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Abstract: Understanding how different areas of the human brain communicate with each other is
a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity
have been widely exploited to describe the human connectome, consisting of brain networks, their
structural connections and functional interactions. Despite high-spatial-resolution imaging tech-
niques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex
network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal
resolution and are thus perfectly suitable to describe either spatially distributed and temporally
dynamic patterns of neural activation and connectivity. In this work, we provide a technical account
and a categorization of the most-used data-driven approaches to assess brain-functional connectivity,
intended as the study of the statistical dependencies between the recorded EEG signals. Different
pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed
with a pros–cons approach, in the time, frequency, and information-theoretic domains. The establish-
ment of conceptual and mathematical relationships between metrics from these three frameworks,
and the discussion of novel methodological approaches, will allow the reader to go deep into the
problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for
the description of extended forms of connectivity (e.g., high-order interactions) are also discussed,
along with graph-theory tools exploring the topological properties of the network of connections
provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the impor-
tance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g.,
filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and
discussed. By going through this review, the reader could delve deeply into the entire process of
EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby
exploiting novel methodologies and approaches to the problem of inferring connectivity within
complex networks.

Keywords: EEG; functional connectivity; data-driven; signal acquisition; pre-processing; source
localization

1. Introduction

The human brain has always fascinated researchers and neuroscientists. Its complex-
ity lies in the combined spatial- and temporal-evolving activities that different cerebral
networks explicate over three-dimensional space. These networks display distinct patterns
of activity in a resting state or during task execution, but also interact with each other
in various spatio-temporal modalities, being connected both by anatomical tracts and by
functional associations [1]. In fact, to understand the mechanisms of perception, attention,
and learning; and to manage neurological and mental diseases such as epilepsy, neurode-
generation, and depression, it is necessary to map the patterns of neural activation and
connectivity that are both spatially distributed and temporally dynamic.
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The analysis of the complex interactions between brain regions has been shaping the
research field of connectomics [2], a neuro-scientific discipline that has become more and
more renowned over the last few years [3]. The effort to map the human connectome, which
consists of brain networks, their structural connections, and functional interactions [2],
has given life to a number of different approaches, each with its own specifications and
interpretations [4–8]. Some of these methods, such as covariance structural equation
modeling [9] and the dynamic causal modeling [10,11], are based on the definition of
an underlying structural and functional model of brain interactions. Conversely, some
others, such as Granger causality [12], transfer entropy [13], directed coherence [14,15],
partial directed coherence [16,17], and the directed transfer function [18], are data-driven
and based on the statistical analysis of multivariate time series. Interestingly, while non-
linear model-free and linear model-based approaches are apparently unrelated, as they
look at different aspects of multivariate dynamics, they become clearly connected if some
assumptions, such as the Gaussianity of the joint probability distribution of the variables
drawn from the data [19,20], are met. Under these assumptions, connectivity measures such
as Granger causality and transfer entropy, as well as coherence [21] and mutual information
rate [22,23], can be mathematically related to each other. This equivalence forms the basis
for a model-based frequency-specific interpretation of inherently model-free information-
theoretic measures [24]. Furthermore, emerging trends, such as the development of high-
order interaction measures, are coming up in the neurosciences to respond to the need for
providing more exhaustive descriptions of brain-network interactions. These measures
allow one to deal with multivariate representations of complex systems [25–27], showing
their potential for disentangling physiological mechanisms involving more than two units
or subsystems [28]. Additionally, more sophisticated tools, such as graph theory [29–31],
are widely used to depict the functional structure of the brain intended as a whole complex
network where neural units are highly interconnected with each other via different direct
and indirect pathways.

Mapping the complexity of these interactions requires the use of high-resolution
neuroimaging techniques. A number of brain mapping modalities have been used in
recent decades to investigate the human connectome in different experimental condi-
tions and physiological states [32–34], including functional magnetic resonance imag-
ing (fMRI) [35–38], positron emission tomography, functional near-infrared spectroscopy,
and electrophysiological methods such as electroencephalography (EEG), magnetoen-
cephalography (MEG), and electrocorticography (ECoG) [14,39,40]. The most known
technique used so far in this context is fMRI, which allows one to map the synchronized
activity of spatially localized brain networks by detecting the changes in blood oxygenation
and flow that occur in response to neuronal activity [41]. However, fMRI lacks in time
resolution, and therefore cannot be entrusted with detecting short-living events, which can
instead be investigated by EEG, a low-cost non-invasive imaging technique allowing one
to study the dynamic relations between the activity of cortical brain regions and providing
different information with respect to fMRI [38]. Being exploited in a wide range of clinical
and research applications [30,42–44], EEG has allowed researchers to identify the spatio-
temporal patterns of neuronal electric activity over the scalp with huge feasibility, thanks
to advances in the technologies for its acquisition, such as the development of high-density
EEG systems [45,46] and their combinations with other imaging modalities, robotics or
neurostimulation [47–50].

On the whole, acquiring EEG signals is still a challenging task and requires tricks to
face some delicate steps, such as positioning of the electrodes on the scalp or setting the
more appropriate sampling frequency [40,51–56]. Furthermore, failure to properly perform
the early stages of EEG pre-processing (e.g., resampling, channel re-referencing, data filter-
ing, and artifact rejection) can decrease the signal-to-noise ratio and introduce unwanted
artifacts into the data. Indeed, due to the lack of standardization of data preparation, it is
crucial to pay attention to this delicate aspect of EEG analysis, as it can impact subsequent
steps of the evaluation of connectivity among brain networks [6,40,57]. Moreover, it is
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well-recognized that the scalp EEG signals do not directly indicate the locations of the
active neuronal populations in the brain [58,59]. Causality and connectivity measurements
applied on the scalp EEG do not allow interpretation of the interacting brain sources, since
the channel sites cannot be seen as approximations of the anatomical locations of sources,
and then spurious connectivity can be detected between sensors on the scalp [60–64].
To overcome this issue, EEG source imaging has been widely applied over the past years
to localize the anatomical sources (source space) of a given scalp measurement (sensor
space) [65–71].

The core goal of this work is to provide a structured, though not exhaustive, description
of the data-driven approaches for the study of EEG-based brain connectivity, with the aim
of investigating the oscillatory interactions within and between neural networks. The
strength of our study lies in the balance between the review of already published and
widely accepted concepts for the investigation of functional brain connectivity and recent
methodological approaches. The proposed measures are defined in the time, frequency, and
information domains; and mathematical relationships between most of them are established
under the assumptions of linearity and Gaussianity of the data. This would allow more
widespread comprehension of the underlying mechanisms which govern the complex brain
interactions in different physio-pathological states and experimental conditions. Moreover,
this extensive presentation is accompanied by a review of the most common and tricky
pitfalls occurring during the electrophysiological signal acquisition and pre-processing
steps, followed by an attempt to match them with the influences they exert on the discussed
connectivity metrics. Since some of the proposed measures and emerging trends have so
far been poorly exploited in brain-connectivity analysis, we encourage the readers to start
utilizing these concepts. Indeed, they may be useful to approach the problem of inferring
connectivity from EEG recordings for the first time, or to cross new pathways.

Specifically, in Section 2, we discuss the different ways of approaching the problem
of inferring brain connectivity, with a focus on the relations and the differences between
the concepts of structural, functional, and effective connectivity. In this review, we focus
on the notion of brain functional connectivity, which is grounded on the utilization of
data-driven methods, either directed or non-directed [6,72]. In Section 3, we introduce the
reader to the boundless world of data-driven functional connectivity estimation approaches,
specifying some classifications and definitions in this field. In Section 4, we provide a more
formal definition of the most commonly used data-driven functional-connectivity metrics
in the context of time, frequency, and information-theoretic domains, with a specific focus
on linear model-based approaches for Gaussian data. We review feasible, pairwise, and
multivariate implementations of various non-directed and directed coupling techniques,
and provide an overview of the applications in EEG brain connectivity. We highlight some
of the technical challenges and introduce some of the other commonly utilized connectivity
estimators and emerging trends in this field. In Section 5, we discuss the main features
of EEG data acquisition and pre-processing, focusing on the crucial steps of resampling,
channel re-referencing, data filtering, artifact rejection, and source localization. For each of
these steps, the relationships with the discussed metrics are elucidated.

We warn the readers that there is no single optimum method for assessing brain
connectivity. The efficiency of the method depends on the specific application and on the
assumptions at the basis of the method itself. Different approaches to the study of brain
connectivity may produce different results, even with reference to the same data. Hence,
the selection of the most suitable technique to use for the investigation of brain connectivity
is not straightforward as it may seem.

2. Brain Connectivity: An Overview of Key Topics

Brain connectivity aims at describing the patterns of interaction within and between
different brain regions. This description relies on the key concept of functional inte-
gration [73], which describes the coordinated activation of systems of neural ensembles
distributed across different cortical areas, as opposed to functional segregation, which
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instead refers to the activation of specialized brain regions. Brain connectivity encompasses
various modalities of interaction between brain networks, including structural connectivity
(SC), functional connectivity (FC), and effective connectivity (EC).

SC is perhaps the most intuitive concept of connectivity in the brain. It can be intended
as a representation of the brain fiber pathways that traverse broad regions and correspond
with established anatomical understanding [74]. As such, SC can be intended as a purely
physical phenomenon.

On the other hand, the concept of FC was defined in [75] in terms of the statistical
connections between the dynamic activity of neural units in different anatomical locations,
and assessed via correlation or covariance. Some studies suggest that the repertoire of
cortical functional configurations reflects the underlying anatomical connections, as the
functional interactions between different brain areas are thought to vary according to the
density and structure of the connecting pathways [74,76–82]. This leads to the assumption
that investigating the anatomical structure of a network, i.e., how the neurons are linked
together, is an important prerequisite for discovering its function, i.e., how neurons inter-
act together, synchronizing their dynamic activity. Moreover, according to the original
definition proposed in [75], FC does not relate to any specific direction or structure of the
brain. Instead, it is purely based on the probabilities of the observed neural responses. No
conclusions were made about the type of relationship between two brain regions. The only
comparison is established via the presence or absence of statistical dependence.

Conversely, EC was originally defined in terms of the directional influence that one
neural unit exerts over another, thereby requiring the generation of a mechanistic model
of the cause–effect relationships. In a nutshell, while FC was intended as an observable
phenomenon quantified through measures of statistical dependencies, such as correlation
and mutual information, EC was determined to explain the observed functional depen-
dencies based on a model of directed causal influences [75]. According to this outdated
view, the key concept is that the analysis of EC can be reduced to model comparison or
optimization. For instance, two models with and without a specific directed link are com-
pared between each other to determine the existence of that link. Then, generative models
of EC are tied to brain function hypotheses, and FC analysis prioritizes the differentiation
of individuals based on their brain-activity measurements [75].

In the last two decades, these concepts have been widely discussed and have evolved
towards various interpretations [7,72,83–85]. EC can be assessed either from the signals
directly (i.e., data-driven EC) or based on an underlying model specifying the causal
pathways given anatomical and functional knowledge (i.e., EC is a combination of both
SC and FC) [83,84]. The most exploited data-driven methods based on time-series analysis
include adaptations of Granger causality [12,86], transfer entropy [13], partial directed
coherence [16,17], and the directed transfer function [18], and are designed to identify
the directed transfer of information between two brain regions. Conversely, mechanistic
models of EC focus on either (i) the determination of the model parameters that align with
observed correlation patterns in a given task, such as in the case of the covariance structural
equation modeling [9] and dynamic causal modeling [10], or (ii) perturbational approaches
to investigate the degree of causal influence between two brain regions [87].

Interestingly, a distinction between directed and non-directed FC was proposed in [72]
and then applied in [6]. On the contrary, EC is always directed and rests on a parameterised
model of causal influences, usually expressed in terms of difference (discrete time) or
differential (continuous time) equations [11,88–90]. Starting from these concepts, in this
work we discuss brain FC intended as both non-directed and directed statistical dependen-
cies between neural ensembles, estimated from data-driven methods based on time-series
analysis. This view is in accordance with [6,72], where concepts of Granger causality have
been associated with directed functional rather than directed effective connections.



Bioengineering 2023, 10, 372 5 of 48

3. Functional Connectivity: A Classification of Data-Driven Methods

The identification and quantification of functional brain interactions, and their clinical
interpretations, are still challenging tasks, despite the literature providing a huge number
of metrics for inferring connectivity from the acquired data, which is often described
with a large amount of technical detail [4–6]. In this section, we highlight and discuss
classifications and definitions proper of the data-driven approaches for inferring directed
and non-directed FC.

FC can be studied in terms of coupling (non-directed FC) and causality (directed
FC) [72]. Specifically, coupling refers to the existence of a statistical relationship between
the time-dependent activities of the recorded signals over time. This is investigated through
symmetrical connectivity measures quantifying the simultaneous occurrence of neurophys-
iological events that are spatially distant [75], such as correlation and mutual information.
In contrast, causality refers to the presence of a time-lagged cause–effect relationship
between two brain signals that occurs over time [91,92]. This is investigated through
directed connectivity measures that examine the statistical causation from the data based
on temporal correlations, such as Granger causality [12,93], directed coherence [14,15],
partial directed coherence [16,17], and transfer entropy [13]. Coupling and causality can
be assessed through a number of different approaches, depending on the physiological
phenomenon under study, and thus on the utilized connectivity measure:

• Linear time series analysis methods, typically based on the autoregressive (AR) linear
model representation of the interactions, which are thus referred to as model-based,
or non-linear methods, typically based on probabilistic descriptions of the observed
dynamics and thus referred to as model-free.

• Methods developed in the time, frequency, or information-theoretic domain, based
on the features of the investigated signals one is interested in (respectively, temporal
evolution, oscillatory content, and probabilistic structure);

• Methods treating the time series that represent the neuronal activity of (groups of)
brain units as realizations of independent identically distributed (i.i.d.) random
variables or identically distributed (i.d.) random processes, respectively, studied in
terms of their zero-lag (i.e., static) or time-lagged (i.e., dynamic) correlation structure.

• Approaches that face the analysis of brain connectivity looking at pairs (pairwise
analysis) or groups (multivariate analysis) of time series representative of the observed
brain dynamics.

3.1. Model-Based vs. Model-Free Connectivity Estimators

AR model-based data-driven approaches typically assume linear interactions between
signals. Specifically, in a linear framework, coupling is traditionally investigated by means
of spectral coherence, partial coherence [16,21,94], correlation coefficient, and partial cor-
relation coefficient [21]. On the other hand, different measures have been introduced
for studying causal interactions, such as directed transfer function [18], directed coher-
ence [14,15], partial directed coherence [16,17], and Granger causality [12,93]. Conversely,
more general approaches, such as mutual information [75,95] and transfer entropy [13,96],
can investigate non-linear dependencies between the recorded signals, starting from the
definition of entropy given by Shannon [95] and based on the estimation of probability
distributions of the observed data. Importantly, under the Gaussian assumption [19], model-
free and model-based measures converge and can be inferred from the linear parametric
representation of multivariate vector autoregressive (VAR) models [12,20,24].

Constituting the most employed metrics, linear model-based approaches are suffi-
cient for identifying the wide range of oscillatory interactions that take place under the
hypothesis of oscillatory phase coupling [6]. Linear-model-based approaches allow the
frequency domain representations of multiple interactions in terms of transfer functions,
partial coherence, and partial power spectrum decomposition [6,21]. This feature is ex-
tremely helpful in the study of brain signals that usually exhibit oscillatory components in
well-known frequency bands, resulting from the activity of neural circuits operating as a
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network [97]. Moreover, linear AR models are frequently used in EEG studies because they
provide improved resolution and smoother spectra, and can be applied to short segments
of data [98]. Nevertheless, despite linear measures seeming to be more robust to noise and
well-performing, even in non-linear cases [99], the latter should be used to capture and
provide additional information on the existence of non-linear interactions that can remain
hidden if a linear approach is used [99].

3.2. Time-Domain vs. Frequency-Domain Connectivity Estimators

It is important to distinguish between time- and frequency-domain techniques, as the
latter reveal connectivity mechanisms related to the brain rhythms that operate within
specific frequency bands [21,39]. While approaches such as correlation, mutual information,
Granger causality, and transfer entropy are linked to a time-domain representation of the
data, some others, such as coherence, directed transfer function, directed coherence, and
partial directed coherence, assume that the acquired data are rich in individual rhythmic
components and exploit frequency-domain representations of the investigated signals. Al-
though this can be achieved through the application of non-parametric techniques (Fourier
decomposition, wavelet analysis, Hilbert transformation after band-pass filtering [100]),
the utilization of parametric AR models has collected great popularity, allowing one to
evaluate brain interactions within specific spectral bands with physiological meanings [21].
Furthermore, time-frequency analysis approaches, which simultaneously extract spectral
and temporal information [101], have been extensively used to study changes in EEG con-
nectivity in the time-frequency domain [102–104], and in combination with deep learning
approaches for the automatic detection of schizophrenia [105] and K-nearest neighbor
classifiers for monitoring the depth of anesthesia during surgery [106].

Crucially, when the linear parametric formulation based on the assumption of Gaus-
sianity [19,20] is adopted, information-theoretic measures such as the mutual information
rate and the transfer entropy can be expanded in the frequency domain [12,24,93] for
deriving their spectral counterparts. This does not imply that a spectral decomposition for
the model-free measures is achievable in terms of probability distributions, but rather that
the information-theoretic metrics can be retrieved as full-frequency integrals of spectral
functions with physiological meaning [12,24,93]. This property is particularly relevant,
as it establishes a straightforward link between time-, frequency-, and information-domain
measures of coupling and causality, under the assumption of linearity and Gaussianity,
thereby permitting one to look at the problem of inferring connectivity from different but
interconnected perspectives.

4. Functional Connectivity Estimation Approaches

The purpose of this section is to describe the most commonly used brain-connectivity
metrics defined in the time (Section 4.1), frequency (Section 4.2), and information-theoretic
domains (Section 4.3). The latter is also discussed in terms of the linear parametric for-
mulation which is valid for Gaussian data, and mathematical connections with time- and
frequency-domain measures are established. In each section, a distinction between pairwise
and multivariate measures, and between directed and non-directed approaches, is made
(Figure 1). In Figure 2, the brain-connectivity metrics mostly used in the revised literature
are schematized, with references to their application to EEG data and the influences exerted
on them by the pre-processing steps described in Section 5. Then, in Section 4.4, other
common methods to infer FC from brain data, not directly associated with the classification
conceived in this work, are described, and emerging trends in this field are briefly discussed.
Finally, Section 4.5 is devoted to a brief discussion about the most-used approaches to assess
the statistical significance for estimates of the metrics proposed in the previous sections.
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Figure 1. A schematic diagram of time-domain (left), frequency-domain (middle), and information-
domain (right) measures of FC, divided into non-directed (top row) and directed (bottom row)
approaches, and into pairwise (orange blocks) and multivariate (light blue blocks) methods. Con-
tinuous gray lines represent connections between domains (i.e., time, frequency, and information
domain). Dashed black arrows represent connections between methods (i.e., pairwise and mul-
tivariate methods). The mathematical relation between DC and DTF is represented by a dotted
bidirectional arrow. The gray ellipse surrounding the two blocks, II and ITE, reflects the equivalence
of their mathematical formulation.

4.1. Time-Domain Approaches

Several time-domain approaches devoted to the study of FC have been developed
throughout the years. Despite phase-synchronization measures, such as the phase locking
value [107] and other model-free approaches [108] being still abundantly used in brain-
connectivity analysis, linear methods are easier to use and sufficient to capture brain
interactions taking place under the hypothesis that neuronal interactions are governed by
oscillatory phase coupling [6].

In a linear framework, ergodicity, Gaussianity, and wide-sense stationarity (WSS)
conditions are typically assumed for the acquired data, meaning that the analyzed signals
are stochastic processes with Gaussian properties and preserve their statistical properties
as a function of time. These assumptions are made, often implicitly, as prerequisites for the
analysis, in order to assure that the linear description is exhaustive and the measures can be
safely computed from a single realization of the analyzed process. Under these assumptions,
the dynamic interactions between a realization of M Gaussian stochastic processes (e.g.,
M EEG signals recorded at different electrodes) can be studied in terms of time-lagged
correlations. In the time domain, the analysis is performed via a linear parametric approach
grounded on the classical vector AR (VAR) model description of a discrete-time, zero-mean,
stationary multivariate stochastic Markov process, S = [X1 . . . XM]ᵀ. Considering the time
step n as the current time, the dynamics of S can be completely described by the VAR
model [21,24]:

Sn =
p

∑
k=1

AkSn−k + Un, (1)

where Sn = [X1,n . . . XM,n]
ᵀ is the vector describing the present state of S, and Sp

n =
[Sᵀ

n−1 . . . Sᵀ
n−p]

ᵀ describes its past states until lag p, which is the model order defining
the maximum lag used to quantify interactions; Ak is the M × M coefficient matrix
quantifying the time-lagged interactions within and between the M processes at lag k;
and U is a M × 1 vector of uncorrelated white noise with an M × M covariance matrix
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Σ = diag(σ2
11, . . . σ2

MM). Multivariate methods based on VAR models as in (1) depend on
the reliability of the fitted model, and especially the model order. While lower model orders
can provide inadequate representations of the signal, orders higher than are strictly needed
tend to provide overrepresentation of the oscillatory content of the process and drastically
increase noise [109]. One should pay attention to the procedure for selecting the optimum
model order, which can be set according to different criteria, such as the Akaike information
criterion (AIC) [110] or the Bayesian information criterion (BIC) [111].

It should be noted that, in multichannel recordings such as with EEG data, the analysis
can be multivariate, which means taking all the channels into account and fitting a full
VAR model, as in (1), or it can be done by considering each channel pair separately, which
means fitting a bivariate AR model (2AR) in the form of (1) with M = 2:

Zn =
p

∑
k=1

BkZn−k + Wn, (2)

where Z = [XiXj]
ᵀ, i, j = 1, . . . , M (i 6= j), is the bivariate process containing the inves-

tigated channel pair, with Zn = [Xi,nXj,n]
ᵀ and Zp

n = [Zᵀ
n−1 . . . Zᵀ

n−p]
ᵀ describing, respec-

tively, the present and p past states of Z; Bk is the 2× 2 coefficient matrix quantifying
the time-lagged interactions within and between the two processes at lag k, and W is a
2× 1 vector of uncorrelated white noises with 2× 2 covariance matrix Λ. The pairwise
(bivariate) approach typically provides more stable results, since it involves the fitting of
fewer parameters but leads to loss of information due to the fact that only a pair of time
series is taken into account [112]. Indeed, since there are various situations that provide
significant estimates of connectivity in the absence of true interactions (e.g., cascade interac-
tions or common inputs) [21,112], the core issue becomes whether the estimate of pairwise
connectivity reflects a true direct connection between the two investigated signals or is the
result of spurious dynamics between multiple time series. To answer this question, it is
recommended to take into account the information from all channels when estimating the
interaction terms between any pair of time series. Even if at the expense of increased model
complexity resulting in a more difficult model identification process, moving from a pair-
wise to a multivariate approach can significantly increase the accuracy of the reconstructed
connectivity patterns. This would allow distinguishing direct from indirect interactions
through the use of extended formulations obtained through partialization or conditioning
procedures [16,21,113].

4.1.1. Non-Directed Connectivity Measures

Non-directed coupling relations between time series refer to associations which do
not specify the direction of influence. This type of coupling does not assume causality
between the time series, but rather looks for symmetrical statistical dependencies between
them [21,114].

Pairwise Measures

In the time domain, the simplest method to find symmetrical statistical dependencies
between signals is finding the correlation.

Following a so-called "static” approach, one can discard temporal correlations between
the processes and study only the zero-lag correlation between Xi,n and Xj,n, implicitly
considering the processes as formed by i.i.d. random variables. This correlation can
be investigated by means of the Pearson correlation coefficient ρi,j (PCC), defined as
the ratio between the covariance of the two variables and the product of their standard
deviations. Varying in the range [−1; 1], it reflects the strength and direction of the linear
relationship between the two variables, but not the slope of that relationship, nor non-linear
aspects [115].
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MAIN APPLICATIONS
TO EEG DATA

INFLUENCE OF
PRE-PROCESSING

TIME DOMAIN

• selection of the most associated
EEG channels for the sensorimotor
area of the brain in BCI systems

• canonical correlation analysis
(CCA)

• analysis of the correlation structure
of multichannel intracranial EEG
for the assessment of epileptic
seizure dynamics

• volume conduction effect
• low sampling rates affect
correlation dimensions

• the choice of reference can impact
measures of correlation in both time
and frequency domains by
introducing zero-lag correlations

• local field potential measurements
• steady-state EEG signals during
propofol-induced anesthesia

• intracranial EEG measured from
epileptic patients

• performance of multivariate
measures of linear dependence
based on the concept of GC with
respect to common driving

• instantaneous effects studied as a
result of either reciprocal
communication between two areas
or action of a positively correlated
common input

• performance of multivariate
measures of linear dependence
based on the concept of GC with
respect to robustness to noise and
volume conduction

• there are studies showing how GC
is theoretically invariant with
filtering, but it has been shown
successively that filtering and
downsampling have important
effects in practical applications

Figure 2. Most commonly used time-domain (left), frequency-domain (middle), and information-domain (right) measures of FC, divided into non-directed (green
rectangles) and directed (purple rectangles) approaches, and into pairwise (orange) and multivariate (light blue) methods. For each domain, the main applications to
EEG data are presented, along with the influence that pre-processing steps exert on them. References to the literature are provided for each metric, application, and
impact of pre-processing.
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In a dynamic context, by considering the processes Xi and Xj as formed by i.d. ran-
dom variables, the pairwise cross-correlation rij,k at lag k between Xi,n and Xj,n−k can be
computed as the (i− j)th element of the time-lagged correlation matrix Rk = E[ZnZᵀ

n−k]
(Corr) [21]. Being a normalized version of the pairwise cross-correlation and correspond-
ing to the dynamic version of PCC, the squared correlation coefficient (Rho) quantifies
non-directed coupling in the time-domain [21,116]. It can be computed from (2) relating
the covariance matrix of Zn, ΣZ, to the covariance of Wn, Λ = diag(λ2

ii, λ2
jj), and can be

intended globally or individually [117]. In the former case, it quantifies the linear interde-
pendence between Zn and Zp

n, and can be computed as ρ2
Zn ,Zp

n
= 1− |Λ|

|ΣZ |
, where | · | is the

matrix determinant. In the latter case, it quantifies the linear interdependence between Xi,n

and Zp
n, and can be computed as ρ2

Xi,n ,Zp
n
= 1− λ2

ii
σ2

i
, where σ2

i is the first diagonal element of

ΣZ, corresponding to the variance of Xi (the same applies to Xj).
The non-directed coupling between pairs of time series can also be investigated in

the time domain following a “dynamic” approach, whereby the time-lagged interactions
between the two analyzed processes are investigated as a whole. This is achieved using the
so-called total dependence (TD), a logarithmic measure defined by Geweke [12] which can
be computed in terms of predictability improvement. To do this, the two processes Xi and
Xj are described first by a full model in the form of (2), and then by two reduced AR models
including only the past samples from the processes Xi and Xj taken individually—denoting
the error variances of the reduced models as λ̃2

ii and λ̃2
jj—the TD measure is given by [24]

Fi,j = ln
( λ̃2

iiλ̃
2
jj

|Λ|

)
. (3)

TD compares the innovations of the full and reduced AR models in a symmetric way,
thereby quantifying how much the bivariate dynamic description of the two processes im-
proves predictability compared with the individual dynamic descriptions taken separately.

Multivariate Measures

In a multivariate context, different combinations of the M processes can be considered
when studying their static or dynamic correlations. For instance, one can investigate
the interdependencies between a target process Xi and two source processes, grouped in
the vector [XjXz], which can be in turn multivariate when each source comprises two or
more processes. Additionally, when the analysis of connectivity is focused on the study
of the interactions between blocks of time series, one can group the signals describing
the activity of a certain brain area and investigate the interactions between two blocks of
processes. Otherwise, the multiple interactions between the M processes of the network
can be described through the utilization of more sophisticated tools, such as those derived
from the frameworks of high-order interactions [25–27] or graph theory [31].

Regardless of the combination of variables chosen, the importance of using multivari-
ate approaches stems from the observation that a correlation between pairs of investigated
signals can arise when there is direct connectivity between them, but also in the presence
of signals acting as sources of correlation which are not modeled. These signals represent
confounders which give rise to spurious connectivity when the interest is in analyzing the
interaction patterns [112], but are also crucial for the emergence of high-order interactions
when the interest is in investigating complex collective behaviors [118]. In either case,
the cross-correlation and the correlation coefficient, and the total dependence, are not
sufficient to disambiguate these phenomena.

In particular, pairwise measures of connectivity are not helpful in assessing the pres-
ence of direct pathways of interactions, i.e., links of genuine association, between two
processes [21,114]. In order to distinguish between these situations (i.e., to disambiguate
direct vs. indirect coupling), the concept of partialization (or conditioning) was introduced
and exploited in neuroscience [16,21,94]. In a multivariate context, the definition of partial



Bioengineering 2023, 10, 372 11 of 48

correlation coefficient (PRho) follows the removal of the effects of all the M− 2 processes
different than the two processes of interest, Xj and Xi. This is achieved via the so-called
partialization procedure, which basically consists of the inversion of the correlation matrix
Rk yielding the matrix R−1

k denoted as partial correlation (PCorr) [21]. The procedure can
be defined in terms of predictability improvement by comparing the innovation variances
of a restricted model, whereby the target series Xi is described as a linear combination of
(M− 2)× p past states of the whole network and the driver Xj, and a full model, whereby
the p past states of Xj are added to the regressors of the restricted model.

PRho is a measure of direct coupling, in the sense that it quantifies the linear inter-
dependence between the processes under scrutiny after removing spurious effects due to
other processes within the network. Remarkably, this partialized measure is symmetric in
Xj and Xi, exactly as is the correlation coefficient, thereby allowing one to reverse the roles
of driver and target arbitrarily.

In addition to PRho, a measure of conditional TD (cTD) was also introduced [93] to
discard the effects of spurious connectivity patterns between Xi and Xj due to a third input
(either a scalar or a vector process). Computation of cTD is also based on a predictability
improvement and a model comparison approach [93]. Moreover, a time-domain measure
of the total coupling between two source processes taken together and the target process,
i.e., between [Xj, Xz] and Xi, was defined in [119] as F[jz];i. In the following, we refer to this
measure as joint TD (jTD).

4.1.2. Directed Connectivity Measures

The principle of causality is fundamental in time-series analysis to identify driver–
response (i.e., time-lagged) relations between the processes. In this work, this principle
is explored with reference to the concept of Granger causality (GC), which has been one
of the most relevant approaches exploited by modern time-series analysis. The concept
of GC was originally developed by Wiener [120] and then made operative by Granger
in the context of linear regression models [86]. In particular, GC relates the presence
of a cause–effect relation to two aspects: the cause must precede the effect in time and
must carry unique information about the present value of the effect. This relationship
is not symmetrical and can be bidirectional, thereby enabling the detection of directed
and reciprocal influences. Differently from non-directed measures, causality approaches
exploiting this concept allow focusing on specific directional pathways of interactions
within the investigated network [121].

Pairwise Measures

The first and most common practical implementation of GC is based on linear AR
modeling of two time series [86] performed under the WSS assumption, representing the
result of a model comparison and thus based on the concept of predictability improvement.
Specifically, the target time series Xi is described both by a reduced AR model (including
only the p past samples from the process Xi itself) and by a full AR on both series (including
also the p past samples of the driver Xj). In the time domain, the GC from driver Xj to
target Xi is then defined as the natural logarithm of a variance ratio, where the individual
variance terms reflect the residuals of the reduced (λ̃2

ii) and full (λ2
ii) models fitted to the

time series [86,92,113]:

Fj→i = ln
(

λ̃2
ii

λ2
ii

)
. (4)

According to this definition, the measure of GC from Xi to Xj takes strictly positive
values, establishing the presence of a directed link, when the past of Xj improves the
prediction of the present of Xi above and beyond the predictability brought about already
by the past of Xi itself.

The GC measure has a close connection with the measure of TD between two processes
previously defined. Indeed, if two processes interact with each other exclusively via time-
lagged effects, the TD Fi,j is exactly the sum of the GC measured along the two directions
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of interaction (Fi→j and Fj→i) [12]. This establishes an important relation between directed
and non-directed measures of connectivity. Such a relation is completed in the more general
case when the processes interact also at lag zero, introducing the so-called measure of
instantaneous causality Fi·j (IC) [12,24]. This measure represents the part of Fi,j that cannot
be captured by time-lagged interactions quantified via Fi→j and Fj→i. In fact, the measures
of TD, GC, and IC are connected by the well-known time-domain Geweke formulation [12]:

Fi,j = Fi→j + Fj→i + Fi·j. (5)

It is worth noting that the IC is always zero in the absence of zero-lag effects between
the time series, i.e., when the AR model is strictly causal [122], but this is generally not true
in practical analysis, when significant fast effects occur and are no more negligible [123].
A measure of the so-called “extended GC”, quantifying both time-lagged and instantaneous
effects between time series, has also been proposed [124].

Multivariate Measures

GC analysis is context-dependent, meaning that adding or removing processes from
the VAR representation of S affects the final results. In particular, if the computation
does not include all processes that have a causal link to Xj and Xi, observing significant
GC from Xj to Xi may be the result of hidden common drivers or intermediate processes.
Unobserved latent variables might severely affect GC analysis and increase the likelihood of
spurious detections of causality [112]. Therefore, conditional GC (cGC), also called partial
GC, has been defined [20,93,113] to state whether the interaction between Xi and Xj is direct
or mediated by other processes in the network S of interacting processes. In such cases,
GC from Xj to Xi conditioned on the set of M− 2 processes, represented by V = S \ Z,

can be computed as Fj→i|v = ln (
σ̃2

ii
σ2

ii
), where σ̃2

ii is the innovation variance of a restricted

model whereby the target Xi is described from its past and the past of V, and σ2
ii is the

innovation variance of the full model whereby the p past lags of the driver Xj are added to
the regressors.

Conditional IC (cIC) has also been defined in the context of an AR parametric repre-
sentation of the data [93]. The implementation of cIC follows the same rationale as cGC,
based on predictability improvement and model comparison. It is worth noting that the
Geweke decomposition in (5) can be extended to the case of conditional measures, thereby
allowing one to define cTD as the sum of the two cGC terms and the cIC term [93].

4.1.3. Applications of Time-Domain Approaches to EEG Data

A huge number of applications to EEG data of the time-domain measures defined
above are found in the literature.

The investigation of correlation patterns through PCC, despite it being a widely
accepted measure of the statistical relationships between signals [115], is rarely found in
applications to brain data. To get information on brain connectivity with and without
consideration of the volume-conduction effect, the complex PCC was defined as a unique
single measure to provide information on phase locking and weighted phase lag [125]. Later
on, the imaginary component of the complex PCC was proposed to investigate the effects of
photobiomodulation on brain connectivity in an elderly person with probable memory and
thinking disorder [126]. The PCC technique was also recently employed to select the most
associated EEG channels for the sensorimotor area of the brain, in brain–computer interface
(BCI) systems [127]. Canonical correlation analysis (CCA), defined by [128] and exploiting
the PCC method, was used for classification of evoked or event-related potentials in EEG
data [129]. An extension of CCA, called group-sparse CCA, was proposed for simultaneous
EEG channel selection and emotion recognition [130]. Other applications of CCA include
the assessment of mental stress effects on prefrontal cortical activities using a combined
fNIRS-EEG approach [131].
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Regarding dynamic correlations, epileptic seizure dynamics were assessed in [132] by
analyzing the correlation structure of multichannel intracranial EEG, whereas in [133], the
influence of the choice of reference on linear multivariate EEG correlation patterns was
investigated, along with the effect of static (i.e., zero-lag) correlations on brain connectivity.

Causality measures based on GC time-domain formulation have been extensively used
in EEG analysis, although active discussion does exist on their reliability in recovering the
functional structure of brain networks [134–138]. Despite a wide range of implementations
including non-linear [139–141], non-parametric [142], and adaptive [143,144] modeling of
the cause–effect relations in brain connectivity, predictability-improvement methods have
been utilized for inferring GC among EEG signals from multivariate realizations. Thanks to
high temporal resolution, data obtained from EEG recordings of continuous neural activity
are well suited to GC analysis [91]. The Wiener–Granger concept of causality has been
used with local-field potential measurements from the cat visual system [145,146] and
with steady-state EEG signals during propofol-induced anesthesia [147] to evaluate the
directionality of cortical interactions. Predictability-improvement GC indexes have been
used on intracranial EEG measured from epileptic patients, documenting the difficulty
of properly assessing pairwise GC in the presence of several interacting processes and
stressing the need for fully multivariate approaches [121]. Multivariate measures of linear
dependence based on the concept of GC, and their performances with respect to robustness
to noise, volume conduction, and common driving, are discussed in [148].

Still, an important aspect to be investigated is the presence of zero-lag interactions
among brain signals. Specifically in EEG analysis, instantaneous effects may be often
encountered as a result of either reciprocal communication between two areas (bidirec-
tional interaction) or action of a positively correlated common input with no significant
relative time delay, or even a combination of both [149–151]. In [149], the Geweke formula-
tion (5) [12] was applied to study the contributions of the two above factors to near-zero
phase-lag while exploiting local field potentials. Negative correlation was found between
the phase-lag and instantaneous causality, implying that the stronger the common input,
the closer to zero the phase lag. The study suggests that instantaneous causality should be
accounted for when dealing with highly interconnected neural data, since disregarding it
may have a great impact on the computation of GC indexes [152].

4.2. Frequency-Domain Approaches

To examine oscillatory neuronal interactions and identify the individual rhythmic
components in the measured data, representations of connectivity in the frequency domain
are often desirable. The transformation from the time domain to the frequency domain
can be carried out by exploiting parametric (model-based) or non-parametric (model-free)
approaches. Non-parametric signal-representation techniques are mostly based on the
definition of the power spectral density (PSD) matrix of the process as the Fourier transform
(FT) of Rk, on the wavelet transformation (WT) of data, or on Hilbert transformation
following band-pass filtering [100]. In general, they bypass the issues of the ability of linear
AR models to correctly interpret neurophysiological data and the selection of the optimum
model order. The latter choice can be problematic, especially with brain data, because it
strongly depends on the experimental task, the quality of the data and the model estimation
technique [153]. However, the non-parametric spectral approach is somewhat less robust
compared to parametric estimates, since it can be characterized by lower spectral resolution;
e.g., it has been shown to be less efficient in discriminating epileptic occurrences in EEG
data [154].

On the other hand, parametric approaches exploit the frequency-domain represen-
tation of the VAR model, in the multivariate (1) or in the bivariate (2) case, which means
computing the model coefficients in the Z-domain and then evaluating the model transfer
function H(ω) on the unit circle of the complex plane, where ω = 2π

f
fs

is the normalized
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angular frequency and fs is the sampling frequency [21]. The M×M PSD matrix can then
be computed using spectral factorization as

P(ω) = H(ω)ΣH∗(ω), (6)

where ∗ stands for the Hermitian transpose [21]; note that Σ is replaced by Λ in the case
of (2), i.e., when M = 2. It is worth noting that, while the frequency-domain descrip-
tions ubiquitously used and reviewed here are based on the VAR model representation,
their key element is actually the spectral factorization theorem reported above and that
approaches other than VAR models can be used to derive frequency-domain connectivity
measures [155].

In the following, we show the derivation of spectral measures of brain connectiv-
ity considering the traditional parametric spectral analysis of the process Z (or S in the
multivariate case).

4.2.1. Non-Directed Connectivity Measures
Pairwise Measures

The frequency-domain counterpart of the time-domain pairwise cross-correlation is
the spectral coherence. From the spectral analysis of the process Z, the elements of the
obtained 2× 2 PSD matrix P(ω) are combined to define the so-called complex coherence
(Coh) function Γij(ω):

Γij(ω) =
Pij(ω)√

Pii(ω)Pjj(ω)
, (7)

where Pij(ω) is the cross-spectral density (CSD) between Xi and Xj estimated at frequency
ω, and Pii(ω) is the PSD of Xi (the same applies to Pjj(ω)). The squared modulus of Coh
is generally used to quantify the frequency-specific linear relationship between Xi and
Xj, ranging between 0 (no dependence) and 1 (maximal dependence) [21]. Noteworthily,
as happens for time-domain correlation measures, this measure is symmetric in Xi and Xj.

The squared Coh can be represented on a logarithmic scale through the spectral
measure of TD [12]:

fi,j(ω) = ln
(Pii(ω)Pjj(ω)

|P(ω)|

)
= − ln (1− |Γij(ω)|2). (8)

Geweke derived this spectral measure requiring the fulfillment of some properties
(which here we refer to as “requirements of Geweke”). First, the measure has to be non-
negative; moreover, it has to fulfill the so-called spectral integration property, since it can
be shown that Fi,j =

1
2π

∫ π
−π fi,j(ω)dω [12,24]. This property establishes a link between

the time- and frequency-domain representations of the total dependence between two
processes, which are extended to the information domain in the next section.

Multivariate Measures

As for the PRho in the time domain, the definition of the squared partial coherence
(PCoh) follows the removal of the effects of all remaining M − 2 processes but Xj and
Xi [16,21,94], according to the partialization procedure consisting of the inversion of the
PSD matrix. PCoh is a measure of direct coupling, quantifying the linear frequency-specific
interdependence between the two time series after removing spurious effects due to other
processes within the network. This measure is symmetric in Xj and Xi exactly as the
squared Coh.

While PCoh is still computed considering two scalar processes Xi and Xj and condi-
tioning on a third vector variable including all the remaining processes of the considered
network, it is worth mentioning that an alternative approach does exist when dealing
with multivariate datasets. Indeed, Coh can also be computed between two multivariate
processes, each with a given dimensionality, which in turn can model time-series data
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from two blocks of channels (or regions of interest), thereby yielding the so-called block
coherence (bCoh) [156]. This acquires importance, especially when one wants to assess the
non-directed relationships between two brain networks. Each network is characterized by
a set of recording channels.

Interestingly, a frequency-domain measure of the total coupling between two source
processes taken together and the target process, i.e., between [Xj, Xz] and Xi, was defined
in [119] as f[jz];i(ω). Its time-domain counterpart, i.e., the jTD, can be retrieved by taking
its integral, i.e., F[jz];i =

1
2π

∫ π
−π f[jz];i(ω)dω [119].

4.2.2. Directed Connectivity Measures
Pairwise Measures

The strength of the frequency-specific causal interactions from Xj to Xi can be eval-
uated via power-spectrum decomposition [21,157] through the squared modulus of the
directed coherence (DC) [14,15], computed as

|γij(ω)|2 =
λ2

jj|Hij(ω)|2

Pii(ω)
, (9)

where |Hij(ω)|2 is the element of the 2× 2 transfer function matrix H(ω) describing the
lagged influence of Xj on Xi. This quantity was derived independently in [158], where it
was denoted as causal coherence. It represents the causal contribution of Xj to Xi under the
hypothesis of strict causality [21,159]. Importantly, an extended version of DC (eDC) was
introduced [160] by computing DC on a 2AR model including instantaneous effects from
one process to another in the form of model coefficients, i.e., by allowing the lag k to take
the zero value as well.

An extension of the concept of pairwise causality to the frequency-domain representa-
tion of time series was formulated earlier by Geweke [12] and later widely discussed in
terms of application to neuroscience data [113] and in the context of information theory [24].
The computation of pairwise GC indexes as a function of frequency is based on: (i) fitting
the observed set of time series with a linear parametric model as in (2); (ii) representing
the model coefficients in the Fourier domain; (iii) deriving the frequency-dependent causal
relations among signals starting from the definition of DC in (9). Indeed, it is possible to
show that, under the assumption of strict causality, there exists a relationship between
the frequency-specific GC f j→i(ω) and the DC in (9), the former being defined as the
logarithmic counterpart of the latter [24,122]:

f j→i(ω) = ln
(

Pii(ω)

λ2
ii|Hii(ω)|2

)
= − ln (1− |γij(ω)|2). (10)

Interestingly, f j→i(ω) fulfills the spectral integration property; i.e., its integration over the
whole frequency axis provides the time-domain estimate of GC: Fj→i =

1
2π

∫ π
−π f j→i(ω)dω [12,24].

The same definitions hold for fi→j(ω). Furthermore, the spectral measure of IC fi·j(ω) was
defined ad hoc to satisfy a spectral decomposition similar to (5) [12,24]:

fi,j(ω) = fi→j(ω) + f j→i(ω) + fi·j(ω). (11)

Contrary to the other terms of (11) and to its time-domain counterpart, the spectral IC
does not fulfill the requirements of Geweke. Indeed, it may be negative for some frequencies
and has no clear physical meaning [24], resulting in non-zero estimates at frequency ω,
even in the case of strict causality [122].

Multivariate Measures

In a multivariate context, the DC and the spectral GC can be defined again as in (9)
and (10), respectively, where the transfer function elements Hij(ω) and Hii(ω) are taken
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from the M×M transfer matrix, which also includes information relevant to all M− 2
processes besides Xi and Xj. The DC and the spectral GC between two processes modeled
within a fully multivariate setting are sensitive to both direct influences and indirect actions
mediated by other signals, and as such, they do not constitute frequency-domain measures
of causality, intended in the Granger sense, for multivariate processes.

Granger causality can be computed in the frequency domain through the so-called
partial directed coherence πij(ω) (PDC), evaluating the direct pathway from Xj to Xi not
mediated by other processes within the network [16,17]. The ability to infer directed effects
is granted to the PDC by the fact that it is formulated from the spectral representation of
the VAR model coefficients instead of the transfer function; this advantage is balanced
by the fact that using the coefficients hinders interpretability of the modulus of the PDC
compared to the DC [21]. Squared versions of PDC in its different normalizations are
usually adopted, due to higher stability and accuracy [161,162]. Many variants of the
PDC estimator have been recently provided. The generalized version of PDC (gPDC)
introduced by [163] shares with the Coh, PCoh, and DC functions the desirable property
of scale-invariance, contrary to the original PDC, which may be affected by differences
in the amplitudes of the considered signals. Later on, an extended version (ePDC) was
introduced [160] by computing PDC of a VAR model, including instantaneous effects from
one process to another in the form of model coefficients. Additionally, the information
PDC (iPDC) was introduced [164] to provide a precise interpretation of PDC in terms
of the mutual information between partialized processes, establishing it as a measure of
direct connectivity strength (it reduces to the PDC when Σ equals the identity matrix).
The equivalence of all these measures in terms of the connectivity pattern they provide was
demonstrated in [165].

It is worth mentioning that DC and PDC can also be computed between two multivari-
ate processes, as happens for Coh, yielding the so-called block DC (bDC) and block PDC
(bPDC), respectively [114]. This acquires importance, especially when one wants to assess
the directed (block DC) and the partial and directed (block PDC) relationships between
two brain networks of recording channels.

In order to determine the directional influences between the components in a multi-
variate system, the directed transfer function (DTF) was proposed [18]: it is a normalized
version of the model transfer function describing the ratio of the influence of Xj on Xi to
all the influences on Xi. It was first interpreted as a measure of causality in a multivariate
sense [166], but this reading was confuted in [167], where the DTF was associated with a
spectral measure quantifying the total causal influence from one component to another,
thereby not being strictly related to multivariate or pairwise GC.

It should be underlined that, both for a bivariate process, as in (2), and for a fully
multivariate process, the DTF is equivalent to the concept of DC in (9) when input variances
are all equal [168]. As for the iPDC, the information DTF (iDTF) was introduced [164] to
provide an interpretation of DTF in terms of the mutual information between partialized
processes (it reduces to the DTF is case Σ equals the identity matrix).

In a multivariate framework consisting of three processes, Xi, Xj, and Xz, the con-
cept of direct causality between Xi and Xj can be investigated by means of spectral cGC
f j→i|z(ω), defined in [93] and derived from an appropriately normalized moving-average
representation for Xi and [XjXz]. This measure fulfills the spectral integration property as
the spectral GC in (10), thereby allowing one to retrieve the time-domain cGC Fj→i|z as its
integral over frequencies.

4.2.3. Applications of Frequency-Domain Approaches to EEG Data

The usefulness of DC, DTF, and PDC has been demonstrated in neuroscience. DTF
and PDC were applied to high-resolution EEG recordings in different operative conditions
and suggested their reliability in a clinical context [39]. The normalized DTF was used
for assessing directed functional connectivity from EEG recordings in one subject who
received a new prosthodontic provisional implant as a substitute for previous dental
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repairs [169]. DC and gPDC were exploited to investigate the changes in resting-state
directed connectivity associated with sensorimotor rhythms α and β, occurring in stroke
patients who followed a rehabilitation treatment [170]. The results suggest that using
different methods to measure directed connectivity can improve the understanding of
how brain motor regions are connected between each other. The least absolute shrinkage
and selection operator (LASSO) regression was used in the estimation of PDC-based brain
connectivity when few data samples were available, as in EEG single trial analysis [171].
PDC was used to quantify directed interactions on the scalp under resting-state conditions
in stroke patients undergoing a rehabilitation treatment based on BCIs [68]. The statistical
properties of PDC were discussed, and the method was applied to EEG data in a subject
suffering from essential tremor [172]. In [173], an algorithm based on directed connectivity
between brain sites was developed, and the measure of gPDC was used to analyze interictal
periods from long-term iEEG signals.

All of the above-mentioned analyses were performed under the assumption of station-
ary EEG data. However, as non-stationarity in EEG dynamics has often been pointed out
in the literature, estimators such as Coh and PDC have been developed with a time-variant
approach, using adaptive AR or state-space models [174,175].

Furthermore, frequency-domain GC approaches have also been often exploited in
brain-connectivity analysis. Spectral GC was applied to EEG recordings obtained from
subjects undergoing propofol-induced anesthesia [147]. GC was exploited to investigate the
relations of beta-synchronized neuronal assemblies in somatosensory and motor cortices
during hand pressure as a part of a visual discrimination task for monkeys [150]. Extended
formulations of GC, including conditional (or partial) GC [176–179], have been widely used
to deal with brain networks made up by several nodes. The potential of conditional GC
compared to the traditional pairwise GC in distinguishing direct from indirect influences
was clearly shown in the context of multivariate neural-field potential data [176].

4.3. Information-Domain Approaches

The statistical dependencies among electrophysiological signals can be evaluated
using information theory. Concepts of mutual information, mutual information rate, and
information transfer are widely used to assess the information exchanged between two in-
terdependent systems [75,95], the dynamic interdependence between two systems per unit
of time [22,23], and the dynamic information transferred to the target from the other con-
nected systems [13,96], respectively. The main advantage of these approaches lies in the fact
that they are probabilistic and can thus be stated in a fully model-free formulation. On the
other hand, their practical assessment in the information domain is not straightforward be-
cause it comprises the estimation of high-dimensional probability distributions [180], which
becomes more and more difficult as the number of network nodes increases in multichannel
EEG recordings. Nevertheless, information-based metrics can also be expressed in terms of
predictability improvement, such that their computation can rely on linear parametric AR
models, where concepts of prediction error and conditional entropy, GC and information
transfer, or TD and mutual information rate, have been linked to each other [19,20,121,181].
Indeed, it has been demonstrated that, under the hypothesis of Gaussianity, predictability
improvement and information-based indexes are equivalent [19]. Based on the knowledge
that stationary Gaussian processes are fully described in terms of linear regression models,
a central result is that for Gaussian data, all the information measures can be computed
straightforwardly from the variances of the innovation processes of full and restricted AR
models [19]. These equivalences, which establish the links between information-theoretic
and time-domain measures of connectivity, are explored in the next subsections.
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4.3.1. Non-Directed Connectivity Measures
Pairwise Measures

Non-directed information-based measures quantify static (mutual information) or
dynamic (mutual information rate) symmetric interrelationships between two random
variables or stochastic processes, respectively.

The mutual information (MI) quantifies the information shared between two random
variables based on the concept of Shannon entropy [23,95]. In the analysis of two stationary
random processes, Xi and Xj, the MI is dependent on the time lag separating the two
variables taken from the processes. A common choice is to compute the MI at lag zero,
i.e., between the variables Xi,n and Xj,n:

I(Xi,n; Xj,n) = H(Xi,n) + H(Xj,n)− H(Xi,n, Xj,n), (12)

where H(·) is the entropy of a single variable, measuring the amount of information carried
by the variable, and H(·, ·) is the joint entropy of two variables, quantifying information as
the average uncertainty of their states taken together. In the linear parametric framework,
the MI between Xi,n and Xj,n has a logarithmic relation with the squared PCC [75,117],
i.e., I(Xi,n; Xj,n) = − 1

2 ln (1− ρ2
i,j).

The MI rate (MIR) is an extension of MI to the case in which the whole processes Xi and
Xj are considered in place of the random variables sampling them. The MIR is a dynamic
measure whereby the time-lagged interactions between the processes are quantified [22,23]:

IXi ;Xj = HXi + HXj − HXi ,Xj , (13)

where HXi is the entropy rate of Xi, quantifying the density of the average information in
the process, formulated as the conditional entropy of the present of the process given its
past [182] (the same holds for HXj ), and HXi ,Xj is the entropy rate of Xi and Xj taken to-
gether.

It is worth noting that, in a linear model-based framework, when the processes have
a joint Gaussian distribution, the MIR can be represented in the frequency domain as the
logarithmic counterpart of the spectral coherence [22,183]:

iXi ;Xj(ω) = −1
2

ln (1− |Γi,j(ω)|2); (14)

this relates the spectral MIR to the frequency-domain TD measure given in (8), and con-
sequently allows one to retrieve the MIR in the time domain as IXi ;Xj =

1
2 Fi,j thanks to

the spectral integration property [24]. The latter relation establishes a close link between
the MIR and the TD measure for pairs of Gaussian processes. Noteworthily, in [183] it
was shown that the frequency-specific measures of bPDC/bDC and canonical PDC/DC
(cPDC/cDC), the latter retrieved employing canonical decomposition to reveal the main
frequency-domain modes of interaction between the two blocks, have information-theoretic
interpretations in terms of MIR.

Multivariate Measures

Extensions of the MI to the multivariate case have also been developed. The con-
ditional MI I(Xi,n, Xj,n|Xz,n) (cMI) between two variables taken synchronously from the
processes Xi and Xj, given a third variable taken from a third process, Xz, was defined to
quantify the residual MI between Xi,n and Xj,n when Xz,n is known [95,184]. A measure
of multivariate MI between blocks of interacting series grouped in two vector variables
was defined in [117], where the global correlation coefficient was considered in place of the
pairwise PCC.

Another interesting multivariate information-theoretic quantity derived from the
concept of MI is the interaction information (II), which quantifies the concept of information
modification and is used in neuroscience to study how different signals interact with
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each other to convey information to a target signal [185–192]. Specifically, II measures
the amount of information that a target variable shares with two sources, which can
also be vector variables, when they are taken individually but not when they are taken
together [185,186,193]. As for the MI in (12), in the analysis of two stationary random
processes Xi and Xj, the II is computed at lag zero, i.e., between the target Xi,n and the
source variables Xj,n and Xz,n:

I(Xi,n; Xj,n; Xz,n) = I(Xi,n; Xj,n) + I(Xi,n; Xz,n)− I(Xi,n; Xj,n, Xz,n). (15)

Noteworthily, contrary to other information measures such as the MI and the MIR,
the II can take on both positive and negative values. Positive values indicate redundancy
(i.e., I(Xi,n; Xj,n, Xz,n) < I(Xi,n; Xj,n) + I(Xi,n; Xz,n)), and negative values indicate synergy
(i.e., I(Xi,n; Xj,n, Xz,n) > I(Xi,n; Xj,n) + I(Xi,n; Xz,n)) between the two interacting sources
sending information to the target. The concept of II can be extended to the case in which
the whole processes, Xi and Xj, are considered in place of the random variables sampling
them, whereby IXi ;Xj ;Xz quantifies the dynamic information shared between the present
of the target, its past, and the pasts of both sources [193]. It is worth noting that, in a
linear model-based framework, this concept of “dynamic” II, can be linked to the time- and
frequency-domain formulations of TD (3) and jTD:

IXi ;Xj ;Xz = Fi,j + Fi,z − Fjz,i; (16)

iXi ;Xj ;Xz(ω) = fi,j(ω) + fi,z(ω)− f jz,i(ω). (17)

The two measures satisfy the properties of II for random variables [185,186] in time
(16) and frequency (17) domains. The property of spectral integration, i.e., IXi ;Xj ;Xz , can
be retrieved as the integral of iXi ;Xj ;Xz(ω), along with the properties of redundancy and
synergy, which hold for each specific frequency in case of (17).

Redundancy (R) and synergy (S) are two key concepts in the field of information
theory. Redundancy refers to two sources conveying the same information to the tar-
get, and synergy refers to two sources interacting independently in the transmission of
information to the target. Different definitions and computational approaches for these
concepts were proposed during the last decade [185–192]. Specifically, the so-called partial
information decomposition (PID) was proposed in [187] to separately quantify redundancy
and synergy as positive quantities, according to an expansion of the overall interaction
between the target and the two sources that includes “unique” information contributions
of each source to the target. These definitions were developed in the framework of causal-
ity, i.e., considering directed interactions from the sources taken individually or together
to the target, and they are discussed in the next subsection. Nonetheless, in the case of
non-directed interplay between the considered variables, a frequency-specific decompo-
sition of the spectral jTD f jz,i(ω) was defined in [119] following the philosophy of PID,
where non-directed redundancy and synergy were computed and quantified unequivo-
cally assuming redundancy as the minimum of the interaction between each individual
source and the target [188,194]. According to this approach, it is possible to rewrite (17) as
iXi ;Xj ;Xz(ω) = r[XjXz ];Xi

(ω)− s[XjXz ];Xi
(ω), where r and s refer to redundancy and synergy,

respectively. Importantly, iXi ;Xj ;Xz(ω) quantifies the “net” redundancy, which is intended
as the balance between the redundant and synergistic contributions the sources share with
the target. The frequency-specific PID measures can be integrated to yield equivalent
information-rate measures.

4.3.2. Directed Connectivity Measures
Pairwise Measures

Information transfer is a key component of information processing. It can be measured
by a variety of directed information measures, of which transfer entropy (TE) is the most
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popular. Pairwise TE from the driver Xj to the target Xi plays a central role in the evalua-
tion of information-based causality indexes. It quantifies how much Xj influences Xi by
comparing the probability of finding the target in a present state Xi,n given its p past states
Xp

i,n. The probability of the same state includes the p past states of the driver Xp
j,n [13,96]:

Tj→i = I(Xi,n; Xp
j,n|X

p
i,n) = H(Xi,n|X

p
i,n)− H(Xi,n|X

p
i,n, Xp

j,n). (18)

While this definition of causality is expressed in terms of probability distributions,
information-domain causality can also be expressed in terms of predictability improvement
by exploiting linear parametric models and assuming Gaussianity [19,121,181]. If this is the
case, TE quantifies how much the prediction of the current state of the target from its own
past improves when the past of the driver is added to the linear model. In this framework,
it has been demonstrated that twice, the TE equals the parametric time-domain GC in
(4)—i.e., Tj→i =

1
2 Fj→i [19]. It is worth noting that, as Fj→i owns a spectral representation

in terms of DC as in (10), an extension of information-domain pairwise causality to the
frequency domain is available for Gaussian data, with Tj→i =

1
4π

∫ π
−π f j→i(ω)dω [24,27].

An information-theoretic symmetric measure quantifying the instantaneous infor-
mation shared between Xi and Xj can be defined as Ii·j = I(Xi,n; Xj,n|X

p
i,n, Xp

j,n), which
is computed after removing the common information with the past states of the pro-
cesses [24,195]. This can also be interpreted in a linear framework and obtained as the
integral of the spectral IC, i.e., of the quantity 1

2 fi·j(ω). Consequently, the Geweke decom-
positions in time (5) and frequency domains (11) can be extended to the information theory,
thereby allowing one to decompose the MIR (13), (14) as

IXi ;Xj = Ti→j + Tj→i + Ii·j. (19)

Multivariate Measures

Extensions of TE to the multivariate analysis of time series have been proposed to
account for the effects of third inputs on the investigated interaction pathways.

According to the so-called information transfer decomposition (ITD) [196], which can
be thought of as an alternative to the PID, two multivariate quantities of directed coupling
between pairs of processes can be determined.

The joint TE (jTE) [196] has been defined as a metric quantifying the overall (direct
and indirect) causal information flow transferred to a putative target process Xi from the
past of all the other sources considered together. In the case of three variables, where Xi is
the target process and [XjXz] is the source vector, jTE can be computed as:

Tjz→i = Tj→i + Tz→i − Ii
j;z|i (20)

where Ii
j;z|i is the so-called interaction transfer entropy (ITE) between Xj and Xz to Xi,

quantifying the interaction information transfer measured as the dynamic II of the present
of the target and the past of the two sources conditioned to the past of the target (i.e.,
I(Xi,n; Xp

j,n; Xp
z,n|X

p
i,n)) [193].

The decomposition of jTE in (20) is not unique, since it has been demonstrated that jTE
can be written in terms of partial TE (or conditional TE, cTE) as Tjz→i = Tj→i|z + Tz→i|j −
Ii
j;z|i, where Tj→i|z and Tz→i|j are cTEs quantifying the information transfer from one source

to the target conditioned to the other source. cTE allows one to discard the influence of a
third input to the global information flow between a pair of signals.

The concepts of non-directed redundancy and synergy discussed above can be ex-
tended to the case of directed interactions between the source vector [XjXz] and the target
Xi. In such a case, the PID can be applied to retrieve the jTE as [194]:

Tjz→i = Uj→i + Uz→i + Rjz→i + Sjz→i, (21)
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where Uj→i = Tj→i − Rjz→i and Uz→i = Tz→i − Rjz→i are the unique TEs measuring the
unique information transferred from each individual source to the target; and Rjz→i and
Sjz→i are the redundant and synergistic TEs quantifying the redundant and synergistic
information transferred from the two sources to the target, respectively. Interestingly,
while a frequency-specific representation has been implemented [119] for the non-directed
measures of the PID decomposition, the same does not hold for the directed measures above
(i.e., Uj→i, Uz→i, Rjz→i, and Sjz→i). However, further development in this field can occur,
which started with the work of Faes et al. [27], whereby concepts of information theory
and frequency domain were linked, together exploiting a linear parametric formulation of
stochastic processes in multivariate networks based on state-space modeling.

4.3.3. Applications of Information-Domain Approaches to EEG Data

The use of information-theoretic analysis is growing in popularity within the field of
neuroscience, particularly for evaluating brain connectivity through quantification of the
information transfer between brain nodes. This is particularly relevant when using GC as
a measure of information transfer due to its connection with TE, thereby allowing for a
straightforward linear parametric formulation of the information-theoretic quantities [19].

Information-based directed connectivity measures are among the most widely uti-
lized in brain-connectivity analysis. TE has been widely used to detect patterns of func-
tional directed connectivity in brain networks, especially by exploiting model-free ap-
proaches [197–199]. Linear estimators have also been used, where the TE has been as-
sociated with the concept of spectral GC [27,181,200], thereby opening the possibility to
investigate frequency-specific oscillations of neural origin in an information-based frame-
work. Moreover, cTE has allowed researchers to discard the influences of common inputs to
the global information flow between a pair of signals, thereby detecting direct interactions
in the context of multichannel recordings [196,201]. jTE has been successfully used in
multichannel EEG recordings [194].

MI has been successfully used in neuroscience to investigate connectivity in brain
networks, e.g., in schizophrenic subjects [202] and in brain–heart interactions [117]. Non-
linear approaches have been also largely exploited, based on using the auto-MI function to
describe the complexity of the EEG signals, or the cross-MI function between different EEG
channels to assess connectivity for sleepiness characterization [203].

Instead, the concept of MIR has been poorly investigated in brain-connectivity analysis.
However, it has recently found applications in multivariate EEG, where interactions within
specific frequency bands have been investigated to obtain markers of motor execution [204].
Non-linear estimators of MIR have been exploited to investigate the functional coupling
between neural spike trains [195]. A method combining an information-theoretical ap-
proach based on the concept of MIR and statistical methods was exploited in [205] to infer
connectivity in complex networks, such as the human brain, using time-series data.

Concepts of redundancy and synergy have been widely implemented in neuroscience
in measures such as II and frameworks such as PID to study multiple interactions [206–210],
e.g., in the context of brain–heart interactions [211], neural spike recordings [212], resting
brains, and epileptic seizures [194,213,214]. Moreover, II was applied to human electro-
corticography data in [185], revealing some aspects of multivariate brain interactions
that withstand the epileptogenic zone, i.e., where the epileptic seizures are triggered.
The epileptogenic structure was investigated in terms of the redundant/synergistic nature
of these interactions.

A measure worth mentioning is the so-called information storage, also known as
self-entropy (SE) [196]. Even though it is not a measure of brain connectivity, since it is
associated with the analysis of single EEG channels, it has allowed researchers to map the
spatial distribution of the complexity of brain dynamics, with reference to the amount of
information in the past of a neural process that serves to predict part of the information
contained in the future of that process [215]. Indeed, the lower the dynamical complexity
in a given brain area (thus, higher regularity), the higher the information stored in that area.
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The measure of SE has been used especially in non-linear EEG analysis [196,215], but its
parametric formulation in terms of AR model variances [216] has also been exploited to
study scalp and source brain connectivity [200]. The feasibility of the linear approach was
demonstrated in detecting modifications of the patterns of information storage in a group
of children manifesting episodes of focal and generalized epilepsy [200].

4.4. Other Connectivity Estimators

Brain connectivity can be estimated through a large number of analyses applied to
EEG data. Multivariate time-series analysis has traditionally relied on the use of linear
methods in the time and frequency domains. Nevertheless, these methods are insufficient
for capturing non-linear features in signals, especially in neurophysiological data where
non-linearity is a characteristic of neuronal activity [108]. This has driven the exploration of
alternative techniques that are not limited by this constraint [108,217]. Moreover, the utiliza-
tion of AR models with constant parameters, and the underlying hypotheses of Gaussianity
and WSS of the data, can be key limitations when stationarity is not verified [218]. A num-
ber of approaches have been developed to overcome this issue, providing time-varying
extensions of linear model-based connectivity estimators using adaptive AR models with
time-resolved parameters, in which the AR parameters are functions of time [174,219,220].

In this section, we discuss the main features of commonly used data-driven connectiv-
ity estimators which do not rely on data-generation models (e.g., phase-synchronization
measures), and emerging trends in the field of brain connectivity (e.g., high-order interac-
tions and complex networks tools).

4.4.1. Phase Synchronization

Phase synchronization is a common phenomenon extensively studied in the litera-
ture [6,30,107,221–223], based on the evidence that the phases of two interacting signals
can be synchronized, even if their amplitudes remain uncorrelated. Generally, measures
of phase synchronization are frequency-specific. The complex-valued coherence is an
example where the phase difference between the two signals at different frequencies can
be interpreted as a time delay between the corresponding time series [6]. Specifically,
the slope of the phase difference spectrum of the complex coherence (phase-lag) can be
used to estimate the time delay between the two signals unambiguously, since the phase
difference is observed over a range of frequencies and not in a single frequency bin [6].
In a noise-free environment, the slope of the phase is directly proportional to the delay
between signals, a concept known as group delay in signal processing [224]. Furthermore,
the sign and magnitude of phase-lag have been used to infer the directions of informa-
tion transmission and delay [225]. Noteworthily, in the time domain, this corresponds to
identifying the time lag of maximal correlation and its magnitude, which have been used
to retrieve information flow between brain areas [226]. Ultimately, the cross-correlation
function and the spectral complex-valued coherence have been utilized as measures of
unidirectional directed neuronal interactions exerting their largest influences at a specific
time delay k. Nevertheless, interpreting the cross-correlation function and the spectral
coherence can be troublesome when dealing with complex, bidirectional interactions over
multiple delays, which is common in most EEG cortical connections. Phase lag has been
found to be near-zero in synchronous cortical networks, even anatomically distant between
each other, which renders its use as a measure to identify directional interdependencies
ineffective [149].

Other metrics of phase synchronization were introduced in the past years, among which
are the phase slope index (PSI) [227] and the phase locking value (PLV) [107].

The PSI was proposed as a phase-synchronization measure derived from the com-
plex coherence function [227], quantifying the change in the phase difference between
consecutive bins. The weighted PSI stability, a variant of the PSI, has been defined as an
artifact-resistant measure to detect cognitive EEG activity during locomotion [228].
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The PLV was defined as the absolute value of the mean phase difference between
the two signals, expressed as a complex unit-length vector [107]. PLV is thought to be
an appropriate approach for quantifying phase synchronization between neural signals.
Especially when dealing with EEG data, it does not require stationarity [107] and is robust
to fluctuations in amplitude as opposed to coherence, which generally confounds the
consistency of phase difference with amplitude correlation [6,107].

More recently, the imaginary part of the coherence was proposed to eliminate the impact
of zero-lag correlations caused by volume conduction [229]. A comparison between methods
which do not remove the zero-lag-phase connectivity and approaches which instead eliminate
this effect were proposed in [38], including an application to magneto/electroencephalography
source connectivity.

As regards applications to brain data, we refer the reader to [230–235] for further
details on phase-coupling-based approaches reflecting various cognitive processes.

Moreover, it should be underlined that another coupling mode between neuronal
oscillations does exist, being referred to as amplitude-coupling and reflecting the temporal
co-modulation of the amplitude (or power) of neuronal oscillations. We refer the reader
to [222,236,237] for further details on this kind of neuronal interactions.

4.4.2. High-Order Interactions

The brain is a complex network of interacting neural populations, whose functional
connections are investigated in the emerging field of network neuroscience [238,239].
Given the time series reflecting the dynamic activity of the network units, functional
interdependencies are typically assessed by computing pairwise measures describing the
interactions between two units only. However, despite their common use, research studies
show that such measures do not accurately represent the connectivity structure of brain
networks, since the obtained patterns can be blurred by the large number of spurious
connections due to unobserved variables [112,118]. Multivariate approaches based on
conditioning or partialization procedures have been exploited to remove the effects of third
inputs on the observed patterns of connectivity [16,113]. Indeed, it has been demonstrated
that higher-order interactions (HOIs), i.e., interactions involving three or more units, greatly
impact the overall behavior of brain networks [213]. In recent years, various information-
theory-based metrics have been proposed to measure HOIs among multiple time series,
which aim to identify redundant or synergistic information shared by groups of random
variables or processes [187,189,213,216,240]. Interaction information (15) is an example,
but its computation involves only three variables or groups of variables.

A recently proposed measure, the so-called O-information (OI), has been used to
investigate synergy- and redundancy-dominated interactions in networks of multiple
interacting units [25]. Its symmetric nature, scalability with the network size, and the
possibility to compute it for dynamic processes were shown [26]. To complement the global
assessment provided by the OI, a new measure has been proposed reflecting the gradients
of the OI as low-order descriptors (i.e., univariate and pairwise) that can characterize how
high-order effects are localized across a system of interest [28]. This measure has been
successfully applied in the context of econometrics, showing the potential impact it could
also have on the study of physiological systems such as the human brain [28].

Moreover, a new framework was introduced for the time- and frequency-domain
analysis of HOIs in multivariate stochastic processes mapping the activity of network
systems [27]. The new measure of O-information rate (OIR) was defined which generalizes
the MIR of bivariate processes using the same rationale, whereby the OI generalizes the MI
between random variables. In the context of the VAR formulation of multivariate Gaussian
stochastic processes [21], a causal decomposition and a spectral expansion of the OIR was
provided, thereby connecting it with well-known and widely used measures of coupling
and GC formulated in the time and frequency domains [12,24].

This concept of multivariate analysis is becoming more and more popular for describ-
ing the activity and the interactions among subunits forming a system. The analysis of
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multiple time series interacting in complex manners and representing the dynamic activity
of brain networks, together with the tools of information theory described above, is an
emerging trend that should be taken into account when dealing with brain data [27,241].

4.4.3. Complex Network Measures

Graph theory is a useful tool with which to model the structural and functional con-
nections between nodes in complex brain networks [29–31]. Nodes represent brain regions;
and edges represent synapses, pathways, or statistical dependencies between neural units.
The nature of nodes and edges varies depending on the brain mapping method, anatomical
parcellation scheme, and measure of connectivity used [242]. The choice of a specific
combination of these largely determines the interpretation of network topology [243].

Ideally, nodes in a network should correspond to brain regions that exhibit anatomical
or functional connections, and connections are differentiated based on several factors,
including the type of connectivity (anatomical, functional, or effective), their weight (binary
or weighted graphs) and direction (undirected or directed graphs). Weighted directed
variants are typically generalizations of binary undirected variants [239]. Binary and
weighted graphs differ in their representations of connections. Binary graphs indicate
only the presence or absence of a connection, and weighted graphs provide information
about the strength of that connection [239]. Weighted graphs can exclude non-significant
links, which are generally discarded by applying arbitrary weight thresholds [244–246].
Undirected and directed graphs are represented by symmetric and asymmetric adjacency
matrices, respectively. Symmetric measures are used to examine the degree of association
in undirected graphs, and asymmetrical metrics provide information on the direction of
the connections in directed graphs also [239,247].

The structural and functional properties of graphs of brain networks can be quantita-
tively investigated through measures of [239]:

• Functional segregation, e.g., clustering coefficients [248–252] and modularity [253].
• Functional integration, based on the concept of path [248,254] and estimating the ease

of communication between brain areas. These measures have been found useful in
studies related to obsessive-compulsive disorders, since their alterations seem to be
correlated with the severity of the illness [255,256]. Networks which are simultane-
ously highly segregated and integrated are referred to as small-world networks; a
measure of small-worldness was proposed to describe this property [248,257].

• Network motifs, which are subgraphs showing patterns of local connectivity.
• Node and edge centrality, based on the idea that specific combinations of nodes and

links can control information flow [249,258–261].
• Network resilience, based on the evidence that anatomical connectivity influences the

ability of neuropathological lesions to affect brain activity.

Many of the topological indices which characterize a network have been implemented
in freely available software packages, such as Brain Connectivity Toolbox [239] and EEG-
NET [262] in Matlab, or NetworkX [263] in Python.

The statistical evaluation of these network statistics requires the design of appropriate
null-hypothesis networks, involving the choice of random or ordered graph models which
preserve basic features of the original network [264].

Ultimately, complex network tools are particularly important in understanding con-
nectivity, as they provide a mathematical framework for modeling and analyzing the
network of connections between brain regions, and to better understand brain function and
disorders, such as Alzheimer’s disease, autism, and schizophrenia, and their impacts on
brain connectivity over time, which can help to track the progression of brain diseases and
inform the development of new treatments [30,261,265–269].

4.5. Statistical Validation Approaches

It is common practice to statistically validate the estimated metrics of connectivity,
which correspond to assessing whether the two investigated (blocks of) time series are



Bioengineering 2023, 10, 372 25 of 48

significantly coupled, i.e., whether the estimated value of connectivity is significantly
nonzero. Indeed, due to practical estimation problems, nonzero values of the estimated
connectivity index can occur even in the absence of a real coupling between the two
considered series. To face this issue, the statistical significance of a given measure is
typically assessed by estimating its distribution and comparing it to a given arbitrary
threshold. However, a rigorous and more powerful method would consist in defining a
threshold level on the basis of statistical criteria derived from the sampling (theoretical or
empirical) distribution of the used estimator. Theoretical approaches have been used to
assess the statistical significance of the Coh [270], PDC [172,271], DTF [165], and DC [167]
estimators [272], but they present some limitations which cannot be neglected in real
applications [121]. Therefore, the empirical distribution of the considered index for the
estimation of a threshold level has been used in place of theoretical approaches [273].
The empirical distribution is commonly obtained by exploiting the method of surrogate
data, a technique originally proposed to investigate the existence of non-linear dynamics
in time series [274,275] but later exploited to test the significance of coupling measures
in EEG recordings [107]. According to this approach, the index is computed over a set of
surrogate time series, which are derived from the original series by a procedure mimicking
their properties but removing their coupling. The confidence interval (CI) of the empirical
distribution is then computed under the null hypothesis of full uncoupling between the
time series; the 100(1− α)th percentile of the distribution (which represent the threshold
value) is then compared with the observed value, and the null hypothesis is accepted or
rejected at the α significance level depending on the position of the observed value with
respect to the threshold [276]. Indeed, if the index assessed over the original series is above
the threshold, the null hypothesis is rejected with type I error probability below α.

Different algorithms have been proposed to generate surrogate time series sharing
some given properties with the original but being uncoupled:

• Randomly shuffled surrogates [277], which are realizations of i.i.d. stochastic processes
with the same mean, variance, and probability distribution as the original series,
generated by randomly permuting in temporal order the samples of the original series;
this procedure destroys the autocorrelation function.

• Fourier transform (FT) or phase-randomized surrogates [274], which are realizations of
linear stochastic processes with the same power spectra as the original series, obtained
by a phase randomization procedure applied independently to each series.

• Iterative amplitude adjusted FT (iAAFT) surrogates [275], which are realizations of
linear stochastic processes with the same autocorrelations and probability distributions
as the original series, and the power spectra are the best approximations of the original
ones according to the number of iterations.

• AR surrogates [13], which are realizations of linear stochastic processes with the same
power spectra as the original series, constructed by fitting an AR model to each of the
original series, using independent white noises as model inputs.

Surrogates preserving the power spectrum of the original series (FT, iAAFT, AR) are
recommended to avoid false coupling detections in the presence of oscillations occurring at
nearby frequencies but due to different mechanisms, as may frequently happen with brain
oscillations [276].

Moreover, it should be highlighted that the null hypothesis of full uncoupling is
often used in directionality analysis, since it is compatible with the absence of a causal
relation [168,278–283], but it may overestimate the detection of causality, as it assumes the
complete lack of interaction, thereby also neglecting alternative dependencies. Surrogates
that align with the null hypothesis of no causal interaction in the direction of interest
should be generated. To this end, an approach based on a modified FT algorithm has
been proposed and applied to multichannel EEG signals [160], consisting of the selective
destruction of causality only over the investigated direction of interaction, while leaving
untouched causal effects over alternative pathways.
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In brain connectivity studies, surrogate data must be consistent with the null hy-
pothesis of no neural interaction while sharing all other properties of the original data.
Common approaches include the use of randomly shuffled surrogates [168,284–287] or
phase-randomized signals [204,288,289]. However, these methods remove all dependencies
between time series, thereby not accounting that EEG data, and their source estimates show
significant correlations even under the null hypothesis of independent sources [290,291].
This issue is currently debated in the literature. Many research studies have focused on the
generation of surrogate data with a realistic correlation structure [291–295].

5. EEG Acquisition and Pre-Processing

The acquisition and conditioning of the EEG signal represent two important aspects
with effects on the entire subsequent processing chain. The main steps of acquisition and
pre-processing are indicated in Figure 3. An example of application of the pre-processing
pipeline to experimental EEG is shown in Figure 4. Here, we introduce some basic notions
and techniques, focusing on the effects on FC estimation.

Figure 3. Main steps in EEG acquisition and pre-processing. In general, source localization is not
mandatory, as represented by the dashed round brackets.

Sampling frequency, the number of electrodes, and their positioning, each have an
important role in assessing connectivity; too low of a sampling frequency cannot be used
to analyze high-frequency bands for the Nyquist–Shannon sampling theorem [296], and
the electrode density defines with which accuracy and reliability further processing will be
performed [40].

An EEG signal is a temporal sequence of electric potential values. The potential is
measured with respect to a reference, which should be ideally the potential at a point at
infinity (thus, with a stable zero value). In practice, an ideal reference cannot be found,
and any specific choice will affect the evaluated connectivity [6,57]. Unfortunately, as for
most of the FC analysis pipeline, there is no gold standard for referencing, and this is clearly
a problem for cross-study comparability [297]. An ideal reference point needs to be neutral
with respect to the measured signal, and many reference points have been proposed and
tested. The most common ones are applied in a specific part of the human body, such as
linked mastoids/ears (LM) and left mastoid references (LR); or channel-based, such as
(usually) the central electrode Cz.
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Figure 4. Schematic representation of the pre-processing pipeline applied to EEG signals acquired on the scalp (s253 recording of the subject 2 that could be found
in https://eeglab.org/tutorials/10_Group_analysis/study_creation.html#description-of-the-5-subject-experiment-tutorial-data). (A) Unipolar EEG signals are
acquired using a mastoid reference (Ref, in red). For clarity, only a limited number of the recorded signals, among the original 30 channels, is plotted. The average
re-referencing process and the pre-processed signals are illustrated below. Notably, red arrows indicate blinking artifacts that are clearly visible. (B) The re-referenced
signals are filtered using a 1–45 Hz zero-phase pass-band filter, followed by independent component analysis (ICA) to extract eight independent components
(ICs), shown on the right. (C) The first IC, suspected to be an artifact, is analyzed, with a scalp-shaped heatmap assessing its localization in the frontal area and its
temporary coincidence with the artifacts shown in panel (A). After removing the first IC, the cleaned signal is plotted at the bottom of the panel.

https://eeglab.org/tutorials/10_Group_analysis/study_creation.html#description-of-the-5-subject-experiment-tutorial-data
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Since reference montages are inevitably influenced by brain activity (as said, there is
no neutral reference), recordings are generally digitally re-referenced offline with respect to
a more neutral reference (this aspect is discussed in the next section).

Although at the very beginning of EEG studies, bipolar recording was used [298],
nowadays, the vast majority of works based on EEG connectivity is performed using
unipolar recording. Then, a bipolar recording is obtained as the subtraction of the signals
of two adjacent electrodes. This is mathematically an approximation of a first-order spatial
derivative:

c ≈ v(n+1)
r − v(n)

r ∝
∆vr

d
(22)

where c is the bipolar recording between electrode n and n + 1, v(n)
r is the potential at the

electrode n, and d is the distance between the two electrodes. This type of recordings acts
as a high-pass filter, making it more affected by random noise and less sensitive to signals
from deep neural sources but more stable to common-mode interference and selective of
focal activities [299]. For this reason, bipolar montage is still used in clinical applications,
especially in epilepsy [300].

In every EEG processing pipeline, a fundamental role is covered by a consistent pre-
processing phase. That is due to the properties of the EEG signal, which is generally
characterized by a fairly low signal-to-noise ratio (SNR), compared to other bioelectrical
signals such as ECG or EMG, and a low spatial resolution (balanced by a high temporal
resolution). Pre-processing is aimed at increasing the SNR, but it could also affect the
properties of the neural contributions to EEG, which are of interest.

In the following, some considerations are given on the effects of the most common
pre-processing methods in terms of the possible distortions, disruptions, or alterations in
the connectivity information content present in the signals.

5.1. Resampling

Nowadays, EEG signal is usually acquired with a sampling rate (SR) equal or superior
to 128 Hz, since this value is the lower base-2-power that permits one to capture most of the
information content in EEG signal and a big part of the γ band. It is noticeable that high-
frequency oscillations (HFOs), such as ripples (80–200 Hz) and fast ripples (200–500 Hz),
will not be captured with these SRs [51–54]. Moreover, there are studies suggesting that
low SRs affect correlation dimensions, and in general, non-linear metrics [55,56].

However, some FC studies are focused on lower frequency bands, suggesting that a
procedure of downsampling would be beneficial because it will lighten the signal, making
further processing faster and digital filter design simpler. For this reason, signal resampling
should be the first pre-processing step, if needed. Care must be taken in avoiding aliasing,
by applying a proper low-pass antialiasing filter, which cuts-off the higher frequencies not
representable with the new SR. Moreover, high SRs result in an increased successive sample
correlation that generates spurious patterns in the signal. This phenomenon affects all the
methods based on time-delay embedding, as they rely on the assumption that the signal is
uniformly sampled.

5.2. Filtering and Artifact Rejection

Filtering EEG is a necessary step for the FC analysis pipeline, not only to extract
the principal EEG frequency waves, but particularly to reduce the amounts of noise and
artifacts present in the signal and to enhance its SNR. Research suggests the use of finite
impulse response (FIR) causal filters that could be used also for real-time (RT) applications,
or infinite impulse response (IIR) filters, which are less demanding in terms of filter orders
but distort phase, unless they are applied with reverse filtering, thereby making the process
non-causal and not applicable for RT applications. In general, if sharp cut-offs are not
needed for the analysis, FIR filters are recommended, since they are always stable and
easier to control [301].
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If one is interested in investigating FC in the γ band, electrical line noise at 50 or 60 Hz
could be a problem, since it is not fully removable with a low-pass filter. Notch filters are
basically band-stop filters with a very narrow transition phase in the frequency domain,
which in turn leads to an inevitable distortion of the signal in the time domain, such as
smearing artifacts [301]. To avoid this problem, some alternatives have been developed.
A discrete Fourier transform (DFT) filter is obtained by subtracting from the signal an
estimation of the interference obtained by fitting the signal with a combination of sine
and cosine with the same frequency as the interference. It avoids potential distortions of
components external to the power-line frequency. It assumes that the power-line noise has
constant power in the analyzed signal segment. As this hypothesis is not strictly verified in
practice, it is recommended to apply the DFT technique to short data segments (1 s or less).

Another proposed technique is CleanLine, a regression-based method that makes
use of a sliding window and multitapers to transform data from the time domain to the
frequency domain, thereby estimating the characteristics of the power line noise signal
with a regression model and subtracting it from the data [302]. This method eliminates
only the deterministic line components, which are optimal, since EEG signal is a stochastic
process, but in the presence of strong non-stationary artifacts, it may fail [303].

Alternatively, there is the possibility of reducing power-line noise through spectral
interpolation [304], which makes use of DFT to transform temporal data in the frequency
domain, identify and remove the line noise component in the magnitude spectrum, and
convert it back into the time domain through inverse discrete Fourier transform (iDFT).

It is pretty normal that EEG signals can be corrupted by many types of artifacts, defined
as any undesired signal which affects the EEG signal whose origin cannot be identified
in neural activity. Generators of these undesirable signals could be physiological, such as
ocular artifacts (OAs such as eye blink, saccade movement, rapid eye movements), head
or facial movements, muscle contraction, or cardiac activity [305,306]. Power-line noise,
electrode movements (due to non-properly connected electrodes), and interference with
other electrical instrumentation are non-physiological artifacts [307]. Artifact management
is crucial in the analysis of connectivity. In fact, their presence in multiple electrodes can
result in overestimation of brain connectivity, skewing the results [308,309].

Luckily, in many cases, groups of artifacts could be described by some characteristics
that can be exploited to recognize them [310], even if it is known that artifacts can mimic
every physiological pattern in both quantitative and qualitative analysis [311].

The most effective way for dealing with artifacts is to apply prevention in the phase of
acquisition to avoid as much as possible their presence, for example, by making acquisitions
in a controlled environment, double-checking the correct positioning of electrodes, or
instructing the patients to avoid blinking the eyes in certain moments of the acquisition.
In fact, eye blinks are by far the most common source of artifacts in the EEG signal,
especially in the frontal electrodes [312,313]. They are shown as rapid, high-amplitude
waveforms present in many channels, whose magnitudes exponentially decrease from
frontal to occipital electrodes. However, saccade movements produce artifacts, generating
an electrooculographic signal (EOG). Acquisition of this signal, concurrently with the EEG
signal, is known to be a great advantage in identifying and removing ocular artifacts, since
vertical (VEOG), horizontal (HEOG), and radial (REOG) signals diffuse in different ways
through the scalp [314]. With the hypothesis that the actual EEG signal could be obtained
as a linear combination of the artifact-free EEG signal and the recorded EOG, a regression
model can be built to identify the interference of the EOG in the EEG signal, and thus,
subtracting it [315].

Once the parts of the signals corrupted by the artifacts have been identified, it is still
common practice to eliminate these portions, avoiding alterations on the signal that could
lead to spurious connectivity. As for channel rejection, however, it is preferable to retain as
much information as possible [316].

Unfortunately, it often happens that only the EEG signal is available, without any
other knowledge of the artifacts corrupting it. In such cases, blind source separation (BSS)
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techniques are utilized to identify artifacts. BSS methods usually consider the EEG as a
linear mixture of uncorrelated or independent sources, either neural or artifactual. Given X,
the M× n EEG matrix of M channels (the sensors) and n samples; A, the M× k unknown
mixing matrix; S, the k× n matrix of unknown k sources; and V, the M× n noise matrix,
the model could be written as:

X = AS + V. (23)

As for all the inverse problems, this is an ill-posed model, since there are infinite
combinations of sources that could produce the same EEG matrix; thus, further hypotheses
need to be formulated to converge to a unique solution.

Independent component analysis (ICA) is a widely used method introduced in the
EEG by [317], which allows one to identify and isolate the sources that generate the
recorded signal. Although there are more than 15 ICA-based algorithms [318,319], only
a few are the currently most used for artifact rejection in biomedical signals, which are
FastICA [320,321], SOBI [322], and Infomax [318]. As its name suggests, ICA’s (strong)
fundamental hypothesis is that the sources should be statistically independent of each
other, and they are called independent components. Thus, ICA can be considered as
an extension of principal component analysis (PCA), which assumes sources to be only
uncorrelated [323]. Moreover, it is noticeable that processed signals with ICA methods are
assumed to be stationary, meaning that their frequency power spectrum should not change
over time. For real problems, these assumptions could not be truly satisfied; nevertheless,
ICA-based algorithms have been continuously reported to be effective at detecting and
removing artifacts in EEG [310]. The reasons behind their effectiveness are searchable due
to two important facts. The first is that the artifacts are in general sufficiently independent
to not interfere with the first fundamental assumption; the second is that even if the EEG
signal is not stationary, it can be processed as a subdivision of relatively small time windows
that make it WSS. Some authors suggest that 10 seconds could be used as a reasonable time
window [324]. In any case, it is also not suggested to use very short signal segments, since
ICA algorithms make use of statistical analysis, and this could affect their reliability and
performances [324].

Connectivity measures are generally affected by both the artifact (and noise) present
in the signal and the techniques used to reduce it. There are studies showing how GC is
theoretically invariant with filtering [153], but it has been shown successively that filtering
and downsampling actually have important effects in practical applications [91,303,325]. An
improved and modified version of the phase lag index, the weighted phase lag index [326],
was developed as a noise and artifact-resistant connectivity metric. In a subsequent study, it
was used to assess connectivity by acquiring the EEG signal while the subject was walking,
obtaining comparable results recovered while standing [228]. However, it is important to point
out that this study was performed using high-density EEG recording, and to our knowledge,
there are no studies that could confirm this resilience for lower density EEG systems.

ICA could generate non-linear and non-stationary phase distortion on an EEG signal,
as demonstrated with simulation studies [327]. Indeed, it is recommended to filter only
when strictly necessary and with caution [328].

5.3. Bad Channel Identification, Rejection, and Interpolation

It could happen that some EEG channels present a high number of artifacts (eye
blink, muscular noise, etc.) or noise, due to bad electrode-scalp contact. In these cases,
the rejection of these channels could be an option. However, it is necessary to check whether
the deleted channels are not fundamental and the remaining channels are sufficient to carry
on the analysis, considering also that deleting channels will result in an important loss of
information that is likely not recovered anymore. Some authors discussed the criteria for
detection of bad channels and suggested considering the proportion of bad channels with
respect to the total to assess the quality of the dataset (for example, imposing a maximum
of 5%) [329].
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Identification of bad channels could be performed visually or automatically. Visual
inspection requires certain experience with EEG signals to decide if a channel is actually
not recoverable and needs to be rejected [330,331]. Indeed, this process is highly subjective.
Automatic detection of bad channels could be performed in various ways. A channel
correlation method identifies the bad channels by comparing their divergence from the
Pearson correlation distribution among each pair of channels with the other couples. This
method assumes high correlations between channels due to the volume-conduction effect
proper of the EEG signal, which is discussed in detail in the source localization section.
High standard deviation of an EEG signal can be an indicator of the presence of a great
amount of noise. By setting a proper threshold, the standard deviation can be a useful
index for identifying bad channels.

Once the bad channels have been located, two options are available: their removal
from the dataset or their replacement with dummy channels by interpolation of the retained
ones. Due to the physiological curvature of the scalp, spherical spline interpolation [332] is
often used.

5.4. Re-Referencing

As described in the previous section, many decisions are made during the acquisition
of the signals; however, some of them are revertible. Re-referencing and down-sampling
is one of them. It consists of changing the (common) reference of each EEG channel into
another one by performing for each channel the addition of a fixed value (notice that it is a
fixed value in space, i.e., common for all channels, but not in general constant in time).

Re-reference with respect to a new reference channel can be performed by simply
subtracting each channel with the new reference. In most cases, average reference (CAR) is
considered to be a good choice, especially if electrodes cover a large portion of the scalp
with the assumption that the algebraic sum of currents must be zero in the case of uniform
density of sources [333]. It consists of referencing all the electrode signals with respect to
a virtual reference that is the arithmetic mean of all the channel signals. Due to charge
conservation, the integral of the potential over a closed surface surrounding the neural
sources is zero. Obviously, the EEG channels give only a discrete sampling of a portion of
that surface, so that the virtual reference can be assumed to be only approximately zero.
However, it could be much better than using a single location as reference, such as an
EEG channel or the mastoid (both LM and LR), which have been shown to generate larger
distortion than the average reference [308].

It is evident that the hypothesis of the average reference becomes increasingly inad-
equate for low-density EEG recordings [334]. Furthermore, noisy EEG channels pose a
challenge, as they can significantly alter the average potential estimation. To overcome this
problem, other referencing methods have been proposed, such as the surface Laplacian,
which represent a true reference-free transformation [335], which has been used in many
contexts [61]. Another type of referencing to limit interferences is known as the reference
electrode standardization technique (REST) [336]. It consists of a linear transformation of
the EEG matrix signal into an approximately zero-reference one. This method has been val-
idated by many simulation studies [337–339], and it was suggested that it could be the best
choice for most cognitive studies and clinical EEG problems [299,340–342]. It is particularly
advocated if a sufficient number of electrodes is present (≥10) [297,299,337,341].

Improvement of the CAR technique by adding a robust maximum likelihood estima-
tor was proposed in [343]: this method was compared with REST, and it seems to give
better performance.

The scalp power spectra map is demonstrated to be systematically altered in sponta-
neous EEG with a non-neutral reference signal mixed in other channels, and it is heavily
dependent on the chosen reference scheme [344]. Additionally, the choice of reference can
significantly impact measures of correlation in both time and frequency domains [345] by in-
troducing zero-lag correlations, making the interpretation of EEG functional brain-network
characteristics more challenging. In general, it is demonstrated that approximations of the



Bioengineering 2023, 10, 372 32 of 48

infinity reference (like REST) have better performance with respect to other referencing
schemes in estimating FC, especially when using coherence [346].

6. Source Connectivity Analysis

Measuring information dynamics from EEG signals on the scalp is not straightforward
due to the impact of volume conduction, which can modify or obscure the patterns of
information flow across EEG electrodes [196]. This effect is due to the electrical conductance
of the skull, which serves as a support to diffuse neural activity in all the directions and for
this reason is also known as field spread problem. The neural current sources are related
to the Poisson equation to the electrical potential, which diffuses across the scalp and
can be measured by many electrodes, also pretty far from the original source. This is the
reason why interpreting scalp-level connectivity requires caution. In fact, the estimated FC
between two electrodes could be reflecting the activation of a single brain region, rather
than two functionally connected regions. Even though this effect can be compensated for
when working with scalp EEG signals [196,197], it is often recommended to use source
signal reconstruction to obtain a more accurate representation of the underlying neural
network. This is because the source-based network representation is considered a more
accurate approximation of the real neural network structure [347].

The general pipeline that source localization algorithms follow is based on this two-
step loop [348]:

Forward problem—definition of a set of sources and their characteristics and simula-
tion of the signal that would be measured (i.e., the potential on the scalp) knowing the
physical characteristics of the medium that makes it diffuse;
Inverse problem—comparison of the signal generated by the head model with the
actual measured EEG and adjustment of the parameters of the source model to make
them as similar as possible.

The first part, also known as estimation problem, can be carried out by defining a
proper head model using boundary element models (BEMs) or finite element models (FEM).
The second part of the pipeline is also called the appraisal problem, and it is not trivial
at all, being one of the fundamental challenges in EEG processing analysis. This process
is in fact formally an inverse ill-posed problem, where there exists an infinite number of
combinations of sources that can explain the acquired signal [349].

Both these fundamental parts of the source localization problem are detailed in the
next paragraphs.

6.1. Forward Problem and Head Models

In the past, the first attempts of EEG source localization were based on the strong
a priori assumptions that only one source is active at a certain time instant and that
the head can be approximated as a sphere which is homogeneously conductive. These
hypotheses allowed scientists to find an analytical solution for the forward problem; this is
computationally convenient, but a non-realistic head model was used. Nowadays, it is not
recommended to use whole homogeneous spherical head models, but possibly to make use
of spherical multi-shell models. They divide the head into a certain number of concentric
spheres (generally 3 or 4) where each layer can be defined as homogeneously conductive
and isotropic. This is a more realistic approach, since the skull and brain, for example, have
consistently different conductivity values (with a ratio estimated to be around 1:20 [350]).

Probably the most popular head models are the BEMs [351], which were introduced
to incorporate even more anatomically and physiologically relevant information. In these
models, the surface boundaries of each tissue of the head—separating volumes considered
as isotropic and homogeneous—are sampled by a mesh of triangles. This relatively coarse
space discretization allows a more accurate definition of the head (generally, the number
of triangles involved is a few thousand), and consequently, of the conductance present in
different regions with respect to the multi-shell spherical head models.
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When the space discretization is finer and applied to the whole 3-dimensional space,
a FEM is used [352]. Each elemental volume is subdivided by points disposed in a dense
grid—up to one hundred-thousands points—which allows a very precise definition of the
heads’ volumes and permits their anisotropy in the conductivity. Even if this approach is by
far the most accurate, it is still difficult to perform due to the extremely high computational
power needed to fulfill the calculations.

6.2. Inverse Problem

In order to obtain a unique solution of the inverse problem, it is necessary to impose
some assumptions on the sources that originate the acquired signal. As presented in the
previous paragraph, the choice of the head model is fundamental to representing the
biophysical characteristics of the tissues in which the sources are immersed, and thus to
compute accurately how the potentials are conveyed up to the scalp. The simplest way to
define the sources is to consider them as current dipoles and solve an equivalent current
dipole (ECD) problem [348]. Each of these dipoles has three degrees of freedom in space
and a magnitude value (the so-called moment parameter). It is known that in not all the
regions of the brain is it possible to find neural activity measurable in the scalp; thus, some
space constraints are applied, whose accuracy is modulated by the head model.

Historically, the first approaches to solving the EEG inverse problem considered
only few sources as generators of the scalp potential signal, limited by the number of the
electrodes and distributed in the head [353]. Nonetheless, an underestimated number of
sources will lead to a biased source localization generated by the missing dipoles in the
model: thus, it is not recommendable for a connectivity analysis study. Nowadays, it is
preferable to consider a large number of current dipoles (5000 or more), generally placed in
fixed positions inside the gray matter [5], solving the so-called linear distributed dipole
(LDD) inverse problem.

The most general algorithm for solving LDD is the minimum norm (MN) [354,355]
that iteratively searches for the dipole distribution with minimum energy, allowing one to
represent the recorded EEG. Despite it providing good results in terms of resolution and
current estimation, it fails to address the issue of deep source localization in the outermost
cortex [348]. To overcome this limitation, other algorithms based on MN have been de-
signed. Low-resolution electromagnetic tomography (LORETA)-based algorithms [356]
are probably the most utilized to solve the inverse problem in EEG. The original algorithm
is based on an additional constraint of simultaneous and synchronous activation of the
neighboring sources, which corresponds to the minimization of their Laplacian. How-
ever, this hypothesis generates a solution that has increased time resolution but decreased
spatial resolution. Improvements in the original algorithm have been proposed, named
sLORETA [357] and eLORETA [358]. The former assumes a standardization of the current
density, resulting in a zero error localization error, and it has much better performances than
MN method according to simulation studies with and without noise [348,359]. The latter is
a more recent variant of the LORETA algorithm that focuses on estimating source local-
ization, giving more importance to the deeper sources, maintaining a reduced localization
error. As for the sLORETA, this algorithm is standardized and have a low spatial resolution,
which could result in blurred images when space is subjected to regularization [348,358].

As previously said, connectivity measures are in general affected by the volume-
conduction effect. However, it is worthwhile mentioning that some metrics are supposed to
be more resilient than others, in particular, those based on phase differences, such as partial
directed coherence [16] and the directed transfer function [18]. This is due to the fact that
volume conduction is a zero-phase propagation, and thus, no phase difference is generated
between channels [360]. Subsequent researchers have demonstrated with simulation studies
that mixing of cortical source activities could indeed affect DTF [64,361]. However, it was
successively pointed out that, in practice, this influence does not significantly distort the
estimates and that correct results can be reached by applying an appropriate threshold to
the propagation values obtained [362].
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For a similar reason, the imaginary part of coherence is another connectivity metric
that is theoretically resistant to artifacts generated by volume conduction [229]. In fact, if we
consider the field spread effect as instantaneous, by discarding the real part of the coherence,
all the potentially artifactual zero-lag interactions generated by volume-conduction effect
will be removed. However, this approach carries a double cost. At first, eventual true zero-
phase interact will not be detected, since they are all discarded with the rejection of the real
part of coherence. Additionally, the imaginary component of coherence makes it difficult to
determine the temporal order of processes, as they have their own periodicity [62].

The same discussions could be had also for other metrics based on phase difference,
such as the phase slope index [30].

Thus, the most popular and effective method for FC estimation is to reconstruct the
sources that could have generated the EEG signal and work directly with the estimated
sources, which are not affected by the volume-conduction effect [363].

7. Discussion and Conclusions

In this review, we aimed to provide a comprehensive guide to data-driven FC analysis
of EEG signals.

First, we briefly discussed the key concepts of structural, functional, and effective con-
nectivity, with a specific focus on how these notions are connected to each other. From this,
we specified the direction of the work, which is the investigation of FC intended as the
presence of statistical dependencies between the recorded signals, performed through data-
driven directed and non-directed approaches. Accordingly, we described the most-used
metrics of connectivity in the time, frequency, and information domains, with a distinction
between pairwise and multivariate approaches. This discussion was focused on AR linear
modeling of the investigated time series, which implies linearity and Gaussianity of the
data. Inherently model-free, information-theoretic measures were introduced in terms of
their linear AR model-based interpretation, which allowed us to derive their frequency-
specific counterparts with specific physiological meanings. Other connectivity estimators
widely used in brain-connectivity analysis were also discussed, i.e., phase-synchronization
measures, along with emerging trends, such as the framework of high-order interactions.
The latter, though being still not very popular in EEG connectivity, is becoming very rele-
vant for the study of network systems, and thus holds the potential to spread significantly
in the field of brain connectivity. Nonetheless, complex network analysis, grounded on the
notions of graph theory, was herein briefly discussed, as it is becoming a widely exploited
tool to investigate the interdependencies and structures of complex brain networks.

In addition, we emphasized the importance of proper acquisition and pre-processing
of the acquired EEG signals. These steps are often overlooked, but they are crucial for
obtaining reliable and high-quality results. Among others, proper re-referencing and SNR
enhancement are essential steps in EEG signal analysis that require ongoing updates to the
latest techniques in order to be applied correctly.

Electroencephalography represents a highly valuable tool for estimating brain connec-
tivity, due to its low-cost and non-invasive nature, and due to its good temporal resolution.
However, a large number of challenges must still be addressed, such as the high quantity
of acquisition artifacts and the volume conduction problem. Researchers should have a
comprehensive understanding of these issues, as they can often play a crucial role in the
selection of the appropriate metrics for evaluating FC. The literature regularly demonstrates
that some of these metrics are more resilient to the distortions and corruptions caused by
the aforementioned concerns.

It should be highlighted that some well-known problems arising during brain-
connectivity analysis have not been discussed for brevity, such as the issues of sample bias
and computational load. It may be also crucial to delve into these potential pitfalls, as the
former can significantly impact the evaluation of connectivity estimates if not properly
addressed and mitigated, and the latter limits real-time applications, where it is necessary
for the pre-processing and connectivity estimation to occur almost immediately.
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It is clear that the field of connectivity estimation from EEG signals is constantly
advancing and improving. New and innovative approaches are being developed every
year. By proposing some of them in the present review, we encourage the readers to
approach the problem of inferring functional brain connectivity from different and newborn
perspectives, in order to keep up with the ongoing fascination and excitement that surround
this challenging and complex area of research. The future looks bright for the development
of even more sophisticated and effective connectivity estimation methods, which will no
doubt play a significant role in our understanding of the brain and its functions.

Author Contributions: Conceptualization, G.C., L.S.; methodology, G.C., L.S.; investigation, L.S.
and Y.A.; writing—original draft preparation, G.C., L.S.; writing—review and editing, L.F., L.M;
visualization, G.C., L.S.; supervision, L.F., L.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The signal shown in Figure 4 is file syn02-s253-clean.set from https://ee
glab.org/tutorials/10_Group_analysis/study_creation.html#description-of-the-5-subject-experime
nt-tutorial-data, accessed on 15 February 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AR Autoregressive
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bDC Block Directed Coherence
BEM Boundary Element Models
bPDC Block Partial Directed Coherence
BSS Blind Source Separation
CAR Average Reference
cGC Conditional Granger Causality
cIC Conditional Instantaneous Causality
cMI Conditional Mutual Information
Coh Coherence
Corr Correlation
cTD Conditional Total Dependence
cTE Conditional Transfer Entropy
DC Directed Coherence
DFT Discrete Fourier Transform
DTF Directed Transfer Function
EC Effective Connectivity
ECD Equivalent Current Dipole
ECoG Electrocorticography
EEG Electroencephalogram
EOG Electrooculogram
FC Functional Connectivity
FEM Finite Element Models
FIR Finite Impulse Response
fMRI Functional Magnetic Resonance Imaging
GC Granger Causality
HOIs High-Order Interactions
IC Instantaneous Causality
ICA Independent Component Analysis
II Interaction Information
i.i.d Independent Identically Distributed
IIR Infinite Impulse Response
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i.d Identically Distributed
ITE Interaction Transfer Entropy
jTD Joint Total Dependence
jTE Joint Transfer Entropy
LDD Linear Distributed Dipole
MI Mutual Information
MIR Mutual Information Rate
PCA Principal Component Analysis
PCC Pearson Correlation Coefficient
PCoh Partial Coherence
PCorr Partial Correlation
PDC Partial Directed Coherence
PLV Phase Locking Value
PRho Partial Correlation Coefficient
PSD Power Spectral Density
PSI Phase Slope Index
R Redundancy
REST Reference Electrode Standardization Technique
Rho Correlation Coefficient
S Synergy
SC Structural Connectivity
SNR Signal-to-Noise Ratio
SR Sampling Rate
TD Total Dependence
TE Transfer Entropy
VAR Vector Autoregressive
WSS Wide-Sense Stationary
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