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Abstract
Variations occurring in coffee beans during roasting are ascribable to several chemical-physical phenomena: to quickly track 
the whole process and to ensure its reproducibility, a process analytical technology (PAT) approach is needed.
In this study, a method combining in-line Fourier transform near-infrared (FT-NIR) spectroscopy and chemometric mod-
elling was investigated to get real-time and practical knowledge about the roasting effects on coffee’s chemical-physical 
composition. In-line spectra were acquired by inserting a NIR probe into a laboratory coffee roaster, running twenty-four 
roasting experiments, planned spanning different coffee species (Arabica and Robusta), four roasting temperature settings 
(TS1–TS4) and times (650–1580 s).
Multivariate curve resolution-alternate least squares (MCR-ALS) was used to model the chemical-physical changes occurring 
during the roasting process, and information about maximum rate, acceleration and deceleration of the process was obtained, 
also highlighting potential effects due to the different roasting temperatures and coffee varieties.
The proposed approach provides the groundwork for direct real-time implementation of rapid, non-invasive automated 
monitoring of the roasting process at industrial scale.

Keywords Coffee · Roasting process · In-line analysis · NIR spectroscopy · MCR-ALS

Introduction

Coffee is one of the most popular beverages since millions 
of people all over the world consume it several times a day. 
Roasting is an essential step in the coffee production pro-
cess, as it enables the development of colour, aroma, and 
flavour, which are crucial for coffee quality. During roast-
ing, the coffee beans undergo a steady weight loss, due to 
initial dehydration and then to a complex set of chemical 
and physical processes (Iaccheri et al. 2015). At the same 

time, the beans undergo a significant increase in volume, 
essentially caused by internal formation of gas  (CO2 and 
other thermal decomposition products) (Franca et al. 2005). 
During roasting, a large number of chemical transforma-
tions take place simultaneously, leading to the formation 
of thousands of different molecules (De Maria et al. 1996). 
The chemical composition of roasted beans is related to the 
variety and geographical origin of green coffee, and it has a 
relevant influence on the sensorial properties of the bever-
age. Furthermore, the roasting conditions and technological, 
agronomic and physical parameters can deeply affect the 
final coffee quality (Esteban-Díez et al. 2007). Thus, the 
roasting process must be controlled accurately to meet the 
consumers’ expectations, which are accustomed to a con-
stant and consistent level of coffee quality.

For this reason, the assessment of the optimal roasting 
degree during the roasting process represents a powerful 
screening tool to quickly evaluate the overall performance 
of the process, and to ensure its reproducibility. This impor-
tant indicator is closely related to the sensorial properties 
of the final coffee beverage, and it was found to be highly 
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affected not only by both the characteristics and the species 
of the green coffee beans, but also by the roasting process 
conditions (Andueza et al. 2007). The coffee roasting degree 
has been experimentally assessed using different analyti-
cal approaches, mainly based on off-line analysis of coffee 
batches, i.e. gathering this information only at the end of the 
process. In this context, earlier research studies focused on 
detecting the variations in the chemical composition profile 
of the gas developed during roasting using gas chromatog-
raphy-flame ionization detector (GC-FID) systems (Dutra 
et al. 2001), whereas in more recent studies, the volatile 
component profile of the coffee beans was analysed under 
different process temperatures using solid-phase microex-
traction (SPME) and gas chromatography-mass spectrom-
etry (GC–MS) (Franca et al. 2009), or by monitoring the 
chemical composition of the roasting off gases by online 
mass spectrometry (Heide et al. 2020; Czech et al. 2020). 
All these techniques remain relatively distant from real-time 
and on/in-line process control setups.

During the last decades, the use of spectroscopic 
approaches, mainly based on near-infrared (NIR) spec-
troscopy, has proven to be undoubtedly advantageous with 
respect to other classical analytical techniques, due to the 
reduced time between performing the analyses and obtain-
ing the results, as well as to the reduced or even unnecessary 
sample pre-treatment. Nowadays, NIR spectroscopy associ-
ated with chemometrics is a widespread and well-known 
methodology already adopted to monitor crucial quality 
parameters of food products and processes, leading to the 
implementation of process analytical technology (PAT) 
approaches in the food industries (Grassi and Alamprese 
2018). In the framework of coffee roasting, NIR spectros-
copy has been successfully applied to predict important cof-
fee quality parameters and to determine the roasting degree 
itself. Different off-line applications have been proposed 
to predict sensory attributes of espresso coffees from the 
NIR spectra of roasted coffee beans (Esteban-Díez et al. 
2004) and to estimate roasting colour and caffeine content 
(Pizarro et al. 2007). As far as it concerns roasting, different 
approaches have been investigated for predicting relevant 
process variables such as weight loss, density and moisture 
(Alessandrini et al. 2008; Shan et al. 2015), roasting degree 
(Bertone et al. 2016; Pires et al. 2021) and the effects of 
different roasting conditions on coffee samples having dif-
ferent geographical origins (De Luca et al. 2016). NIR has 
been also investigated, using on-line or even in-line acqui-
sition probes, for the quantification of acidity (Santos et al. 
2016a), sugar content and colour (Santos et al. 2016b) and 
antioxidant properties (Catelani et al. 2017) of coffee beans 
during the roasting process. An interesting study by Catelani 
et al. (Catelani et al. 2018) evaluated the effectiveness of an 
approach based on the combination of NIR spectroscopy and 
multivariate data analysis for the early detection of roasting 

process disturbances. Moreover, in situ NIR spectroscopy 
was successfully applied by Yergenson and Aston for the 
real-time determination of coffee roasting degree based on 
the prediction of first and second crack events during the 
roasting process (Yergenson and Aston 2020b, a), by com-
bining the chemical information of the NIR spectra with the 
audio recordings of the cracking events, thus not continu-
ously tracking the roasting process.

All the above-mentioned research studies clearly highlighted 
that the changes occurring during roasting are ascribable to many 
different chemical and physical parameters, which are potentially 
correlated with each other and can be determined using fast and 
non-invasive analytical techniques like NIR spectroscopy.

In the present study, the potential of an approach based on 
in-line Fourier transform near-infrared (FT-NIR) spectros-
copy coupled with chemometric modelling was investigated 
at laboratory scale to track the coffee roasting evolution and 
to assess the process performance in real-time from an over-
all viewpoint, i.e. by considering many different chemical-
physical parameters at the same time.

The in-line FT-NIR spectra were acquired on the entire 
coffee beans by inserting a NIR probe into a laboratory cof-
fee roaster. Several roasting experiments were performed 
considering different coffee species, roasting temperature 
settings and roasting time durations. The FT-NIR spectra 
were modelled using principal component analysis (PCA) 
and multivariate curve resolution-alternating least squares 
(MCR-ALS) (de Juan and Tauler 2006), with the aim of 
obtaining structured information about the roasting progress. 
Furthermore, three kinetics critical parameters of the process 
(maximum rate, acceleration and deceleration) were derived 
from the MCR-ALS concentration profiles, and the potential 
effects of roasting temperature or coffee variety on these 
kinetic parameters were investigated and discussed.

The final aim of this study was to explore the reliability 
of a roasting monitoring tool based on NIR technology to be 
implemented in the coffee roasting chain for automating the 
real-time control of the roaster’s parameters.

Materials and Methods

Setup of the Roasting System

The roasting experiments were conducted using a laboratory 
coffee roaster (Sample PROBAT PRZ 2/4/6 Barrel Roaster, 
CoffeeTec, Germany) kindly provided by a leading Italian 
coffee industry. The roaster was mounted on a wood base, 
and it was electrically powered. It consisted of a cylindri-
cal rotating drum with a circular window on the front end 
and a hopper to load the coffee beans on the back end. The 
drum had a dedicated air temperature display to allow sim-
ple adjustments to the heat dial. Temperature control was 
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realized by means of a PID controller, which regulated two 
resistors positioned on the bottom of the drum. During the 
roasting process, the cylinder was kept in rotation to ensure 
even roasting for all the coffee beans.

Preliminary roasting tests were performed to identify the 
best setup for the in-line acquisition of the NIR spectra dur-
ing the process. In this context, some relevant parameters 
had to be considered. First, the appropriate stream of air to 
flux inside the roaster during the process had to be deter-
mined. This parameter could be manually regulated in each 
drum by means of a lever. Its adjustment is important to 
avoid the accumulation of vapour and combustion fumes, 
which normally develop during the roasting process and that 
can deeply affect the quality of the acquired NIR spectra. 
As a result of the preliminary tests, the air flow was set at 
a constant level of medium intensity to remove the gase-
ous components while avoiding, at the same time, excessive 
cooling of the coffee beans during the process.

A second parameter that had to be accurately controlled 
is the air temperature: four different temperature settings 
were considered (hereafter referred to as TS1, TS2, TS3 
and TS4). An optical temperature probe (TS Temperature 
Sensors, Micronor LLC, USA) was employed to measure 
the actual temperature of the coffee beans in real time (one 
acquisition per second) throughout the roasting process.

In‑line NIR Acquisition System

A total of 1636 in-line NIR spectra were collected during 24 
roasting experiments. The NIR spectra were acquired in dif-
fuse reflectance mode using an “Emission Head” NIR probe 
coupled to a MATRIX-F FT-NIR spectrometer (Bruker 
Optics, Germany). The Emission Head allowed collecting 
the NIR spectra by placing the probe on a stand near the 
open end of the roaster. An angle of incidence of 45° down-
wards between the probe and the window of the roaster was 
found to be the optimal solution to properly focus the NIR 
light beam on the coffee beans during the roasting process. 
The NIR spectra were acquired with a resolution of 8  cm–1, 
64 co-added scans and considering the wavenumber range 
between 10,265 and 4135  cm–1 (974–2418 nm). The FT-
NIR spectrometer was controlled via OPUS software (ver-
sion 7.5, Bruker Optics, Germany). The considered NIR 
acquisition system allowed collecting one spectrum every 
15 s. Before starting the NIR spectra acquisition during each 
roasting experiment, a background spectrum was acquired 
using a 100% reflectance reference material (PTFE Teflon).

Coffee Samples and Roasting Conditions

The coffee samples treated in this study originated from 
the same harvesting period and were kindly provided by 
a leading Italian coffee industry. The coffee beans showed 

worldwide geographical origins, and both the two most rel-
evant commercial species, i.e. Arabica and Robusta, were 
considered. The roasting experiments were carried out 
within 48 h from the sample delivery and were planned con-
sidering an experimental procedure covering coffee species 
and roasting temperature levels.

Concerning the coffee species, all experiments were per-
formed considering Arabica and Robusta separately. Four 
levels of increasing roasting temperature (from TS1–TS4) 
were considered to span a large enough range of tempera-
ture values with respect to the common industrial setup 
(200–220 °C). Finally, the roasting process lasted from a 
minimum of 650 to a maximum of 1580 s, depending on the 
temperature setting. Three different roasting batches were 
performed considering the Arabica and Robusta species sepa-
rately at each temperature level, thus for a total of 24 experi-
ments (2 species × 4 temperatures × 3 analytical replicates).

The actual average temperature profiles in the roaster 
along the process recorded by the optical temperature probe 
are reported in Figure S1 (strong temperature drops occurred 
during the roaster loading and discharge steps, marking the 
beginning and the end of the roasting process, and were 
excluded from the charts for clarity). All the tempera-
ture profiles were featured by an initial rapid temperature 
increase after coffee loading, followed by the approaching 
of a plateau, that was however reached only in the case of 
the long-lasting TS1 tests. The temperature always went over 
210 °C during the tests, even if after longer times for the low 
roasting temperature experiments. Moreover, the maximum 
temperature was significantly higher for the TS3 and TS4 
(~ 231 °C and 238 °C at the end time of the shortest roast-
ing processes of the set, respectively) compared to the TS1 
and TS2 (~ 218 °C and 212 °C, respectively), despite in the 
former cases the process was usually stopped earlier. Finally, 
good reproducibility of the measured temperature profiles 
was achieved, as shown by the low standard deviation cal-
culated for the average profiles (Figure S1), pointing out that 
the coffee batches roasted at the same temperature level were 
subjected to very similar operative conditions.

Execution of the Roasting Experiments

Before beginning each roasting experiment, 120 g of green 
(i.e. unroasted) coffee beans was weighed (VWR scale 
611–2602, accuracy of ± 0.01 g; VWR, Radnor), while 
their moisture analysis was carried out by means of a ther-
mobalance (RADWAG MAC 210/NH; Radom, Poland). The 
same analysis was performed after roasting to evaluate the 
sample weight loss.

When the temperature set on the roaster was reached, 
the coffee sample was introduced into one of the roaster’s 
drums. At the same time, the temperature and NIR probes, 
previously directed towards the inlet lid of the roaster drum, 
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started recording temperature data and spectra. When the 
process ended, according to the scheduled time of the cor-
responding experiment, the coffee was discharged into a 
container and cooled down by a stream of cool air, while 
the acquisition of the NIR spectra and the coffee temperature 
were promptly halted, and the data saved.

The coffee colour was determined on 25–30 g of roasted 
coffee sample using the single-beam Color Test II (Neuhaus 
Neotec, Germany), which performs a reflectance acquisition 
at 900 nm, with a ± 0.01 Arbitrary Unit (A.U.) accuracy. The 
same instrument was used to determine the colour of ground 
roasted coffee in our previous work (Bertone et al. 2016).

The details of the randomized roasting experiments, in 
terms of coffee species, roasting conditions, colour, initial 
moisture and weight loss, are reported in the Supplementary 
Materials in Table S1.

Multivariate Data Analysis

Chemometric elaboration of the NIR spectra was performed 
under MATLAB environment (ver. 9.2, The Mathworks, 
Inc., Natick, USA) using appropriate software packages, i.e. 
the “PLS_Toolbox” (ver. 8.5, Eigenvector Research, Inc., 
USA), the “MCR-ALS 2.0 Toolbox” (freely downloadable 
from https:// mcrals. wordp ress. com/ downl oad/ mcr- als-2- 
0- toolb ox last access 24/02/2023) and additional in-house 
generated MATLAB scripts. The 1636 in-line NIR spectra 
that were collected during the 24 roasting experiments were 
organized in a single dataset, where the spectra belonging to 
each roasting experiment were labelled and paired with all 
the additional information related to the process conditions 
and the coffee samples, as listed in Table S1.

Pre‑processing of NIR Spectra and Exploratory Data 
Analysis

Different data pre-processing techniques were tested to 
remove potential artefacts from the NIR spectra, to correct 
nonlinear behaviours and to improve the signal-to-noise 
ratio. In this context, the “one-dimensional median filter” 
(“medfilt1” MATLAB function) algorithm was applied to 
remove, when needed, spikes from the acquired NIR spec-
tra. Subsequently, the performances of the Savitzky-Golay 
smoothing algorithm were investigated, alone or in combi-
nation with the standard normal variate (SNV) or multiple 
scattering correction (MSC) algorithms. Regardless of the 
applied pre-processing, all the data were subjected to mean 
centering prior to any multivariate data analysis.

The exploratory data analysis was carried out by principal 
component analysis (PCA) (Wall et al. 2005). The optimal 
number of principal components (PCs) to be retained in the 
PCA model was chosen from the analysis of the correspond-
ing scree plot (Bro and Smilde 2014). First, PCA was used to 

identify and remove the outliers, which mainly corresponded 
to initial spectra recorded before the coffee roaster was com-
pletely loaded. Subsequently, different PCA models were 
built to gather a preliminary overview of spectral variability 
in the multivariate space. In this last case, all the combina-
tions of the above-mentioned pre-processing methods, cou-
pled with mean centering, were investigated.

MCR‑ALS Modelling

Multivariate curve resolution-alternating least squares 
(MCR-ALS) (de Juan and Tauler 2006) was employed to 
get a deeper insight into the evolution of the roasting process 
at each considered roasting temperature. MCR is a decom-
position technique which allows extracting deconvoluted 
“pure” spectral profiles and their relative concentrations in 
each sample, using an ALS procedure. Once the number of 
components to be modelled is defined, the output of MCR 
is a set of resolved spectra (one for each component) and a 
set of relative concentrations (one for each component). The 
pure spectral profiles can be inspected to identify all relevant 
signals, thus allowing for proper chemical interpretation of 
each modelled component. The relative concentrations can 
be inspected to find similarities and differences among the 
samples, and if these correspond to specific time points 
(like in the present study) the evolution in time can be eas-
ily inspected.

In this context, the whole “clean” spectral dataset (i.e. 
after removing the outliers) was split into four subsets, each 
one including the experiments performed using both the 
Arabica and the Robusta coffee samples, and at the same 
roasting temperature level. On each subset, a separate MCR-
ALS model was thus obtained.

The models were initially developed by considering the 
whole spectral range (10,265–4135  cm–1). However, to fur-
ther evaluate the performance of this modelling approach 
and in view of the industrial use of simplified NIR instru-
ments with a reduced spectral range, models based on the 
selection of a limited number of spectral variables were also 
implemented. In detail, a reduced spectral range (range 1, 
6120–4961  cm–1) was considered according to the regions 
identified by Catelani et al. (Catelani et al. 2018) as the 
most suitable to monitor and control the roasting process. 
Moreover, a second spectral range was tested (range 2, 
9777–7417  cm–1), which is mainly related to the physical 
properties of the coffee beans, such as their size, shape and 
density, as suggested by Catelani et al. (Catelani et al. 2018).

In all cases, the optimal number of MCR components 
to be used in the model was determined by means of PCA. 
An initial estimate of the pure spectral matrix being calcu-
lated, the non-negativity constraint was imposed on both 
the concentration (C) and the profile (S) matrices using the 
fast non-negative least squares algorithm (“fnnls” option in 

https://mcrals.wordpress.com/download/mcr-als-2-0-toolbox
https://mcrals.wordpress.com/download/mcr-als-2-0-toolbox
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the toolbox (Bro and De Jong 1997)), whereas normaliza-
tion of the S matrix was performed using the “Euclidean” 
criterion (de Juan and Tauler 2006). The ALS optimization 
was performed considering 100 iterations and 0.1 as the con-
vergence criterion, while the model performance was evalu-
ated in terms of fitting error (lack of fit, LOF) of explained 
variance and standard deviation of the residuals.

Kinetic Fitting of the MCR‑ALS Concentration Profiles

The concentration profiles of each model were fitted as a func-
tion of roasting time, using the sigmoid Eq. (1) implemented 
in Table Curve software (v. 4.0, Jandel Scientific, San Rafael, 
CA, USA) as reported by Grassi et al. (Grassi et al. 2013):

The first and second derivatives of the calculated sigmoid 
functions were used to identify the kinetic critical points, 
i.e. time-related to the maximum rate and acceleration and 
deceleration of the roasting phenomena. Two-way univariate 
analysis of variance (ANOVA) was performed on the kinetic 
indexes obtained for all the models, to assess the influence of 
roasting temperatures and the differences among the spectral 
ranges used in the MCR-ALS models. In both cases, coffee 
bean variety was considered as the second independent fac-
tor, together with the other factor, i.e. temperature or spectral 
range. Furthermore, PCA models were built to better visual-
ise the effect of the temperature and the variety on the kinetic 
parameters derived from the MCR-ALS models developed 
for each spectral range considered, as reported in Fig. 5.

Results and Discussion

Exploratory Data Analysis

The PCA model developed on the mean-centred NIR spec-
tra led to successful detection of the outliers (mainly spectra 
acquired when the toaster was not completely loaded) as shown 
in Fig. 1a, with colour coding reflecting the roasting tempera-
ture (TS1–TS4). The coffee-related samples are grouped into a 
very compact cluster located on the top-left section of the plot, 
whereas the outliers appear to be randomly scattered within 
the fourth quadrant. Regarding the coffee-related cluster, the 
sample distribution along PC2 can be ascribed to the NIR spec-
tra variability during the roasting process. To better explain 
the samples’ distribution in the score plot, the loadings of PC1 
and PC2 are reported in Fig. 1b. It was found that for both 
components, most of the loading values resulted different from 
zero, meaning that almost all the spectral regions contributed 
to defining the observed variability.

(1)y = a + bexp

(

−exp

(

−

(

(x − d1n(1n(2)) − c)

d

)))

To confirm the outliers’ identification, the Hotelling T2 
statistics was inspected. This parameter corresponds to 
Student’s t-statistic for multivariate data and measures the 
distance of each sample within the model. This approach 
is commonly used in the frame of the multivariate statisti-
cal process control (MSPC) to get an earlier detection of 
extreme, atypical and not well-modelled sampled values 
leading to strange process behaviours (Li Vigni et al. 2013; 
Catelani et al. 2018). Figure 1c reports the Hotelling T2 
statistic calculated for each collected spectrum, grouped 
according to the experimental run and ordered according to 
the roasting time passing. The plot, together with the inset 
figure, clearly shows how the spectra collected immediately 
at the beginning and at the end of each roasting experiment 
have higher T2 values than the remaining spectra belonging 
to the same experiment (with 95% of confidence limit). Sim-
ilar results were also obtained from the roasting experiments 
performed with Robusta coffee samples (data not shown). 
Therefore, the Hotelling T2 statistic demonstrated to be a 
satisfactory tool for the rapid and automatic detection of the 
spectra to be considered outliers. For a graphical example 
of problematic spectra at the beginning and the end of the 
roasting process, please see Figure S2.

After removing the outliers, only the 1501 coffee-related 
spectra were subsequently explored with PCA. The best 
model was obtained by applying the following pre-pro-
cessing methods: median filter (order 30), Savitzky-Golay 
smoothing (window width 11, polynomial order 2, derivative 
order 0) and mean centering.

A graphical representation of the PCA results is given in 
Fig. 2. The score plot of the first two PCs coloured accord-
ing to the roasting time is reported in Fig. 2a, and it can be 
deduced that PC1 (which corresponds to the largest amount 
of the dataset’s variability 84.63%) is related to the roasting 
time. The spectra collected on coffee samples at the begin-
ning of the roasting process are located at positive values on 
PC1, and by moving towards more and more negative PC1 
score values can be interpreted as the process evolving until 
the end is reached. No trends of separation among roasting 
experiments performed under the same temperature level 
were instead observed, as shown in Fig. 2b, which shows the 
same PC1–PC2 score plot coloured according to the roasting 
temperature. Moreover, no differences according to the cof-
fee species were found (data not shown). The corresponding 
loading plot (Fig. 2c) shows that, also in this case, many 
spectral regions contributed to explaining the spectral vari-
ability on the considered PCs. In fact, some peaks can be 
identified by looking at the loading profile of PC1, for exam-
ple the ones between 8500 and 8000  cm–1, at approximately 
7000  cm–1 and in the range 5500–5000  cm–1. All the vari-
ables belonging to these spectral regions pull the sample dis-
tribution towards positive PC1 score values. Therefore, these 
spectral regions can be related to the presence of chemical 
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compounds whose NIR signal is more noticeable in the early 
stages of the roasting process. The spectral signals in the 
regions 7000  cm–1 and 5500–5000  cm–1 are mostly linked 
to the water content (first overtone and combination bands 
of O–H bonds stretching and bending in hydroxyl groups 
(Alessandrini et al. 2008; Santos et al. 2016b, a; Yergenson 
and Aston 2020b)), whereas the range 8500–8000  cm–1 is 
linked to C–H vibrations, associated with not only the con-
tent of organic acids, mainly chlorogenic and quinic acids 
(Esteban-Díez et al. 2004), but also physical features of the 
coffee beans, like dimension, shape and density (Catelani 
et al. 2017).

MCR‑ALS Models

All MCR-ALS models well described the roasting process 
(explained variance > 99.9%, LOF < 0.63%, and standard 
deviation of the residuals lower than 0.0072).

Figure  3a reports the two spectral profiles (referred 
to as sopt1 and sopt2, respectively) corresponding to the 
two components identified by MCR-ALS at each roasting 
temperature level. All the spectral profiles obtained by the 
temperature-based MCR-ALS models show superimposa-
ble peaks and trends, demonstrating that the different tested 
roasting temperatures mainly bring the same physical and 

Fig. 1  PCA model results of the raw NIR spectra. a PC1 vs PC2 
score plot coloured according to the roasting temperature level. b PC1 
and PC2 loading plot. c From the same PCA model, the Hotelling T.2 

values of each spectrum collected during the experiments with Ara-
bica coffee samples (plot coloured according to each individual single 
roasting experiment)
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chemical modifications to the coffee beans. Few differences 
were noticed for the extreme temperatures (TS1 and TS4).

Moreover, the comparison of the calculated profiles with 
the raw NIR spectra of a representative experiment (Fig. 3b) 
highlights the similarity, both in terms of vibrational pattern 
and shape, of the first and second spectral profiles to the 
initial and final spectra recorded during the roasting process, 
respectively. Such observation suggests that the MCR-ALS 
models identify two components corresponding to the typi-
cal spectra of the green and the roasted coffee beans.

Concerning the vibrational bands, both spectral profiles 
show a clear peak in the region 7500–6700  cm–1, which is 
mostly related to the water content (6900  cm–1, first overtone 
of the O–H stretching). The water signal is a broad band 
in the first spectral profiles, in agreement with the higher 

water content and the lower temperature at the beginning of 
the roasting process, whereas in the second profiles, repre-
senting the roasted beans, the band becomes sharper, and a 
shoulder appears at 6685  cm–1.

In both profiles, within the region 6699–5400   cm–1, 
essentially capturing the chemical information concerning 
C–H and S–H bonds (Catelani et al. 2017), two peaks at 
5800 and 5700 are present, related to  CH2 first overtones 
present in long-chain fatty acids (Esteban-Díez et al. 2004).

The peak at 5200  cm–1 in the first spectral profiles, related to 
water content, is highly reduced in the second spectral profiles and 
it almost disappears in the one related to the trials performed at 
TS1. Indeed, the trials performed at TS1 reached very high weight 
losses (18.53% on average), comparable only to the experiments at 
TS4 (18.59%), being the roasting time 1500 s. The decrease of the 

Fig. 2  PCA model results of the coffee NIR spectra. a PC1 vs PC2 score plot coloured according to roasting time (seconds). b The same PC1 vs 
PC2 score plot coloured according to the roasting temperature level. c PC1 and PC2 loading plot
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peak at 5200  cm–1 resulted in a visible small peak at 5170  cm–1 for 
the second spectral profile of the experiments performed at TS4.

In the region 4999–4000  cm–1, containing chemical infor-
mation related to C–H, N–H and C–O vibrations (Catelani 
et al. 2017), a broad band at 4810  cm–1 is present, assigned 

by Esteban-Díez et al. (Esteban-Díez et al. 2004) to car-
bohydrates. Additionally, two small peaks emerge in the 
first spectral profiles at 4343  cm–1 and at 4254  cm–1, whose 
absorption increases according to roasting temperature in the 
roasted beans profiles, especially for the peak at 4343  cm–1. 

Fig. 3  MCR-ALS spectral profiles and FT-NIR spectra. a Spectral 
profiles (sopt1, sopt2) of the first and second component (solid and 
dashed line, respectively) computed by the MCR-ALS model at the 
different temperature levels: TS1 (blue), TS2 (green), TS3 (yellow), 

TS4 (red). b Example of a typical evolution of the NIR spectra of the 
coffee collected in real time from the beginning (blue curves) to the 
end (red curves) of the roasting process (experiment 17)
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The appearance of these two peaks, attributable to combi-
nation modes between different vibrations of the C–H bond 
in  CH2 groups, was previously reported by several works 
(Alessandrini et al. 2008; Catelani et al. 2017) and may be 
related to the migration of oily compounds (mainly fatty 
acids) to the surface of the coffee beans, a phenomenon 
known to occur as a consequence of the formation of poros-
ity during the roasting process (Schenker et al. 2000; Yer-
genson and Aston 2020b). The accumulation of fatty acids 
at the surface of the beans could have an impact also on the 
6699–5400  cm–1 spectral range, whose absorbance indeed 
increases in the second profiles.

It is worth noticing that the reduced absorption of water 
after the roasting process influences the intensity of all the 
other vibrational bands, which are less covered by the water-
related bands and resulted well resolved by the second MCR-
ALS component. Moreover, the results confirmed what was 
observed by Gowen et al. (Gowen et al. 2013), i.e. that vari-
ations of the hydrogen-bonded network between water and 
other constituents have an impact on both components, as a 
multi-state system.

Beyond the chemical changes, a relevant modification in 
coffee bean roasting is also linked to changes in the beans’ 
density. The second MCR-ALS profile is highly affected by 
coffee beans’ physical changes, visible in the marked slope 
between 10,000 and 7300  cm–1 (Catelani et al. 2017). The 
increased background in this range also masks the actual 
variations that the vibrational bands between 8000 and 
9000  cm–1, assigned to the second overtone of C–H stretch-
ing of carbohydrates, lipids and amino acids, may undergo 
during the roasting process (Giraudo et al. 2019; Munyendo 
et al. 2021). As already observed in the raw spectra of exper-
iment 17 (Fig. 3b), the curve slope increases with roasting 
time, indicating a change in the physical properties of the 
sample, which, in coffee roasting, could be ascribed to the 
change in density of the beans (Bustos-Vanegas et al. 2018). 
This behaviour was observed for all the considered batches.

The slope of the spectral profiles in this region is also 
linked to the roasting temperature. Indeed, the highest slope 
is visible for the batches roasted at TS1, whereas the lowest 
slope was recorded for the batches roasted at TS4. Interme-
diate temperatures (TS2 and TS3) are quite similar and are 
characterised by intermediate slopes. However, a correlation 
with the roasting time could also be hypothesized, as the 
TS1 and TS4 trials were the longest and shortest experi-
ments, respectively.

The MCR-ALS concentration profiles of the first 
and second components (referred to as copt1 and 
copt2, respectively) relative to the whole spectral 
range (10,265–4135   cm–1) are reported in Fig.  4 for 
the four considered temperature profiles. It is possi-
ble to notice that all the first profiles (filled markers) 
describe an inverse sigmoid: the first part of the process 

is characterised by almost constant concentration values 
extended for different times, according to the different 
temperature levels considered, then a decrease of the 
concentration leads the profiles to values tending towards 
an asymptote, except for the TS4 model. The second pro-
files (empty markers) are characterised by an opposite 
behaviour resulting in a sigmoidal trajectory for all the 
investigated temperatures, except for TS4 concentration 
profiles, which do not reach a plateau within the regis-
tered times. Two trials (TS2_R_2 and TS2_R_3; Fig. 4b) 
are characterised by a mild slope if compared to the steep 
one recorded for the other Robusta and Arabica trials 
performed at the same temperature. It is worth noting 
that the inspection of the raw spectra reveals that this 
difference can be attributed to the reduced spectral vari-
ation during these two roasting processes, and not to the 
variety characteristics.

Kinetic Fitting of the MCR‑ALS Concentration 
Profiles

With the purpose of uncovering the kinetic critical points 
of the roasting process, the MCR-ALS concentration pro-
files were fitted with the sigmoid function described in the 
“Kinetic Fitting of the MCR-ALS Concentration Profiles” 
section, from which the maximum rate, acceleration and 
deceleration of the roasting phenomenon were calculated. 
The effects of temperature on the kinetic indexes calcu-
lated for the second concentration profiles were investi-
gated by a two-way ANOVA also considering the coffee 
variety as a factor (A, Arabica, and B, Robusta). Table 1 
reports the kinetic critical points obtained by the MCR-
ALS models calculated considering both the whole spectral 
range (10,265–4135  cm–1) and two reduced ranges (i.e. 
range 1, 6120–4961  cm–1, and range 2, 9777–7417  cm–1). 
When considering the whole spectral range, it is possible 
to notice that the lower temperature profile tested (TS1) 
resulted in a significant delay of the process in terms of 
maximum acceleration (p < 0.01), velocity (p < 0.001) 
and deceleration (p < 0.001), as expected. However, the 
increase in the temperature did not show any significant 
difference (p > 0.05) due to the variability of the differ-
ent trials performed for each temperature level. The most 
relevant kinetic index to be considered is the maximum 
deceleration, as it can be useful to estimate the end of the 
roasting process, thus the point after which prolongation 
of the process could lead to an over-roasting of the coffee 
beans, which can negatively affect their sensory properties. 
The maximum deceleration of the second concentration 
profile for the batches roasted at TS1 occurred between 
728 and 989 s, whereas for all the other tested tempera-
tures it appeared between 534 and 679 s. No differences 
(p > 0.05) were instead ascribable to the variety factor, 
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indeed Arabica and Robusta responded in the same way to 
the roasting process for all the temperature levels tested.

When considering the concentration profiles of the MCR-
ALS models obtained on the two reduced ranges, no statisti-
cally significant difference was uncovered for the maximum 
deceleration rate calculated for all the tested temperature 
profiles (Table 1, uppercase letters). However, the decelera-
tion rates obtained by the two selected ranges differed from 
the ones obtained modelling the whole spectral range. In 
fact, as can be seen in Table 1, the kinetic indexes calculated 
for the whole spectral range showed to be higher than the 
ones referring to the reduced ranges. Nevertheless, the kinet-
ics calculated for range 2 resulted in linearly correlated with 
the ones obtained by whole range modelling (y = 0.895x, 
R2 = 0.753, p < 0.01).

To better visualise the relation among samples according 
to the kinetic parameters obtained from the MCR-ALS mod-
els, the computed kinetic values of each experimental dataset 

were organized into new data matrices composed of 24 sam-
ples and 3 variables (i.e. the kinetics parameters) and were 
inspected by PCA. The score plot obtained for the kinetic 
indexes calculated from the MCR-ALS model considering 
the whole spectral range (Fig. 5a) well represents the group 
of samples roasted at the lowest temperature (TS1), whereas 
samples roasted at higher temperatures resulted heterogene-
ously positioned in the left part of the plot. The score plot 
obtained considering the spectral range 1 (6120–4961  cm–1; 
Fig. 5b) visually confirmed the lack of ability of this range to 
discriminate differences in the kinetic of the process accord-
ing to temperature and variety. The second spectral range 
(9777–7417  cm–1; Fig. 5c) seems to be the most affected by 
kinetic variations along the process when different operative 
conditions are considered: indeed, good groupings accord-
ing to the roasting temperature were found. The increase in 
the temperature resulted in a decrease in PC1 values, even if 
some degrees of confusion can be noticed between samples 

Fig. 4  MCR-ALS results, concentration profiles (copt) for trials at 
TS1 (a), TS2 (b), TS3 (c), TS4 (d). In all panels, full-coloured mark-
ers represent the trend of the first profile, edge-coloured markers 
represent the trend of the second profile. Different markers represent 

different trials: batch A_1 = black triangle; batch A_2 = black circle; 
batch A_3 = black squrea; batch R_1 = black inverted triangle; batch 
R_2 = asterisk; batch R_3 = diamond
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roasted at TS2 and TS3. The visual inspection does not mark 
any systematic distributions of the samples according to the 
varieties.

The differences in describing the process kinetics accord-
ing to all spectral ranges considered are undoubtedly related 
to the physicochemical information retained by each consid-
ered interval. Indeed, range 1 contains information concern-
ing the major chemical changes involving C–H and S–H 
vibrations and C═O plus O–H and O–H vibrations (Cate-
lani et al. 2018), whereas range 2 mainly considers physi-
cal changes, such as beans density, which contribute to the 
changes in slope from 9777 to 7300  cm–1. Ideally, retaining 
both chemical and physical changes is advisable to describe 
the roasting progress; thus, it would be more advisable to 
consider the whole spectral range (10,265–4135  cm–1) to 
follow the process in deep. However, in vision of simplified 
systems, range 2 (9777–7417  cm–1) could be selected for 
the development of an ad hoc instrumentation. Indeed, the 

information retained in this region proved to be satisfacto-
rily correlated with the information provided by the whole 
range considered and sensitive to process changes due to 
temperature modifications. Moreover, instruments working 
in this region could be developed with cheaper light sources 
and detectors, resulting in affordable sensors for the coffee 
industry.

Conclusions

The present study demonstrated the feasibility of a rapid, 
non-invasive, and automated method, based on NIR spec-
troscopy and multivariate data analysis, to perform real-time 
monitoring of the coffee roasting process.

The results, especially their visualization, demonstrate 
that PCA is a good diagnostic tool to identify and automati-
cally remove NIR spectra not related to the coffee roasting 

Table 1  Characteristic kinetic 
indexes calculated from the 
MCR-ALS concentration 
profiles describing the roasting 
behaviour models obtained 
considering the whole spectral 
range or the reduced ranges 
(range 1, 6120–4961  cm–1; 
range 2, 9777–7417  cm–1)

Legend of table’s headings: max acc, maximum acceleration; max vel, maximum velocity; max dec, maxi-
mum deceleration. Lowercase letters (a, b) in the table refer to differences within each column (p < 0.05), 
i.e. between temperatures and varieties; uppercase letters (A, B) indicate differences between columns (p 
< 0.05), i.e. between the maximum deceleration times calculated for the considered spectral ranges. When 
no significant difference was observed, no apices are reported

Whole spectral range (10,265–
4135  cm–1)

Range 1 (6120–4961  cm–1) Range 2 (9777–7417  cm–1)

Max acc Max vel Max dec Max acc Max vel Max dec Max acc Max vel Max dec

TS1_A_1 372b 564b 812bB 192 467 826A 413b 564b 729bA

TS1_A_2 383b 631b 797bB 260 467 686A 343b 562b 783bA

TS1_A_3 370b 590b 769bB 287 495 742A 356b 535b 701bA

TS1_R_1 288b 506b 728bB 151 356 536A 370b 522b 714bA

TS1_R_2 332b 566b 856bB 193 427 594A 413b 594b 787bA

TS1_R_3 317b 633b 989bB 207 439 633A 303b 578b 851bA

TS2_A_1 260a 410a 630a 177 424 630 287b 397a 493a

TS2_A_2 314a 467a 645a 232 425 603 341b 467a 603a

TS2_A_3 275a 441a 606a 206 413 634 318b 441a 564a

TS2_R_1 303a 481a 619a 275 468 646 344b 468a 577a

TS2_R_2 289a 479a 646a 204 398 605 384b 535a 701a

TS2_R_3 275a 468a 647a 193 386 634 344b 482a 607a

TS3_A_1 331a 469a 593bB 248 442 688A 345b 455a 578aA

TS3_A_2 262a 413a 563bB 235 440 563A 290b 372a 494aA

TS3_A_3 276a 441a 632bB 262 523 674A 304b 399a 482aA

TS3_R_1 279a 485a 679bB 225 430 609A 293b 403a 526aA

TS3_R_2 386a 523a 660bB 221 427 674A 372b 496a 619aA

TS3_R_3 261a 438a 662bB 219 411 662A 288b 397a 523aA

TS4_A_1 246a 381a 560bB 300 436 587A 260a 340a 436aA

TS4_A_2 232a 382a 585bB 259 423 598A 232a 355a 518aA

TS4_A_3 303a 413a 549bB 207 385 631A 234a 344a 427aA

TS4_R_1 248a 400a 567bB 205 400 595A 205a 332a 457aA

TS4_R_2 283a 539a 637bB 283 567 637A 241a 339a 427aA

TS4_R_3 273a 383a 534bB 205 356 562A 218a 370a 562aA
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process (Fig. 1a, c) and, subsequently, to clearly describe the 
spectra (i.e. the time points) according to the roasting time 
(Fig. 2a). Further implementations of an automatic moni-
toring system could be equipped with a PCA step based on 
Hotelling’s T2 to filter out those spectra with strong experi-
mental defects.

The application of MCR-ALS provided precious insights 
about the roasting dynamics under different process con-
ditions: the spectral changes occurring during the roasting 
process could be efficiently modelled, and it is interesting 
to notice that these results were obtained with very sim-
ple models (only two components). The main changes that 
the coffee beans undergo during the roasting process could 

therefore be described from both the chemical and physical 
viewpoints, by interpreting the MCR-ALS resolved spec-
tral profiles. Furthermore, the MCR concentration profiles 
were successfully fitted with a sigmoid function for estimat-
ing some noticeable kinetic steps, i.e. the maximum rate, 
acceleration, and deceleration of the coffee roasting process. 
From the interpretation of the time evolution of the roast-
ing process, a significant (p < 0.1) delay was found for the 
roasting tests performed at the lowest temperature level with 
respect to those performed at the three higher temperature 
levels. In all cases, no significant differences were found 
based on the coffee varieties. A real-time implementation of 
an MCR-ALS-based system could envisage the use of both 

Fig. 5  PCA score plots of the kinetic parameters calculated from the 
MCR-ALS models. a Plot of the whole spectral range model. b Plot 
of the spectral range 1 model. c Plot of the spectral range 2 model. 

Letters “A” and “R” close to the samples’ markers refer to Arabica 
and Robusta species, respectively
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historical data collected under the same conditions (roaster, 
experimental settings, coffee variety and quality) and “live” 
modelling of the evolving collected NIR information.

These considerations are coherent with the PAT para-
digm, since the proposed approach would allow taking valu-
able process decisions in real-time and in a fully automatic 
way. Overall, the presented approach can be considered an 
important step towards the optimization of the coffee roast-
ing process at the industrial scale since it allows taking valu-
able process decisions in real-time and in a fully automatic 
way. Moreover, in vision of simplified systems, a reduced 
spectral range (9777–7417  cm–1) has proven promising for 
the development of simplified ad hoc instrumentation, poten-
tially affordable also for smaller artisanal roasting plants.
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