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Abstract

We provide a complete classification with respect to asymptotic behaviour, stability and intersections 
properties of radial smooth solutions to the equation −�gu = eu on Riemannian model manifolds (M, g)

in dimension N ≥ 2. Our assumptions include Riemannian manifolds with sectional curvatures bounded or 
unbounded from below. Intersection and stability properties of radial solutions are influenced by the dimen-
sion N in the sense that two different kinds of behaviour occur when 2 ≤ N ≤ 9 or N ≥ 10, respectively. 
The crucial role of these dimensions in classifying solutions is well-known in Euclidean space; here the 
analysis highlights new properties of solutions that cannot be observed in the flat case.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
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1. Introduction

Let N ≥ 2 and let M be an N -dimensional Riemannian model (M, g), namely a manifold 
admitting a pole o and whose metric is given, in polar or spherical coordinates around o, by

g = dr2 + (ψ(r))2 dω2, r > 0, ω ∈ SN−1 , (1.1)

for some function ψ satisfying suitable assumptions. Here dω2 denotes the canonical metric 
on the unit sphere SN−1 and r is by construction the distance between a point of spherical 
coordinates (r, ω) and the pole o.

In this article, we are concerned with radial smooth solutions of

−�gu = eu in M , (1.2)

namely smooth solutions of (1.2) depending only on the geodesic distance from the pole. Here 
�g denotes the Laplace-Beltrami operator in (M, g).

The great interest for equation (1.2) is motivated by its applications to geometry and physics 
see e.g., [9,14,18]. For instance, in fluid dynamics, a variant of (1.2) appears when studying 
“Stuart vortices” on a unit sphere S2 in a stationary regime, i.e.

−�S2 ψ = c edψ on S2

where ψ represents the stream function, c, d are real constants and the right hand side of the 
equation represents a vorticity ω depending exponentially on the streamfunction ψ , see [11]. 
Related semilinear equations on rotating spheres also arise in the study of stratospheric plane-
tary stationary flows, see [10] and the discussion therein. When looking for stationary stream 
functions, the authors of [10] are led to consider the semilinear elliptic equation

�S2 ψ = F(ψ) − 2ω sin θ on S2

where now ω represents the rotation speed around the polar axis, F is a smooth function and θ
is the angle of latitude.

The behaviour of solutions to equation (1.2), when posed in the Euclidean space, has been 
fully understood from different points of view: asymptotic behaviour, stability and intersections 
properties. In the seminal paper [21] existence and asymptotic behaviour of radial solutions were 
established by means of a dynamical system analysis based on the so-called Emden transforma-
tion of the phase plane. We refer to [25, Theorem 1.1] for the intersection properties of solutions, 
while the classification of solutions with respect to stability is given in [12,15]. See also [13] and 
references therein for more recent results in the case of general nonlinearities. Finally, related 
results in the weighted case: −�u = k(x)eu in Rn can be found in [1,7,8], extensions to the 
higher order case are instead given in [3] and in [16].

As already pointed out in [21], equation (1.2) can be regarded as the limit case as p → +∞
of the Lane-Emden-Fowler equation: −�gu = |u|p−1u in M (p > 1). In the last ten years, there 
has been an intense study of this equation in non-euclidean frameworks including the hyperbolic 
space and more general Riemannian models, see [2,4,5,17,20,23,22] and references therein. In 
these papers existence, multiplicity, asymptotic and stability results were provided. The analysis 
settled on general manifolds highlights deep relationships between the qualitative behaviour of 
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solutions and intrinsic properties of the manifold itself and, sometimes, it reveals a number of 
unexpected phenomena, if compared with the euclidean case, see e.g., the introductions of [4]
and [5]. Another reason for the interest in this kind of research is the fact that some classical 
tools in the Euclidean case do not work in non-euclidean frameworks, therefore the analysis re-
quires new ideas and alternative approaches that could be useful also in other contexts. As a 
matter of example, an analogue of the above-mentioned Emden transformation seems not known 
in non-euclidean settings, therefore different arguments, such as the exploitation of ad hoc Lya-
punov functionals, fine asymptotic analysis and blow-up methods, must be exploited, see e.g., 
Sections 3-5 below.

Coming back to (1.2), its investigation in non-euclidean settings turns out to be the natural 
subsequent step in order to complete the scenario of results for this equation; this motivates the 
present paper. More precisely, we provide a complete classification with respect to asymptotic be-
haviour, stability and intersections properties of radial smooth solutions to (1.2) for manifolds M
having strictly negative sectional curvatures, possibly unbounded, see assumptions (A1)-(A3) in 
Section 2. It is worth mentioning that, even if in our proofs we take advantage of some arguments 
already employed in the study of the Lane-Emden-Fowler equation on Riemannian models, the 
fact of dealing with an exponential nonlinearity brought a number of considerable technical dif-
ficulties related, for instance, to the different sign and decay behaviour of solutions in the two 
cases. Moreover, our analysis made it possible to highlight a number of properties of solutions 
that cannot be observed in the flat case, see e.g., Remarks 2.3, 2.8 and 2.10 in Section 2.

The paper is organised as follows. In Section 2 we give the precise formulation of the problem 
and we state our main results about continuation and asymptotic behaviour of solutions (Proposi-
tion 2.1 and Theorem 2.2), stability properties (Theorems 2.6 and 2.7), and intersection properties 
(Theorem 2.5 and Theorem 2.9); the remaining sections of the paper are devoted to the proofs. 
More precisely, in Section 3 we prove Proposition 2.1 while Section 4 is devoted to the proof of 
Theorem 2.2. Section 5 contains a number of technical lemmas that will be exploited to prove 
Theorems 2.5, 2.6, 2.7 and 2.9. At last, for the sake of the reader, in the Appendix, we briefly 
recall some well-known facts in the Euclidean case that highlight the role of the dimension N in 
the stability and intersection properties analysis.

2. Statement of the problem and main results

2.1. Notations

Let ψ be the function introduced in (1.1). We assume that ψ satisfies

ψ ∈ C2([0,∞)), ψ > 0 in (0,+∞), ψ(0) = ψ ′′(0) = 0 and ψ ′(0) = 1; (A1)

and

ψ ′(r) > 0 for any r > 0 . (A2)

We recall that the Riemannian model associated with the choice ψ(r) = sinh r is a well-known 
representation of the hyperbolic space HN , see e.g., [19] and the references therein, while the 
Euclidean space RN corresponds to ψ(r) = r .

The following list summarizes some notations we shall use throughout this paper.
419
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- For any P ∈ M we denote by TP M the tangent space to M at the point P .
- For any P ∈ M and U1, U2 ∈ TP M we denote by 〈U1, U2〉g the scalar product on TP M

associated with the metric g.
- For any P ∈ M and U ∈ TP M we denote by |U |g :=√〈U,U 〉g the norm of the vector U .
- dVg denotes the volume measure in (M, g).
- ∇g denotes the Riemannian gradient in (M, g) and in spherical coordinates it is given by 

∇gu(r, ω) = ∂u
∂r

(r, ω) ∂
∂r

+ r
(ψ(r))2 ∇ωu(r, ω) for any u ∈ C1(M), where we denoted by ∇ω

the Riemannian gradient in the unit sphere SN−1.
- �g denotes the Laplace-Beltrami operator in (M, g) and in spherical coordinates it is given 

by �gu(r, ω) = ∂2u
∂r2 (r, ω) + (N − 1) ∂u

∂r
(r, ω) + 1

(ψ(r))2 �ωu(r, ω) for any u ∈ C2(M), where 

we denoted by �ω the Laplace-Beltrami operator in the unit sphere SN−1.
- C∞

c (M) denotes the space of C∞(M) functions compactly supported in M .

From the above notations, we deduce that if u ∈ C2(M) is a radial function, then

�gu(r) = u′′(r) + (N − 1)
ψ ′(r)
ψ(r)

u′(r) = 1

(ψ(r))N−1 [(ψ(r))N−1u′(r)]′. (2.1)

Since our aim is to study smooth radial solutions to (1.2), for any α ∈ R, we focus our attention 
on the following initial value problem

⎧⎪⎪⎨
⎪⎪⎩

−u′′(r) − (N − 1)
ψ ′(r)
ψ(r)

u′(r) = eu(r) (r > 0)

u(0) = α

u′(0) = 0.

(2.2)

The existence and uniqueness of a local solution u(r) to (2.2) in 0 ≤ r < R (here R denotes 
the maximal interval of existence) follows by arguing as in Proposition 1 in the Appendix of 
[24]. A classical argument allows to prove that actually R = +∞, thus showing that the solution 
u = u(r) to (2.2) is globally defined in [0, +∞):

Proposition 2.1. Let N ≥ 2. Suppose that ψ satisfies assumptions (A1)-(A2). For any α ∈R the 
local solution to (2.2) may be continued to the whole interval [0, +∞). Moreover, the functions 
r �→ u′(r) and r �→ eu(r) are bounded in [0, +∞), u′(r) < 0 for any r > 0 and in particular u is 
decreasing in [0, +∞).

2.2. Asymptotic behaviour

In order to study the asymptotic behaviour of global solutions to (2.2) we require the additional 
condition:

lim
r→+∞

ψ ′(r)
ψ(r)

=: � ∈ (0,∞]. (A3)

Clearly, the hyperbolic space satisfies condition (A3) and Riemannian models which are 
asymptotically hyperbolic satisfy it as well. Furthermore, such a condition allows for unbounded
420
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negative sectional curvatures: a typical example in which this can hold corresponds to the choice 
ψ(r) = era

for a given a > 1 and r large, a case for which (see [4, Section 1.1]) sectional cur-
vatures in the radial direction diverge like −a2r2(a−1) as r → +∞. In addition, we remark that 
under assumptions (A1)-(A3), the L2 spectrum of −�g is bounded away from zero whereas if 

limr→+∞ ψ ′(r)
ψ(r)

= 0 then there is no gap in the L2 spectrum of −�g , see e.g., [4, Lemma 4.1]. 
Moreover, it can be proved that if the radial sectional curvature goes to zero as r → +∞ then 
necessarily limr→+∞ ψ ′(r)

ψ(r)
= 0, see again [4, Lemma 4.1], therefore no spectral gap is present 

and the expected picture is of Euclidean type.
In the following statement we show that the asymptotic behaviour of solutions of (2.2) is 

related to the behaviour at infinity of the ratio ψ ′(r)
ψ(r)

and hence, for what remarked above, to the 
curvatures of the manifold:

Theorem 2.2. Let N ≥ 2. Suppose that ψ satisfies assumptions (A1)-(A3). Finally, in the case 
� = +∞ we also assume that

[
log

(
ψ ′(r)
ψ(r)

)]′
= O(1) as r → +∞ . (A4)

Let u be a solution to (2.2). Then two cases may occur:

(i) if ψ
ψ ′ ∈ L1(0, ∞), then

lim
r→+∞u(r) ∈ (−∞, α) ;

(ii) if ψ
ψ ′ /∈ L1(0, ∞), then u goes to −∞ with the following rate:

lim
r→+∞

u(r)

log
( ∫ r

0
ψ(s)
ψ ′(s)ds

) = −1 ;

in particular, when � ∈ (0, +∞) we have

lim
r→+∞

u(r)

log r
= −1.

Remark 2.3. As a prototype of function ψ satisfying the assumptions of Theorem 2.2 when 
� = +∞ consider the function ψ(r) = rer2γ

with γ > 1
2 . If 1

2 < γ ≤ 1 case (ii) occurs while 
if γ > 1 assumption (i) holds. Clearly, if M = HN we have that � = 1 and case (ii) occurs. 
From [21] we recall that in the flat case solutions diverge to −∞ being asymptotically equivalent 
to −2 log r , therefore the effect of curvatures, in general, results in a slower decay of solutions, 
indeed they may even remain bounded if case (i) occurs.

2.3. Stability results and intersection properties of solutions

Let us start with the definition of stability.
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Definition 2.4. A solution u ∈ C2(M) to (1.2) is stable if

∫
M

|∇gv|2g dVg −
∫
M

eu v2 dVg ≥ 0 ∀v ∈ C∞
c (M). (2.3)

If u does not satisfy (2.3), we say that it is unstable.

It is well known that stability plays an important role in the classification of solutions of 
elliptic partial differential equations and the analysis of qualitative properties of solutions, see 
e.g., the seminal paper [6]. In this section, we provide a complete classification of smooth radial 
solutions of (1.2) with respect to stability and we show that the same conditions determine ei-
ther the stability or the intersection properties. The relationship between stability properties and 
intersection properties is clarified by the following result.

Theorem 2.5. Let N ≥ 2 and let ψ satisfy (A1)-(A3). Then the following statements hold:

(i) let α and β be two distinct real numbers and let uα and uβ be the corresponding solutions 
of (2.2), i.e. uα(0) = α and uβ(0) = β . If uα and uβ are stable then they do not intersect;

(ii) if uα is a unstable solution of (2.2) for some α ∈ R, then for any β > α we have that uβ

intersects uα at least once.

We observe that in the proof Theorem 2.5 -(ii), we actually show the validity of a more general 
result involving also non-radial smooth solutions of (1.2). Indeed, in Lemma 6.2 we prove that if 
u is a smooth unstable solution of (1.2) then (1.2) does not admit any smooth solution v satisfying 
v > u in M .

We now state the two main results about the stability of radial smooth solutions of (1.2)
characterized by dimensions 2 ≤ N ≤ 9 and N ≥ 10, respectively.

Theorem 2.6. Let 2 ≤ N ≤ 9 and let ψ satisfy (A1)-(A3). For any α ∈R denote by uα the unique 
solution to (2.2). Then there exist η ∈ R such that

(i) if α ∈ (−∞, η] then uα is stable;
(ii) if α > η then uα is unstable.

Furthermore, we have that η ≥ log(λ1(M)) with the strict inequality if ψ
ψ ′ /∈ L1(0, +∞) where 

λ1(M) denotes the bottom of the spectrum of −�g in M .

Theorem 2.7. Let N ≥ 10 and let ψ satisfy (A1)-(A3) and the additional condition

ψ ∈ C3([0,+∞)), [log(ψ ′(r))]′′ > 0 for r > 0 . (A5)

Then all solutions to (2.2) are stable.

Remark 2.8. The fact that N = 10 is a critical threshold for stability is well-known in the Eu-
clidean case, see [15] and the Appendix. Here a new critical value η arises which has no analogue 
in the flat case where solutions are always unstable if 2 ≤ N ≤ 9 and Theorem 2.6-(i) never 
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occurs. In other words, we can say that, by the effect of assumption (A3), the critical dimension 
does not exist if α ≤ η since solutions are stable for all N ≥ 2.
About assumption (A5), it is technical but it includes the most interesting examples. Indeed, it 
holds in the relevant case of the hyperbolic space, since [log(ψ ′(r))]′′ = (cosh r)−2. Models with 
unbounded curvatures satisfying (A5) can be built as well, e.g., by taking ψ(r) = era

with a > 1
for r ≥ 1, indeed [log(ψ ′(r))]′′ = a−1

r2 (ara − 1) > 0 for r ≥ 1.

At last, concerning intersection properties, we have:

Theorem 2.9. Let N ≥ 2, let ψ satisfy (A1)-(A3) and let η be as in the statement of Theorem 2.6. 
We have that:

(i) if 2 ≤ N ≤ 9 and uα , uβ are two solutions of (2.2) with α, β ∈ (−∞, η] then uα and uβ do 
not intersect;

(ii) if 2 ≤ N ≤ 9 and uα , uβ are two solutions of (2.2) with α, β > η then uα and uβ intersect 
at least once;

(iii) if N ≥ 10 and the additional condition (A5) holds true, then for any α, β ∈ R the corre-
sponding solutions uα and uβ of (2.2) do not intersect.

Remark 2.10. In RN it is known, see e.g., [25, Theorem 1.1], that every two smooth radial solu-
tions intersect each other once if N = 2 and infinitely many times if 3 ≤ N ≤ 9 while for N ≥ 10
smooth radial solutions do not intersect. Therefore, the behaviour stated in Theorem 2.9-(i) (with 
its counterpart Theorem 2.6-(i)) is, as a matter of fact, an effect of non-vanishing curvatures.

3. Proof of Proposition 2.1

Let (0, R) be the maximum interval where the local solution u of (2.2) is defined and consider 
the Lyapunov functional

F(r) := 1

2
(u′(r))2 + eu(r) for any r ∈ (0,R) . (3.1)

It is readily seen that

F ′(r) = u′(r)[u′′(r) + eu(r)] = −(N − 1)u′(r)2 ψ ′(r)
ψ(r)

≤ 0 for any r ∈ (0,R) .

This proves that F is decreasing and 0 < F(r) ≤ eα for any r ∈ (0, R), therefore both u′(r) and 
eu(r) are bounded in (0, R). On the other hand, integrating (2.1) from 0 to r we deduce

(ψ(r))N−1u′(r) = −
r∫

0

(ψ(s))N−1 eu(s) ds < 0 for any r ∈ (0,R) .

Therefore, u′ is a negative function in (0, R) and hence u is decreasing in (0, R) as claimed.
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Finally, we show that R = +∞. Assume by contradiction that R is finite and let

l := lim
r→R− u(r) ∈ [−∞, α) .

If l = −∞ we immediately get a contradiction since

u(r) = α +
r∫

0

u′(s) ds for any r ∈ (0,R)

and taking the limit as r → R− we have that the left hand side goes to −∞ while the right hand 
side remains bounded since u′(r) is bounded. Being l finite, from local existence for solutions 
of ordinary differential equations with initial value conditions, the solution u may be extended 
in a right neighbourhood of R thus contradicting the maximality of R. This shows that R = +∞
thus completing the proof of the proposition. �
4. Proof of Theorem 2.2

Throughout this section, we will always assume the validity of conditions (A1)-(A3) and 
when � = +∞ in (A3) we also assume the validity of the additional condition (A4). We start by 
showing that u′ admits a limit at infinity and this limit is zero:

Lemma 4.1. Let u be the unique solution of (2.2). Then

lim
r→+∞u′(r) = 0 .

Proof. From Proposition 2.1 we know that u is decreasing in [0, +∞) and hence it admits a 
limit as r → +∞. We put

l := lim
r→+∞u(r) ∈ [−∞, α) , (4.1)

where α = u(0). Let F be the function defined in (3.1). Since F is non-increasing, then 0 <
F(r) ≤ F(0) = eα for any r ≥ 0. Hence, there exists c ∈ [0, +∞) such that c = limr→+∞ F(r).

By (4.1) we deduce that l̄ := limr→+∞ eu(r) ∈ [0, +∞) so that by (3.1) we obtain

lim
r→+∞u′(r) = lim

r→+∞−
√

2F(r) − eu(r) = −
√

2c − l̄ = γ ∈ (−∞,0] . (4.2)

It remains to prove that γ = 0. Suppose by contradiction that γ < 0. This implies

lim
r→+∞u(r) = lim

r→+∞

⎡
⎣α +

r∫
0

u′(s)ds

⎤
⎦= −∞ . (4.3)

Letting � ∈ (0, +∞] be as in (A3), by (2.2), (4.2) and (4.3) we obtain
424
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lim
r→+∞u′′(r) = lim

r→+∞

[
−(N − 1)

ψ ′(r)
ψ(r)

u′(r) − eu(r)

]
= −(N − 1)�γ ∈ (0,+∞] . (4.4)

In turn, by (4.4) and (2.2), we infer that

lim
r→+∞u′(r) = lim

r→+∞

r∫
0

u′′(s)ds = +∞ ,

in contradiction with (4.2). This completes the proof of the lemma. �
By exploiting Lemma 4.1 we prove:

Lemma 4.2. Let u be the unique solution of (2.2). Then the following limit exists

lim
r→+∞

u′′(r)
u′(r)

ψ(r)

ψ ′(r)
.

Proof. We divide the proof into two parts depending on whether � is finite or not.
The case � ∈ (0, +∞). From (2.2), we have that

−u′′(r)
u′(r)

− (N − 1)
ψ ′(r)
ψ(r)

= eu(r)

u′(r)
. (4.5)

The above identity suggests that if χ(r) := eu(r)

u′(r) admits a limit as r → +∞, then the same does 

the function u
′′(r)

u′(r) . This means that the proof of Lemma 4.2 follows once we prove that χ admits 
a limit as r → +∞.

We proceed by contradiction assuming that χ does not admit a limit as r → +∞. By direct 
computation, we see that

χ ′(r) = eu(r)[(u′(r))2 − u′′(r)]
(u′(r))2 for any r > 0. (4.6)

We may assume that χ admits infinitely many local maxima and minima at some points rm, 
with rm → +∞ as m → +∞, and χ(rm) does not admit a limit as m → +∞.

In particular by (4.6) we have (u′(rm))2 − u′′(rm) = 0 for any m. Hence, evaluating (4.5) at 
rm, we obtain

−u′(rm) − (N − 1)
ψ ′(rm)

ψ(rm)
= χ(rm) ,

for any m. Now, by (A3) and Lemma 4.1, we find that χ(rm) → −(N − 1)� as m → +∞, a 
contradiction. This completes the proof of the lemma in the case � ∈ (0, +∞).

The case � = +∞. We proceed similarly to the previous case by writing (2.2) in the form

−u′′(r)
u′(r)

ψ(r)

ψ ′(r)
− (N − 1) = eu(r)

u′(r)
ψ(r)

ψ ′(r)
(4.7)
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and by defining this time χ(r) := eu(r)

u′(r)
ψ(r)
ψ ′(r) in such a way that if χ admits a limit as r → +∞

then the same conclusion occurs for u′′(r)
u′(r)

ψ(r)
ψ ′(r) and we complete the proof of the lemma also 

in this case. By contradiction, assume that χ does not admit a limit as r → +∞. A simple 
computation gives

χ ′(r) = χ(r)

{
u′(r) − u′′(r)

u′(r)
−
[

log

(
ψ ′(r)
ψ(r)

)]′}
for any r > 0. (4.8)

We may assume that χ admits infinitely many local maxima and minima at some points rm with 
rm → +∞ as m → +∞, and χ(rm) does not admit a limit as m → +∞. In particular, by (4.8), 
we have that

u′(rm) − u′′(rm)

u′(rm)
−
[

log

(
ψ ′(rm)

ψ(rm)

)]′
= 0 . (4.9)

Hence, evaluating (4.7) at rm and using (4.9), we obtain

−(N − 1) − ψ(rm)u′(rm)

ψ ′(rm)
+ ψ(rm)

ψ ′(rm)

[
log

(
ψ ′(rm)

ψ(rm)

)]′
= χ(rm) ,

for any m.
Finally, by Lemma 4.1, (A3) and (A4), we find that χ(rm) → −(N − 1) for m → +∞, a 

contradiction. The proof of the lemma is complete also in this case. �
Our next purpose is to show that the limit in Lemma 4.2 must be 0 under the additional 

assumption:

lim
r→+∞u(r) = −∞ . (4.10)

In Lemma 4.6 below we discuss the occurrence of (4.10) and we provide a sufficient condition 
for (4.10) in terms of the integrability properties of the ratio ψ/ψ ′.

Before proving in Lemma 4.4 that the limit in Lemma 4.2 is zero when (4.10) holds, we state 
the following result which deals with the behaviour of ψ at infinity.

Lemma 4.3. Let � be as in (A3), the following statements hold true:

(i) for any � ∈ (0, +∞] we have that

lim
r→+∞ψ(r) = +∞ (4.11)

and moreover for any M > 0 and 0 < δ < N − 1 we have that

ψ−(N−1)+δ ∈ L1(M,∞) ; (4.12)
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(ii) if � ∈ (0, +∞) then there exist C > 0 and M > 0 such that

ψ(r) > Ce
�
2 r for any r > M . (4.13)

Proof. Let us start with the proof of (i). First of all, we observe that (A3) also reads 
limr→+∞

[
log(ψ(r))

]′ = � > 0 and (4.11) follows by writing

log(ψ(r)) =
r∫

R

[
log(ψ(s))

]′
ds + log(ψ(R))

for some R > 0 and letting r → +∞.
Let us proceed with the proof of (4.12) when � = +∞. By (A3) it follows that there exists 

R > 0 such that ψ ′(r) > Mψ(r) for any r > R, for some positive constant M > 0. This implies

+∞∫
R

1

(ψ(r))N−1−δ
dr =

+∞∫
ψ(R)

1

sN−1−δ ψ ′(ψ−1(s))
ds

<
1

M

+∞∫
ψ(R)

1

sN−1−δ ψ(ψ−1(s))
ds = 1

M

+∞∫
ψ(R)

1

sN−δ
ds < +∞ .

This proves (4.12) and completes the proof of (i) when � = +∞. The validity of (4.12) when 
� < +∞ is an easy consequence of statement (ii).

Let us proceed with the proof of (ii). By (A3) we have that for any ε > 0 there exists rε > 0
such that

� − ε < [log(ψ(r))]′ < � + ε for any r > rε .

After integration we get

ψ(rε)e
(�−ε)(r−rε) < ψ(r) < ψ(rε)e

(�+ε)(r−rε) for any r > rε .

The proof of (4.13) now follows choosing ε = �
2 and C = ψ(rε)e

− �
2 rε in the left inequality 

above. �
Lemma 4.4. Let u be the unique solution of (2.2) and suppose that u satisfies (4.10). Then we 
have

lim
r→+∞

u′′(r)
u′(r)

ψ(r)

ψ ′(r)
= 0 .

Proof. If u′′ vanishes infinitely many times at infinity, then by Lemma 4.2 we are done. If 
this does not occur, using again Lemma 4.2 and, recalling Proposition 2.1 and assumptions 
(A1)-(A2), we infer that the following limit exists
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lim
r→+∞

u′(r)ψ ′(r)
u′′(r)ψ(r)

=: L ∈ [−∞,+∞] .

The proof of the lemma now follows if we prove that |L| = +∞.
We divide the remaining part of the proof into two steps.

Step 1. We show that L �= 0. By contradiction, assume L = 0. Notice that by Lemma 4.1, 
(4.10), de l’Hôpital’s rule and (A3)

lim
r→+∞

eu(r)

u′(r)
= lim

r→+∞
u′(r)eu(r)

u′′(r)
= lim

r→+∞
u′(r)ψ ′(r)
u′′(r)ψ(r)

eu(r) ψ(r)

ψ ′(r)
= 0

by which, from (A3), we readily get

lim
r→+∞

eu(r)ψ(r)

u′(r)ψ ′(r)
= 0 . (4.14)

Recalling (4.7), by (4.14) we deduce that

lim
r→+∞

u′′(r)
u′(r)

ψ(r)

ψ ′(r)
= −(N − 1).

This yields limr→+∞ u′(r)ψ ′(r)
u′′(r)ψ(r)

= − 1
N−1 , a contradiction.

This completes the proof of Step 1.

Step 2. We now prove that L cannot be finite. Thanks to Step 1, we may assume by contradic-
tion that L ∈R \ {0}. Arguing as in Step 1 we get that (4.14) also holds in this case and, in turn, 
we obtain that L = − 1

N−1 . Therefore, for any ε > 0 there exists rε > such that for any r > rε

−(N − 1) − ε ≤ u′′(r)ψ(r)

u′(r)ψ ′(r)
≤ −(N − 1) + ε ,

whence

[−(N − 1) − ε] [log(ψ(r))]′ ≤ [log(−u′(r))]′ ≤ [−(N − 1) + ε] [log(ψ(r))]′ .

Integrating from rε to r , with r > rε , we deduce that

log

( −u′(r)
−u′(rε)

)
≤ [−(N − 1) + ε] log

(
ψ(r)

ψ(rε)

)

and, in turn, that

−u′(r) ≤ Aε(ψ(r))−(N−1)+ε ,

where Aε = −u′(rε)
(ψ(rε))−(N−1)+ε is a positive constant. By a further integration, for any r > rε , we 

obtain
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−u(r) + u(rε) ≤ Aε

r∫
rε

(ψ(s))−(N−1)+ε ds . (4.15)

By (4.12) we deduce that in both cases � = +∞ and � ∈ (0, +∞), the function

(ψ(s))−(N−1)+ε ∈ L1(rε,+∞)

provided that ε < N − 1. This means that the right-hand side of (4.15) admits a finite limit 
as r → +∞ and this is absurd since the left-hand side of (4.15) blows up to +∞ in view of 
(4.10). �

Finally, we determine the exact asymptotic behaviour at infinity for solutions of (2.2) satisfy-
ing (4.10).

Lemma 4.5. Let u be the unique solution of (2.2) and suppose that u satisfies (4.10). Then

lim
r→+∞

e−u(r)∫ r

0
ψ(s)
ψ ′(s)ds

= 1

N − 1
. (4.16)

Consequently, the following decay estimate holds

lim
r→+∞

u(r)

log
( ∫ r

0
ψ(s)
ψ ′(s)ds

) = −1. (4.17)

In particular if � ∈ (0, +∞) then

lim
r→+∞

u(r)

log r
= −1 (4.18)

Proof. By (2.2), Lemma 4.2 and Lemma 4.4, we get

lim
r→+∞− eu(r)ψ(r)

u′(r)ψ ′(r)
= N − 1 .

Therefore, for any ε > 0 there exists rε > 0 such that

(
1

N − 1
− ε

)
ψ(r)

ψ ′(r)
<
(
e−u(r)

)′
<

(
1

N − 1
+ ε

)
ψ(r)

ψ ′(r)
.

Integrating from rε to r , for any r > rε we get

e−u(rε) +
(

1

N − 1
− ε

) r∫
rε

ψ(s)

ψ ′(s)
ds < e−u(r) < e−u(rε) +

(
1

N − 1
+ ε

) r∫
rε

ψ(s)

ψ ′(s)
ds.

(4.19)
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Now, if ψ
ψ ′ is integrable in a neighbourhood of infinity, we reach a contradiction with (4.10), 

therefore ψ
ψ ′ has to be not integrable in a neighbourhood of infinity and we obtain

lim
r→+∞

e−u(r)∫ r

rε

ψ(s)
ψ ′(s) ds

= 1

N − 1
.

Then, (4.16) readily follows from the above limit by recalling (A1). The limit (4.17) follows from 
(4.19) with a similar argument.

It remains to prove (4.18) when � ∈ (0, +∞). We proceed by considering the limit:

lim
r→+∞

log
(∫ r

0
ψ(s)
ψ ′(s) ds

)
log r

= lim
r→+∞

ψ(r)

ψ ′(r)
r∫ r

0
ψ(s)
ψ ′(s) ds

= 1

�
lim

r→+∞
r∫ r

0
ψ(s)
ψ ′(s) ds

= 1

�
lim

r→+∞
ψ ′(r)
ψ(r)

= 1

�
· � = 1 ,

where we used twice de l’Hôpital rule.

This proves that log
(∫ r

0
ψ(s)
ψ ′(s) ds

)
∼ log r as r → +∞ and the proof of (4.18) follows from 

(4.17). �
At last, we provide a sufficient condition for (4.10) in terms of integrability properties of the 

ratio ψ/ψ ′.

Lemma 4.6. Let u be the unique solution of (2.2). Then the two alternatives hold:

(i) if ψ
ψ ′ ∈ L1(0, ∞) then

lim
r→+∞u(r) ∈ (−∞, α) ;

(ii) if ψ
ψ ′ /∈ L1(0, ∞) then

lim
r→+∞u(r) = −∞ .

Proof. The existence of the limit of u as r → +∞ is known from Proposition 2.1 as well as the 
fact that this limit is less than α. It remains to prove that the limit is finite in case (i) and −∞ in 
case (ii).

Let us start with the proof of (i). Suppose by contradiction that the limit is −∞ so that (4.10)
holds true. Then we can apply Lemma 4.4 and proceed as in the proof of Lemma 4.5 to obtain 
(4.19). The integrability of ψ/ψ ′ shows that u remains bounded as r → +∞, a contradiction.

Let us proceed with the proof of (ii). Set l1 := limr→+∞ u(r). Suppose by contradiction that 
l1 is finite. We claim that

lim
ψ(r)

′ ′ = −∞ . (4.20)

r→+∞ u (r)ψ (r)
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From the proof of Lemma 4.2 we know that the function eu(r)

u′(r)
ψ(r)
ψ ′(r) admits a limit as r → +∞, 

hence, since e−u(r) → e−l1 ∈ (0, +∞) as r → +∞, the limit in (4.20) exists and it belongs to 
[−∞, 0], thanks to (A1), (A2) and Proposition 2.1.

Let us denote by l2 ≤ 0 the limit in (4.20) and suppose by contradiction that it is finite.
Then for any ε > 0 there exists rε > 0 such that

l2 − ε <
ψ(r)

u′(r)ψ ′(r)
< l2 + ε for any r > rε

and from the left inequality, it follows that

0 <
ψ(r)

ψ ′(r)
< (l2 − ε)u′(r) for any r > rε .

Integrating the inequality above we obtain

0 <

r∫
rε

ψ(s)

ψ ′(s)
ds < (l2 − ε)[u(r) − u(rε)] for any r > rε .

Passing to the limit as r → +∞ and recalling that l1 is finite we infer that ψ/ψ ′ is integrable at 
infinity, in contradiction with the assumption in (ii). This completes the proof of (4.20).

Combining (4.20) and (4.7) with the fact that l1 is finite we deduce that

lim
r→+∞

u′′(r)
u′(r)

ψ(r)

ψ ′(r)
= −(N − 1) − lim

r→+∞
eu(r)

u′(r)
ψ(r)

ψ ′(r)
= +∞ .

This implies that for any M > 0 there exists rM > 0 such that

u′′(r)
u′(r)

ψ(r)

ψ ′(r)
> M for any r > rM .

Multiplying both sides of the above inequality by ψ ′(r)/ψ(r) and integrating we obtain

log

( |u′(r)|
|u′(rM)|

)
> M log

(
ψ(r)

ψ(rM)

)
for any r > rM

from which it follows that

|u′(r)| > |u′(rM)|
(ψ(rM))M

(ψ(r))M for any r > rM .

Passing to the limit as r → +∞ and recalling (4.11), we conclude that |u′(r)| → +∞ as r →
+∞ in contradiction with Lemma 4.1. This completes the proof of (ii). �
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End of the proof of Theorem 2.2. The proof of (i) in the case ψ
ψ ′ ∈ L1(0, ∞) is an immediate 

consequence of Lemma 4.6 -(i).
Let us proceed with the proof of (ii). First of all by Lemma 4.6-(ii) we have that u diverges 

to −∞ as r → +∞. In this way (4.10) is satisfied, hence Lemma 4.5 completes the proof of 
Theorem 2.2. �
5. Preliminary results about stability and intersection properties

We start by stating an equivalent characterization of stability in the case of radial solutions of 
(1.2). Since the proof can be obtained by following the proof of [4, Lemma 5.1] with obvious 
changes we omit it.

Lemma 5.1. Let ψ satisfy (A1)-(A3) and let u be a radial solution of (1.2). Then u is stable if 
and only if

+∞∫
0

(χ ′(r))2 (ψ(r))N−1 dr −
+∞∫
0

eu(r)(χ(r))2 (ψ(r))N−1 dr ≥ 0, (5.1)

for every radial function χ ∈ C∞
c (M).

We now give the statement of a series of lemmas that will be exploited in the proofs of the 
main results about stability and intersection properties.

In the sequel, we denote by uα the unique solution of (2.2) with α = uα(0) and we consider 
the set

S := {α ∈R : uα is stable} . (5.2)

Before proceeding, we recall the variational characterization of the bottom of the L2 spectrum 
of −�g in M :

λ1(M) := inf
ϕ∈C∞

c (M)\{0}

∫
M

|∇gϕ|2g dVg∫
M

ϕ2 dVg

. (5.3)

It is well known that under assumptions (A1)-(A3) we have that λ1(M) > 0, see e.g., [4, 
Lemma 4.1]. The bottom of the spectrum is involved in the stability of solutions uα of (2.2) for 
sufficiently small values of α. Indeed, we prove:

Lemma 5.2. Let ψ satisfy (A1)-(A3) and let uα be a solution of (2.2) with α ≤ log(λ1(M)). Then 
uα is stable and in particular, the set S is not empty.

Proof. Using (5.3) and Proposition 2.1 we infer∫
M

|∇gv|2g dVg ≥ λ1(M)

eα

∫
M

eαv2 dVg ≥ λ1(M)

eα

∫
M

euα(r)v2 dVg for any v ∈ C∞
c (M)

which gives the stability of uα if α ≤ log(λ1(M)). �
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The next step is to prove that the set S is an interval. First, we state three preliminary lemmas; 
the fact that S is an interval will be proved in the fourth one (Lemma 5.6 below).

Lemma 5.3. Let ψ satisfy (A1)-(A3) and let a, b, R ∈ R be such that b > a. If uα(r) is the 
solution of (2.2) with α ∈ [a, b], then for any r ∈ [0, R], the map α �→ u(α, r) := uα(r) is differ-
entiable in [a, b] and for any α0 ∈ [a, b]

lim
α→α0

sup
r∈[0,R]

∣∣∣∣ ∂u

∂α
(α, r) − ∂u

∂α
(α0, r)

∣∣∣∣= 0. (5.4)

Moreover for any α ∈ [a, b] and r ∈ [0, R], the function vα(r) := ∂u
∂α

(α, r) is the solution of the 
following problem

⎧⎪⎪⎨
⎪⎪⎩

−v′′(r) − (N − 1)
ψ ′(r)
ψ(r)

v′(r) = euα(r)v(r)

v(0) = 1

v′(0) = 0.

(5.5)

Proof. The proof can be obtained by proceeding along the lines of [4, Lemma 5.6] with suit-
able changes concerning essentially the fact that the power nonlinearity is replaced here by the 
exponential nonlinearity. For the sake of completeness, we recall the main steps here below.

For any r ∈ [0, R] and α ∈ [a, b], let us define

w(r) = uα(r) − uα0(r)

α − α0
− vα0(r) and z(r) = w′(r)

where vα0 is the solution of problem (5.5) with α = α0.
Then

z′(r) + (N − 1)
ψ ′(r)
ψ(r)

z(r) = −
(

euα(r) − euα0 (r)

α − α0
− euα0 (r)vα0(r)

)
. (5.6)

For any δ > 0, α ∈ (α0 − δ, α0 + δ) ∩ [a, b] and r ∈ [0, R], we have

∣∣∣∣euα(r) − euα0 (r)

α − α0
− euα0 (r)vα0(r)

∣∣∣∣≤
∣∣∣∣euα(r) − euα0 (r)

α − α0
− uα(r) − uα0(r)

α − α0
euα0 (r) + euα0 (r)w(r)

∣∣∣∣
≤ |uα(r) − uα0(r)|

|α − α0| |eξ(r) − euα0 (r)| + euα0 (r)|w(r)|

where, by Lagrange Theorem, min{uα(r), uα0(r)} < ξ(r) < max{uα(r), uα0(r)} any r ∈ [0, R]. 
Recalling that for any α the functions uα are decreasing and using again Lagrange Theorem, we 
obtain ∣∣∣∣euα(r) − euα0 (r)

α − α0
− euα0 (r)vα0(r)

∣∣∣∣≤ eα0+δ |uα(r) − uα0(r)|2
|α − α0| + eα0 |w(r)|

≤ |w(r)|{eα0+δ |uα(r) − uα0(r)| + eα0
}+ eα0+δ |vα0(r)| |uα(r) − uα0(r)|.
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Now, by continuous dependence, for any ε > 0 we may choose δ small enough in such a way 
that supr∈[0,R] |uα(r) − uα0(r)| < ε and we obtain for r ∈ [0, R],

∣∣∣∣euα(r) − euα0 (r)

α − α0
− euα0 (r)vα0(r)

∣∣∣∣≤ (1 + ε)eα0+δ|w(r)| + Cε

where we put C = eα0+δ supr∈[0,R] |vα0(r)|. Furthermore, observing that w(0) = 0, we infer

∣∣∣∣euα(r) − euα0 (r)

α − α0
− euα0 (r)vα0(r)

∣∣∣∣≤ (1 + ε)eα0+δ

r∫
0

|z(s)|ds + Cε. (5.7)

Combining (5.6) and (5.7) and observing that z(0) = 0, we obtain

|z(r)| ≤ K(1 + ε)eα0+δ

r∫
0

|z(s)|ds + KCε,

for any r ∈ [0, R] and α ∈ (α0 − δ, α0 + δ) ∩ [a, b], where we put K := supr∈[0,R]
∫ r

0 (ψ(s))N−1ds

(ψ(r))N−1 .
Finally, exploiting standard Gronwall-type estimates we obtain

lim
α→α0

sup
r∈[0,R]

|z(r)| = 0 =⇒ lim
α→α0

sup
r∈[0,R]

|w(r)| = 0.

This proves the differentiability with respect to α of the map α �→ u(α, r) and shows that the 
derivative with respect to α is a solution of (5.5). The proof of (5.4) is a consequence of a 
standard continuous dependence result for the Cauchy problem (5.5). �
Lemma 5.4. Let ψ satisfy (A1)-(A3) and let α1 > α2 ≥ α3 > α4. Then the first intersection 
between uα1 and uα2 cannot take place after the first intersection between uα3 and uα4 .

Proof. We follow closely the proof of [5, Lemma 7.3]. We divide the proof into two steps.
Step 1. We first prove the lemma when only three functions uα1, uα2 , uα3 with α1 > α2 > α3, 

are involved. In other words, we prove that the first intersection between uα1 and uα2 cannot take 
place after the first intersection between uα2 and uα3 .

Let w1 = uα1 − uα2 and w2 = uα2 − uα3 . Then wi(0) > 0 and w′
i (0) = 0 for i = 1, 2. Let 

r1 > 0 be such that wi has no zero in [0, r1]. Then for i = 1, 2, the functions wi satisfy

w′′
i (r) + (N − 1)

ψ ′(r)
ψ(r)

w′
i (r) + bi(r)wi(r) = 0,

where the functions bi are positive in [0, r1] and they satisfy

uα2(r) < log(b1(r)) < uα1(r) and uα3(r) < log(b2(r)) < uα2(r) for any r ∈ [0, r1] ,
thanks to Lagrange Theorem. In particular this gives b1(r) > b2(r) in [0, r1]. Putting z = w1/w2
we have that
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w2(r)z
′′(r) +

[
2w′

2(r) + (N − 1)
ψ ′(r)
ψ(r)

w2(r)

]
z′(r) = −z(r)(b1(r) − b2(r))w2(r) < 0

for any r ∈ [0, r1] and moreover z(0) > 0 and z′(0) = 0. If we set a(r) := 2
w′

2(r)

w2(r)
+ (N − 1)

ψ ′(r)
ψ(r)

, 
the above inequality can be written as z′′(r) + a(r)z′(r) < 0 in [0, r1], being w2 > 0 in [0, r1]. 
Then, for ε > 0, multiplying both sides by e

∫ r
ε a(t) dt and integrating in [ε, r], we get

z′(r) ≤ z′(ε) e− ∫ r
ε a(t) dt for all r ∈ (ε, r1] .

By (A1) and the fact that w2(0) > 0 and w′
2(0) = 0 we deduce that a(r) ∼ N−1

r
as r → 0+. 

Then, letting ε → 0+ in the above inequality and recalling that z′(ε) → z′(0) = 0, we conclude 
that z′ ≤ 0 in (0, r1] so that z is non increasing in the same interval and in particular z(r) ≤ z(0)

for any r ∈ (0, r1]. This completes the proof of Step 1. Indeed, if ζi is the first zero of wi , i = 1, 2
and if we assume by contradiction that ζ1 > ζ2 then we may apply the previous estimate for any 
0 < r1 < ζ2 and obtain

w1(r) ≤ z(0)w2(r) for any r ∈ (0, ζ2) .

Then, letting r → ζ−
2 we conclude that w1(ζ2) ≤ 0 in contradiction with ζ1 > ζ2.

Step 2. We complete here the proof of the lemma. We denote by ζij the first intersection 
between uαi

and uαj
with i ≤ j . We have to prove that ζ12 ≤ ζ34. We apply Step 1 twice, first 

to prove that ζ12 ≤ ζ23 and then to prove that ζ23 ≤ ζ34. The combination of the two inequalities 
readily completes the proof of Step 2. �
Lemma 5.5. [4, Lemma 5.8] Let ψ satisfy (A1)-(A3). Then limr→0+ λ1(Br) = +∞.

By combining the above lemmas one gets:

Lemma 5.6. Let ψ satisfy (A1)-(A3) and assume α > β . If uβ is unstable then uα is also the 
unstable solution. In particular, the set S defined in (5.2) is an interval.

Proof. Suppose that uα and uβ have no intersections. Then uα(r) > uβ(r) for any r ≥ 0 and 
euα(r) > euβ(r) for any r ≥ 0. Suppose by contradiction that uα is stable, then (5.1) implies

+∞∫
0

(χ ′(r))2 (ψ(r))N−1 dr ≥
+∞∫
0

euα(r)(χ(r))2 (ψ(r))N−1 dr

≥
+∞∫
0

euβ(r)(χ(r))2 (ψ(r))N−1 dr,

for every radial function χ ∈ C∞
c (M). This implies the stability of uβ , a contradiction.

We may suppose now that uα and uβ have at least one intersection. Exploiting Lemma 5.3, 
Lemma 5.4 and Lemma 5.5, we may follow the part of the proof of [4, Lemma 5.9] in which uα

and uβ have at least one intersection, and prove the instability of uα. �
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5.1. Low dimensions

In the next lemma we prove that if 2 ≤ N ≤ 9, the set S is bounded above. To this aim we first 
set

η := supS . (5.8)

Lemma 5.7. Let ψ satisfy (A1)-(A3) and let 2 ≤ N ≤ 9. Then there exists α0 > 0 such that for 
any α > α0, the solution uα of (2.2) is unstable. In particular, the number η defined in (5.8) is 
finite.

Proof. We adapt to our framework the blow-up arguments of [4, Lemmas 4.9 and 5.5] and 
[5, Lemma 7.1]. Since we know from Lemma 5.6 that the set S is an interval, we proceed by 
contradiction assuming that uα is stable for any α ∈ R.

Let us define uλ as the solution of (2.2) with initial condition α = log( e
λ2 ) and define

vλ(s) = uλ(λs) + 2 log(λ).

Now, one can check that vλ(0) = 1 and it satisfies

v′′
λ(s) + N − 1

s

ψ ′(λs)

ψ(λs)
λs v′

λ(s) + evλ(s) = 0. (5.9)

Furthermore, using the assumptions on ψ , we can find that for any fixed S > 0,

ψ ′(λs)

ψ(λs)
λs → 1 as λ → 0+, uniformly in (0, S]. (5.10)

If we define Fλ(r) = 1
2 (u′

λ(r))
2 + euλ(r) then we know from the proof of Proposition 2.1 that Fλ

is decreasing and hence

|u′
λ(r)|2 = 2

[
Fλ(r) − euλ(r)

]
≤ 2
[
euλ(0) − euλ(r)

]
≤ 2euλ(0)

[
uλ(0) − uλ(r)

]
from which we obtain

|u′
λ(r)| ≤

√
2e

λ

⎛
⎝ r∫

0

|u′
λ(t)|dt

⎞
⎠

1/2

for any r > 0

where we recall that euλ(0) = e
λ2 .

By Gronwall-type estimates we obtain

|u′
λ(r)| ≤

e

λ2 r for any r > 0

and from the definition of vλ we finally obtain
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|v′
λ(s)| ≤ es for any s > 0 . (5.11)

Combining (5.9), (5.10), (5.11) we deduce that for any fixed S > 0 there exists λ̄(S) > 0 such 
that

|v′′
λ(s)| ≤ 2(N − 1)e + evλ(0) = (2N − 1)e for any s ∈ [0, S] and 0 < λ < λ̄(S) .

Hence, using Ascoli-Arzelá Theorem on [0, S], we deduce that there exists v̄ ∈ C1([0, S]) such 
that vλ → v̄ in C1([0, S]) as λ → 0+ and v̄ satisfies

v̄′′(s) + N − 1

s
v̄′(s) + ev̄(s) = 0 and v̄(0) = 1.

Since uλ is a stable radial solution, using (5.1) we have that

+∞∫
0

(χ ′(r))2 (ψ(r))N−1 dr −
+∞∫
0

euλ(r)(χ(r))2 (ψ(r))N−1 dr ≥ 0 ,

for every radial function χ ∈ C∞
c (M). In terms of vλ the above inequality reads

+∞∫
0

(χ ′(r))2(ψ(r))N−1 dr − 1

λ2

+∞∫
0

evλ( r
λ
)(χ(r))2 (ψ(r))N−1 dr ≥ 0 ,

for every radial function χ ∈ C∞
c (M). Now, choosing ηλ(r) := η( r

λ
) as test function for some 

radial function η ∈ C∞
c (M) and then using the change of variable s = r

λ
we infer

+∞∫
0

(η′(s))2(ψ(sλ))N−1 ds −
+∞∫
0

evλ(s)(η(s))2 (ψ(sλ))N−1 ds ≥ 0,

for every radial function η ∈ C∞
c (M). Now fix S > 0 and then choose η in such a way that 

supp(η) ⊂ BS where BS denotes the geodesic ball of radius S centered at the pole o. By Lagrange 
Theorem for any s ∈ [0, S], there exist 0 < ζ < sλ and 0 < |t | < |ψ ′′(ζ )|

2 (sλ) such that for λ → 0+

(ψ(sλ))N−1 = (sλ)N−1 + g(ζ, t)(sλ)N ,

where g(ζ, t) = (N − 1)(1 + t)N−2 ψ ′′(ζ )
2 . This gives, after cancelling λN−1, that

+∞∫
0

(η′(s))2sN−1 ds +
+∞∫
0

(η′(s))2 sNg(ζ, t)λ ds

−
+∞∫
0

evλ(s)(η(s))2sN−1 ds −
+∞∫
0

evλ(s)(η(s))2 sNg(ζ, t)λ ds ≥ 0.
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Therefore taking the limit as λ → 0+, we finally obtain

+∞∫
0

(η′(s))2sN−1 ds −
+∞∫
0

ev̄(s)(η(s))2sN−1 ds ≥ 0,

for every radial function η ∈ C∞
c (M). Therefore v̄ is a stable solution of the equation −�u = eu

on RN for 2 ≤ N ≤ 9. This contradicts the results of [15] and concludes the proof. �
We complete the stability picture for 2 ≤ N ≤ 9 by showing that S is a closed interval.

Lemma 5.8. Let ψ satisfy (A1)-(A3) and let 2 ≤ N ≤ 9, then S = (−∞, η].

Proof. Suppose η /∈ S and so uη is unstable solution. Then for each n ∈ N there exist ηn ∈ S
such that ηn → η for n → +∞. The definition of ηn gives that each uηn is a stable solution. 
Hence for each radial function χ ∈ C∞

c (M) there holds

+∞∫
0

(χ ′(r))2(ψ(r))N−1 dr −
+∞∫
0

euηn (r)(χ(r))2(ψ(r))N−1 dr ≥ 0.

Now, for any function χ ∈ C∞
c (M), we have that supp(χ) is a compact set and continuous 

dependence on initial data gives uηn → uη uniformly. This implies

+∞∫
0

(χ ′(r))2(ψ(r))N−1 dr −
+∞∫
0

euη(r)(χ(r))2(ψ(r))N−1 dr ≥ 0

contradicting the fact that uη is an unstable solution. �
By Lemma 5.2 we know that η ≥ log(λ1(M)); the next two lemmas allow us to improve these 

bounds when ψ/ψ ′ is not integrable.

Lemma 5.9. Let ψ satisfy (A1)-(A3). Then for any α,

�(M,α) := inf
v∈H 1(M)\{0}

∫
M

|∇gv|2g dVg∫
M

euαv2 dVg

admits a minimizer.

Proof. The proof is a straightforward adaptation of [4, Lemma 5.11] to this setting, therefore we 
omit it. �
Lemma 5.10. Let ψ satisfy (A1)-(A3) and assume that ψ

′ /∈ L1(0, +∞). Then η > log(λ1(M)).

ψ
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Proof. Set ᾱ := log(λ1(M)) and let �(M, α) be as in the statement of Lemma 5.9, then 
�(M, ᾱ) > 1. Indeed, if w ∈ H 1(M) is the minimizer of �(M, ᾱ), then

�(M, ᾱ) =
∫
M

|∇gw|2g dVg∫
M

euᾱ |w|2 dVg

≥
∫
M

|∇gw|2g dVg

eᾱ
∫
M

|w|2 dVg

≥ 1.

Therefore, if �(M, ᾱ) = 1, w solves

−�gw = λ1(M)w in M and − �gw = euᾱw in M.

This implies that uᾱ is constant, which is a contradiction. Hence, �(M, ᾱ) > 1.
Next we consider a decreasing sequence {αk} such that αk → ᾱ as k → +∞. We will show 

that �(M, αk) > 1 definitively, hence η > log(λ1(M)) which is the thesis.
By contradiction, assume that there exists K > 0 such that �(M, αk) ≤ 1 for k > K . For any k

let wk be a minimizer of �(M, αk) satisfying 
∫
M

euαk w2
k dVg = 1. The sequence {wk} is bounded 

in H 1(M) hence, up to a subsequence, wk ⇀ w in H 1(M) as k → +∞ and wk → w strongly in 
L2(BR) for any R > 0, where we recall that BR denotes the geodesic ball of radius R centered 
at the pole o.

For any α ∈R consider the Lyapunov functional (3.1): Fα(r) = 1
2 (u′

α(r))2 + euα(r) for r > 0. 
From the proof of Theorem 2.2, the stated assumptions imply that limr→+∞ uα(r) = −∞ and 
limr→+∞ u′

α(r) = 0. Therefore, for every ε > 0 there exists Rε > 0 such that Fᾱ(Rε) < ε. Since 
for any r > 0, uαk

(r) → uᾱ(r) and u′
αk

(r) → u′̄
α(r) as k → +∞, then there exists K̄ = K̄(ε) > 0

such that Fαk
(Rε) < ε for k > K̄ . Since the functions Fαk

are nonincreasing, it follows that 
Fαk

(r) < ε and euαk
(r) < ε for any r ≥ Rε and k > K̄ . Therefore,

∣∣∣∣
∫
M

euαk w2
k dVg −

∫
M

euᾱw2 dVg

∣∣∣∣
≤
∣∣∣∣
∫

BRε

euαk w2
k dVg −

∫
BRε

euᾱw2
k dVg

∣∣∣∣+
∣∣∣∣
∫

BRε

euᾱw2
k dVg −

∫
BRε

euᾱw2 dVg

∣∣∣∣
+
∣∣∣∣
∫

M\BRε

euαk w2
k dVg −

∫
M\BRε

euᾱw2 dVg

∣∣∣∣
≤ sup

BRε

|euαk − euᾱ |
∫

BRε

w2
k dVg +

∣∣∣∣
∫

BRε

euᾱw2
k dVg −

∫
BRε

euᾱw2 dVg

∣∣∣∣
+ ε

∫
M\BRε

w2
k dVg + ε

∫
M\BRε

w2 dVg

≤ sup
BRε

|euαk − euᾱ |
∫

BRε

w2
k dVg + o(1) + ε

λ1(M)

(∫
M

|∇gwk|2gdVg + lim inf
k→+∞

∫
M

|∇gwk|2gdVg

)

≤ Cε + ε

λ1(M)

(
�(M,αk) + lim inf

k→+∞�(M,αk)

)
+ o(1) ≤ Cε + 2ε

λ1(M)
+ o(1) .
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In the above estimate we used the following facts: wk → w in L2(BRε ) strongly, euαk → euᾱ uni-
formly, the lower semicontinuity of the H 1(M)-norm and the inequality �(M, αk) ≤ 1. Letting 
k → +∞, since ε was chosen arbitrarily, we conclude that

lim
k→+∞

∫
M

euαk w2
k dVg =

∫
M

euᾱw2dVg.

Using again the lower semicontinuity of the H 1(M)-norm, we finally have

1 < �(M, ᾱ) ≤
∫
M

|∇gw|2g dVg∫
M

euᾱ |w|2 dVg

≤ lim inf
k→+∞

∫
M

|∇gwk|2g dVg∫
M

euαk |wk|2 dVg

= lim inf
k→+∞�(M,αk),

a contradiction. This ensures that �(M, αk) > 1 definitively and concludes the proof. �
5.2. High dimensions

We are going to state the key ingredients in the proofs of Theorem 2.7 and Theorem 2.9-(iii). 
Inspired by [20] and [21] (see the Appendix), given a radial regular solution u of (2.2), we define 
the function

v(r) = u(r) + 2 log(ψ(r)) − log[2(N − 2] . (5.12)

Then v solves the equation

v′′(r) + (N − 1)
ψ ′(r)
ψ(r)

v′(r) + 2(N − 2)

[
ev(r)

(ψ(r))2 −
(

ψ ′(r)
ψ(r)

)2
]

− 2ψ ′′(r)
ψ(r)

= 0 (5.13)

The linearized equation at a function v = v(r) becomes

ϕ′′(r) + (N − 1)
ψ ′(r)
ψ(r)

ϕ′(r) + 2(N − 2)

(ψ(r))2 ev(r) ϕ(r) = 0 .

In particular, linearizing at v(r) = 2 log(ψ ′(r)), we obtain the equation

ϕ′′(r) + (N − 1)
ψ ′(r)
ψ(r)

ϕ′(r) + 2(N − 2)

(
ψ ′(r)
ψ(r)

)2

ϕ(r) = 0 . (5.14)

Next we define the operator L as the left hand sight of (5.14), i.e.

Lϕ(r) = ϕ′′(r) + (N − 1)
ψ ′(r)
ψ(r)

ϕ′(r) + 2(N − 2)

(
ψ ′(r)
ψ(r)

)2

ϕ(r) (5.15)

and we consider the polynomial:

P(λ) := λ2 + (N − 2)λ + 2(N − 2) . (5.16)
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It is readily seen that P admits the negative root:

λ1 := −(N − 2) − √
(N − 2)(N − 10)

2
(N ≥ 10) . (5.17)

Adapting in a non trivial way the proof of [20, Lemma 3.1] to our setting, we prove the following 
property of the operator L:

Lemma 5.11. Suppose that ψ satisfies (A1), (A2) and (A5). Let N ≥ 10 and let 0 < R < +∞, 
then there exists no function z ∈ C2((0, R]) such that

(i) Lz > 0 in (0, R);
(ii) z > 0 in (0, R) and z(R) = 0;

(iii) ψ(r)z′(r) = O(1) and z(r) = o
(
(ψ(r))−(N−2+λ1)

)
as r → 0+,

with λ1 as in (5.17).

Proof. Suppose by contradiction that there exists z ∈ C2((0, R]) satisfying (i)-(iii). Let us de-
fine

Z(r) := (ψ(r))λ1 for any r > 0

with λ1 as in (5.17). Differentiating we have that

Z′(r)=λ1(ψ(r))λ1−1 ψ ′(r), Z′′(r)=λ1(λ1 −1)(ψ(r))λ1−2 (ψ ′(r))2 +λ1(ψ(r))λ1−1 ψ ′′(r)

and hence

LZ(r) = λ1(ψ(r))λ1−1 ψ ′′(r) + (ψ(r))λ1−2(ψ ′(r))2 P(λ1) (5.18)

= λ1(ψ(r))λ1−1 ψ ′′(r) < 0

since λ1 is a negative root of the polynomial P and by (A1), (A2), (A5) we have

ψ ′′′(r)
ψ ′(r)

>

(
ψ ′′(r)
ψ ′(r)

)2

, ψ ′′(r) > 0 for any r > 0 . (5.19)

Indeed, the first inequality in (5.19) is equivalent to (A5) and from it we also have that ψ ′′′ > 0
which implies ψ ′′ increasing and, in turn, by (A1) we finally obtain ψ ′′ > 0 in (0, +∞).

Now, combining (i), (ii) and (5.18), we obtain for any r ∈ (0, R)

0 < (Lz(r))Z(r) − (LZ(r))z(r)

=
(

z′′(r) + (N − 1)
ψ ′(r)
ψ(r)

z′(r)
)

Z(r) −
(

Z′′(r) + (N − 1)
ψ ′(r)
ψ(r)

Z′(r)
)

z(r)

which is equivalent to
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[
(ψ(r))N−1z′(r)Z(r)

]′ − [(ψ(r))N−1Z′(r)z(r)
]′

> 0 .

In particular, we have the function

r �→ (ψ(r))N−1 [z′(r)Z(r) − Z′(r)z(r)
]

is increasing in (0, R) and this implies

(ψ(R))N−1z′(R)Z(R) > lim
r→0+(ψ(r))N−1 [z′(r)Z(r) − Z′(r)z(r)

]
= lim

r→0+

[
(ψ(r))N−2+λ1 z′(r)ψ(r) − λ1(ψ(r))N−2+λ1z(r)ψ ′(r)

]
= 0

thanks to (ii), (iii), (A1) and the fact that N − 2 + λ1 > 0.
We may conclude that z′(R) > 0 in contradiction with (ii). �
Thanks to Lemma 5.11, we now prove a uniform estimate for functions defined in (5.12).

Lemma 5.12. Suppose that ψ satisfies (A1), (A2) and (A5) and let N ≥ 10. Then any function v
defined by (5.12) satisfies

v(r) < 2 log(ψ ′(r)) for any r > 0 .

Proof. Let us define

V (r) = 2 log(ψ ′(r)) for any r > 0 . (5.20)

If we define W(r) = V (r) − v(r), the statement of the lemma is equivalent to say that W(r) > 0
for any r > 0.

We first observe that by (5.12), (5.20), (A1) and the fact that u is a radial smooth function in 
M , we have

W(r) = 2 log(ψ ′(r)) − u(r) − 2 log(ψ(r)) + log[2(N − 2)] ∼ −2 log(ψ(r)) → +∞
(5.21)

as r → 0+.
Then, recalling the definition of λ1 given in (5.17), by (5.21) and de l’Hôpital’s rule, we infer

lim
r→0+(ψ(r))N−2+λ1 W(r) = lim

r→0+
−2 log(ψ(r))

(ψ(r))−(N−2+λ1)
= lim

r→0+
2

N − 2 + λ1
(ψ(r))N−2+λ1 = 0

being ψ(0) = 0 and ψ ∈ C0([0, +∞)) by (A1) and N − 2 + λ1 > 0 as already observed in the 
proof of Lemma 5.11. In particular, we have that

W(r) = o
(
(ψ(r))−(N−2+λ1)

)
as r → 0+ . (5.22)
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Moreover, differentiating in (5.21), using (A1) and exploiting the fact that u′(0) = 0, we also 
obtain

W ′(r) = 2ψ ′′(r)
ψ ′(r)

− u′(r) − 2ψ ′(r)
ψ(r)

∼ − 2

ψ(r)
as r → 0+

so that in particular

ψ(r)W ′(r) = O(1) as r → 0+ . (5.23)

By (5.21) we know that W(r) > 0 for any r small enough. We have to prove that actually W
is positive in (0, +∞) and hence we may proceed by contradiction assuming that there exists 
R > 0 such that

W(r) > 0 for any r ∈ (0,R) and W(R) = 0 . (5.24)

We claim that LW > 0 in (0, R) with L as in (5.15). First of all we observe that by (5.19), V
satisfies

V ′′(r) + (N − 1)
ψ ′(r)
ψ(r)

V ′(r) + 2(N − 2)

[
eV (r)

(ψ(r))2 −
(

ψ ′(r)
ψ(r)

)2
]

− 2ψ ′′(r)
ψ(r)

(5.25)

= 2

[
ψ ′′′(r)
ψ ′(r)

−
(

ψ ′′(r)
ψ ′(r)

)2
]

+ 2(N − 2)
ψ ′′(r)
ψ(r)

> 0 for any r > 0 .

Subtracting (5.13) to (5.25), applying Lagrange Theorem to the exponential function and exploit-
ing (5.24), we infer

0 < W ′′(r) + (N − 1)
ψ ′(r)
ψ(r)

W ′(r) + 2(n − 2)

(ψ(r))2

[
eV (r) − ev(r)

]
(5.26)

< W ′′(r) + (N − 1)
ψ ′(r)
ψ(r)

W ′(r) + 2(N − 2)

(ψ(r))2 eV (r)[V (r) − v(r)]

= W ′′(r) + (N − 1)
ψ ′(r)
ψ(r)

W ′(r) + 2(N − 2)

(
ψ ′(r)
ψ(r)

)2

W(r) = LW(r)

for any r ∈ (0, R), thus completing the proof of the claim.
By (5.22), (5.23), (5.24), (5.26), we see that W satisfies conditions (i), (ii), (iii) of 

Lemma 5.11 and the same lemma states that this is impossible.
We reached a contradiction and this means that W > 0 in (0, +∞). The proof of the lemma 

now follows immediately from the definition of V and W . �
The estimate stated in Lemma 5.12 allows us to prove that for N ≥ 10 solutions of (2.4) are 

ordered in the following sense:
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Lemma 5.13. Suppose that ψ satisfies (A1), (A2) and (A5) and let N ≥ 10. Let α > β and let 
uα and uβ two solutions of (2.2) satisfying uα(0) = α and uβ(0) = β . Then uα(r) > uβ(r) for 
any r ≥ 0.

Proof. Since α > β we have that uα(r) > uβ(r) for any r ≥ 0 small enough. We proceed by 
contradiction assuming that there exists R > 0 such that

uα(r) > uβ(r) for any r ∈ [0,R) and uα(R) = uβ(R) . (5.27)

Recalling (5.12) we may define two functions vα and vβ corresponding to uα and uβ respectively.
By (5.27) we obtain

vα(r) > vβ(r) for any r ∈ [0,R) and vα(R) = vβ(R) . (5.28)

By Lemma 5.12 we know that

vα(r) < 2 log(ψ ′(r)) and vβ(r) < 2 log(ψ ′(r)) for any r > 0 . (5.29)

Let us define w(r) = vα(r) − vβ(r) = uα(r) − uβ(r) for any r ≥ 0. Since both vα and vβ

solve (5.13), by (5.29) and Lagrange Theorem we have that

0 = w′′(r) + (N − 1)
ψ ′(r)
ψ(r)

w′(r) + 2(N − 2)

(ψ(r))2

[
evα(r) − evβ(r)

]
(5.30)

< w′′(r) + (N − 1)
ψ ′(r)
ψ(r)

w′(r) + 2(N − 2)

(ψ(r))2 evα(r) [vα(r) − vβ(r)]

< w′′(r) + (N − 1)
ψ ′(r)
ψ(r)

w′(r) + 2(N − 2)

(
ψ ′(r)
ψ(r)

)2

w(r) = Lw(r)

for any r ∈ (0, R).
We observe that, by (A1), w trivially satisfies the following two conditions

ψ(r)w′(r) = O(1) , w(r) = o
(
(ψ(r))−(N−2+λ1)

)
as r → 0+ , (5.31)

being w = uα − uβ ∈ C2([0, +∞)).
By (5.28), (5.30) and (5.31), we see that w satisfies conditions (i), (ii) and (iii) of 

Lemma 5.11 and the lemma itself says that this is impossible. We proved that w > 0 in [0, +∞)

and now the proof of the lemma follows from the definition of w. �
6. Proofs of Theorems 2.5, 2.6, 2.7 and 2.9

6.1. Proof of Theorem 2.5

The proof of statements (i) and (ii) follow, respectively, from Lemma 6.1 and Lemma 6.2
below.
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Lemma 6.1. Let N ≥ 2 and let ψ satisfy (A1)-(A2). Let α and β be two distinct real numbers 
and let uα and uβ be the corresponding solutions of (2.2), i.e. uα(0) = α and uβ(0) = β . If uα

and uβ are stable then they do not intersect.

Proof. Without loss of generality we may assume α > β; we establish that uα(r) > uβ(r) for any 
r > 0. If this is not true then there exists r0 > 0 such that uα(r0) ≤ uβ(r0). Now using Lagrange 
Theorem and Lemma 5.3 we deduce that for some σ ∈ (β, α) we have

vσ (r0) = ∂u

∂α
(σ, r0) = uα(r0) − uβ(r0)

α − β
≤ 0

and vσ (0) = 1. Hence there exists R ∈ (0, r0] such that vσ (R) = 0. Then vσ satisfies

−�gvσ = euσ vσ in BR with vσ = 0 on ∂BR.

Multiplying this equation by vσ and integrating by parts we obtain

∫
BR

|∇gvσ |2g dVg −
∫
BR

euσ v2
σ dVg = 0.

Let wσ be the trivial extension of vσ to the whole M in such a way that wσ ∈ H 1(M) and

∫
M

|∇gwσ |2g dVg −
∫
M

euσ w2
σ dVg = 0.

Since uα is a stable solution and σ < α, by Lemma 5.6 we deduce that uσ is a stable solution 
too. This implies that

inf
v∈H 1(M)\{0}

∫
M

|∇gv|2g dVg∫
M

euσ |v|2 dVg

≥ 1,

and wσ attains the infimum. In particular, wσ satisfies the following equation

−�gwσ = euσ wσ in M.

Now by standard regularity theory wσ ∈ C2(M) and satisfies the following equation

−w′′
σ (r) − (N − 1)

ψ ′(r)
ψ(r)

w′
σ (r) = euσ (r)wσ (r) for any r > 0.

Moreover, by construction wσ (r) = 0 for r > R and so, by unique continuation, we conclude 
that wσ ≡ 0 in M . This is a contradiction. �
Lemma 6.2. Let N ≥ 2 and let ψ satisfy (A1)-(A3). If u ∈ C2(M) is an unstable solution of 
(2.2), then there exists no solution v ∈ C2(M) of (2.2) such that v > u in M.
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Proof. Suppose that there exists a solution v ∈ C2(M) of (2.2) such that v > u. Let w = v − u, 
so w > 0 in M . Using the Lagrange Theorem we have

−�gw = ev − eu ≥ euw in M .

Now taking ϕ ∈ C∞
c (M) and multiplying in the above inequality by ϕ

2

w
, integrating by parts and 

using Cauchy Schwarz and Young inequalities, we infer

∫
M

euϕ2dVg ≤ −
∫
M

〈
∇gw,∇g

(
ϕ2

w

)〉
g

dVg

= 2
∫
M

〈
∇gw,

ϕ

w
∇gϕ

〉
g

dVg −
∫
M

ϕ2

w2 |∇gw|2g dVg ≤
∫
M

|∇gϕ|2g dVg.

This implies that u is a stable solution and gives a contradiction. �
6.2. Proofs of Theorems 2.6 and 2.7

The proofs of Theorem 2.6 - (i) and (ii) follow by Lemma 5.7 and Lemma 5.8 which give 
that S = (−∞, η]. By Lemma 5.2 we know that η ≥ log(λ1(M)) while Lemma 5.10 allows 
improving this bound when ψ/ψ ′ is not integrable.

The proof of Theorem 2.7 follows arguing by contradiction. Indeed, suppose that there exists 
a radial solution u ∈ C2(M) of (2.2) with N ≥ 10 which is unstable. Let v ∈ C2(M) be a radial 
solution of (2.2) such that v(0) > u(0). Then, by Lemma 5.13 we have that v > u on M , in 
contradiction with Lemma 6.2.

6.3. Proof of Theorem 2.9

The proofs of Theorem 2.9 - (i) and (iii) follow by combining Theorem 2.6-(i) and Theo-
rem 2.7 with Lemma 6.1. Instead, the proof of Theorem 2.9-(ii) follows by combining Theo-
rem 2.6-(ii) with Lemma 6.2.
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Appendix A. Some (well) known facts in the Euclidean case

Consider the equation

−�u = eu in RN (6.1)

and let u be a radial regular solution of (6.1). Letting α = u(0), then u solves (2.2) with ψ(r) = r . 
Following [21], we consider the function v(r) = u(r) + 2 log r − log[2(N − 2)] (i.e., (5.12) with 
ψ(r) = r) which satisfies the equation

−v′′(r) − N − 1

r
v′(r) = 2(N − 2)

r2 [ev(r) − 1] (r > 0) .

Now, let w(t) = v(et ) so that w solves the autonomous equation

w′′(t) + (N − 2)w′(t) + 2(N − 2)[ew(t) − 1] = 0 (t ∈ R) . (6.2)

Following [21] one can reduce equation (6.2) into an autonomous system in the plane (y, z)
admitting the unique stationary point (0, 0) where we put z(t) = w(t) and y(t) = w′(t). Clearly, 
the system is given by

⎧⎨
⎩

y′(t) = −(N − 2)y(t) − 2(N − 2)[ez(t) − 1] ,
z′(t) = y(t) .

(6.3)

The behaviour and, in turn, the stability of radial solutions to (6.1) depend on the nature of the 
stationary point (0, 0) of (6.3) and, in particular, after linearization at (0, 0), on the nature of the 
eigenvalues of the matrix

(−(N − 2) −2(N − 2)

1 0

)
. (6.4)

We observe that the characteristic polynomial of the matrix (6.4) is exactly the polynomial P
given in (5.16). For 3 ≤ N ≤ 9 it admits two complex conjugate eigenvalues while for N ≥ 10 it 
admits two negative eigenvalues which are coinciding if N = 10 and distinct if N ≥ 11:

λ1 = −(N − 2) − √
(N − 2)(N − 10)

, λ2 = −(N − 2) + √
(N − 2)(N − 10)

(N ≥ 10) .

2 2
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The above computations highlight a change in the nature of solutions when passing from low 
(N ≤ 9) to high dimensions (N ≥ 10). Starting from this observation, see e.g., [25, Theorem 
1.1], it can be proved that radial smooth solutions intersect themselves infinitely many times if 
3 ≤ N ≤ 9 and do not intersect if N ≥ 10. Furthermore, for N ≤ 9 all regular solutions of (6.1)
are unstable while for N ≥ 10 radial regular solutions are stable, see [15] and reference therein.
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