direct integration method, the equation is integrated employing a step-by-step numerical
procedure [34]. The term “direct” means that no transformation of the equations is carried
out prior to the numerical integration. Direct integrations schemes are very effective
and widely utilized for both linear and nonlinear dynamic problems. Nevertheless, long
computational times can be required and could be affected by possible instability due
to increasing errors. On the other hand, one of the main advantages of the mode
superposition method is that the system of equations is formulated in modal coordinates
and eventually decoupled.

Various direct time integration techniques are widely used. In particular, the scheme
of step-by-step time integration is frequently adopted to carry out transient analyses.
The dynamic algorithm chosen can be explicit or implicit. Explicit schemes, for example,
the central difference method, are adopted for fast analysis, such as crash simulations.
These methods compute the equilibrium state of a system at a later time than the
system state at that time. There are no convergence criteria to check and no iterations
using this approach. Nevertheless, the explicit scheme is only conditionally stable and
requires an extremely small time step to maintain numerical stabilities. The implicit
method, for example Houbolt, and Newmark methods, is used for analyses involving
small accelerations. In this scheme, the solution is found by computing an equation
in which both the current and the last state of the system are involved. Each time
increment is solved slowly since iterations are needed to obtain the convergence, i.e., the
global equilibrium. The reader is referred to [218, 219] for meticulous reviews of these
methods. For many problems, such as structural vibration analyses, an implicit method
is usually preferred. In dynamic structural applications, excluding impact analysis,
interest is typically focused only on the low modes because the high modes usually do not
indicate the real behaviour of the initial problem and for computational efficiency reasons.
To thoroughly investigate these modes, an implicit unconditionally stable method is
generally used. For these schemes, time steps are selected independent of stability aspects.
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However, some form of numerical damping must be considered in these algorithms to
damp out the spurious participation of the higher modes in dynamic responses in order
to facilitate the convergence solution during the iteration.

In the present thesis, we adopt both the mode superposition approach [34] and direct
integration algorithms. In detail, the time integration algorithm used to describe the
dynamic responses is the Newmark method [220]. However, this method may not be
unconditionally stable in a highly nonlinear regime. Therefore, for these cases, the Hilber-
Hughes-Taylor (HHT)-α method [221] is implemented into the presented formulation to
stabilize the time integration process under highly nonlinear effects.

4.3.1 Mode superposition method

Thanks to the accuracy of the modal analysis carried out using the CUF, the mode
superposition method is advantageous in dynamic analysis when the Newmark method
is too computationally expensive. The undamped dynamic equilibrium, Eq. 4.22, may
be written in modal coordinates by employing the following transformation:

q(t) = Φx(t) (4.23)

in which Φ is a DOFs×m matrix containing m M -orthonormalized eigenvectors and
x(t) indicates a time-dependent vector of order m.

The transformation matrix Φ must be non-singular (i.e., rank(Φ) = m) to have a
unique relation between any vectors q and x. In detail, an effective transformation matrix
is setted employing the solution of the undamped free-vibration equations of motion,
that is reduced into linear or nonlinear eigenvalue problems by assuming harmonic
solutions. Briefly, the eigenproblem of the m-DOFs system under consideration gives the
m eigensolutions (ω2

1, Φ1), (ω2
2, Φ2), ... , (ω2

m, Φm), in which ωi denote the corresponding
natural frequencies (rad/s).

We define a matrix Φ) containing the eigenvectors Φi in the columns and a diagonal
matrix Ω2 that stores the second power of the natural periods ω2

i . Furthermore, since
the eigenvectors are M -orthogonal, we may prove that:

ΦTKSΦ = Ω2, ΦTMΦ = I (4.24)

The equilibrium equations without damping are:

ẍ(t) + Ω2x(t) = ΦTF (t) (4.25)
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Equation 4.25 is a system of m individual equations of the form:ẍi(t) + ω2
i xi(t) = ri(t)

ri(t) = ΦT
i F (t)

i = 1, 2, ..., m (4.26)

with initial conditions defined as:

x(0) = ΦTMq(0), ẋ(0) = ΦTMq̇(0) (4.27)

The solution of each Eq. 4.26 is obtained by introducing the well-known Duhamel
integral:

xi(t) = 1
ωi

∫ t

0
ri(τ)sinωi(t − τ) dτ + αisinωit + βicosωit (4.28)

in which αi and βi are derived from the initial conditions (Eq. 4.27). By considering this
procedure, the contributions to the response for each mode are evaluated. Of course, the
accuracy of the solution will depend on the number m. The complete response q(t) is
defined by superposition of the response in each mode as follows:

q(t)
m∑

i=1
Φixi(t) (4.29)

However, the essence of the mode superposition method is that, generally, only a small
fraction of the total number of decoupled equations has to be considered to achieve good
approximate solutions. Typically, only the first n equations of motion in Eq. 4.26 need
to be used, with n ≪ m.

4.3.2 Newmark method

Equation 4.22 gives a system of algebraic equations in the time domain. The resolution can
involve the use of a time integration algorithm, e.g., the Newmark approach. This method,
widely employed in structural dynamics, belongs to the family of direct integration
methods. For completeness, the equation of motion at time t + ∆t and its solution is
given below.

Mq̈t+∆t + KSqt+∆t = Ft+∆t (4.30)
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The step-by-step solution of Eq. 4.30 is derived by considering the following assumptions
for the velocities and displacements within the time step ∆t:

q̇t+∆t = q̇t + [(1 − δ)q̈t + δq̈t+∆t]∆t

qt+∆t = qt + q̇t∆t + [(1
2 − α)q̈t + αq̈t+∆t]∆t2 (4.31)

in which α and δ stand for parameters that are determined to obtain integration accuracy
stability. In the present work, δ= 0.5 and α= 0.25 are assumed for the related constants.
By introducing the trapezoidal rule, q̇t+∆t and q̈t+∆t are calculated from Eq. 4.31 in
terms of qt+∆t. Then, we solve for each time step:

K̂Sqt+∆t = F̂t+∆t (4.32)

where:
K̂S = KS + 1

α(∆t)2 M

F̂ = F + 1
α(∆t)Mq̇t + 1

2α
Mq̈t

(4.33)

This procedure is repeated for all the time steps. For the sake of brevity, the Newmark
complete solution procedure is reported in [34].

4.3.3 HHT-α method

The Newmark method, especially the trapezoidal rule, is the most widely adopted in
practical dynamic analyses. This integration algorithm is generally the most effective
because it is a single-step scheme and a second-order accurate procedure. This algorithm
that is not dissipative and has no amplitude decay is acceptable in any engineering
problem. Nevertheless, the trapezoidal rule that is known to be unconditionally stable
in linear analyses may become unstable in nonlinear dynamic analysis when very large
deformations and long-time responses are studied. To overcome this limit, numerical
damping is introduced to assure energy conservation or decays. These methods are called
generalized α-algorithms [222]. In this research, the implicit time integration scheme
used to derive the nonlinear dynamic responses is the Hilber-Hughes-Taylor (HHT)-α
algorithm, that represents a formulation able to stabilize the time integration process
under highly nonlinear effects. The latter method allows possessing numerical damping
to suppress any spurious growth of high-frequency response. This implicit method is a
second-order accurate dissipative method that has much high-frequency dissipation with
little low-frequency damping. It is important to highlight that if α = 0, this method
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reduces to the Newmark algorithm. In summary, the resolution of nonlinear dynamic
equations, Eq. 4.22, solved by employing an opportune Newton-Raphson method and
the HHT-α scheme, is provided below.

Considering the values known at the time t, the corresponding ones at t + ∆t are
calculated using the HHT-α methodology, which was formulated by Hilber et al. [221].
In detail, the equation of motion is expressed as follows:

Mq̈t+∆t + (1 + α)KSqt+∆t − αKSqt = (1 + α)Ft+∆t − αFt (4.34)

In order to obtain approximate step-by-step solutions of Eq. 4.30, the classical Newmark
assumptions for velocities and displacements within the time step ∆t are introduced.

q̇t+∆t = q̇t + [(1 − γ)q̈t + γq̈t+∆t]∆t

qt+∆t = qt + q̇t∆t + [(1
2 − β)q̈t + βq̈t+∆t]∆t2

(4.35)

where β = (1 − α)2/4 and γ = (1 − 2α)/2. The parameters α, β and γ control the
accuracy, stability and numerical dissipation characteristics. As described by Hilber et
al. [221], to use adequate numerical damping properties in the higher modes while at
the same time ensuring that the lower modes are not affected too strongly, a value of
−1/3 ≤ α ≤ 0 has to be employed.

The resolution of the presented numerical algorithm adopted to perform nonlinear
dynamic analysis can be described in the following steps:

1. Form stiffness KS and mass matrix M ;

2. Set the initial conditions;

3. For each time step:

(a) Starting condition:

q̈t+∆t = 0

qt+∆t = qt + q̇t∆t + q̈t(1/2 − β)δ2 + q̈t+∆tβ∆t2

q̇t+∆t = q̈t + q̈t(1 − γ)∆ + q̈t+∆tγ∆t

(4.36)
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(b) Form residual load vector Rt+∆t:

Rt+∆t = (1 + α)Ft+∆t − αFt − (1 + α)rt+∆t + αrt − Mq̈t+∆t (4.37)

where r represent the internal forces.

(c) Newton-Raphson iteration convergence:

i. while ||Rt+∆t|| ≥ Tol do
ii. Calculate tangent stiffness matrix KT ;
iii. Solve for incremental acceleration ∆q̈t+∆t:

[(M + KT β∆t2(1 + α)]∆q̈t+∆t = Rt+∆t (4.38)

iv. Calculate new acceleration, velocity and displacement vectors:

q̈t+∆t = q̈t+∆t + ∆q̈t+∆t

q̇t+∆t = q̇t+∆t + ∆q̈t+∆tγ∆t

qt+∆t = qt+∆t + ∆q̈t+∆tβ∆t2

(4.39)

v. Calculate new residual load vector.

Rt+∆t = (1 + α)Ft+∆t − αFt − (1 + α)rt+∆t + αrt − Mq̈t+∆t (4.40)

vi. end while

(d) Next time step.

4.4 Need of higher-order and full nonlinear models

First, geometrically nonlinear static analyses were performed on isotropic and laminated
composite shells, emphasizing the potentiality of the presented full nonlinear approach
to compute the interlaminar 3D stress state in large displacement/rotation fields. In
addition, the effectiveness of various geometrically nonlinear strain approximations, such
as the full nonlinear and the classical von Kármán strains, is evaluated. Then, the
results derived from the large-deflections and post-buckling analyses of laminated plates
highlight the differences between the classical and refined structural theories. Finally,
the nonlinear transient response of several beam structures considering various loadings
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and boundary conditions are presented. Results show the need to adopt LE theories and
full nonlinear strain models in order to capture the complex behaviours. Of course, the
interest is also focused on the capability of the presented approach to carry out enhanced
analyses of complex problems with very low computational efforts.

4.4.1 Stress distribution evaluation

Isotropic pinched cylindrical shell (static analysis)

A cylindrical shell under transverse loadings is considered as first analysis case. Regarding
the boundary conditions, the vertical deflection and the rotation about the β-axis are
restrained along its longitudinal edges and a clamped constraint is imposed in β = 0.
Figure 4.3 illustrates this considered structure, including its geometrical parameters, L =
3.048 m, Rα = 1.016 m, and t = 0.03 m. The material data are: E = 20.685×106 N/m2

and ν = 0.3. The nonlinear static analysis of this case has already been analyzed by Sze

P

α

free

cl
am
pe
d

Rα

L

w=
=0

w=
=0

Fig. 4.3 Geometric properties, boundary and loading conditions of the isotropic pinched
cylindrical shell.

et al. [223] and Wu et al. [224]. Nevertheless, only nonlinear equilibrium curves were
analyzed and no through-the-thickness stress benchmarks were yet provided.

Firstly, convergence analyses on the surface finite element mesh is performed in
order to carry out accurate evaluations. Figure 4.4 depicts the transverse deflections for
different 2D shells, and from 100Q9 to 1600Q9 elements are employed for the in-plane
discretization, while 1LD2 is adopted in the z-axis. In addition, Table 4.1 provides the
transverse displacements for various models and loads, along with the total degrees of
freedom (DOFs). The results given Fig. A.13 and Table 4.1 show that the kinematics
32×32Q9 is a good approximation for the surface mesh. Furthermore, another convergence
study on the expansion functions in z-direction is needed for an accurate evaluation of
the 3D stress fields, which include the circumferential normal stress σαα and transverse
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Fig. 4.4 Nonlinear equilibrium path for the isotropic pinched cylindrical shell structure,
including convergence analyses on the surface mesh approximation.

Model DOFs -uz

500 N 1500 N 2000 N
10x10Q9+1LD2 3969 0.34 0.73 1.24
16x16Q9+1LD2 9801 0.44 1.40 1.53
32x16Q9+1LD2 19305 0.49 1.55 1.70
32x32Q9+1LD2 38025 0.50 1.57 1.72
40x40Q9+1LD2 59049 0.50 1.57 1.72

Table 4.1 Transverse displacements [m] of the loading point for various shell models.
Isotropic pinched cylindrical shell structure.
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shear stress σβz. In particular, both LE and TE functions are used and compared.
Figure 4.5 and 4.6 displays the stress distributions for various expansion orders. Table
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Fig. 4.5 Transverse shear stress, σβz, distributions through thickness for various TE and
LE functions at the middle point of the isotropic pinched cylindrical shell subjected to P
= 500 N.

4.2 provides the comparison of the circumferential normal and transverse shear stress
values for various shell theories and loads. Clearly, it is observed that at least one LD3
kinematics should be employed to accurately compute the stresses. It is possible to state
that the 1LD3 model is convergent with the higher-order 2LD3 model and, therefore, to
consider these values accurate. Results suggest that a low-order model is sufficient to
predict the circumferential normal stress, while a higher-order model is mandatory to
accurately evaluate the transverse shear stress component. In addition, Fig. 4.7 plots the
through-the-thickness circumferential normal and transverse shear stresses for two loads.
The stress distributions of both TE1 and with 1LD3 models are shown to underline the
different capabilities of the two shell theories in detecting accurate stress distributions.
The linear interpolation given by the TE1 approximation is not enough to catch the
parabolic distribution of transverse shear stresses, as highlighted in Fig. 4.7d. In fact, at
least 1LD3 must be considered for a correct description of the current problem.
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Fig. 4.6 Variation of stress distributions through thickness for various TE and LE functions
at the middle point of the isotropic pinched cylindrical shell subjected to P = 1500 N.

Theory DOFs σαα × 10−4, [Pa] σβz, [Pa]
500 N 1500 N 500 N 1500 N

TE1 25350 -10.72 -100.75 -753.08 349.29
TE2 38025 -9.80 -97.12 -916.36 -151.02
TE3 50700 -9.85 -97.88 -1058.51 -404.04
TE4 63375 -9.85 -97.87 -1042.43 -254.80
1LD1 25350 -10.72 -100.74 -955.35 355.90
1LD2 38025 -9.80 -97.11 -928.97 -102.39
2LD2 63375 -9.84 -97.62 -1501.40 -318.89
1LD3 50700 -9.85 -97.87 -1302.05 -287.32
2LD3 88725 -9.85 -97.87 -1299.74 -290.58

Table 4.2 Circumferential normal and transverse shear stresses of the isotropic pinched
cylindrical shell for various expansion theories and loads at α = 1.595 m, β = 1.524 m
and at z = 0.015 m for the σαα and at z = 0.0 m for the σβz
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Fig. 4.7 The distribution of normal (a, b) and transverse shear (c, d) stresses in the
z-axis for two load values for the isotropic pinched cylindrical shell at the middle point.
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Composite hinged shell (static analysis)

As a further case, a composite hinged shell subjected to a central transverse force P is
studied. The structure has the following geometrical characteristics, L = 508 mm, Rα =
2540 mm, θ = 0.1 rad. The material data of this laminated hinged shell involves EL=
3300 MPa, ET = 1100 MPa, GLT = 660 MPa, GT T = 660 MPa and νLT =νT T = 0.25. The
lamination sequences are [0◦, 90◦, 0◦], [90◦, 0◦, 90◦] and [45◦, 0◦, −45◦], and the thickness
equals 12.7 mm.

First, convergence studies on the in-plane 2D shell model is performed in order to
perform accurate static analyses. Then, stress investigations are carried out for different
expansion orders. Figure 4.8 shows the transverse displacements for different in-plane FE
mesh, and the elements from 25Q9 to 225Q9 are employed for the surface discretization,
while only 1LD2 is used in each layer in the z-direction. The nonlinear response curves
are divided into the regions A, B and C, as shown in Fig. 4.8c. In addition, transverse
displacements values for the three laminations for different in-plane mesh and loads are
provided in Table 4.3, including the number of DOFs. As a consequence, the 10×10Q9

Model DOFs
-uz [mm]

[0◦, 90◦, 0◦] [90◦, 0◦, 90◦] [45◦, 0◦, −45◦]
500 N (A) 500 N (B) 500 N (C) 2000 N 500 N 2000 N 500 N (A) 500 N (B) 500 N (C) 2000 N

5 x 5Q9 + 3LD2 2541 2.521 14.629 24.601 29.821 2.125 27.069 2.620 18.074 22.097 29.296
10 x 10Q9 + 3LD2 9261 2.701 15.698 25.092 30.492 2.062 27.701 2.879 17.296 22.691 30.220
15 x 15Q9 + 3LD2 20181 2.702 15.700 25.092 30.495 2.066 27.709 2.883 17.307 22.706 30.221

Sze et al. [223] - 2.697 15.727 25.124 30.506 2.061 27.722 - - - -

Table 4.3 Transverse displacements values of the composite hinged shell for various
in-plane mesh approximation and loads at α = 254 mm, β = 254 mm and z = 6.35 mm.

mesh will be considered as converged discretization and, therefore, it is adopted for the
following stress analyses. Both ESL and LW models are adopted and compared using
different expansion functions in the z-direction. Figure 4.9 depicts the comparison for
different kinematic theories for the stress assessment. The corresponding stress values are
tabulated in Table 4.4 for different shell theories. As suggested by the results, the LW
model should be exploited to accurately predict the stress distribution. Results highlight
that the ESL model with a low-order model is enough to evaluate the circumferential
normal stress, while it is inaccurate to predict the transverse shear stress component.
Figures 4.10, 4.11 and 4.12 show the circumferential normal and transverse shear stresses
in the thickness direction for different loads and for the three different staking sequences.
As previously done, the stresses computed using both ESL and LW models with 4LD3

are illustrated to show the different capabilities of the two approaches. According to Fig.
4.10d, ESL models are not able to accurately evaluate the transverse shear stresses.
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Fig. 4.8 Nonlinear equilibrium curves of the composite hinged shell under transverse
loadings, including the convergence analysis on in-plane mesh numbers. Lamination
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Fig. 4.9 Convergence analyses of the composite hinged cylindrical shell under P = 2000
N for stresses evaluation at α = 254 mm and β = 127 mm. Comparison of various orders
of both Lagrange expansion functions in the thickness direction and Taylor expansions.
Lamination sequence: [0◦, 90◦, 0◦].

Theory DOFs
[0◦, 90◦, 0◦] [90◦, 0◦, 90◦] [45◦, 0◦, −45◦]

σαα [MPa] σβz [MPa×10−2] σαα [MPa] σβz [MPa×10−2] σαα [MPa] σβz [MPa×10−2]
2000 N 2000 N 2000 N 2000 N 1500 N 1500 N

TE1 2646 -7.563 -5.299 -21.264 -2.135 -11.840 -3.360
TE2 3969 -7.533 -5.802 -21.301 -2.530 -11.817 -3.607
TE3 5292 -7.510 -9.518 -21.214 -4.211 -11.796 -5.919
TE4 6615 -7.480 -9.069 -21.215 -4.231 -11.172 -6.260
4LD1 6615 -7.749 -9.899 -21.470 -3.861 -12.072 -5.932
3LD2 9261 -7.545 -9.635 -21.218 -3.998 -11.857 -5.943
4LD3 17199 -7.05 -9.192 -21.220 -4.157 -11.792 -5.949

Table 4.4 Circumferential normal stress and transverse shear stresses of the composite
hinged shell for various theories and loads at α = 254 mm, β = 127 mm and z = 6.35
mm for σαα and z = 0 mm for σβz.
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Fig. 4.10 Through-the-thickness stress for various load values at α = 254 mm and β =
127 mm of the composite hinged shell. Lamination sequence [0◦, 90◦, 0◦].
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Fig. 4.11 Through-the-thickness stress for various load values at α = 254 mm and β =
127 mm of the composite hinged shell. Lamination sequence [90◦, 0◦, 90◦].
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Fig. 4.12 Through-the-thickness stress for various load values at α = 254 mm and β =
127 mm of the composite hinged shell. Lamination sequence [45◦, 0◦, −45◦].
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Next, another stress analysis is performed considering the hinged shell structure with
stacking sequence [90◦, 0◦, 90◦] subjected to a line force in α = 254 mm, z = 6.35 mm.
Figure 4.13 shows the nonlinear equilibrium path of the composite hinged shell subjected
to the line force. Finally, for the sake of completeness, the circumferential normal and
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Fig. 4.13 Nonlinear equilibrium trend of the composite hinged shell under line loadings.
Stacking sequence [90◦, 0◦, 90◦].

transverse shear stresses in the z-direction for a line load conditions are plotted in Fig.
4.14.

Solid square cross-section beam under sinusoidal loading (dynamic analysis)

A simply supported square cross-section beam was analyzed as the first dynamic example,
see Fig. 4.15. The square cross-section has the following geometrical characteristics: sides
are equal to 0.1 m, span-to-height ratio L/h is equal to 100. The whole structures has
the following material data: E= 69 GPa, ν= 0.33 and ρ= 2700 kg/m3. This structure is
modelled by means of 10B4 finite elements along the y-axis and a quadratic approximation
is used on the cross-section (L9). The structure is loaded with a single harmonic load
applied at the center of the mid-span section:

Pz(t) = Pz0sin(ωt) (4.41)

where Pz0= -1000 N is the amplitude of the sinusoidal load, whereas ω= 7 rad/s is the
angular frequency.
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Fig. 4.14 Stress distribution versus z of the composite hinged shell under line loading for
different loads at α = 127 mm and β = 254 mm. Lamination sequence [90◦, 0◦, 90◦].
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Fig. 4.15 Compact square cross section.

The dynamic response is analyzed using both the Newmark method and the mode
superposition method over the time interval [0,8] s. 2000 steps (dt= 0.004 s) are chosen
to perform direct time integration via the Newmark method. Instead, in the case of the
mode superposition method, zero initial conditions are used and a convergence study
on the number of modes to be used is necessary. Figure 4.16 shows the transverse
displacement as a function of the time in the middle of the structure for different number
of modes. It is noted that only 3 modes are sufficient for this type of analysis. The

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  1  2  3  4  5  6  7  8

u
z
, 
m

Time, s

3 modes
10 modes

Fig. 4.16 Convergence study of the number of modes for the mode superposition method.
Square beam under sinusoidal load.

comparison between the mode superposition and the Newmark method is shown, instead,
in Fig. 4.17, including the comparison with the reference results [225, 226]. These results
confirm the validity of the two methods, which are effective when displacement response
is necessary. It should be mentioned that, since only 3 modes are enough to guarantee
the effectiveness of the mode superposition, for this analysis, this method should be
preferred because it is convenient in terms of computational costs.

In addition, also an evaluation of stresses is provided. First, convergence analyses
on the dt and modes for the evaluation of the stresses are performed and illustrated in
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Fig. 4.17 Transverse displacement at the mid-span section by using the mode superposition
method (3 modes) and Newmark method (dt= 0.004 s) see Ref. [225,226]. Square beam
under sinusoidal load.

Figs. 4.18a and 4.18b. Figure 4.18c shows the comparison between the two methods
for the shear stress, σyz, distributions as a function of the time. From Fig. 4.18, it can
be noticed that there is a slight difference between the two resolution methods. The
mode superposition allows us to evaluate stress using relatively few and correct mode
shapes calculated by the proposed model. Furthermore, the resulting analyses indicate
that using the mode superposition method there is a considerable time saving even for
a simple model like this. This last aspect is very important to underline because it
gives us a significant computational gain when dealing with more complicated structures.
For completeness, a comparison between the results obtained with the present method
and the MSC Nastran solid model [227] solutions is carried out in order to provide a
validation of the proposed approach. In particular, both the axial stress, σyy, and shear
stress, σyz, with respect to the time are shown in Fig. 4.19. It should be noted that by
employing the present method, it is possible to accurately derive the stress distributions
with a significant computational advantage than Nastran solid model due to a noticeable
reduction in degrees of freedom (DOFs) (1488 vs 6102).

For the sake of completeness, the convergence analysis, see Fig. 4.20, for the cross-
section discretization using both LE and TE theories is also reported. As a result,
the cross-section of the structure was modelled with a cubic LE approximation on the
cross-section (L16). Sixteen-point (L16) polynomials are considered, which lead to cubic
displacement field approximations over the beam cross-section and, therefore, a better
evaluation of stresses. From this figure, it is clear that a low-order model is sufficient to
evaluate the normal stress σyy, whereas a high-order model is needed to accurately predict
the transverse shear stress component. For example, the linear interpolation provided
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Fig. 4.18 Shear stress distributions at a quarter of the beam (x=z=0) versus time. Square
beam under sinusoidal load.
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by the TE1 approximation is, clearly, not enough to catch the parabolic distribution of
the transverse shear stress σyz. Axial and shear stress trends in the thickness direction
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Fig. 4.20 Through-the-thickness stress distribution at a quarter of the beam at t = 0.6 s
for different LE and TE theories. Square beam under sinusoidal load.

at a quarter of the beam, y = L/4, are shown in Fig. 4.21 at t = 0.6 s and t = 4 s
using the mode superposition method. Furthermore, in these figures stress distributions
adopting a theory based on linear interpolation (FSDT-like) is also provided, showing
how inaccurate this theory is for evaluating transverse shear stress.
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Fig. 4.21 Through-the-thickness distribution of axial, σyy, and transverse, σyz, stress
components at a quarter of the beam at different times. Square beam under sinusoidal
load. Mode superposition using 10 modes. LE16 beam model.

Thin-walled rectangular beam (dynamic analysis)

The transient analysis of a cantilever thin-walled rectangular cross-section beam is
presented as the second dynamic example. This model, illustrated in Fig. 4.22, has the
following dimensions: a = 1 m, L = 10 m, width-to-height ratio equal to 10 and t = 0.005
m. The material data are: E = 69 GPa, ν = 0.33 and ρ = 2700 kg/m3. This structure is
relatively short and will incur into cross-sectional deformations, so higher-order theories
are necessary. As a consequence, this structure is modelled by employing 10 B4 finite
elements along the y-axis and 10L9 in the cross-section by using the CW methodology.
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Fig. 4.22 Thin-walled rectangular cross-section.

A time-dependent sinusoidal loading with amplitude Pz0 = -10000 and angular frequency
ω = 30 rad/s is applied at point 1 at y = L/4. Dynamic response analyses are performed
over the interval [0,1.5] s, using both the mode superposition method and Newmark
method. Convergence studies prove that an appropriate time step for the Newmark
method is dt = 3×10−3 s (500 steps) [225]. As in the previous case, convergence analyses
on the number of modes to use for the mode superposition method are carried out.
Transverse displacements as a function of the time for the different number of modes and
the comparison between the Newmark method and mode superposition and reference
solutions [225] at points 1 are provided in Figs. 4.23a and 4.23b. Consequently, 35 modes
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Fig. 4.23 Transverse displacements of point 1 as a function of the time. Thin-walled
rectangular beam subjected to sinusoidal loading.

turn out to be an appropriate number for the evaluation of transverse displacements.
The second part of this analysis deals with stress assessment. In particular, new

convergence analyses on the number of modes is necessary using the mode superposition
method for a correct stress investigation. Figure 4.24 shows the shear stress with respect
to the time for the several number of modes. The results suggest that more modes should
be considered for stress assessment. In particular, 100 modes are needed in this case to
perform a correct analysis. The axial and shear stress distribution over the time at x=
0.495 m and y = L/2 is depicted in Fig. 4.25. For clarity, only the mode superposition
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Fig. 4.25 The distribution of the axial (at x=0.495 m, z=0.0475 m) and shear (at x=0.495
m, z=0 m) stresses at the mid-span section vs time adopting the mode superposition
method. Thin-walled rectangular beam under sinusoidal loading.

method is adopted for the evaluation of stresses due to the significant advantage in
terms of computational cost and accuracy of results. Convergence analyses for several
discretization theories on the cross-section are also provided in Fig. 4.26, where both TE
and LE theories are used. As a results, it appears that a low-order theory is sufficient
to evaluate normal stresses, while an high-order is mandatory to accurately compute
transverse shear stresses. For completeness, axial and shear stress distributions in the
z-direction for different times are presented in Fig. 4.27, including also the comparison
between the L9 beam model and the results obtained employing a theory based on linear
interpolation (FSDT-like).
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Fig. 4.27 Through-the-thickness axial and shear stress distribution at the mid-span
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beam under sinusoidal loading.
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Wing-box structure (dynamic analysis)

Transient analyses of a cantilever wing-box is investigated as the next dynamic case. The
structure has the following dimensions: L = 3 m, b = 1 m, h = 0.5 m, the thickness (t)
of the panels is equal to 2×10−3 m and the spar caps area is As = 1.6×10−3 m2. An
isotropic material was considered with the following properties: E= 75 GPa, ν= 0.33
and ρ= 2770 kg/m3. The structure is modelled with 10B4 finite elements along the

Fig. 4.28 Wing-box model.

y-axis 8L9 in the cross-section. The wing-box is reported in Fig. 4.28, in which it is also
indicate the loading condition. In particular, a sinusoidal load having amplitude P0 =
10000 N and angular frequency ω = 3 rad/s is applied in the stringer 1 at y = L.

First, transverse displacements over the time at the load application point are plotted
in Fig. 4.29 for various theories considering the Newmark scheme. Moreover, the
maximum displacements at the middle of the stringer 1 at t= 0.5 s are tabulated in Table
4.5 for various theories. From these results, it evident that LE is a good choice to use for
the following investigations.

Convergence studies for both the Newmark (dt) and mode superposition method
(number of modes) are necessary in order to perform accurate analyses, see Fig.s 4.30a
and 4.30b. Instead, the comparison between the Newmark scheme, mode superposition
method and reference results [226] is provided in Fig. 4.30c.

Next, analyses of the stresses, axial load and mean shear flow are presented. These
studies require a more refined model, and, after convergence analyses, we have chosen
to use 52L9, whereas 150 modes are considered for the mode superposition method.
The distributions of the axial load in the upper stringer, P , at y = 0, and mean shear
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Newmark algorithm (dt= 0.01 s) for several theories. Wing-box structure.

Theory Stringer 1
- uzmax [mm]

EBBT 2.17
TE 1 2.36
TE 3 2.78
TE 5 3.28
TE 10 6.07
TE 14 6.11

L9 6.19
Table 4.5 Maximum transverse displacements at the middle of the stringer 1 employing
various theories at t= 0.5 s and using the Newmark scheme. Wing-box structure.
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Fig. 4.30 Transverse displacements with respect to the time at the load application point.
Wing-box structure.



110 Nonlinear static and dynamic formulations

flows in the panel, q, at y = L/4, as a function of the time are illustrated in Fig. 4.31.
For completeness, the through-the-thickness axial and shear stress distributions for two
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Fig. 4.31 Time-dependent axial load (P ) and mean shear flows (q) using the mode
superposition method (150 modes). Wing-box structure.

times are reported in Fig. 4.32, showing the difference with the results obtained using a
FSDT-like theory.
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Fig. 4.32 Through-the-thickness axial and shear stress distribution employing the mode
superposition method (150 modes). Wing-box structure.

Composite plate subjected to a step loading (dynamic analysis)

The next study case concerns a four-layer square composite plate under step loading
of intensity 1 N/mm2. The geometric characteristics of the plate are the same as in
the previous isotropic case. The material data of this structure are the following: E1 =
525000 N/mm2, E2 = E2 = 21000 N/mm2, G12 = G13 = G23 = 10500 N/mm2, ν12 = 0.25
and ρ = 800 kg/m3. Both cross-ply [0◦/90◦/90◦/0◦] and angle-ply [45◦/ − 45◦/45◦/ − 45◦]
plate are analyzed. In addition, both clamped-clamped and simply-supported boundary
conditions are adopted in the following analyses. The structure is modelled adopting
12×12Q9 for the in-plane mesh approximation, whereas only 1LD3 is employed in each
layer in the z-direction.
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The response histories of the cross-ply and angle-ply laminated plate are illustrated
in Figs. 4.33, 4.34 and 4.35, again in terms of displacements and stresses, and compared
with the solution found in the literature [228] and obtained using the Abaqus software.
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Fig. 4.33 Nonlinear dynamic response of the simply-supported composite plate. a/h =
50. Ref. [228].
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Fig. 4.34 σyy versus time of the simply-supported composite plate. a/h = 50.

Once more it is seen that the predictions of the presented nonlinear approach are broadly
verified by comparison with the solution present in available literature and obtained
using the commercial software Abaqus: such comparison is close for both deflections and
stresses.
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Fig. 4.35 Nonlinear dynamic response of the clamped-clamped composite plate. a/h =
50.

Next, we investigated the dynamics of a thick plate structure, in which the ratio a/h
= 10 is considered. Figure 4.36 displays the dynamic response of the clamped-clamped
composite [0◦/90◦/90◦/0◦] plate. Figure 4.37 illustrates the axial stress distribution
over the time for various expansion orders. Furthermore, through-the-thickness stress
distributions for several TE and LE functions are provided in Fig. 4.38. Finally, the
deformed configuration and the displacement and stress contours based on the CUF
2D nonlinear model (12×12Q9+4LD3) at the t = 5×10−4 sec for the clamped-clamped
composite [0◦/90◦/90◦/0◦] plate with a/h = 10 are depicted in Fig. 4.39.

4.4.2 Influence of geometrically nonlinear strain measures

Isotropic cylindrical structure (static analysis)

A clamped-clamped thin-walled cylindrical shell subjected to a transverse force is analyzed
as the first assessment in order to evaluate the effect of the considered geometrically
nonlinear strain model. Due to the symmetry of the structure, only one eighth of the
entire model is analyzed. The geometrical and material data come from the book of
Flügge [229]. In particular, they are: L = 600 in, t = 3 in, R = 300 in, E = 3×106 psi
and ν = 0.3. The cylindrical structure is subjected to large deflections due to a transverse
load P applied, as illustrated in Fig. 4.40.

First, convergence studies on the surface finite element mesh and different kine-
matic expansion functions in the thickness direction are needed to perform an accurate
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Fig. 4.36 Nonlinear dynamic response of the clamped-clamped composite [0◦/90◦/90◦/0◦]
plate. a/h = 10.

comparison between the numerical results of different nonlinear strain approximations.
Specially, we evaluate the nonlinear equilibrium path of the clamped-clamped thin-walled
cylindrical shell structure for various in-plane meshes and LE functions in the z-direction.
Figure 4.41a compares the equilibrium curves at the loading point for different CUF 2D
shell elements, in which the in-plane meshes from 64Q9 to 400Q9 FEs are employed.
In addition, the analysis using one LD1, LD2 or LD3 are illustrated in Fig. 4.41b.
The results was validated with those obtained by Pagani et al. [230], where the same
structure was analyzed using higher-order 1D beam elements. Moreover, the transverse
displacement values for various CUF shell models and loads, along with the DOFs, are
reported in Table 4.6. As evident from Fig. 4.41 and Table 4.6, to carry out an accurate
static nonlinear response analysis and demonstrate the effects of the various nonlinear
strain terms below, the structure should be modelled by employing 16×16Q9 for the
in-plane mesh approximation and only 1LD2 in the thickness direction.

Figure 4.42 shows the nonlinear equilibrium curves of the cylindrical shell structure
subjected to a transverse load for various geometrically nonlinear strain models at the
loading point, including some deformed configurations. Basically, different nonlinear
strain terms of the operator bnl in Eq. 3.4 are activated in each geometrically nonlinear
CUF shell theory. In essence, black dots in Fig. 4.42 denote the activated nonlinear
strain terms. For instance, the analysis with all nonlinear terms involved (i.e., 3D full
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Fig. 4.37 σxx versus time. Clamped-clamped composite [0◦/90◦/90◦/0◦] plate. a/h = 10.

CUF shell models DOFs
-uz

2.5×105 lb 15×105 lb
8 x 8Q9 + 1LD2 2601 18.5 48.1

12 x 12Q9 + 1LD2 5625 21.8 50.8
16 x 16Q9 + 1LD2 9801 22.9 52.0
20 x 20Q9 + 1LD2 15129 22.9 52.1

Ref. [230] 10920 23.1 52.4

Table 4.6 Transverse displacement values [in] of the cylindrical structure for different
models and loads at the load point.
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Fig. 4.38 Through-the-thickness nonlinear stress distribution at t = 5×10−4 sec. Clamped-
clamped composite [0◦/90◦/90◦/0◦] plate. a/h = 10.
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Fig. 4.39 Contour plots at t = 5×10−4 sec. Clamped-clamped composite [0◦/90◦/90◦/0◦]
plate. a/h = 10.
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Fig. 4.40 Illustration of (a) the entire cylindrical shell structure subjected to transverse
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Fig. 4.41 Convergence analyses of the clamped cylindrical shell.
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GL nonlinear strain) is abbreviated as the “Full", while that with all nonlinear terms
excluded indicates “linear" analysis. The “1DVK" and “2DVK" analyses indicate the
von Kármán assumptions corresponding to 1D and 2D models. Instead, the analyses
including nonlinear shear effects will be referred to as “1DVKs" and “2DVKs". Analysis
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Fig. 4.42 Nonlinear equilibrium curves at the loading point of the cylindrical shell
structure subjected to transverse loading for various geometrically nonlinear models.

case number 4 demonstrate that neglecting the higher-order derivatives of the transverse
displacement component uz (the third column of matrix bnl) affects the accuracy of the
nonlinear solution. In fact, the curve is very similar to that of linear analysis (case number
2). As for the von Kármán models, cases 5 and 6 are the solutions for the traditional
sets of 1D and 2D approximations. In particular, the 2DVK curve is very similar to the
3D full geometrically nonlinear solution, even for moderate and large displacement and
rotation fields. On the other hand, the 1DVK case leads to a noticeably different curve
than the FULL theory. In particular, this curve follows the linear solution until uz = 20
in. The displacement predicted by the 1DVK (and 1DVKs) is greater than the linear case.
It is important to underline that including or not the nonlinear shear terms in the von
Kármán approximation leads to almost the same results. For the sake of completeness,
adopting a symmetrical model, such as an one-eighth of the whole cylindrical structure
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as in this case, can not provide accurate results when non-symmetrical load conditions
or composite structures with complex laminations are considered.

Composite cylindrical structure (static analysis)

The next analysis deals with a clamped composite cylindrical shell structure subjected
to compressive and transverse loadings, see Fig. 4.43. The vertical deflection and the
rotation about the β-axis are restrained along its longitudinal edges. This composite
cylindrical shell has the following stacking sequence [90◦, 0◦, 90◦]. In the same figure,
the boundary conditions and applied loads are depicted. The considered structure has
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uα=θβ
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α

β

Fig. 4.43 Representation of the composite cylindrical shell structure under compressive
and transverse loadings.

the following geometric data: L = 3.048 m, Rα = 1.016 m, and the thickness equal to
0.03 m. Each layer is made up of an orthotropic material with the following properties:
EL = 2068.5×104 N/m2, ET = 517.125×104 N/m2, GLT = 795.6×104 N/m2 and νLT =
νT T = 0.3.

First, convergence analyses of the in-plane mesh approximation are carried out to
achieve accurate static nonlinear response evaluations. In the thickness direction, only
1LD2 for each layer is employed. Figure 4.44 shows the transverse displacements versus
applied loadings at the loading point for various CUF shell models, in which the in-plane
meshes from 256Q9 to 1600Q9 FEs are considered. The nonlinear equilibrium path are
split into two regions A and B. Moreover, the transverse displacement values for various
models and loads, including the DOFs, are given in Table 4.7. As a result, the composite
structure is well modelled by using 32×32Q9 for the in-plane mesh approximation and
only 1LD2 for each layer in the z-direction.

Figure 4.45 provides the nonlinear equilibrium curves of the composite cylindrical
shell under compressive and transverse loads based on different kinds of nonlinear strain
approximations at the loading point. Particular interest is focused on the comparison



120 Nonlinear static and dynamic formulations

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6

-uz, m

P

�

 x
 1

0
-2

, 
N

16x16Q9 + 3LD2
32x32Q9 + 3LD2
40x40Q9 + 3LD2

B

A

Fig. 4.44 Convergence analysis of the composite cylindrical shell under compression and
transverse loadings. Comparison of various surface mesh approximations. P0/Pβ0 =
0.1515.

CUF shell model DOFs
-uz [m]

[90◦, 0◦, 90◦]
1800 N 2500 N in A 2500 N in B

16 x 16Q9 + 3LD2 22869 0.021 0.030 0.304
32 x 32Q9 + 3LD2 88725 0.020 0.033 0.236
40 x 40Q9 + 3LD2 137781 0.020 0.033 0.236

Table 4.7 Transverse displacement values of the composite cylindrical shell subjected to
compression and transverse loadings for different models and loads at the load point.
P0/Pβ0 = 0.1515.
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between FULL, 2DVK and 2DVKs solutions in the regime of moderate and large
displacements and rotations. It should be highlighted from Fig. 4.45 that the classical
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Fig. 4.45 Equilibrium trends at loading point of the composite cylindrical shell subjected
to compressive and transverse loadings for several geometrically nonlinear models. P0/Pβ0

= 0.1515.

approximation of the von Kármán strains with nonlinear shear effects leads to less
conservative results in the post-buckling regime than the FULL solution. On the contrary,
curve 2 (the 2DVK solution) provides a more conservative solution.

Cantilever open channel-section beam with different initial deformations (dy-
namic analysis)

Finally, a cantilever open channel-section beam is investigated in the following analysis
case. Figure 4.46 shows the structure geometry, with L = 1 m, a = h = 0.01 m and t =
0.001 m, and the initial deflection configurations considered. The beam has an elastic
modulus (E) equals to 70 GPa, ν = 0.3 and ρ = 2700 kg/m2. Along the y-axis, the
structure is discretized by using 20 B4 beam elements. The cross-section discretization is
achieved by using 11 LE9. The nonlinear dynamic analyses are carried out by adopting
the HHT-α integration scheme with α = -0.1 and a time step of ∆t = 0.01 sec.

The static equilibrium trends of the open channel-section beam structure are plotted
in Fig. 4.47, where the displacement of the point V is evaluated. As predictable, the von
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16%

30%

40%

46%

53%

Fig. 4.46 (a) Different initial conditions; (b) Open channel-section beam.

Kármán models provide evident differences compared to the LE full solution, particularly
for moderate/large deformations. On the other hand, the curves obtained using the TE
kinematic theory lead to similar results to the LE full one.

The nonlinear transient response of the open channel-section structure considering
different initial deflection configurations is presented in the following figures. In detail,
from 16% (small deformation) to 53% of (moderate deflection) are analyzed in order
to show the effect of the amplitudes and the importance of using both an appropriate
nonlinear kinematic theory. Results of the dynamic response analysis are illustrated in
Fig. 4.48. It can be noted that considering an initial amplitude of 46%, see Fig. 4.48e
the periodicity of the response is lost, showing important nonlinear behaviours due to
the deformability of the section (x − z plane). Increasing the initial amplitude to 56%,
this behaviour is even more noticeable as displayed in Fig. 4.48g.

Finally, the comparison of different theories considering the initial deflection of 53% is
reported in Fig. 4.49. The results suggest that adopting a classical von Kármán nonlinear
model or a TE theory lead to not accurate solutions. Therefore, the LE full models are
mandatory to accurately investigate the dynamic response of open channel-section in
moderate/large deformations, in which highly nonlinear effects occur.
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Fig. 4.48 3D plots for different initial deflection configurations. LE full model. Open
channel-section beam.
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Fig. 4.49 Comparison of different theories considering the 53% of initial deflection. Open
channel-section beam.



Chapter 5

Numerical results

Based on the formulations and results given in previous chapters, this section discusses
selected nonlinear and linearized vibration analyses of isotropic, classical composite
and VAT composite beam, plate and shell structures. Vibration behaviours of loaded
structures in their quasi-static nonlinear equilibrium are shown. In detail, a novel
numerical approach to explore the critical loads and the natural frequencies variation for
progressively increasing loadings of several structures subjected to mechanical or thermal
loadings is presented. For clarity, it is important to re-emphasize the fact that damping
has been neglected in this work. The effect of damping on computed response depends on
the type and loading duration of the dynamic analysis. Damping is important for long
duration loadings (such as earthquakes), and is critical for loadings (such as rotating
machinery) that continually add energy to the structure.

5.1 Frequency-amplitude dependence

First of all, a simple pendulum, illustrated in Fig. 5.1, is considered to underline the
significant amplitude-dependence for the frequency. The pendulum has the following
geometric data: L = 0.5 m, L0 = L/2, t = 0.01 m. The structure is initially at rest and
left to oscillate under the action of the constant gravitational field (g). The analysis
is performed adopting the HHT-α method with α = -0.1 and a time step ∆t = 0.01
sec. The beam structure is modelled by adopting 15 L9 on the cross-section (x − z) and
1 B3 finite element along the beam axis (y). This mesh approximation was obtained
after convergence analyses not reported here for brevity. The time response considering
different values of the initial angular displacement amplitude (θ) is provided below,
including the comparison with results obtained using the analytical approach.
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Fig. 5.1 A representative initial configuration of the pendulum.

Figure 5.2 provides the nonlinear time response of the pendulum for different initial
angular displacement amplitudes, including the comparison with the analytical solution.
For completeness, the nonlinear differential equation for a physical pendulum, with
distributed mass (M), oscillating in the constant gravitational field of the Earth is
expressed as follows:

θ̈ + ω2sin(θ) = 0 (5.1)

where the frequency of oscillation is ω =
√

g
L′ , L′ = I

ML0
represents the equivalent length

and I = ML2

3 stands for the moment of inertia of this structure.
The results obtained through the presented nonlinear formulation exhibit an excellent

correlation with the reference solution, allowing validation of the methodology. In addition,
also a comparison between the linear and nonlinear formulation is carried out, showing
that as the initial amplitude increases the differences between the two formulations are
present. In particular, already for a θ = 30◦, some discrepancies underline the need to use
nonlinear formulations to accurately describe the problem. For the sake of completeness,
the calculated velocity and acceleration in z-direction at the tip of the structure with
respect to time are provided in Figs. 5.3 and 5.4. The frequency of oscillation of the
pendulum versus the initial angular displacement amplitude is plotted in Fig. 5.5. A
significant reduction of the frequency of oscillation of the pendulum can be observed for
progressive increasing initial angular displacement amplitudes. The results show how
the frequency varies for different amplitudes due to the fact that the equilibrium to
which it is linked changes. Therefore, it is essential to calculate the equilibrium condition
correctly, adopting a nonlinear formulation. The work of the thesis focused on this last
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Fig. 5.2 Time response for different initial angular displacement amplitudes of the
pendulum.
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aspect, providing a tool able to characterize the vibrations of various loaded structures
accurately.

5.2 Nonlinear and linearized vibration analysis

In the following section, vibration behaviours of isotropic and composite structures
in geometrical nonlinear equilibrium states are presented. In particular, the natural
frequency variation and mode change is discussed. Various numerical examples are
investigated for beam, plate and shell problems dominated by flexure and compression,
considering different boundary conditions and mechanical or thermal loadings. Particular
emphasis is related to the ability of the present novel approach to provide a numerical
methodology to predict critical buckling loads, to characterize the variation of natural
frequencies for progressively increasing loads and to have an efficient means for the
verification of the experimental VCT results. For completeness, the Mixed Interpolation
of Tensorial Components (MITC) technique was considered when necessary to overcome
shear and membrane locking phenomenon. For the sake of brevity, readers are referred
to [231] for a detailed description of the MITC implementation in the CUF domain. For
clarity, in some of the following analyses the results are presented in non-dimensional
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form using the following equation:

ω̃ = ω

(
a2

h

√
ρ

E2

)
(5.2)

5.2.1 Unstiffened and stiffened metallic plate structures

As a first investigation of vibrations, various metallic plate structures under compression
are analyzed. First of all, two benchmark cases are considered in order to validate the
proposed methodology. In particular, these structures have the following geometrical
characteristics: a) plate 1 : width (a) is 355 mm, length (b) equal to 355 mm and the
thickness (t) is 2 mm; b) plate 2 : a = b = 200 mm and t = 1.955 mm. The boundary
conditions of these two plates are shown in Fig. 5.6. In detail, clamped-clamped-simply
supported-simply supported (CCSS) for plate 1 and clamped-clamped-clamped-free
(CCCF) for plate 2 are assumed, respectively. Both plates have the following material
data, E = 70 GPa, ν = 0.33 and ρ = 2780 kg/m3.
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Fig. 5.6 Geometry and boundary conditions of the metallic plate structures.

In order to perform accurate investigations, convergence analyses are carried out. As a
consequence, at least 10×10Q9 for the in-plane mesh approximation and only one LD2 in
the z-direction must be employed for the convergent model. These convergence analyses
are not reported here for the sake of brevity. However, the convergence performance of
the proposed finite elements can be appreciated in [16].

Figure 5.7 provides the linear and nonlinear equilibrium trends of the metallic plate
structures subjected to compression. It is important to highlight that in the case of
nonlinear analysis a defect load applied at the middle of the plates along the z-axis, Fd

= 0.01 N, was considered to simulate geometrical imperfections. Figure 5.8 illustrates
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Fig. 5.7 Linear and nonlinear equilibrium curves of metallic plate structures subjected to
compression.

the natural frequencies variation as a function of the compressive loadings via the trivial
linearized solution. In particular, for plate 2, both tensile and compressive loads are
applied. For completeness, the characteristics first four free vibration mode shapes of
the plate 1 and the first five free vibration mode shapes of the plate 2 are depicted in
Fig. 5.9 and Fig. 5.10. On the other hand, the variation of natural frequencies with
respect to the compressive loadings by using the full nonlinear approach is illustrated in
Fig. 5.11.

Table 5.1 provides the metallic plates’ buckling load values compared with the
experimental results available in the literature [80, 82]. For clarity, results come from
a simple linearized buckling analysis, in which the tangent stiffness is approximated
as the sum of the linear matrix and the geometric stiffness resulting from linear stress
state. Discrepancies between the numerical solution based on the current approach
and experimental buckling load are expressed as a percentage difference. Basically, the

Models Plate 1 Plate 2
Buckling Load [kN] %Err Buckling Load [kN] %Err

Present solution 10.28 2.80 11.85 1.82
Exp. Measurement [80, 82] 10.00 - 12.07 -

Table 5.1 First linearized critical bucking loads of metallic plate structures.
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Fig. 5.8 The variation of natural frequencies vs increasing compressive loadings through
the trivial linearized approach for metallic plate structures.

(a) Mode (1,1) (b) Mode (1,2) (c) Mode (2,1) (d) Mode (2,2)

Fig. 5.9 Mode shapes of the first four free-vibrations for the metallic plate 1.

(a) Mode (1,1) (b) Mode (1,2) (c) Mode (2,1) (d) Mode (1,3)

(e) Mode (2,2)

Fig. 5.10 Mode shapes of the first five free-vibrations for the metallic plate 2.
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Fig. 5.11 The variation of natural frequencies vs compressive loadings via the full nonlinear
approach for metallic plate structures.

discrepancy of the critical load measured using the proposed methodology is minimal
compared to the experimental solution.

Figure 5.12 shows the comparison between the variation of natural frequencies for
progressively increasing loadings computed through the trivial linearized solution, the
full nonlinear approach and experimental results. The results in Fig. 5.12 demonstrate
that the approach based on the trivial linearized solution allows one to characterize the
variation of the frequency of these benchmark cases at lower levels of the compressive
loadings with accuracy. The deviation of the linear results from the nonlinear and
experimental ones becomes remarkable for higher compressive loading levels. Particularly,
it can be observed that the frequency of the first vibration mode tends to zero at the
buckling load value by considering the trivial linearized approach. On the contrary, the
nonlinear and experimental solutions shown different behaviours. Basically, the first
vibration mode reaches a minimum value near the buckling load value, and after the
buckling, the frequencies increase. This definite change in the slope of the frequencies
indicates a criterion for the buckling load prediction. The difference between the trivial
linearized solution and full nonlinear approach is due to the nonlinear effects of the
post-buckling. The results calculated using the proposed nonlinear virtual VCT approach
provide an excellent correlation with the experimental ones, allowing to predict the
buckling load and to evaluate the variation of natural frequencies in the nonlinear regime
with high reliability. The small discrepancies between the numerical and experimental
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Fig. 5.12 Comparison between the natural frequencies variation for increasing compres-
sive loadings through the trivial linearized solution, the full nonlinear approach and
experimental results for metallic plate structures.

solutions are probably due to variations between the actual boundary conditions employed
during the test and the numerical constraints and initial geometric imperfections.

Furthermore, considering the case of Plate 1, the effect of stiffeners on natural
frequency and instability is provided. In detail, Fig. 5.13a illustrates the nonlinear
equilibrium curves for three different cases, without stiffener and with stiffeners of
different sizes, d = 4 mm and 7 mm, respectively. In addition, the linearized buckling
load values, represented by the horizontal line, are reported in this graph. A sketch of the
geometry and mesh adopted is shown in Fig. 5.13b. The natural frequencies variation for
progressively increasing loading is provided in Fig. 5.14. For all cases, the comparison
between the trivial linearized approach and the full nonlinear one is presented, and the
trend of the frequencies in postbuckling regimes is evaluated, showing important crossing
and veering phenomena. For clarity, the effect of the stiffener is depicted in Fig. 5.15, in
which the natural frequency variation of the first vibration mode for all cases is plotted.
For completeness, the MAC graphical representation are reported in Fig. 5.16, showing
significant changes with increasing load. In addition, Fig. 5.17 reports the mode shapes
of the first 6 natural frequencies in order to demonstrate the capability of the proposed
formulation to also takes into account the deformation of the stiffener.
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Fig. 5.13 (a) Nonlinear equilibrium curves; (b) Representation of the geometry and mesh
adopted for the unstiffened and stiffened plate structures.

5.2.2 Square VAT composite plate

A 2-layer [0◦ + < 0◦/15◦ > / 90◦ + < 0◦/15◦ >] square VAT composite plate is
considered as the following case. This VAT structure has the following geometrical data:
a = b = 1 m and h = 2 mm. The material properties of the lamina are provided in Table
5.2. As regards the boundary conditions, simply-supported conditions are applied to all

E1 [GPa] E2 = E3 [GPa] G12 = G13 [GPa] G23 [GPa] ν12 = ν13 ν23 ρ [kg/m3]
250 6.25 5.125 3.25 0.24 0.49 1

Table 5.2 Material properties of the square VAT composite plate under uniform axial
compression.

the edges, i.e., x = 0, a has v = w = 0 whereas y = 0, b satisfies u = w = 0. The square
plate is subjected to an uniform axial compression in x-direction as illustrated in Fig.
5.18.

First of all, a convergence analysis is needed for carrying out an accurate investigation.
For this square plate model, the convergence is achieved by employing at least 18×18Q9
for the in-plane mesh approximation and only one LD1 in each layer in the z-direction.
The equilibrium path for the 2-layer [0◦ + < 0◦/15◦ > / 90◦ + < 0◦/15◦ >] square
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Fig. 5.14 Natural frequency variation versus compressive loadings for unstiffened and
stiffened plate structures.
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Fig. 5.15 Effect of the stiffener in the variation of the first natural frequency.

VAT composite plate is displayed in Fig. 5.19, which plots the normalized values of
the displacement at the center of the plate versus the applied compressive load. For
completeness, solutions obtained using the commercial code Abaqus is also provided
for this first case for comparison and validation reasons. In detail, both the ABQ 2D
shell model (18×18 S8R) and the ABQ 3D solid model (54×54×2 C3D20R) are used.
The results demonstrate that the CUF 2D nonlinear model agrees well with the ABQ
solutions. In addition, also the linear CUF 2D load-deflection curve and the linear
buckling load value, representing by the horizontal line, are depicted in Fig. 5.19. In
particular, the linear critical buckling load (Pcr) value is equal to 546.53 N/m. For the
sake of clarity, it is important to underline that the considered structure does not show
any bifurcation because of the coupling between the membrane and bending stiffness due
to material non-symmetry. Nevertheless, it is quite common in the literature to identify
the linearized buckling loads with the first eigenvalues of the stiffness matrix.

Figure 5.20 illustrates the deformed configuration with the displacements contours
based on the CUF 2D NL model and ABQ 3D solid model at the fixed load Nx = 2130.71
N/m for the square VAT plate under compressive loads. Furthermore, the values of the
first ten free vibration modes obtained using the CUF and ABAQUS are tabulated in
Table 5.3, whereas the most relevant mode shapes are depicted in Fig. 5.21-5.27.
Figure 5.28 and 5.29 show the natural frequencies variation versus compressive loading
via trivial linearized solution and via full nonlinear solution, respectively. Furthermore,
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8 (i) Mode 9

(j) Mode 10

Fig. 5.16 Mode shapes of the first ten free-vibration for the stiffened plate structure. d =
7 mm.
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Fig. 5.17 MAC representations between the modes of the undeformed structure and
deformed one for the stiffened plate subjected to compressive loadings. d = 4 mm.
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Fig. 5.18 Geometry and loading case of the square VAT plate subjected to uniform axial
compression.
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Fig. 5.19 Equilibrium curve of the square VAT composite plate subjected to uniform
axial compression. CUF model makes use of LD1 kinematics and 18×18Q9 FE mesh
approximation.

Mode number CUF Abaqus
1 1.95 1.93
2 5.18 5.13
3 5.18 5.13
4 7.67 7.58
5 10.94 10.76
6 10.99 10.82
7 12.89 12.69
8 12.89 12.69
9 17.23 16.93
10 19.21 18.83

Table 5.3 First ten free non-dimensional natural frequencies of the square VAT plate.
Comparison between CUF 2D NL 18×18Q9+LD1 and ABQ 3D solid NL 54×54×2
C3D20R model.
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(a) 2D CUF NL model

(b) ABQ 3D solid NL model

Fig. 5.20 Comparison of displacement contours at the fixed load of Nx = 2130.71 N/m
for the square VAT composite plate under uniform axial compression. (a) CUF 2D NL
18×18Q9+LD1; (b) ABQ 3D solid NL 54×54×2 C3D20R model.

(a) CUF (b) ABQ

Fig. 5.21 Mode 1 for the square VAT plate with simply-supported edge conditions. Nx =
0 N/m.
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(a) CUF (b) ABQ

Fig. 5.22 Mode 3 for the square VAT plate with simply-supported edge conditions. Nx =
0 N/m.

(a) CUF (b) ABQ

Fig. 5.23 Mode 4 for the square VAT plate with simply-supported edge conditions. Nx =
0 N/m.

(a) CUF (b) ABQ

Fig. 5.24 Mode 5 for the square VAT plate with simply-supported edge conditions. Nx =
0 N/m.
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(a) CUF (b) ABQ

Fig. 5.25 Mode 6 for the square VAT plate with simply-supported edge conditions. Nx =
0 N/m.

(a) CUF (b) ABQ

Fig. 5.26 Mode 9 for the square VAT plate with simply-supported edge conditions. Nx =
0 N/m.

(a) CUF (b) ABQ

Fig. 5.27 Mode 10 for the square VAT plate with simply-supported edge condition. Nx

= 0 N/m.
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Fig. 5.28 Non-dimensional natural frequencies variation versus compressive loading via
trivial linearized solution for the square VAT composite plate with simply-supported
edge conditions.
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Fig. 5.29 Non-dimensional natural frequencies variation versus compressive loading via
full nonlinear solution for the square VAT composite plate with simply-supported edge
conditions.
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the comparison between the variation of the natural frequencies obtained via the trivial
linearized and via full nonlinear approach is reported in Fig. 5.30. This figure illustrates
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Fig. 5.30 Comparison between the variation of the non-dimensional natural frequencies
via trivial linearized solution and full nonlinear approach for the square VAT composite
plate under compressive loadings.

the trend of the linearized and nonlinear frequencies associated with the first eight modes.
In the case of the linear analysis, it can be pointed out that the first natural frequency,
mode (1,1), disappears when the buckling phenomenon occurs within the structure. Thus,
the first mode has a null frequency in correspondence with the buckling load as the
tangent stiffness is singular. On the other hand, in the case of nonlinear analysis, different
behaviour is observed. In fact, no vibration mode reaches zero frequency. In particular,
the mode (1,1) reaches a minimum and then it increases in the post-buckling regime.
This change in slope shows an instability behaviour, but the buckling phenomena are
irrelevant in this case. The results suggest that a nonlinear approach should be adopted
to carry out accurate virtual VCT analyses with the aim of predicting the buckling
and characterizing the natural frequencies variation. For completeness, the first eight
vibration mode shapes of the square VAT composite plate structure at Nx = 3.47 N/m
are depicted in Fig. 5.31. Readers are invited to compare these modes with those shown
in Figs. 5.21-5.27 (trivial state, i.e. Nx =0); mode aberration is evident.



5.2 Nonlinear and linearized vibration analysis 147

(a) Mode (1,1) (b) Mode (2,1) (c) Mode (1,2)

(d) Mode (2,2) (e) Mode (1,3) (f) Mode (3,1)

(g) Mode (2,3) (h) Mode (3,2)

Fig. 5.31 Characteristics first eight vibration mode shapes for the square VAT composite
plate. Nx = 3.47 N/m.
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5.2.3 Rectangular VAT composite plate

A rectangular VAT composite plate structure with 4 layers [0◦ ± < 0◦/15◦ >]2 is studied
as a third example. The structure has the following geometrical data: length (a) equal
to 0.2 m, the width (b) is 0.05 m and a total thickness (h) of 0.002 m. This VAT plate is
subjected to compression in the x-direction, Nx, as illustrated in Fig. 5.32. All the plate
edges are simply-supported, i.e, x = 0, a satisfy v = w = 0, whereas y = 0, b have w = 0
at z = 0. In addition, a further constraint, u = v = 0 is applied in the central point of
the plate to avoid the rigid body motion of the structure. The lamina properties are:
E1 = 220 GPa, E2 = E3 = 5.5 GPa, G12 = G13 = 3.3 GPa, G12 = 2.75 and ν12 = ν13 =
0.25. For clarity, the analysis are conducted considering a density ρ equal to 1 kg/m3.

a

b NxNx

y

x

Fig. 5.32 Geometry of the rectangular VAT plate structure under compression.

As before, convergence analyses on the discretization of the model was carried out.
As a consequence, the convergent model is obtained by adopting at least 20×5Q9 for the
surface mesh approximation and only 1LD1 in each layer in the z-direction. Figure 5.33
plots the equilibrium trends of the rectangular VAT plate calculated by the CUF 2D
linear model, CUF 2D nonlinear model, and, for comparison reasons, employing the ABQ
3D solid nonlinear model. In addition, some linearized buckling load values, representing
by the horizontal lines, calculated with the CUF method are also provided in this figure
(Fig. 5.33). In detail, the first linearized critical buckling load value (Pcr) turns out to
be equal to 2.31×105 N/m. Although there are no bifurcations in the problem under
consideration, the buckling must be identified as the point at which the change in slope
in the equilibrium curve is no longer acceptable for the given problem. In this case, the
linearized buckling has a purely mathematical and not physical meaning. As depicted
in Fig. 5.33, the equilibrium path computed by using the presented methodology has
a excellent correlation compared to the solution obtained with the commercial code
Abaqus. The small discrepancies that can be observed in the equilibrium curves are
mainly due to the different applications of the variable angle of the laminations. In fact,
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Fig. 5.33 Equilibrium trends for the rectangular VAT plate subjected to compression
through the CUF 2D L model, CUF 2D NL model and ABQ 3D NL model.

the application of VAT is applied to each element in Abaqus, whereas it is performed
for each gauss point in CUF, giving the possibility of having greater accuracy. For
completeness, the convergent ABQ model adopted in this case is discretized with a fine
mesh (60×15×4) by using C3D20R elements to overcome the mesh instability problem
due to the hourglassing. A particular deformed configuration with the displacements
contours based on the CUF 2D NL model and ABQ 3D solid model at the fixed Nx =
2.1×106 N/m for the rectangular VAT plate is shown in Fig. 5.34.

Figure 5.35 provides the variation of natural frequencies versus compressive loadings
by using the trivial linearized solution. On the other hand, the natural frequencies
variation for progressively increasing compressive loadings via the full nonlinear approach
is displayed in Fig. 5.36. In addition, the comparison between the variation of the non-
dimensional natural frequencies for progressively increasing loadings via trivial linearized
and full nonlinear approach is represented in Fig. 5.37. The results displayed in this
figure show that even for small load values an important difference is presented between
the two trends of the frequencies. The results suggest that a nonlinear approach is
mandatory to perform accurate vibration analysis and, in particular, to have a reliable
buckling prediction. In fact, it can be noted from Fig. 5.37 that employing a trivial
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(a) 2D CUF NL model

(b) ABQ 3D solid NL model

Fig. 5.34 Comparison of transverse displacement contours at the fixedNx = 2.1×106 N/m
for the rectangular VAT plate under compression. (a) CUF 2D NL 20×5Q9+LD1 model;
(b) ABQ 3D solid NL 60×15×4 C3D20R model.
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Fig. 5.35 The variation of non-dimensional natural frequencies vs compressive loadings
via the trivial linearized approach for the simply-supported rectangular VAT plate.
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Fig. 5.36 The variation of non-dimensional natural frequencies vs compressive loadings
through the full nonlinear approach for the simply-supported rectangular VAT plate.
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Fig. 5.37 Comparison between the non-dimensional natural frequencies variation computed
via the trivial linearized solution and full nonlinear approach for the simply-supported
rectangular VAT plate.
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approach the natural frequency of the mode (1,1) tends to zero at the linearized buckling
load. On the contrary, the nonlinear solutions exhibit a different behaviour. In detail, the
mode (2,1) reaches a minimum at about 3.7×105 N/m, after that the frequency increase
in the post-buckling regime. This particular behaviour, already discussed in the literature
in numerous nonlinear studies on different panels [54, 232–234], demonstrates that the
natural frequencies increase after the structure had buckled due to the nonlinear effect of
post-buckling distortions. This definite change in the slope of the frequency represents a
criterion for the nonlinear buckling prediction. Furthermore, it is clear that crossing and
veering phenomena are completely unforeseen by the trivial linearized approach. Results
computed employing the presented nonlinear virtual VCT prove the potentialities of
this methodology to calculate the buckling load of the structure and to characterize the
variation of natural frequencies in a large nonlinear regime with high reliability. Finally,
for completeness, the first six vibration mode shapes of the rectangular VAT plate at
the trivial solution Nx = 0 N/m and in far nonlinear regime Nx = 1.83×106 N/m are
illustrated in Figs. 5.38 and 5.39, respectively. The readers is invited to compare these
modes; various crossing phenomena occur and mode aberration is evident.

(a) Mode (1,1) (b) Mode (2,1) (c) Mode (3,1)

(d) Mode (1,2) (e) Mode (2,2) (f) Mode (4,1)

Fig. 5.38 Mode shapes of the first six vibrations for the rectangular VAT structure. Nx

= 0 N/m.

5.2.4 Metallic and composite pinched cylindrical shell

The next analysis concerns a clamped cylindrical shell subjected to a pinching force. The
geometric and material data are the same as for the structure studied in 4.4.1 and A.1.5.
Besides an isotropic structure, a laminate one with stacking sequence [90◦, 0◦, 90◦] is also
considered. The present structure is modelled using 32×32Q9 for the in-plane mesh and
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(a) Mode 1* (b) Mode 2* (c) Mode 3*

(d) Mode 4* (e) Mode 5* (f) Mode 6*

Fig. 5.39 Mode shapes of the first six vibrations for the rectangular VAT structure. Nx

= 1.83×106 N/m.

one LD3 in the z-direction for the isotropic model, whereas 3LD3 kinematics are adopted
for the through-the-thickness of the composite shell.

Figure 5.40 illustrates the quasi-static equilibrium curve for the studied isotropic and
composite shell models, including some of the most relevant deformed configurations. At
each step of the nonlinear equilibrium curve, free-vibrations are computed, adopting the
local tangent stiffness of the deformed configuration. In Table 5.4, the natural frequency
values for the first three mode shapes as a function of the transverse displacements are
shown. The values of uz are referred to Fig. 5.40. Figure 5.41 depicts the trends of the first

Isotropic Composite
−uz f1/

√
ρ f2/

√
ρ f3/

√
ρ −uz f1/

√
ρ f2/

√
ρ f3/

√
ρ

0.00 56.82 56.55 95.44 0.00 44.05 51.77 90.76
0.24 47.59 50.32 86.43 0.13 40.78 48.38 82.61
0.57 29.99 44.38 81.90 0.63 21.16 37.75 65.98
1.11 16.89 39.11 59.14 1.12 20.41 42.85 48.93
1.36 24.43 44.54 52.44 1.46 21.13 42.04 48.06
1.48 22.68 45.23 52.63 1.58 20.77 37.84 48.39

Table 5.4 Natural frequencies [Hz/(kg/m3)] for different transverse displacement [m].
Isotropic and composite pinched cylindrical shells.

six natural frequencies with respect to the transverse displacement. It can be observed
that the natural frequencies decrease as the load rises. In these plots, we underline the



154 Numerical results

0

500

1000

1500

2000

0 0.5 1 1.5 2

P
, 
N

-uz, m

Present Isotropic
Ref. Isotropic

Present Composite
Ref. Composite

Fig. 5.40 Equilibrium curves of the isotropic and composite pinched cylindrical shell
subjected to an end pinching force.
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Fig. 5.41 Natural frequencies from modes 1 to 6. (a) Isotropic and (b) composite
pinched cylindrical shell subjected to an end pinching force for progressively increasing
displacements.
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crossing between mode 5 and mode 6, some veering phenomena and the interaction with
mode 4 in both isotropic and composite results. Moreover, the change of these mode
shapes all along the quasi-static equilibrium path of the pinched composite structure is
shown in Figs. 5.42 and 5.43. The most significant MAC graphical representations are

(a) uz = 0 m (b) uz = 0.63 m (c) uz = 1.58 m

Fig. 5.42 First mode shape of the composite pinched cylindrical shell subjected to a
pinching force for progressively increasing displacements.

(a) uz = 0 m (b) uz = 0.63 m (c) uz = 1.58 m

Fig. 5.43 Second mode shape of the composite pinched cylindrical shell subjected to a
pinching force for progressively increasing displacements.

illustrated in Fig. 5.44. MAC is a scalar indicating correspondence between two sets of
mode shapes, see [235, 236]. Different values of the nonlinear analysis are reported in
comparison with the linear case (uz = 0 m). This figures compare the first 10 modes for
progressively increasing displacements. As reported by these graphical representations,
natural modes for a low load (Fig. 5.44a) are identical to those related to the linear case
(uz = 0 m); i.e., all the MAC values in the diagonal are equal to 1. In Figs. 5.44b to
5.44d, the state is entirely nonlinear; in fact, dark boxes are all different from 1. This
suggests that the structure shows a significant nonlinear influence, so the mode aberration
analysis is crucial to predict the dynamic behaviours accurately.

In addition, the analysis for the composite pinched cylindrical shell subjected to
compressive and transverse loads is also provided. The geometry, the constraints and
the loading conditions are shown in Fig. 5.45a. Moreover, Fig. 5.45b illustrates the
equilibrium curve (compressive load Pβ versus transverse displacement). In this case,
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Fig. 5.44 MAC values between the modes of the undeformed structure and those of the
deformed structure for the composite pinched cylindrical shell.
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the compressive-transverse load ratio is equal to 66. The trends of the first five natural

Fig. 5.45 (a) Composite pinched cylindrical shell subjected to compressive and transverse
loads. (b) Equilibrium curve at the transverse load point.

frequencies with respect to the transverse displacement is reported in Fig. 5.46. Figures
5.47 and 5.48 display the evolution of some important mode as a function of the quasi-
static equilibrium path of the composite pinched cylindrical shell under compressive and
transverse loads. Finally, the MAC graphical representations are shown in Fig. 5.49.
From the Figs. 5.46, 5.47 and 5.48, it is clear that the natural frequencies and, therefore,
the relative modal shapes undergo a considerable change with the progressive increase
of the nonlinear quasi-static analysis. Moreover, it can be observed some important
phenomena, e.g., the interaction between mode 3, 4 and 5, the veering at uz = 0.169 m,
and the crossing at uz = 0.60 m between modes 1 and 2.

5.2.5 Curved panel subjected to transverse loadings

As a further example, a hinged curved panel subjected to a transverse load P is analyzed.
The geometric and material properties of the isotropic model are E = 3102.75 MPa and
ν = 0.3, with L = 508 mm, Rα = 2540 mm, θ = 0.1 rad and t = 12.7 mm, whereas
those of composite [90◦/0◦/90◦] structure are the same as for the case in 4.4.1. The
present structure is discretized employing 10×10Q9 for the surface mesh and 2LD3 in
the thickness direction for the isotropic model, while 4LD3 kinematics are used in the
through-the-thickness of the composite one.

Figure 5.50 shows the nonlinear equilibrium path of the hinged curved panel subjected
to a transverse load for both isotropic and composite configurations, including deformed



158 Numerical results

 0

 20

 40

 60

 80

 100

 120

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

f/
ρ

1
/2

, 
H

z
/(

K
g
/m

3
)

-uz, m

Mode 1
Mode 2
Mode 3

Mode 4
Mode 5

Fig. 5.46 Natural frequencies from modes 1 to 5. Composite pinched cylindrical shell
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(a) uz = 0 m (b) uz = 0.346 m (c) uz = 0.690 m

Fig. 5.47 First mode shape of the composite pinched cylindrical shell subjected to
compressive and transverse loads for progressively increasing displacements.

(a) uz = 0 m (b) uz = 0.346 m (c) uz = 0.690 m

Fig. 5.48 Second mode shape of the composite pinched cylindrical shell subjected to
compressive and transverse loads for progressively increasing displacements.
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Fig. 5.49 MAC values between the modes of the undeformed structure and those of the
deformed structure for the composite pinched cylindrical shell subjected to compressive
and transverse loads.
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configurations of some nonlinear states. Figure 5.51 and Table 5.5 show the distribution
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Fig. 5.50 Nonlinear equilibrium curves of the isotropic and composite hinged curved
panel under transverse load.

and values of the natural frequencies of the first five and three modes, respectively. It

Isotropic Composite
−uz f1/

√
ρ×105 f2/

√
ρ×105 f3/

√
ρ×105 −uz f1/

√
ρ×105 f2/

√
ρ×105 f3/

√
ρ×105

0.00 10.67 11.88 16.30 0.00 9.71 10.46 13.97
0.49 10.39 11.72 16.07 0.37 9.56 10.39 13.87
4.2 8.10 10.28 14.39 4.45 7.65 9.47 12.75

10.30 1.79 6.75 11.47 17.60 2.26 3.81 10.30
15.50 5.54 1.86 8.89 21.75 1.71 3.44 10.74
25.82 9.93 8.65 14.82 27.23 6.99 7.17 13.50

Table 5.5 Natural frequency values [Hz/(kg/mm3)] for different transverse displacements
[mm] for the isotropic and composite hinged curved panel.

can be observed that natural frequencies, illustrated in Fig. 5.51, gradually decreases
with the increasing load and, then, they rise. In particular, it is important to highlight
the crossing between mode 1 and mode 2 (Fig. 5.51a) at uz = 13.10 mm, with the
consequent change of the mode shapes. Figures 5.52 and 5.53 provide the evolution of
these modes with respect to the quasi-static equilibrium path of the isotropic hinged
model. Furthermore, MAC representations are presented in Fig. 5.54, showing a
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Fig. 5.51 The variation of first five natural frequencies. (a) Isotropic and (b) composite
hinged curved panel under transverse loadings.

(a) uz = 0 mm (b) uz = 10.32 mm (c) uz = 21.95 mm

Fig. 5.52 Mode shape of the first natural frequency of the isotropic hinged curved panel
under transverse load for increasing displacements.

(a) uz = 0 mm (b) uz = 10.32 mm (c) uz = 21.95 mm

Fig. 5.53 Mode shape of the second natural frequency of the isotropic hinged curved
panel under transverse load for increasing displacements.
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Fig. 5.54 MAC representations between the modes of the undeformed structure and
deformed one for the isotropic hinged curved panel.
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significant mode change for progressively increasing displacements.
In addition, for the sake of completeness, the isotropic hinged curved panel under

compression and transverse load is also studied. In this case, the compressive-transverse
load ratio is equal to 22. The nonlinear equilibrium curve and the loading conditions of
this further case are depicted in Fig. 5.55. Figure 5.56 provides the the first five natural

Fig. 5.55 (a) Isotropic hinged curved panel under compression and transverse loadings.
(b) Equilibrium path at the transverse loading point.

frequencies trend with respect to transverse displacements. It can be noted that there are
two important phenomena, e.g., the crossing between mode 3 and mode 4 at uz= 2.39
mm, and the veering one between mode 3 and mode 5 at uz= 28.58 mm. Figures 5.57,
5.58 and 5.59 report the modes evolution as a function of the quasi-static equilibrium
curve of the isotropic hinged curved panel under compression and transverse load.
Furthermore, the MAC values for this last example are represented in Fig. 5.60, in which
a more significant mode change for progressively increasing displacements compared to
the case with only the transverse load can be observed.

5.2.6 Curved panel subjected to compressive loadings

Different curved panels subjected to compressive loadings are analyzed as subsequent
examples. The investigated models have the following geometric data: L = 355 mm, a =
355 mm, t = 2 mm. The representation of the curved panel with R/a = 5 is illustrated
in Fig. 5.61. Regarding the boundary conditions, the constraints are the same considered
for the plate 1 in the previous case. The material properties for these curved panels are:
E = 70 GPa, ν = 0.33 and ρ = 2780 kg/m3. The convergent model for these curved
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Fig. 5.56 The variation of the first five natural frequencies for the isotropic hinged curved
panel under compression and transverse loadings.

(a) uz = 0 mm (b) uz = 6.44 mm (c) uz = 38.80 mm

Fig. 5.57 Third mode shape of the isotropic hinged curved panel subjected to compression
and transverse loadings.

(a) uz = 0 mm (b) uz = 6.44 mm (c) uz = 38.80 mm

Fig. 5.58 Fourth mode shape of the isotropic hinged curved panel subjected to compression
and transverse loadings.
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(a) uz = 0 mm (b) uz = 6.44 mm (c) uz = 38.80 mm

Fig. 5.59 Fifth mode shape of the isotropic hinged curved panel subjected to compression
and transverse loadings.
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Fig. 5.60 MAC representations between the modes of the undeformed structure and
deformed one for the isotropic hinged curved panel under compression and transverse
load.
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panel structures is reached employing 10×10Q9 for the in-plane mesh approximation and
only one LD2 in the thickness direction.

L

R

Load

�

a

�

�

z

Fig. 5.61 Curved panel with R/a = 5 subjected to compressive load.

The nonlinear quasi-static analysis has been performed for different values of R/a to
evaluate the effect of the curvature. In contrast, VCT is only shown for the case R/a
= 5 for the sake of brevity. Figure 5.62a depicts the quasi-static equilibrium curves for
the investigated metallic curved panels considering different R/a values. In detail, the
equilibrium path of the curved panel case with R/a = 5 with some of the most relevant
deformed configurations is reported in Fig. 5.62b. For different states of interest, the
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Fig. 5.62 Equilibrium curve of the curved panels subjected to compressive load. (a)
Different curvatures; (b) R/a = 5.

trend of the first ten natural frequencies with respect to the progressive load by means
of the trivial linearized solution is provided in Fig. 5.63a. Instead, the natural frequency
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variation of mode 1 versus compressive loading via full nonlinear solution is depicted
in Fig. 5.63b. It can be observed that considering the nonlinearity, the trend of the
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Fig. 5.63 Natural frequency variation versus compressive loading via (a) trivial linearized
solution and (b) full nonlinear solution (NL) vs trivial linearized solution (L) for mode
(1,1). Curved panel with R/a = 5.

natural frequencies is very complex. The nonlinear variation of the natural frequencies
was divided into three parts, Fig. 5.64, to plot more modes and have a better and clearer
representation. The characteristics first ten vibration mode shapes of the curved panel
with R/a = 5 at P = 0 N are provided in Fig. 5.65. As a result, it is possible to evaluate
the complex trend of the natural frequencies with respect to the higher progressive
compressive loadings and to predict the linear and nonlinear buckling load by performing
a nonlinear study.

5.2.7 VAT composite hinged shell subjected to snap-through

A VAT composite hinged shell under compression and transverse load is investigated.
This shell consists of 3 layers with the following lamination: [90◦ + < 0◦/45◦ > / 0◦ + <

0◦/45◦ > / 90◦ + < 0◦/45◦ >]. This structure has: L = 508 mm, Rα = 2540 mm,
θ = 0.1 rad and the thickness (h) equal to 12.7 mm. The material properties of the
considered structure are: E1 = 3300 MPa, E2 = E3 = 1100 MPa, G12 = G13 = 660 MPa,
and ν12 = ν13 = 0.25. For clarity, the analysis are conducted considering a density ρ

equal to 1 kg/m3. All nodal displacements are restrained along the hinged edges. The
present shell is modelled using 10×10Q9 for the in-plane mesh approximation and 1LD2
in each layer in the z-direction.
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Fig. 5.64 Nonlinear variation of the natural frequencies all along the quasi-static equilib-
rium path. Curved panel with R/a = 5.
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(a) Mode (1,1) (b) Mode (1,2) (c) Mode (1,3) (d) Mode (2,1)

(e) Mode (2,2) (f) Mode (2,3) (g) Mode (3,1) (h) Mode (3,2)

(i) Mode (1,4) (j) Mode (3,3)

Fig. 5.65 Characteristics first ten free vibration mode shapes for the curved panel with
R/a = 5.

The transverse displacements at the middle of the shell with respect to the compressive
load Pβ, considering the ratio Pβ0/P0 = 2.2, are displayed in Fig. 5.66, including also
the linearized buckling load value (Pcr = 2.07 N/mm). Particularly, some representative
points with the relative angle at which the local tangent stiffness is computed are reported
in this graph. Basically, at each step, free vibration analyses are conducted, as presented
in Section 4.2, by using the tangent stiffness matrix obtained in the previous nonlinear
static analysis.

Figure 5.67 provides the variation of natural frequencies as a function of compressive
loadings through the trivial linearized solution, whereas the natural frequencies variation
evaluated by using the full nonlinear approach is depicted in Fig. 5.68. For clarity
reasons, a comparison between the variation of the first two natural frequencies employing
the two approaches is presented in Fig. 5.69. In this figure, the red dots and the relative
numbers refer to those represented in Fig. 5.66. The results suggest that for this type of
structure in order to provide the correct trend of the natural frequencies is mandatory
to consider a full nonlinear method. In detail, two peaks of the blue line, see Fig. 5.69,
denote the linear (1.25 N/mm) and nonlinear (5.30 N/mm) buckling loads, respectively.
For completeness, the first ten vibration mode shapes of the hinged VAT composite
structures are shown in Fig. 5.70. Finally, a MAC representation is displayed in Fig.
5.71, in which the first 10 modes at the state 3 and 5, see Fig. 5.69 are compared; the
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Fig. 5.66 Equilibrium trend at the middle of the VAT composite hinged shell under
compression and transverse load.
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Fig. 5.67 The variation of non-dimensional natural frequencies vs compressive loadings
through the trivial linearized solution for the VAT composite hinged shell under com-
pression and transverse load.
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Fig. 5.68 The variation of non-dimensional natural frequencies vs compressive loadings
via full nonlinear approach for the VAT composite hinged shell under compression and
transverse load.
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natural modes at state 3 are identical to those relating to state 5, with the exception of
modes 7 and 8 which exhibit a crossing phenomena.

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8 (i) Mode 9

(j) Mode 10

Fig. 5.70 Mode shapes of the first ten free-vibration for the VAT composite hinged shell
subjected to compression and transverse load.

5.2.8 Curved panel under internal pressure and axial compres-
sion

The following case regards the vibration analysis of a simply-supported curved shell
structure subjected to internal pressure and compressive loadings, illustrated in Fig. 5.72.
Particular interest is devoted to show the effect of the ratios between the Young moduli
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Fig. 5.71 MAC representation between the modes of the state 3 and state 5 for the VAT
composite hinged shell subjected to compression and transverse load.

of the loading domain and the research object (EL/ER) and the internal pressure (Pinner).
The structure consists of a aluminium curved panel with the following geometrical
and material properties: 508 × 508 × 12.7mm (arclength × width × thickness), two
loading areas are 508 × 20 × 12.7mm, attached to two opposite sides of the panel,
ER = 70.0 × 103N/mm2 , ν = 0.33, ρ = 2700kg/m3, radius Rα = 2540.01mm and a
central angle θ = 0.2. The reason for these two loading parts is related to the fact that
in real working conditions, a uniform axial pressure requires the application of a pair
of opposing fasteners on the edges of the curved shell. After convergence studies, not
reported here for the sake of brevity, the structure is modelled by employing 10×10Q9
for the in-plane mesh, while 2LD3 are used in the z-direction. In addition, the loading
part is discretized by adopting 1×10Q9 + 2LD3.

Effect of EL/ER

Various kinds of attached loading parts strongly and directly influence the original
boundary condition of the structure. Five different values of EL/ER are evaluated: 1, 10,
500, 1000, 2000, considering Pinner = 1 MPa, θ = 0.2, Rα = 2540.01 mm. Figures 5.73
and 5.74 illustrate the effect of these different ratio value on the trend of the natural
frequencies for increasing axial compressive loadings. As evident from Fig.5.73(a), the
frequencies of mode 1 and mode 3 decrease as Paxial increases. It is observed how the first
buckling mode corresponds with the first vibration mode which reaches zero for a bucking
load equal to about 250 MPa. In addition, Fig. 5.73(b) shows a veering phenomenon
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Fig. 5.72 Geometrical description of the isotropic curved shell under internal pressure
(Pinner) and axial compression (Paxial),including the FE discretization and CUF kinematics.

(a) (b)

(c)

Fig. 5.73 (a) Natural frequencies variation, (b) Parabolic and veering phenomenon and (c)
Mode shapes of the first eight free vibrations, considering EL/ER = 1, Pinner = 1 MPa, θ
= 0.2, Rα = 2540.01 mm. Curved panel under internal pressure and axial compression.
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Fig. 5.74 Effect of different EL/ER on the natural frequencies variation, considering fixed
Pinner = 1 MPa, θ = 0.2, Rα = 2540.01 mm. Curved panel under internal pressure and
axial compression.

between modes 5 and 6 and a parabolic behaviour of mode 1. From Fig. 5.74, we see
how for all the ratios the buckling mode shape turns out to be that of mode 1 and the
the EL/ER make a difference to vibration frequencies of the shell structure, reaching
convergence for the ratio values: 500, 1000, 2000.

Since uniform pressure has to be applied to the structure, it is not an ideal way to
impose a point load on each node of the side surface to generate uniform pressure in terms
of numerical simulation. On the other hand, the lateral surface of the curved shell cannot
always hold itself as a smooth surface with the axial compression directly applied to the
sides in real situations. Some unpredictable conditions, such as shrinking or expansion,
occur during the loading process. A point load on the midpoint of the side surface of
the loading part is applied by choosing an appropriate ratio EL/ER that are able to
theoretically generate uniform pressure. Figure 5.75 shows different loading application
on the sides after adding the loading parts considering different EL/ER. Clearly, lower
EL/ER results in stress concentration and irregular displacements in the axial direction.
By combining Figs. 5.74 and 5.75, EL/ER = 1000 is enough to generate uniform axial
pressure on the structure.
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(a) EL/ER = 1 (b) EL/ER = 10 (c) EL/ER = 500

(d) EL/ER = 1000 (e) EL/ER = 2000

Fig. 5.75 Different effect of the EL/ER in the application of the compressive load. Curved
panel under internal pressure and axial compression with fixed Pinner = 1 MPa, θ = 0.2,
Rα = 2540.01 mm.
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Effect of the Pinner

Four different values of Pinner (i.e., 0, 0.1, 0.5 and 1 MPa) are considered in order to
evaluate how the internal pressure affects the natural frequencies. The corresponding
natural frequencies variation, mode shapes and the relevant phenomena that occur are
illustrated in Figs. 5.76-5.79, considering EL/ER = 1000 , θ = 0.2, Rα = 2540.01 mm.

(a) (b)

(c)

Fig. 5.76 (a) Natural frequencies variation, (b) Parabolic and veering phenomenon and
(c) Mode shapes of the first eight free vibrations, considering EL/ER = 1000, Pinner =
0 MPa, θ = 0.2, Rα = 2540.01 mm. Curved panel under internal pressure and axial
compression.

Results suggest that for all value of Pinner, the first buckling mode turns out be that of
mode 1. A crossing phenomenon occurs between mode 2 and mode 3, and between mode
7 and mode 8. An interesting aspect is that when we increase the Pinner to 0.5 MPa, the
veering phenomenon between mode 5 and mode 6 starts appearing. Figure 5.79 shows
how the veering phenomenon becomes more evident considering a Pinner = 1 MPa, i.e.,
the gap between these two lines becomes wider. In Fig. 5.79(b), veering occurs between
mode 5 and mode 6 and the mode shapes between mode 5 and mode 6 start switching
from steps 17 to 23. Figure 5.80 provides the natural frequencies variation of the first 3
modes for different Pinner. Clearly, the increasing application of the Pinner increases the
values of the natural frequencies.
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(a) (b)

(c)

Fig. 5.77 (a) Natural frequencies variation, (b) Parabolic and veering phenomenon and
(c) Mode shapes of the first eight free vibrations, considering EL/ER = 1000, Pinner =
0.1 MPa, θ = 0.2, Rα = 2540.01 mm. Curved panel under internal pressure and axial
compression.
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(a) (b)

(c)

Fig. 5.78 (a) Natural frequencies variation, (b) Parabolic and veering phenomenon and
(c) Mode shapes of the first eight free vibrations, considering EL/ER = 1000, Pinner =
0.5 MPa, θ = 0.2, Rα = 2540.01 mm. Curved panel under internal pressure and axial
compression.
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(a) (b)

(c)

Fig. 5.79 (a) Natural frequencies variation, (b) Parabolic and veering phenomenon and
(c) Mode shapes of the first eight free vibrations, considering EL/ER = 1000, Pinner =
1 MPa, θ = 0.2, Rα = 2540.01 mm. Curved panel under internal pressure and axial
compression.

Fig. 5.80 Natural frequencies variation of the first 3 modes as a function of the increasing
compressive loadings for different internal pressure values (Pinner = 0, 0.5, 1 MPa).
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Finally, some MAC graphical representations to evaluate the similarity of mode shapes
are presented. In detail, referring to the plots from Figs. 5.76 and 5.79, the corresponding
MAC values are reported in Figs. 5.81 and 5.82. In detail, Fig. 5.81(a) illustrates that

(a) Step 1 vs Step 10 (b) Step 1 vs first buckling

(c) Step 1 vs second buckling

Fig. 5.81 MAC representations for Pinner = 0 MPa, EL/ER = 1000 , θ = 0.2, Rα =
2540.01 mm.

the mode shapes for step 1 (Paxial = 0 MPa) are identical to the mode shapes for step
10. Figure 5.81(b) shows the mode shape crossing between mode 2 and mode 3, whereas
Fig. 5.81(c) exhibits the mode shape crossing between mode 2 and 3, mode 5 and 6, and
mode 7 and 8. Figure 5.82(a) illustrates the MAC representation comparing mode shapes
at step 1 vs step 19. Figure 5.82(c) displays the veering phenomenon between mode 5
and 6 from step 17 to step 22. Finally, Fig. 5.82(b) provides the MAC representation
after veering.
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(a) Step 1 vs Step 19 (b) Step 1 vs first buckling

(c) Veering between mode 5 and 6

Fig. 5.82 MAC representations for Pinner = 1 MPa, EL/ER = 1000 , θ = 0.2, Rα =
2540.01 mm.
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5.2.9 Isotropic beam subjected to thermal loadings

The following numerical assessment consists of an isotropic square cross-section beam
structure subjected to thermal loadings. Two different configurations, L/h = 10 and L/h
= 100, are considered. In detail, the beam, illustrated in Fig. 5.83, has L equal to 1 m, a
= 0.1 m / 0.01 m and h = 0.1 m / 0.01 m. The structure was made of aluminium with
Young’s modulus, Poisson’s ratio, density and linear thermal expansion coefficient equal
to E = 73 GPa, ν = 0.34, ρ = 2700 kg/m3 and α = 25×10−6 ◦C−1, respectively.

L

z

y h

a

Fig. 5.83 Geometry and boundary condition of the clamped-clamped beam structure
subjected to thermal loadings.

After convergence analyses, not displayed here for the sake of brevity, the mathematical
model consists of four L9 on the cross-section (x − z) and ten B4 beam finite elements
along the y-direction. Therefore the number of DOFs is 2325. The accuracy of the
approximation chosen, according to the CUF theory, was verified by making a comparison
with the results of the modal analysis obtained through the commercial FE software
Abaqus, see Table 5.6.

Model I flexural mode II flexural mode I torsional mode
CUF LE9 [Hz] 508.85 1303.07 1476.05

Abaqus Hex20 [Hz] 509.01 1303.90 1471.52

Table 5.6 Comparison between the CUF methodology and Abaqus solution. Isotropic
beam (L/h = 10) subjected to thermal loadings.

The first three free vibration mode shapes of both thick and thin isotropic beam
structures are provided in Fig. 5.84.

Generally speaking, the application of a thermal load to a structure in particular
constraint conditions involves the rise of a state of stress generated by the expansion of
the structure. Especially considering the boundary conditions of the present beam with
both edges clamped, the application of a thermal load, due to a uniform variation of the
temperature on the whole model, leads to a state of compression stress that can lead to
buckling of the structure.
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(a) I flexural mode, L/h = 10 (b) II flexural mode,
L/h = 10

(c) I torsional mode, L/h = 10

(d) I flexural mode, L/h = 100 (e) II flexural mode, L/h = 100 (f) III flexural mode, L/h = 100

Fig. 5.84 Mode shapes of the first three free vibrations for clamped-clamped isotropic
beams subjected to thermal loadings.

Figure 5.85 plots the comparison between the variation of natural frequencies versus
increasing thermal loadings computed through the present linearized methodology and
Abaqus. The results obtained show a good correlation with the Abaqus ones, allowing one
to predict the buckling load and describe the variation of natural frequencies with high
accuracy. Particularly, graphs suggest that instability phenomena occur for a thermal
load corresponding to 1139.03 ◦C for the case of the thick beam and 13.04 ◦C for the
slender one. Regarding the thick structure, see Fig. 5.85a, given the very high ∆Tcr value
obtained for the beam in an isotropic material, similar to an aluminium alloy, in this
case, the instability configuration will never be reached. However, it is possible to have a
considerable, albeit secondary, effect when considering a more complex load environment
where the thermal load is only one of the contributors.

5.2.10 Laminated composite beam subjected to thermal load-
ings

A laminated composite beam structure subjected to thermal loadings is considered as a
further example. The same geometrical data are used as in the previous example. The
lamination sequence considered is [0◦/90◦/0◦]. The material properties of this laminated
structure involves E1 = 144.8 GPa, E2 = E3 = 9.65 GPa, ν12 = 0.3, G12 = G13 = 4.14
GPa, G23 = 3.45 GPa, ρ = 1450 kg/m3, α11 = -2.6279×10−7 ◦C−1 and α12 = 30.535×10−6

◦C−1. The convergent model for this beam structure is reached by employing at least
ten B4 finite elements along the beam-axis and two Q9 for each layer.
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Fig. 5.85 Natural frequency variation versus thermal loadings for the isotropic beam.
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Table 5.7 shows the comparison between the present formulation and Abaqus solution
for the first six free natural frequencies. Furthermore, the mode shapes of both thick and

CUF LE9 [Hz] Abaqus Hex20 [Hz]
I flexural mode xy-plane 571.35 571.83
I flexural mode yz-plane 605.34 605.16

I torsional mode 773.82 773.20
II flexural mode xy-plane 1234.41 1235.90
II flexural mode yz-plane 1270.84 1273.80

II torsional mode 1551.99 1552.10

Table 5.7 Comparison between the present methodology and the Abaqus solution. Lami-
nated composite [0◦/90◦/0◦] beam. L/h = 10 subjected to thermal loadings.

thin laminated composite beam structures are depicted in Fig. 5.86.
Also, in this case, the instability behaviour of the composite beam under thermal

loadings given by the uniform variation of the temperature ∆T was confirmed by the
frequency trend of the beam modes with respect to the thermal load, see Fig 5.87. The
current results were compared with those obtained with Abaqus. The comparisons
revealed a perfect agreement between the two approaches within the considered thermal
load interval.

5.2.11 Isotropic plate subjected to thermal loadings

An isotropic square plate structure subjected to thermal loadings is investigated in the
following analysis case. Figure 5.88 illustrates the structure geometry, with a = 1 m,
h = 0.01 m, and the boundary conditions used. The material data are the following:
E = 73 GPa, ν = 0.34, ρ = 270 kg/m3 and α = 25×10−6 ◦C−1. The mathematical
model consisted of 10×10Q9 finite elements over the xy-plane, while the kinematic theory
adopted along the thickness direction is only one LD2. Therefore, the number of degrees
of freedom is 3969.

The values of the first four free vibration modes obtained using the CUF and Abaqus
are tabulated in Table 5.8, whereas the mode shapes are depicted in Fig. 5.89.

Figure 5.90 shows the natural frequencies variation versus increasing thermal loadings
via the present linearized approach, including the comparison with the Abaqus solution.
The graph shows that the first instability mode of the isotropic plate with all edges
clamped, corresponding to a uniform temperature variation ∆Tcr = 13.16 ◦C, coincides
with the vibrational mode (1,1).
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(a) I flexural xy, L/h = 10 (b) I flexural yz, L/h = 10 (c) I torsional, L/h = 10

(d) I flexural xy, L/h = 10 (e) I flexural yz, L/h = 10 (f) II torsional, L/h = 10

(g) I flexural xy, L/h = 100 (h) I flexural yz, L/h = 100 (i) II flexural xy, L/h =
100

(j) II flexural yz, L/h =
100

(k) III flexural xy, L/h = 100 (l) III flexural yz, L/h =
100

Fig. 5.86 Characteristics first three free vibration mode shapes for clamped-clamped
laminated composite [0◦/90◦/0◦] thick and thin beams subjected to thermal loadings.

Model Mode (1,1) Mode (2,1)/(1,2) Mode (2,2)
CUF [Hz] 93.89 194.90 287.01

Abaqus S8R [Hz] 91.40 186.47 275.77

Table 5.8 Comparison between the present methodology and the Abaqus solution.
Isotropic plate (a/h = 100) subjected to thermal loadings.
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Fig. 5.87 Natural frequency variation versus thermal loadings for the laminated composite
[0◦/90◦/0◦] beam subjected to thermal loadings.
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Fig. 5.88 Geometry and boundary condition of the clamped isotropic plate structure
(a/h = 100) subjected to thermal loadings.

(a) Mode (1,1) (b) Mode (1,2)

(c) Mode (2,1) (d) Mode (2,2)

Fig. 5.89 Characteristics first four free vibration mode shapes for the clamped isotropic
plate (a/h = 100) subjected to thermal loadings.
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Fig. 5.90 Natural frequency variation versus thermal loadings for the isotropic plate (a/h
= 100).

5.2.12 Laminated composite plate subjected to thermal load-
ings

As a final example, a laminated composite plate structure under thermal loadings is
analyzed. This plate model has the same geometric data as the previous case. The
material data of the plate are the following: E1 = 144.8 GPa, E2 = E3 = 9.65 GPa, ν12 =
0.3, G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, ρ = 1450 kg/m3, α11 = -2.6279×10−7 ◦C−1

and α12 = 30.535×10−6 ◦C−1. The structure is modelled employing 10×10Q9 for the
surface mesh approximation, whereas only 1LD3 is used in each layer in the z-direction.

First, the dynamic behaviour of the composite plate considering a/h = 100 and
three-layer with [0◦/90◦/0◦] staking sequence is investigated. Then, a parametric study
based on the variation of the lamination sequence and thickness of the structure is
performed.

Table 5.9 and Fig. 5.91 provides the natural frequencies and mode shapes of the first
five vibration modes, respectively.

Figure 5.92 shows the comparison between the variation of natural frequencies as a
function of the increasing thermal loadings computed by using the present linearized
approach and the Abaqus solution. It can be observed that the frequency of the second
vibration mode (2,1) tends to zero at the buckling load value equal to 10.69 ◦C. Generally
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Model Mode (1,1) Mode (2,1) Mode (3,1) Mode (1,2) Mode (2,2)
CUF [Hz] 108.67 144.30 222.98 283.06 304.53

Abaqus S8R [Hz] 107.76 141.37 212.54 278.78 299.43

Table 5.9 Comparison between the CUF methodology and Abaqus solution. Composite
[0◦/90◦/0◦] plate (a/h = 100) under thermal loadings.

(a) Mode (1,1) (b) Mode (2,1) (c) Mode (3,1)

(d) Mode (1,2) (e) Mode (2,2)

Fig. 5.91 Mode shapes of the first five free vibration for the composite [0◦/90◦/0◦] plate
(a/h = 100) under thermal loadings.
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Fig. 5.92 Natural frequency variation versus thermal loadings for the composite [0◦/90◦/0◦]
plate (a/h = 100).

speaking, the directionality of the fibers inside the laminate layers determines a variation
in the dynamic behaviour of thin plates, affecting the buckling. This buckling phenomenon
is induced by the state of tension that is generated by the application of thermal loads.
For clarity, from the graphs of Fig. 5.93, it can be deduced that the application of a
thermal load due to a uniform variation of the temperature ∆T on the entire laminated
structure leads to the generation of compressive stresses. In particular, the stresses σxx

are more intense in the central layer of the laminate, while the stresses σyy are more
intense in the external layers. The structure is consequently subjected to a state of
biaxial compression tension. At the critical value of temperature variation ∆Tcr, the
compressive stresses are able to induce the phenomenon of instability.

Table 5.10 displays the buckling load values of the composite plates considering
different lamination sequences. For the sake of clarity, numerical results come from simple
linearized buckling analyses, where the KT is approximated as the sum of the linear
matrix and the geometric stiffness resulting from the linear stress state. These thermal
buckling values are confirmed by the natural frequencies trend depicted in Fig. 5.94. It
is significant to highlight how the choice of lamination affects the buckling behaviour
of the structure. In fact, choosing a [0◦/90◦/0◦] lamination causes the variation of the
mode shape of the first buckling mode of the plate, passing from a one half-wave, as for
the laminations [0◦/45◦/ − 45◦]s and [45◦/ − 45◦]s, to two ones.
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Fig. 5.93 Through-the-thickness stresses distribution for the composite [0◦/90◦/0◦] plate
(a/h = 100) under ∆T = 3◦C at x = -0.25 m and y = 0 m considering different kinematic
expansion.

Lamination Buckling mode shape CUF [◦C] Abaqus [◦C]
[0◦/90◦/0◦] Mode (2,1) 10.69 10.42

[0◦/45◦/ − 45◦]s Mode (1,1) 11.42 11.30
[45◦/ − 45◦]s Mode (1,1) 9.02 8.91

Table 5.10 The first critical buckling load considering different lamination sequences.
Composite plate (a/h = 100) under thermal loadings.
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Fig. 5.94 Effect of lamination on the natural frequency variation versus increasing thermal
loadings. Laminated composite plate (a/h = 100).

In addition, the thickness effect on the frequencies and buckling loads is presented in
Fig. 5.95 and Table 5.11. The results suggest that as the thickness of the laminated

a/h Buckling mode shape CUF [◦C] Abaqus [◦C]
10 Mode (2,1) 10.69 10.42
20 Mode (2,1) 40.80 40.221
50 Mode (2,1) 206.01 206.96
100 Mode (1,1) 502.46 504.60

Table 5.11 The first critical buckling load considering different thickness values of the
laminated composite [0◦/90◦/0◦] plate subjected to thermal loadings.

composite plate increases, there is a noticeable rising in natural frequencies and buckling
loads due to increasing stiffness of the structure.
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Fig. 5.95 Effect of thickness on the natural frequency variation versus increasing thermal
loadings. Laminated composite [0◦/90◦/0◦] plate.



Chapter 6

Conclusions

6.1 Outline

This thesis aims to present an efficient tool for nonlinear vibration analyses of isotropic
and composite beam, plate and shell structures. Exploiting the potentialities of the
Carrera Unified Formulation (CUF) as a generator of refined one-dimensional (1D) and
two-dimensional (2D) models, large-deflection, buckling, post-buckling, vibration, time
response and multibody analyses were carried out. CUF allows to easily implement
low- to higher-order theories in a compact and automatic way. Thanks to its intrinsic
scalable nature, by adopting a total Lagrangian approach, the predictions from three-
dimensional (3D) full Green-Lagrange nonlinear strain components to simplified nonlinear
von Kármán strains are automatically obtained. In fact, in the CUF framework, the
nonlinear governing equations and the related finite element (FE) arrays of any model
are formulated through Fundamental Nuclei (FNs), whose structure is independent of
the theory approximation order and the strain approximation assumed. Both Lagrange
(LE) and Taylor (TE) functions have been employed and compared.

First, beam, plate and shell models were presented and employed to carry out
geometrically nonlinear analyses of isotropic and composite structures. The models are
validated with those coming from literature and research activities are conducted to
analyze the large-deflections and post-buckling behaviours of complicated structures (in
terms of stacking sequences and cross-section geometry). Particular attention was paid
to providing an efficient tool able to accurately compute the 3D stresses distribution
in structures subjected to different loads and boundary conditions in highly nonlinear
regimes. In addition, the capabilities of variable-kinematic finite beam elements for the
dynamic analyses of 3D structures undergoing large displacements and rotations are
explored. Regardless of which structural model was selected, the dynamic equilibrium of
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the structure was obtained by incrementing the generalized coordinate vector and the
associated temporal derivatives by adopting an iterative Newton-Raphson procedure and
the HHT-α method. Results suggested that higher-order and full nonlinear models are
mandatory to obtain an efficient method able to perform accurate analyses.

Then, particular interest has been focused on buckling prediction using vibration
data, which has played an important part in the entire research activities described in
the present thesis work. Thus, analytical solutions are developed for beam/plate/shell
structures using the Navier method and classical and first-order shear deformation theories,
including the nonlinear von Kármán model. They are presented for the buckling evaluation
using the dynamic criterion. In particular, simply-supported boundary conditions are
considered. When closed-form solution can be derived, they are preferred to the numerical
ones. However, when exact closed-form solution cannot be developed, numerical solution
based on the finite element method (FEM) are the best alternative. In this context, a
novel virtual Vibration Correlation Technique (VCT) approach capable of predicting the
buckling load, characterizing the natural frequencies’ variation, and having an efficient
means to verify the experimental VCT results was provided. This method becomes a
powerful method when it is necessary to investigate cases that are difficult to analyze
experimentally, such as structures subjected to thermal loads or shear loads and with
complicated boundary conditions, among others.

6.1.1 Main contributions

The main novelties and important results obtained during this period of the doctoral
research can be summarized as follows:

• The proposed 1D and 2D models are able to describe accurately nonlinear equilib-
rium states of isotropic and composite beams, plates and shells;

• The Equivalent Single Layer (ESL), as well as the Layerwise (LW) approach, is able
to accurately derive nonlinear equilibrium curves of laminated composite structures
in the case of moderate and large displacements. Results are in agreement with
those from the literature or obtained using commercial software;

• The proposed CUF-based LW models can predict interlaminar stress distributions in
both linear and nonlinear equilibrium states with unprecedented accuracy. Accurate
stress analyses in large-deflections and post-buckling fields are extremely useful for
failure considerations. In addition, results presented represent benchmark cases for
future studies;
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• Classical theories, such as the first-order approximation, can bring to wrong and,
eventually, unconservative stress distributions, especially in nonlinear fields. On
the other hand, higher-order approximations, e.g., TE3 or TE4, can give good
results in some circumstances. LW is mandatory for stress analysis and to perform
accurate evaluation, for example, in nonlinear static and dynamic analyses with
large deformation;

• The present approach, based on the CUF, represent an efficient tool for comparing
various geometrically nonlinear strain measures and kinematic approximation orders
in an automatic way. Simplifications of the 3D full Green-Lagrange nonlinear strains,
such as the von Kármán theory, can provide good results for small/moderate dis-
placements in nonlinear regimes, while in the regime of large displacements/rotations
these simplified models present unacceptable results;

• Increasing the number of layers of composite plates results in the higher buckling
strength and load-carrying capacity of the composite structures. For the angle-
ply laminate subjected to the combined loadings (in-plane shear and bi-axial
compression), the direction of the applied shear plays a crucial role in post-buckling
behaviours of composite plates, and the angle-ply plates with positive shear loading
show higher rigidity and load-carrying capacity. The buckling strength and the
load-carrying capacity of composite plates with the clamped conditions are higher
compared to other investigated boundary conditions, and the presence of a free
edge reduces the buckling strength significantly;

• The linear buckling analysis cannot be adopted to compute the buckling load of
structures. However, the buckling loads predicted by linear buckling analyses for
symmetric composite structures are almost the same as those based on CUF Full
NL plate model;

• An innovative approach to study the vibrations of structures subjected to mechanical
or thermal loadings was developed;

• Natural frequencies and mode shapes may be seriously affected by pre-stress states.
This is even more evident in the case of large displacement equilibrium states. As
expected, compressive loadings may cause a non-monotonic variation of the natural
frequencies. Because this variation differs from mode to mode, aberrations like
veering and crossing are generally observed;
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• Anisotropy can be considered as a means to limit nonlinear frequency and mode
change. In this context, accurate structural theories such as those proposed in this
work are mandatory;

• It was shown that eigenfrequencies and eigenmodes can suffer abrupt aberrations
in a deep nonlinear regime;

• Mode aberration is evident compared to the modes computed employing the full
nonlinear approach with those obtained in the trivial state. Furthermore, for
problems in which bifurcations do not exist or whenever the pre-buckling state is
unstable, full geometrical nonlinear analyses should be preferred to trivial linearized
solutions;

• The presented nonlinear methodology, based on the CUF, represent an efficient tool
for performing nonlinear dynamic investigations and comparing various kinematic
approximations and geometrically nonlinear strain measures in an automatic way;

• The CW models are used because of the accurate evaluation of the solution. Both
global and local modes are correctly obtained with a significant reduction of the
computational costs;

• As far as compact beam-like structures were concerned, the low-order CUF 1D
elements provided similar results to classical beam formulations with comparable
computational efforts. Instead, when the dynamic response of highly-deformable
structures was considered, the possibility of selecting the kinematic assumptions
represented a valuable feature for detecting the cross-section deformations and
local instabilities. In detail, LE and TE models result in good agreement when the
dynamic response of simple compact cross-sections is evaluated, whereas significant
differences are present if open channel-sections are considered. For the latter, the
use of Lagrange expansion functions is necessary;

• Simplifications of the 3D full Green-Lagrange nonlinear strain components, such as
the von Kármán or neglecting some nonlinear term, provide unacceptable dynamic
results if very large amplitude are considered;

• Finally, some simple multibody examples are shown to present the potential of this
CUF-based approach, where the main advantage is to consider flexible components
simply and with high accuracy. The proposed CUF-based multibody tool provided
reasonable confidence for future applications in this topic.
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6.1.2 Future activities

Many and different perspective developments of the present thesis work seem interesting.
Within this research, the CUF has demonstrate excellent performance in static and
dynamic analyses of isotropic and composite beams, plates and shells, thus paving the
way for future research that will include:

• introduction of damping effects;

• extension to physical nonlinearities;

• extension to rotordynamics;

• extension to acoustics applications;

• extension to fluid-structure problems;

• development of a more efficient multibody tool.

In detail, the damping and physical nonlinearities can be easily incorporated into the
aforementioned problems and investigated to investigate their important influence. The
methodology depicts the correct free and forced vibration behaviour of complex structures
within any frequency range of interest. This aspect can be extremely effective when
extended to rotordynamic response analysis of metallic and composite structures because
accurate solutions can only be obtained by capturing all necessary high-frequency wave
modes. The formulation of rotordynamics has already been extensively studied in the
CUF domain for linear domains and beam structures. The next task is to extend this
formulation to the nonlinear one, considering plate and shell models. Furthermore,
given the effectiveness of CUF models in treating thin-walled structures, attention can
also be focused on acoustic applications, particularly aerospace construction. Then,
the introduction of aerodynamic theories coupled with CUF dynamic formulations will
allow studying typical aeroelastic problems, investigating the effect of the fluid-structure
interaction.
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Appendix A

Other important nonlinear problems

A.1 Large-deflections and post-buckling analysis

A.1.1 Cross-ply [0◦/90◦]s composite square plate

The first assessment deals with a composite square plate with the following stacking
sequence [0◦/90◦]s. The dimensions of this structure are width a = b = 30.48 cm and
thickness h = 7.62 mm. The plate is subjected to a uniform transverse pressure. For
this case, two different cases of boundary conditions are considered: (a) all edges are
completely clamped, i.e., u = v = w = 0 at x = 0, a and y = 0, b; (b) all edges are
simply-supported, i.e., u = v = w = 0 at x = 0, a, z = 0 and y = 0, b, z = 0. The
material data for this laminated plate are: E1 = 12.60 GPa, E2 = E3 = 12.62 GPa,
G12 = G13 = 2.15 GPa and ν12 = ν13 = 0.2395.

In this work, it is of fundamental importance to conduct convergence analyses, reported
in Fig.A.1, to evaluate the effects of mesh approximation and kinematic expansion in
order to obtain reliable results. So first, 4×4Q9, 8×8Q9, and 12×12Q9 finite plate
elements with the fixed LD1 theory approximation order for each layer are considered.
Then, the kinematic expansion order in the thickness direction is varied from LD1 to LD3.
For clarity, the transverse displacements are evaluated at the middle of the composite
plate. Furthermore, the values of transverse displacement for different models and loads,
including the DOFs, are given in Table A.1. As observed from Fig. A.1 and Table
A.1, the 12×12Q9+LD1 model is a reliable convergent model, which will be adopted to
investigate the nonlinear equilibrium path of the present composite structure.

The nonlinear equilibrium curves for this composite structure by considering both
clamped and simply-supported edge conditions are shown in Fig. A.2, which plots the
normalized values of the displacement in the middle point of the plate as a function of
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Fig. A.1 Convergence analyses for the 4-layer [0◦/90◦]s clamped laminated composite
plate structure subjected to transverse pressure. (a) Mesh approximation; (b) Kinematic
expansion.

CUF models DOFs uz/h

pza4/E2h
4 = 4000 pza4/E2h

4 = 16000
4 ×4Q9+LD1 1215 4.44 7.16
8 ×8Q9+LD1 4335 4.42 7.03

12×12Q9+LD1 9375 4.41 6.98

Table A.1 Transverse displacements a the center of the 4-layer [0◦/90◦]s clamped composite
plate subjected to transverse pressure for different CUF models and load values.
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the normalized values of the applied transverse pressure. Consequently, the equilibrium
curves predicted by the CUF linear and Full nonlinear (Full NL) plate models match well
with those of the available literature, in which a FSDT theory is used [198]. Furthermore,
the difference between linear and nonlinear models is more significant as the transverse
pressure value increases. In addition, the load-carrying capacity of the composite plate
with the clamped edge conditions is higher than that of the composite plate with the
simply-supported ones.

For the sake of completeness, the displacement values based on different CUF 2D
models and solutions found in the available literature [198] at the fixed load of Pza4

E2h4 = 100
for the clamped edge conditions, and at the fixed load of Pza4

E2h4 = 25 for the simply-
supported edge conditions are tabulated in Table A.2. According to this table, the results
show how the CUF linear and nonlinear models agree well with the corresponding values
of those of the literature [198].

(a) Clamped edge conditions (b) Simply-supported edge conditions

Fig. A.2 Nonlinear equilibrium curves of the 4-layer [0◦/90◦]s composite plate subjected
to pressure for different constraints, including the comparison with reference solution
[198].

A.1.2 Composite square plate with [45◦/-45◦/0◦/0◦/45◦/-45◦/90◦/90◦]s
lamination

A fully clamped square composite plate with 16 layers is considered as the following
example, see Fig. A.3. The lamination of the present structures is [45◦/−45◦/0◦/0◦/45◦/−
45◦/90◦/90◦]s. The geometric data are a = b = 25.4 cm and total thickness h = 2.11 mm.
The structure exhibits large-deflection due to a uniform transverse pressure. The material
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Models Clamped Simply-supported
uz [mm] uz [mm]

Full NL 12×12Q9+LD1 7.57 5.62
Ref [198] - FSDT NL 7.71 5.67

Linear 12×12Q9+LD1 11.81 10.86
Ref [198] - FSDT Linear 12.19 11.21

Table A.2 Comparison of the transverse displacements for various CUF models and
reference solutions [198] for the 4-layer [0/90]s composite plate subjected to transverse
pressure at the fixed Pza4

E2h4 = 100 for the clamped conditions case, and at the fixed
Pza4

E2h4 = 25 for the simply-supported ones.

data of this laminated plate are: E1 = 131 GPa, E2 = E3 = 13.03 GPa, G12 = G13 =
6.41 GPa, G12 = 4.72 GPa and ν12 = ν13 = 0.38.

Mid-surface

(-45/45)
(0/0)

(-45/45)
(90/90)

254 mm

1
6
-l

ay
er

s

Fig. A.3 Schematic representation of the 16-layer [45◦/ − 45◦/0◦/0◦/45◦/ − 45◦/90◦/90◦]s
composite plate structure.

Again, convergence analyses to determine the finite element discretization of the
present composite model are performed, see Fig. A.4. In detail, Fig. A.4a provides
the in-plane mesh approximation variation, in which from 16Q9 to 144Q9 FEs are used,
whereas only one LD1 is adopted for each layer in the z-direction. Instead, analyses based
on different through-the-thickness kinematic approximations are illustrated in Fig. A.4b.
For completeness, the transverse displacement values for different CUF plate models
and loads are reported in Table A.3, including the DOFs. As evident from Fig. A.4
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Fig. A.4 Convergence analyses for the 16-layer [45◦/ − 45◦/0◦/0◦/45◦/ − 45◦/90◦/90◦]s
laminated composite plate structure with clamped edge conditions subjected to transverse
pressure. (a) Mesh approximation; (b) Kinematic expansion.

CUF models DOFs uz/h

pza4/E2h
4 = 400 pza4/E2h

4 = 1600
4 × 4Q9+LD1 4131 0.81 1.71
8 × 8Q9+LD1 14739 0.89 1.80

12 × 12Q9+LD1 31875 0.90 1.82

Table A.3 Transverse displacements at the middle of the 16-layer [45◦/−45◦/0◦/0◦/45◦/−
45◦/90◦/90◦]s composite plate with clamped conditions subjected to transverse pressure
for various CUF plate models and load values.
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and Table A.3, the convergence is achieved for the nonlinear static response when the
12×12Q9+LD1 model is employed.

Figure A.5 displays the nonlinear equilibrium path at the center of the laminated
plate, including the comparison with reference solution [237].

Fig. A.5 Nonlinear equilibrium curves of the 16-layer [45◦/ − 45◦/0◦/0◦/45◦/ −
45◦/90◦/90◦]s composite plate with clamped conditions subjected to transverse pres-
sure, including the comparison with reference solution [237].

A.1.3 Cross-ply [0◦/90◦]2 composite rectangular plate

Regarding the post-buckling evaluations, a rectangular composite plate with 4 layers
[0◦/90◦]2 is investigated as the first example. The geometrical data of the considered
structure has: the length of a = 20 cm, the width of b = 5 cm, and the thickness of h = 2
mm. The plate is subjected to in-plane compressive line loads in the x-axis direction, Nx

(force per unit width), see Fig. A.7. Simply-supported boundary conditions are adopted,
in which the edges along width x = 0, a satisfy v = w = 0 (see S1 in Fig. A.7), while
edges along the length y = 0, b satisfy w = 0 at z = 0 (see S2 in Fig. A.7). In addition, a
further constraint is consider that satisfying u = v = 0 in the central point of the plate to
avoid the rigid-body motion of the structure. The material properties for this composite
plate are: E1 = 220 GPa, E2 = E3 = 5.5 GPa, G12 = G13 = 3.3 GPa, G12 = 2.75 GPa
and ν12 = ν13 = 0.25.

For this analysis, convergence analyses on the model approximation are shown in
Fig. A.6, in which the normalized values of the displacement at the center of the plate
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as a function of the normalized values of the applied compressive line load are plotted.
First, 10×2Q9, 20×5Q9, and 40×10Q9 finite plate elements are considered, setting the
LD1 kinematic expansion for each layer in the z-direction. Then, the expansion order
along the thickness direction is varied from LD1 to LD3, whereas the in-plane mesh
approximation is fixed at 20×5Q9. For completeness, the transverse displacements for
different CUF plate models and loads are tabulated in Table A.4. Thus, as evident from
Fig. A.6 and Table A.4, the convergence for the nonlinear response curves is obtained by
adopting the 20×5Q9+LD1 plate model.
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Fig. A.6 Convergence analysis for the cross-ply [0◦/90◦]2 rectangular composite plate
structure with simply-supported conditions subjected to compressive line loads. (a) Mesh
approximation; (b) Kinematic expansion.

CUF models DOFs uz/h

Nxba/E2h
3 = 200 Nxba/E2h

3 = 400
10 × 2Q9+LD1 1575 0.731 1.618
20 × 5Q9+LD1 6765 0.859 1.865
40 × 10Q9+LD1 25515 0.859 1.865

Table A.4 Transverse displacements at the center of the cross-ply [0◦/90◦]2 simply-
supported rectangular composite plate structure subjected to compressive line loads for
various CUF models and loads.

Figure A.7 depicts the nonlinear equilibrium path of the cross-ply [0◦/90◦]2 rectangular
composite plate structure achieved by using the CUF 2D Full NL model, ABQ 2D shell
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model and ABQ 3D solid model. As illustrated in Fig. A.7, the equilibrium curves
obtained by the CUF 2D Full NL model agree well with the ABQ 3D solid model. On
the contrary, the ABQ 2D shell model predicts reliable results only in the range of
small/moderate displacements, whereas the difference become more remarkable when
large displacements are analyzed. For clarity, in the nonlinear analysis using the ABQ 3D
solid model, a fine mesh employing C3D20R elements is employed to overcome the mesh
instability problem due to the hourglassing. Figure A.8 shows the deformed configurations
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Fig. A.7 Nonlinear equilibrium path for a cross-ply [0◦/90◦]2 rectangular composite
plate structure with simply-supported conditions subjected to compressive line loads.
Comparison between the CUF 2D Full NL model (20×5Q9+LD1), ABQ 2D NL model
(60×15 S8R) and ABQ 3D NL model (60×15×4 C3D20R).

and the displacement contours based on the CUF 2D Full NL model (20×5Q9+LD1),
ABQ 2D shell model (60×15 S8R) and ABQ 3D solid model(60×15×4 C3D20R) at
the fixed load of Nxba

E2h3 = 300 for the considered rectangular composite structure. It is
clear from this figure that the buckled pattern and the displacement values of different
regions predicted by the CUF 2D model have a good consistency with those based on the
ABQ models. Finally, Table A.5 provides the displacements values at the fixed load of
Nxba
E2h3 = 300 and the linear buckling loads predicted by the three models for the considered
rectangular composite plate structure.
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Fig. A.8 Transverse displacement contours at the fixed load of Nxba
E2h3 = 300 for the cross-ply

[0◦/90◦]2 rectangular composite plate with simply-supported conditions subjected to
compressive line loads based on (a) CUF 2D Full NL 20×5Q9+LD1 model, (b) ABQ 2D
NL 60×15 S8R model and (c) ABQ 3D NL 60×15×4 C3D20R model.

Models uz [mm] Linear Buckling Load [N/m]
CUF 2D Full NL 20×5Q9+LD1 1.422 503360

ABQ 2D NL 60×15 S8R 1.134 497658
ABQ 3D NL 60×15×4 C3D20R 1.428 498976

Table A.5 Comparison of displacements at the fixed Nxba
E2h3 = 300 and the normalized

linear buckling loads for a cross-ply [0◦/90◦]2 rectangular composite plate structure with
simply-supported conditions subjected to compressive line load.
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A.1.4 Angle-ply [45◦/-45◦]s composite square plate

The next case concerns an angle-ply [45◦/ − 45◦]s composite square plate with simply-
supported constraints subjected to combined loadings. The dimension of this plate are:
width a = b = 0.25 m and the thickness is h = 2.5 mm. Various loading cases are
considered for the composite plate, such as the combination of uniformly distributed
in-plane compressive bi-axial line loads of Nx and Ny (Nx = Ny in the current example),
the in-plane shear load of Nxy = Nx, and the uniform transverse pressure of Pz = 0.1Nx,
see Fig. A.9. The material properties are the following: E1 = 206.9 GPa, E2 = E3 = 5.2
GPa, G12 = G13 = 2.6 GPa, and ν12 = ν13 = 0.25.

x

y

Nx

Nxy

Ny

Pz

Transverse Pressure

Fig. A.9 Combined loadings of the laminated plate structure: positive in-plane shear,
in-plane compression, and uniform transverse pressure.

For this case study, convergence analyses are performed in order to obtain a convergent
model approximation. In detail, the nonlinear equilibrium curves are provided in Fig.
A.10, in which the normalized values of the displacement in the central point of the
plate as a function of the loading factor (λ) values are plotted. As a consequence, the
convergence is reached at least by adopting the 15×15Q9+LD1 plate model.

The nonlinear equilibrium trends for this angle-ply composite plate subjected to
different combined loadings are illustrated in Fig. A.11. The horizontal lines in this
figure represents the corresponding linear buckling loads predicted by the CUF method.
It is noted from Fig. A.11 that for this symmetric composite structure, the buckling
loads computed by the linear buckling analysis are almost the same as those based on
CUF Full NL plate model, even if there exists uniform transverse pressure applied to the
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Fig. A.10 Convergence analyses for the angle-ply [45◦/ − 45◦]s composite plate structure
with simply-supported conditions subjected to combined loadings. (a) Positive shear; (b)
Negative shear.

plate. Thus, the linear buckling analysis can be exploited to first predict the buckling
load of the symmetric composite structure. Furthermore, the linear buckling load of
the angle-ply plate with positive shear is higher than other loading cases, which proves
that the angle-ply plate with positive shear loading has higher rigidity and load-carrying
capacity. Finally, it is observed that since the transverse pressure is relatively small
compared to in-plane loads, the equilibrium curves with transverse pressure gradually
approach those without transverse pressure as the load is continuously increased.

For the sake of completeness, Fig. A.12 shows the trend of transverse displacements
with respect to the increasing loading after the bifurcation point. The results suggest that
the direction of the applied shear loading plays a crucial role in post-buckling behaviours
of angle-ply composite plates. Especially, the angle-ply plate with positive shear loading
exhibits higher rigidity and load-carrying capacity than the one with negative shear
loading, as observed previously.

A.1.5 Composite pinched cylindrical shell

A composite cylindrical shell under a pinching force is investigated as the next case.
The vertical displacement and the rotation around the β-axis are constrained along its
longitudinal edges in addition to the clamped present at β = 0. Two different stacking
sequences are considered: [90◦, 0◦, 90◦] and [45◦, 0◦, −45◦]. The geometrical data of the
considered model are: L = 3.048 m, Rα = 1.016 m, and h =0.03 m, while the material
properties are: EL = 2068.5×104 N/m2, ET = 517.125×104 N/m2, GLT = 795.6×104
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Fig. A.11 Nonlinear equilibrium curves for the angle-ply [45◦/ − 45◦]s composite plate
with simply-supported conditions subjected to different combined loadings.

Fig. A.12 Post-buckling behaviours of the angle-ply [45◦/−45◦]s composite plate structure
with simply-supported conditions subjected to different combined loadings.
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N/m2 and νLT =νT T = 0.3. For clarity, the subscripts L and T denote the longitudinal
and transverse (fiber) direction. The nonlinear equilibrium curve of this structure was
presented by Sze et al. [223] and Wu et al. [224], while stress benchmarks have not
yet been provided through-the-thickness. In this work, stress solutions for the pinched
composite cylindrical shell is shown as an addition to the literature.

First, convergence studies on the in-plane finite element mesh is carried out to perform
accurate investigations. Figure A.13 plots the transverse displacements at the loading
point for various 2D models, and from 256Q9 to 1024Q9 FEs are used for the in-plane
mesh approximation, while 1LD2 is employed in each layer in the z-direction. For
validation reasons, the comparison with reference and Abaqus solutions is also provided.
Moreover, Table A.6 shows the transverse displacement values for different models and
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Fig. A.13 Nonlinear response curves for the composite pinched cylindrical shell at
the loading point, including convergence analyses on the surface mesh approximation.
Stacking sequence: (a) [45◦, 0◦, −45◦], (b) [90◦, 0◦, 90◦].

loads, including the DOFs. As a result, the 32×32Q9 mesh is a reliable approximation
for the in-plane description. Then, to perform an accurate stress prediction, various
LE and TE expansion functions in the thickness direction are compared. Figure A.14
illustrates the 3D stress distributions, including the circumferential normal stress σαα and
the transverse shear stress σβz components, for different through-the-thickness kinematic
approximations. The corresponding stress values are given in Table A.7 for various shell
theories and loads. Clearly, the LW model kinematics should be exploited to accurately
predict the stress values, using at least the 3LD3 theory. The results suggest that the ESL
model is sufficient to calculate the circumferential normal stress, while it is inadequate
to accurately compute the transverse shear stress component. Furthermore, about the
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Model DOFs
-uz [m]

[45◦, 0◦, −45◦] [90◦, 0◦, 90◦]
500 N 1000 N 500 N 1000 N

16x16Q9+3LD2 22869 1.086 1.481 0.684 1.273
32x32Q9+3LD2 88725 1.267 1.632 0.807 1.394
Sze et al. [223] - - - 0.798 1.393

Table A.6 Transverse displacement values of the composite pinched cylindrical shell for
two in-plane mesh approximations and loads at α = 1.596 m, β = 3.048 m and z = 0.015
m.
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Fig. A.14 Convergence analyses of the composite pinched cylindrical shell under P =
1000 N for stresses evaluation at α = 1.596 m and β = 1.524 m, including the comparison
between Lagrange and Taylor expansion functions. Lamination sequence [90◦, 0◦, 90◦].
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Theory DOFs
[90◦, 0◦, −90◦]

σαα [Pa×105] σβz [Pa×103]
500 N 1000 N 500 N 1000 N

TE1 25350 -1.280 -8.356 -1.151 -22.658
TE2 38025 -1.291 -8.375 -1.110 -17.291
TE3 50700 -1.272 -8.298 -1.573 -12.760
TE4 63375 -1.282 -8.344 -1.657 -19.973
3LD1 50700 -1.309 -8.519 -1.622 -23.399
3LD2 88725 -1.289 -8.350 -1.600 -23.185
3LD3 126750 -1.289 -8.350 -1.776 -18.001

Table A.7 Circumferential normal stress and transverse shear stresses of the composite
pinched cylindrical shell for various theories and loads at α = 1.596 m and β = 1.524 m
and z = 0.015 m σαα and z = 0 m for σβz.

transverse shear distribution, TE3 and TE4 show a similar distribution compared to the
most accurate LD3. This aspect underlines the needs to take into account the cubic
terms of the thickness expansion for an accurate evaluation of the through-the-thickness
stress component. Figures A.15 and A.16 show the circumferential normal and transverse
shear stresses in the thickness direction for different loads and for the two laminations
using both ESL and LW approaches to highlight the different capabilities. The linear
interpolation (FSDT-like) provided by the ESL model is, clearly, not enough to catch
the transverse shear stress distribution of the laminated pinched cylindrical shell, as
illustrated in Figs. A.15d and A.16d.

A.2 Nonlinear transient response analysis

Several beam and plate structures with different initial configurations, loadings and
boundary conditions are investigated in this section to prove the accuracy and capability
of the presented nonlinear dynamic methodology. Results are compared to commercial
FEM software solutions and with results found in the available literature. Dynamic
analyses are performed over different time intervals using the Newmark and HHT-α
methods. As is well known, the computational analysis cost is related directly to the
size of the time step, which has to be adopted for accuracy and stability. For this
reason, convergence analyses of the mesh approximation and time step size are performed
for each case study. Note that for all the considered examples, damping is neglected
and higher-order beam/plate models are adopted. Particular emphasis is related to
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Fig. A.15 Through-the-thickness stress distribution for two load values at α = 1.596 m
and β = 1.524 m. Composite pinched cylindrical shell. Lamination sequence [90◦, 0◦, 90◦].
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Fig. A.16 Through-the-thickness stress distribution for two load values at α = 1.596 m and
β = 1.524 m. Composite pinched cylindrical shell. Lamination sequence [45◦, 0◦, −45◦].
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the importance of choosing the appropriate kinematic theory to accurately describe
the dynamic behaviours of the considered structure. Finally, some preliminary simple
multibody problems are presented to show the capability of the proposed CUF-based
multibody tool.

A.2.1 Cantilever square cross-section beams

Two cantilever beams subjected to transverse loadings are considered as the first nonlinear
dynamic simulation. Dimensions, material data, boundary and loading conditions are
illustrated in Fig. A.17. The length-to-thickness ratios (L/h) were 100 and 10 for Case I
and Case II, respectively. The modellation of the structure consists of 10 B4 finite beam
elements along the y-axis for both cases.

L = 10 

 

b = 1

h
 =

 1

L = 10

L/2

P(t)

b = 0.1

h
 =

 0
.1

Fig. A.17 Geometry and loading conditions of cantilever beams.

The transverse displacements over the time at the mid-span of the beam computed
by using the TE1 and 1L9 are plotted in Fig. A.18. Furthermore, two reference solutions
evaluated with the commercial software Nastran are provided for validation purposes.
The 1D and 3D Nastran reference models consist of 30 finite beam elements and 4×30×4
8-node brick elements, respectively. The time-step and the control parameter employed
in the following analyses are chosen equal to ∆t = 0.004 s and α = -0.05. A significant
agreement between the CUF 1D solutions and the 3D reference solution is obtained.
Instead, after roughly 5 seconds, we may note a moderate lag in the 1D reference curve
and slight discrepancies in peak amplitude. It should be underlined that the 1D reference
solution is convergent, although the corresponding number of DOF is the lowest. However,
the TE1 and the 1L9 theories determine reductions of approximately 80% and 28% in
the unknown number compared to the 3D model.
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Fig. A.18 Transverse displacement over the time at point (0, L/2, 0) for different models.
Case I considering Pz0= -25000 N and ω = 7 rad/s.

For Case II, the dynamic response at the beam’s tip with ∆t = 0.05 seconds and
α = -0.05 is evaluated by using linear (TE1 and 1L4), quadratic (TE2 and 1L9), and
cubic (TE3) kinematic theories. The related curves are depicted in Fig. A.19, including
the results found in the literature [238] and a 3D FE solution. Contrary to what was
observed for the previous configuration, the approaches led to different solutions due to
the reduced slenderness ratio of the structure. First, consistent transient responses in
the first 50 seconds are predicted using linear and quadratic models, whereas the TE3
solution differs in the peaks’ number and amplitude. Then, as time increases, the dynamic
responses related to low-order expansions (TE1 and 1L4) agree with the Nastran solution
obtained with 2×30×2 8-node hexahedral elements, whilst the higher-order theories
have provided larger deflections. Furthermore, we observed a difference in the oscillation
period predicted by the TE3 expansion and those related to the other approaches in the
first 100 seconds and a substantial agreement in the remaining interval. Finally, results
proposed by Boujelben and Ibrahimbegovic in Ref. [238], obtained with an advanced solid
FE formulation, slightly underestimated the amplitude oscillations. This discrepancy
may be attributed to the coarse mesh and the different time interval used for the analysis.

A.2.2 Thin and thick beam structures

Nonlinear transient analyses of both thin and thick beam structures subjected to a step
loading are investigated in this example. In particular, two different load values are
considered, showing the importance of performing nonlinear dynamic analyses to obtain
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Fig. A.19 Transverse displacement as a function of the time at point (0, L, 0) for different
FE models. Case II of Fig. A.17 with Pz0 = 2 N.
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accurate investigations. In detail, step loads of F = -70000000 N for the thick beam
and F = -300000/-700000 N for the thin structure are applied to achieve maximum
deflections at the tip, considering the linear dynamic response of approximately 35% and
80%, respectively. Dimensions of considered square cross-section beams are a = 0.001 m
and the length-to-height ratio L/a is equal to 1 m (thin) and 0.1 m (thick).

Figure A.20 plots equilibrium curves of beam structures. To perform accurate

(a) Thin (b) Thick

Fig. A.20 Static equilibrium curve of the thin and thick structures subjected a transverse
load.

nonlinear dynamic responses, both convergence studies on the opportune time step in
the Newmark algorithm and mesh discretization along the y-direction are carried out.
Regarding the time step, Fig. A.21 provides the convergences for the thin beam structure.
As a consequence, 400 steps (∆t = 0.1 sec) are enough to obtain an accurate dynamic
response considering a step load of F = -300000 N, whereas 4000 steps (∆t = 0.01 sec)
are necessary if the applied step load is F = -700000 N. Similarly, for the thick beam case,
the convergence analysis suggest that at least 400 steps allow obtaining the accurate
nonlinear dynamic response. For brevity, these convergence analyses are not reported
here. Figures A.22 and A.23 prove that discretizing using 10 B4 finite elements in the
y-axis and 1L9 on the cross-section allows reaching convergent models.

Finally, the linear and nonlinear dynamic responses at the tip of the beam structures
are illustrated in Figs. A.24 and A.25 for the thin and thick beams, respectively. These
graphs show significant differences between linear and nonlinear responses. In particular,
considering very large deformations (Figs. A.24b and A.25), the nonlinear approach
exhibit evident reductions in the amplitude and phase shift in the response with respect
to the linear approach.
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(a) F = -300000 N (b) F = -700000 N

Fig. A.21 Convergence analyses on the time step value. Thin beam.

(a) F = -300000 N (b) F = -700000 N

Fig. A.22 Convergence analyses on the finite element approximations. Thin beam.
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Fig. A.23 Convergence analyses on the finite element approximations. Thick beam. F =
-70000000 N.

(a) F = -300000 N (b) F = -700000 N

Fig. A.24 Comparison between the linear and nonlinear dynamic analysis. Thin structure.
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Fig. A.25 Comparison between the linear and nonlinear dynamic analysis. Thick structure.
F = -70000000 N.

A.2.3 Cantilever thin-walled rectangular beam

The next case concerns a cantilever thin-walled rectangular beam structure subjected to
a step loading (Pz0 = 50 kN) distributed on the top surface, see Fig. A.26. Results are
obtained by using both the TE2 and 10L9 kinematic theories. In addition, the beam is
modelled using 15 B4 along the span for all analyses. Figure A.27 shows the linear and
nonlinear dynamic responses calculated with the two kinematic models at the tip of the
beam structure.

L
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z

Length, L = 10 m

Base, b = 1 m

Height, h = 0.1 m 
Thickness, t = 0.005 m

Dimensions

Young modulus, E = 69 GPa

Poisson ratio,  = 0.33 
Density,  = 2700 kg/m3 

Material

P(t) 

Pz0 
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0 21 3 4

b 

h t

Cross-section
z

x

Fig. A.26 Geometry and material data of the cantilever thin-walled beam structure.



242 Other important nonlinear problems

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

u
z,

 m

Time, sec

Nonlinear solutions

10−L9 (8280 d.o.f.)
TE2 (828 d.o.f.)

Linear solutions

10−L9 (8280 d.o.f.)
TE2 (828 d.o.f.)

Fig. A.27 Linear and nonlinear dynamic analyses of the thin-walled structure at (0, L,
h/2) using ∆t = 0.0034, α = -0.05.
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It can be noted that the 10L9 nonlinear solution significantly differs from the other
results in both oscillation amplitude and period. These discrepancies were due to local
instabilities occurring at the clamped root that determined a reduction of the structural
stiffness. Such a softening effect can be described if the kinematic model enables cross-
sectional deformations to be derived accurately. Figure A.28 depicts the linear and
nonlinear equilibrium trends at different locations along the span of the beam structure.
According to the 10L9 model, the top panel near the fixed end suddenly buckles when the
load is approximately 15 kN. On the other hand, the nonlinear solution obtained with TE2
model strongly agreed with the linear predictions; indeed, no stiffness variation has been
revealed in the analyzed load range. Figure A.29 displays the deformed configurations
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Fig. A.28 Linear and nonlinear equilibrium trends evaluated in three locations at the
thin-walled beam span (0, y, h/2). Comparison between (a) TE2 and (b) 10L9 models.

and the axial stress distributions at t = 0.34 sec and L = 1.34 m employing both the
nonlinear and linear approaches. The nonlinear solution exhibits that the bottom edge
significantly deforms, and the top surface is subjected to a compressive-tensile stress
state, contrary to what predicted by the linear result.

Eventually, the same structure subjected to sinusoidal loading is investigated. In
particular, a time-dependent sinusoidal load with amplitude Pz0 = -10000 N and angular
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(a)

(b)

Fig. A.29 The distribution of the axial stress at t = 0.34 sec and L = 1.34 m. (a)
Nonlinear and (b) linear solutions distributions using the 10L9 model.

frequency ω = 7 rad/s or 30 rad/s is considered. In the first investigation, the load is
applied at point 1, as shown in Fig. A.30 at y = L/4 and then at y = L. Figure A.31

(a) 3D model (b) Cross-section

Fig. A.30 Thin-walled rectangular beam model subjected to sinusoidal loadings.

provides the transverse displacements versus time at the loading point of the structure
under sinusoidal loadings at y = L/4, considering ω = 30 rad/s. The same case with
the load applied at y = L is reported in Fig. A.32. For completeness, the time response
adopting an angular frequency ω = 7 rad/s (near the first natural frequency of the initial
configuration) and the load applied at y = L is given in Fig. A.33. Finally, Fig. A.34
depicts deformed configurations of the thin-walled rectangular structure at t = 2.5 sec.

A.2.4 Isotropic plate

The thin isotropic plate analyzed here has the following dimensions: a = b = 250 mm
and h = 5 mm, while the material properties are set as E = 70 GPa, ν = 0.33 and ρ

= 2780 kg/m2. The structure is subjected to a uniform step loading of relatively high
intensity of 1 N/mm2 over the whole surface at any instant of time. 100 steps are used
for determining the dynamic response.
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Fig. A.31 Transverse displacements versus time at the load point of the thin-walled
rectangular structure subjected to sinusoidal loadings at y = L/4. Pz0 = -10000 and ω =
30 rad/s.

Fig. A.32 Transverse displacements versus time at the load point of the thin-walled
rectangular structure subjected to sinusoidal loadings at y = L. Pz0 = -10000 and ω =
30 rad/s.
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Fig. A.33 Transverse displacements versus time at the load point of the thin-walled
rectangular structure subjected to sinusoidal loadings at y = L. Pz0 = -10000 and ω = 7
rad/s.

Fig. A.34 Deformed configurations of the thin-walled rectangular structure subjected to
sinusoidal loadings at t = 2.5 sec.
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The response of the isotropic plate to the high-loading is shown in Fig. A.35 for
clamped-clamped boundary conditions and in Fig. A.36 for simply-supported ones,
respectively. Convergence studies on the in-plane finite element mesh approximations
and along the z-direction and the comparison with the Abaqus solution is also depicted
in these figures. Figure A.37 illustrates the stress distribution over the time, including
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Fig. A.35 Dynamic response of the clamped-clamped isotropic plate. a/h = 50.

a comparison between different plate theories and Abaqus solutions. The axial stress
distributions in the thickness direction at a quarter of the plate (x = a/4, y = b/4)
are plotted in Fig. A.38. It can be noted that results obtained using the proposed
nonlinear methodology and Abaqus solutions agree very closely for deflection and stressses.
Furthermore, it can also be noted that linear predictions overestimate the response with
respect to the correct nonlinear solution at this load level.

A.2.5 Cantilever rectangular beam with different initial defor-
mations

In the following example, the nonlinear transient responses of beam structures with
different initial configurations are evaluated in order to show the effect of nonlinearities
in small- to very large-deformation dynamic analyses.

The first analysis case deals with an isotropic cantilever beam with a compact
rectangular cross-section. The geometry and different initial configurations considered
are depicted in Fig. A.39, where L = 1 m, a = 0.01 m and h = 0.014 m. The material
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Fig. A.36 Dynamic response of the simply-supported isotropic plate. a/h = 50.

data are E = 70 GPa, ν = 0.3 and ρ = 2700 kg/m3. The convergent structural model is
discretized through 10 B4 finite elements along the y-axis and 1L9 on the cross-section.

Figure A.40 displays the linear and nonlinear static equilibrium curves of the rectan-
gular cross-section beam using different kinematic theories and nonlinear measures. The
displacement is evaluated at point P. For the sake of clarity, only the most significant
nonlinear models were reported in the graph. For completeness, the solution computed
through the commercial code Abaqus is also provided for comparison and validation
reasons. In essence, the Abaqus 1D beam model (20 B32) and Abaqus 3D solid model
(54×54×2 C3D20R) are adopted. The classical nonlinear von Kármán strain models are
employed and, clearly, they lead to inaccurate results for moderate-large deformations.
In addition, the results show as some nonlinear models, for example, Model 13 and Model
21, provide the same solutions as the LE Full, whereas Model 2 and Model 11 lead to
different results.

In this section, we perform nonlinear dynamic analyses to study the dynamical
behaviour of structures considering several initial configurations by using the proposed
nonlinear methodology. In detail, different configurations, from 10% to 90% of deflection,
of the rectangular beam structure were analyzed to investigate the dynamic response.
In more detail, the nonlinear dynamic analyses are carried out by adopting the HHT-α
integration scheme with α = -0.1 and a time step of ∆t = 0.01 sec.

The time (t) response of the system for different initial deflections is plotted in Fig.
A.41. It is noted that by reaching the deflection percentage of 80%, the structure has lost
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Fig. A.37 Nonlinear stress distribution versus time. Clamped-clamped isotropic plate.
a/h = 50.
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Fig. A.38 Through-the-thickness nonlinear stress distribution at t = 4×10−4 sec for the
clamped-clamped isotropic plate. a/h = 50.
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Fig. A.39 (a) Different initial conditions; (b) Rectangular cross-section of the beam
structure.
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Fig. A.40 Equilibrium curves considering different kinematic theories and nonlinear strain
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its stable periodic motion. As illustrated in Fig. A.41g, the system starts to exhibit a
nonlinear chaotic response at t = 1.27 sec. Finally, the chaotic aspect can be also observed
through the Poincaré maps, see Fig. A.42. One can notice the random structure of the
Poincaré section. For the sake of completeness and validation reasons, a comparison
between the present study and the Abaqus 3D solution is reported for a particular initial
deflection (82%), see Fig. A.43, in which it is also possible to observe this non-periodic
motion. In detail, the chaotic phenomenon starts from t = 1.18 sec.

Figure A.44 shows the transverse displacement time responses and phase space
portraits at 90% of deflection for the rectangular cross-section beam by comparing
the solution obtained adopting the Lagrange and Taylor kinematic theory. Results
suggest that a TE1 is able to describe the establishment of chaotic motion for a compact
rectangular cross-section beam structure.

The effect of different geometrically nonlinear strain measures on the dynamic nonlin-
ear response of the cantilever rectangular cross-section beam is provided in the following
figure, see Fig. A.45. In detail, the dynamic response, considering the configuration with
80% of deflection, obtained using the vK, vKs, Model 2, Model 13, Model 20 and LE
full models are compared. It is evident that the LE full model is necessary to perform
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Fig. A.41 3D plots for different deflections. LE full model. Rectangular cross-section
beam structure.
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Fig. A.42 Poincarè sections. Rectangular cross-section beam.

reliable investigations and to accurately describe real behaviours of the structure for
medium-large amplitudes, in which it is essential to consider all nonlinear effects.

This important change of motion is related to the phenomena of mode change that
occurs when large initial amplitudes are considered. Therefore, it is crucial to also
investigate the natural frequencies and mode shapes of the structure for the different
case studies. These effects are provided here through the MAC values. In particular,
the MAC is employed to highlight the differences between the modes for different initial
configurations of the structure. The most significant MAC graphical representations
are displayed in Fig. A.46. Different configurations of the structure are considered in
comparison with the case of 0% of initial deflection. The figures compare the first 30
modes for increasing deflection of the initial configuration. As shown by these graphical
representations, natural modes for the case with a low deflection in the initial configuration
(Fig. A.46a) are identical to those related to the 0% deflection case; i.e., all the MAC
values in the diagonal are equal to 1. On the other hand, in Fig. A.46c, the state is
entirely nonlinear; in fact, there are several interactions between the modes.

A.3 Multibody analysis

Dynamic analysis of multibody systems has become a subject of many investigations.
The current interest in the subject has been motivated by requests for analysis and
study of large-scale systems consisting of interconnected rigid and flexible bodies, each of
which can undergo large translations and angular rotations. The demand for accurate
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Fig. A.43 Comparison between the present study and ABAQUS 3D solution. Initial
condition at 82% deflection. Rectangular cross-section beam.
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Fig. A.44 90% LE full vs TE1. Rectangular cross-section beam structure.
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Fig. A.45 Comparison between different geometrically nonlinear strain models. Initial
condition at 80% deflection. Rectangular cross-section beam.

mathematical models incorporating significant effects necessitated consideration of the
flexibility of the system components. The research area on multibody dynamics of
greatest interest is the incorporation of flexibility effects into the governing dynamics
equations. This interest is stimulated by the numerous applications with large systems, in
particular, space and vehicle systems. Interest is also stimulated by unresolved questions
about optimal modelling and approximation procedures.

In this context, the ultimate goal of this research activity is to lay the foundations for
the creation of a tool capable of performing multibody analyses with both modelling and
accuracy advantages. In detail, the presented approach is based on the use of Lagrange
multipliers (LM) for joint modelling, which is a central aspect in the development of
appropriate computational methodology for multibody dynamics and employs the HHT-α
algorithm to find the solution of nonlinear systems algebraic equations.

A.3.1 Lagrange multipliers

The Lagrange multiplier method gives the stationary conditions of a constrained function.
The computation of the stationary conditions of a functional with n variables and k
constraints is reduced to a stationary points problem of an unconstrained functional of n
+ k variables. The use of the Lagrange multipliers [239–241] to the proposed CUF-based
multibody method is presented in this section.

The Lagrange multipliers method is generally employed in FEM when multiple-points
constraints have to be imposed. In detail, Lagrange multipliers were used for the imposi-
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Fig. A.46 MAC values between the modes of different initial configurations for the
rectangular cross-section beam structure.
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tions of localized constraints and displacements on high-order beam models. Nevertheless,
the most important characteristics of this multipliers method is the imposition of generic
relations between the displacements of two (or more) arbitrary points. In the CUF
framework, we have:

u1(xk, yk, zk) − u2(xk, yk, zk) = 0 (A.1)

in which u1(xk, yk, zk) represents the displacement of a point on the interface cross-section
of the first body, while u2(xk, yk, zk) denotes the displacement of the same point on the
interface cross-section of the second body. So, we have:

Π = λT
(
u1(xk, yk, zk) − u2(xk, yk, zk)

)
(A.2)

in which k indicates a point on the interface cross-section and λ stands for the vector
containing the Lagrange multipliers. Eq. A.2 may be expressed in terms of CUF:

Π = λTBq (A.3)

in which the FN of the matrix B is:

Bτi =
(
F 1

τ (xk, zk)N1
i (yk) − F 2

τ (xk, zk)N2
i (yk)

)
I (A.4)

in which I represent the identity matrix.
The solution of the problem is derived by finding q and λ from the following linear

system in matrix form: 
K BT

B 0




q

λ

 =


F

0

 (A.5)

A.3.2 Numerical examples

These preliminary examples investigate the popular multibody problem of a simple
pendulum, double-pendulum and slider-crank to show the accuracy and capability of the
presented tool. Numerical results are compared to analytical solutions and with solutions
obtained using the commercial software MSC Adams.

Flexible pendulum

Two deformable pendulums subjected to the gravity force (Pz =
∫

V dPz dV ) are examined
as the first numerical multibody assessment to validate the presented numerical approach.
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Figure A.47 shows the dimensions and mechanical data of the models, called "Pendulum I"
and "Pendulum II". The structures, modelled using 10 B4 beam elements, may elastically
deform and rigidly rotate since they were hinged at one end. The time-step ∆t = 0.001
sec and the control parameter value α = -0.05 are used for all of the following analyses.

x

y

z

L

b

h

Pendulum I 

Young modulus, E = 20 MPa
Poisson ratio,  = 0.3 

Density,  = 7200 kg/m3 

Length, L = 1 m
Base, b = 0.02 m

Thickness, h = 0.02 m

Pendulum II 

Young modulus, E = 0.7 MPa
Poisson ratio,  = 0.3 

Density,  = 5540 kg/m3 

Length, L = 1.2 m
Base, b = 0.2 m

Thickness, h = 0.009 m

Fig. A.47 Geometry and loading conditions of deformable pendulums under gravity
loadings.

The positions of the central point at the free-ends is depicted in Fig. A.48. Regarding
the Pendulum I, the various CUF 1D models show the same results, accurately reproducing
the reference solution obtained employing a Euler-Bernoulli model [242]. On the contrary,
it is possible to note discrepancies between the models for the second configuration due to
its higher flexibility. As the order of the theory increases, the cross-section deformations
related to the inertial effects are detected. These deformation mechanisms significantly
affect the dynamic analyses over the time, as provided in Fig. A.49.

Double-pendulum

With the aim of highlighting the functionality of the present formulation for a problem
with joints between two bodies, a double-pendulum in free falling under the effect of
gravity (g = 9.81 m/s2) is studied. The double pendulum is the simplest example of a
time-independent system that exhibits chaotic behaviour. The classical double-pendulum
system is a planar structure that consists of two revolute joints and two bodies free
to rotate in a plane. The double-pendulum exhibits a rich behaviour and provides a
significant demonstration of nonlinear dynamics and chaos. Its behaviour varies from
regular motion at low energies, to chaos at intermediate energies, and back to regular
motion at high energies.
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Fig. A.48 Transverse displacements at (0,L,0) evaluated for different beam models.

t = 0.0 

t = 0.2 

t = 0.4 

t = 0.6 

t = 0.8

t = 1.0 

t = 1.2 

t = 1.4

t = 1.6
t = 1.8

t = 2.0 

t = 0.0 

t = 0.2 

t = 0.4 

t = 0.6 

t = 0.8

t = 1.0 

t = 1.2 

t = 1.4

t = 1.6

t = 1.8

t = 2.0 

TE1 TE3

Fig. A.49 Motion of Pendulum II evaluated for two kinematic beam models.



A.3 Multibody analysis 261

The geometric and material data of the considered system are illustrated in Fig. A.50.
The structures is modelled by adopting 5 B4 finite elements along the y-axis and 1L9
on the cross-section for each body. In the initial configuration, the double-pendulum is

O

z

x

y

1

2

L1

L2

t

t

g

Revolute joint

Fig. A.50 Double-pendulum system.

horizontal and has zero initial velocity. For all simulations, the used time-step was ∆t

= 0.01 seconds, while the value of the control parameter α remained unchanged with
respect to the previous analyses (α = -0.05).

The transverse deflection of the endpoint of the system is provided in Fig. A.51,
including the comparison with the MSC Adams solution. Instead, Fig. A.52 shows the
phase space portraits of the motion of the double-pendulum system. From the results
presented in these figures, it is clear that the system starts to exhibit a nonlinear chaotic
response.

Slider-crank mechanism

The dynamic analysis of a classical slider-crank mechanism is investigated as the final
example. The mechanism consists of a driving beam which only exhibits rotation and a
driven beam which is connected to the driving beam at one end and the other end is
restricted to horizontal motion. The driving beam has the following dimensions: L1 =
30 mm, a = 1 mm, t = 1 mm and of the driven beam L2 = 70 mm, a = 1 mm, t = 1
mm, whereas the material properties for both beams are: E = 71.705E11 Pa, ν = 0.33
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Fig. A.51 Transverse deflection at the endpoint of the double-pendulum.
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and ρ = 2740 kg/m3. The structures is modelled by using a total of 1008 DOFs. The
mechanism is driven by the force F, as illustrated in Fig. A.53, prescribed by an input
motion given by: 

Fy = Fsin(θ)

Fz = Fcos(θ)
(A.6)

F

z

y

V

θ

Slider

Connector

Crank

Fig. A.53 Representation of the geometry and loading conditions of the slider-crank
mechanism.

Interest is focused on the vertical component of the displacement, velocity and accel-
eration of the point V. Figs. A.54-A.56 illustrate the position, velocity and acceleration
diagrams at the endpoint of the crank, respectively, including the comparison with
the MSC Adams solution. Results obtained using the proposed nonlinear multibody
approach show an excellent correlation with the MSC Adams ones, providing reasonable
confidence for future applications in this topic.
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