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Abstract. For the past three decade, Reynolds Average Navier-Stokes models have been
widely used in the industry to simulate complex flows. However, these models suffer from
limitations. Indeed there are still large discrepancies in the Reynolds stresses between
the RANS model and high-fidelity data provided by DNS or experiments. This paper
presents a strategy to correct the Menter SST model using an explicit algebraic model
and two different neural networks: an multilayer perceptron (MLP) and a generative
adversarial network (GAN). Moreover, in order to preserve the physical properties of
the Reynolds stress tensor, we introduce a penalisation term in the loss of the GAN.

1 INTRODUCTION

Nowaday, with the increase in computationnal power, artificial intelligence plays a
major role in various fields such as facial recognition, creating art and a broad range of
non-linear physical systems. In the field of turbulence modeling, data-driven methods
represent a promising research area since they have the potential to improve classical
closure models for Reynolds Averaged Navier-Stokes (RANS) equations. Furthermore,
the available computational power allows to perform scale-resolving simulations on in-
dustrial problems characterised by significantly high values of the Reynolds number. The
high-fidelity data obtained by these expensive simulations can be exploited not just to
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predict the performances of a system but to extract modelling knowledge on the physical
phenomena which govern the flow field and develop new RANS models. Every improve-
ment in RANS modelling capability has a significant impact on the industry since RANS
models are still widely used for design, analysis and optimization of many aerodynamic
components. In particular, RANS models can fail in the presence of separation, transi-
tion or high streamline curvature: several machine learning strategies can be exploited
to compute corrections for existing RANS models in order to overcome their limitations.
In the present work, a non-linear correction to the Boussinesq assumption is evaluated
by means of artificial neural networks. The goal is to express the correction as a function
of local flow features and to impose some physical constraints on the obtained correction.
A database obtained by a high-fidelity DNS simulation available in the literature [3] is
analyzed in order to investigate the potential of the proposed strategy.

2 PRESENTATION OF THE REFERENCE DATABASE

The flow over a periodic hill has become a very useful benchmark test case. It allows
to evaluate performance of numerical methods, turbulence closure for RANS or LES or
meshing strategy. In this configuration, there are some complex flow features appear like
separation and reattachment that RANS models have difficulty in predicting. Xiao and
al. performed a Direct Numerical Simulation[3] on different geometric configurations
assuming incompressible flow and setting the Reynolds number to 5600. The data are
produced using a six-order compact scheme for spatial discretization and third-order
Adams-Bashforth scheme for time discretization on a Cartesian mesh.

3 RANS FRAMEWORK AND BOUSSINESQ’S ASSUMPTION

In this work, we propose a correction of the Menter SST two equations model[4] which
is one of the most used RANS model. The Menter SST two equations model is :
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In the framework of this RANS model, the Boussinesq’s assumption is used to eval-
uate the anisotropic part of the Reynolds stresses. That assumption link linearly the
anisotropic part of the Reynolds stress tensor to the strain rate tensor:
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Where k is the dynamic turbulent energy and S;; is the strain rate tensor:
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and the kinetic eddy viscosity p; is computed by means of the Menter SST two equations
model :

park
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The quatity d is the distance from the closest wall and € is the rate of dissipation of the

turbulent kinetic energy. In order to assess the quality of the Boussinesq’s assumption,

we can introduce an indicator (2] defined by the inner product between the anisotropic

stress tensor a;; and the strain rate tensor:
2

"}/ =
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This indicator gamma can be applied to high-fidelity data to test the validity of the
Boussinesq assumption: it provides a measure of the alignment between the anisotropic
part of the Reynolds stress tensor and the strain rate tensor. Therefore, v varies between
—land 1. If v = —1, it means that the two tensors are colinear in the opposite direction.
A value of 0 means that the two tensors are perpendicular and a value of 1 means an
alignement between the two and therfore the Boussinesq approximation holds.

The ~ field obtained by applying Eq. 7 to the DNS data provided by [2] is reported

Figure 1: Alignment of the anisotropic stress tensor and the strain rate tensor
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in Figure 1. Some regions with poor alignment can be seen. The objective of this work
will be to add a corrective term in the Boussinesq’s assumption in order to correct this
discrepancy.

3.1 Explicit algebraic model

In order to correct the Boussinesq’s assumption, it is possible to follow the approach

proposed in the framework of the Explicit Algebraic Reynolds Stress model [8](EARSM
model) in which additional terms are introduces in order to form a non-linear constitu-
tive stress-strain relationship that reduces the discrepancy showed before.
The EARSM model has been developed in the past invoking a weak equilibrium hypoth-
esis as well as the use of the Cayley-Hamilton theorem in order to define a tensor basis
Vz’; and some scalar invariants I that can be used to correct the Reynolds stress tensor.
This formulation assures that Galilean invariance is respected. In this case, Pope[l] has
already derived the relevant integrity basis and already proven that in the most general
incompressible case, an eddy viscosity model that is function of only S and R can be
expressed as linear combination of 10 isotropic basis tensors :

Vi=§ Vo = RS + SR? — 21 Tr(SR?)

I = Tr(S?) Iy = Tr(R2S) Vo= SR — RS Vz = RSR? — R’SR

I = Tr(R?) I = Tr(R?S?) Vs =S8%— 2ITr(S?) Vg =SRS?— S?RS

I3 = Tr(5%) Vi=R*—iITe(R?) Vy=R%S?+ S?2R? — 21 Tx(S2R?)
Vs = RS? - S°R Vio = RS?R? — R?S?R

Table 1: Invariants

Table 2: Tensor Basis

S=18 R=7R 7':%

The correction of the Reynold’s stress tensor is defined as :
9 10
55T = 201,535 — 3Pk + Pk fell, o, oo I5)VE (8)
k=1

Any correction which is of this form will satisfy Galilean invariance.
The goal then is to find the function : fi(Iy,...I5). However, it has been demonstred [1]
that only two invariants and three tensors basis are sufficient to have good results in a
two-dimensional flow and the time for the training is greatly reduced.

From (8), we deducted that for each point of the mesh we have:

3
2
pk Y e, L)VE = 7557 — 2.8 + 3Pk0i; (9)
k=1

And we can compute fi by solving a linear system since all the variables are available
from the reference database (we impose 7'55T = 7'5 NSy,
However, if f, is directly evaluated it is possible to obtain some outliers values (Figure
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2, 3, 4) which will deteriorate the following training process: the origin of this outliers
could be related to the discretization error introduced in the computation of the velocity
gradients from the reference database. To limit this behavior, we assume that the
solution of the system on each points should be close to the solution of the system
at neighbouring points. From (9), we can transform this equation as :

Az —b=0 (10)

If we consider this equation on the point Py and Py, ..., P, are the neighbors of Py, then
we want to resolve the minimization problem :

n
argminHon—bg||2+aZ|\Ai$—biH2 (11)
* i=1

As reported in Figures 5, 6, 7, there are still outliers values but the scale is much lower,
which will help the training of the neural networks.

Figure 3: fo(I1, 1) without accounting

Figure 2: fi(I1, ) without accounting
for neighbours

for neighbours

Figure 4: f3(I1,I2) without accounting Figure 5: fi(I1, I3) taking into account
for neighbours the neighbours
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Figure 6: fo(I7, ) taking into account Figure 7: f3(I1,I3) taking into account
the neighbours the neighbours

4 MACHINE LEARNING
4.1 Neural network

As explained in the previous section, the goal is to determine the function fi (11, I2)
from (8). In order to do so, we will use three multilayer perceptrons. Each one of the
neural networks will take as input the two invariant and as output the value of one of
the function fi. The mean squared error will be used as loss function.

The three neural networks have the same architecture. They are composed of 7 layers

of 100 neurons each. We chose this architecture using a Bayesian hyperparameters
optimization [7]. Furthermore, those networks will use connection skipping to help
with the vanishing gradient problem and stabilize training and convergence. Connection
skipping in deep architecture is a technique which allow to skip some layers in the neural
network and feed the output of one layers as the input of the next layers (not only the
very next one). There are multiple ways to do a connection skipping but in this case,
we will concatenate the output of one layer with the output of the next layer to input
in the next third layer.
To train this network, we will use 80% of the mesh of one geometry as training set and
the 20% left will be used as validation set. Then, we will test it on a different geometry
from the database described before. The difference between the training set (geometry
A) and the test set (geometry B) is the width of the domain.

4.2 Results

In the Figures 8, 9, 10, the blue points are the different coefficients we extracted with
the minimization problem and the red points are the coefficients we get by the neural
networks described in the previous section from the training data.
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Figure 8: fi([1,1I2) on the training set Figure 9: fo(I1,I2) on the training set
on geometry A on geometry A

Figure 10: f3(I1, 1) on the training set
on geometry A

Thoses figures show that the network has learned the general shape of the data except
of the outliers.
Figures 11a and 15a represents the error of the Reynolds stress tensor computed with
the SST model and the correction on the training set (Figure 11) and the test set (Figure
15). The Figure 11b and 15b represents the error of the Reynolds stress tensor computed
with just the SST model. The Errors are computed as follow :

HTDNS _ ,7_SST—‘,—correction’‘L2 (12)

|7V — 55T | (13)

On the Figure 11 and 15, there is an overall improvement except on one region on the
right. This may be to numerical errors that were introduced when the gradients were
computed from the available high-fidelity data.
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Figure 11: Error of the Reynold stress tensor on the training set on geometry A

The Figure 12, 13, 14 are the coefficient extracted from the minimization

(blue) and from the neural networks (red) on the training set.

Figure 12: f1(I1,I2) on the test set on

geometry B

0025

geometry B

0025

problem

Figure 13: f3([1, 1) on the test set on
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Figure 14: f3(I1,I2) on the test set on
geometry B
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Figure 15: Error of the Reynold stress tensor on the test set on geometry B

4.3 Generative adversarial network

A Generative adversarial network [6] (GAN) is a network composed by two neural

networks. One of them is called the discriminator, whose task is to discriminate gener-
ated from real data. And the other is the generator, which has to generate data (Figure
16).
The generator takes random noise as input and generates data that the discriminator
has to discriminate from the real data. The training of GANs involves both finding
the parameters of a discriminator that maximize its classification accuracy, and finding
the parameters of a generator which maximally confuse the discriminator. The cost of
training is evaluated using a value function, V(D, G) that depends on both the generator
and the discriminator. The training involves solving :

ngn max V(D,G) = Eppyoyo(x) 108(D(2)) + Eep () log(1 — D(G(2)) (14)



Thomas Philibert, Angelo Iollo, Andrea Ferrero, Francesco Larocca

Where pgqq(x) p.(z) denote the probability distributions of training data and latent
space vector z, respectively, and E indicates expectations

Random Input
"""" > Vector

v

Generator
Model

v

Generated Data Real Data

- «

Update o
model Discriminator [ e .
Model |

l Update
model |

Binary Classification
Real /Fake [N

Figure 16: Architecture of a generative adversarial network

The goal is to train each of the network one after the other to improve the quality of
the generated data. Indeed, when the generator is trained it forces the discriminator to
generate better quality data. Furthermore, when the generator is trained, it forces the
discriminator to improve its classification capability.

In our case, the generator will be composed by 4 layers of 50 neurons and the dis-
criminator will be composed by 8 layers of 20 neurons. We chose this architecture using
a Bayesian hyperparameters optimization [7]. Furthermore, in the generator loss[5], we
will add a penalisation term. Indeed, we would like that the data generated follow the
physics. And so we add a penalisation on the realizability conditions :

i >0 (15)
2
(puiu)” < ou? pu? (16)

Since those conditions are on the Reynolds stress tensor, we have to create some random
vectors to compute a Reynolds stress tensor with the SST model. These new data should
follow the distribution of the DNS database. The input of the generator model includes
the generated invariants, tensor basis and the generated Reynolds stress tensor we should
have with the SST model. From here, the generator will try to find the functions fj
as previously but we compute the Reynolds stress tensor with the correction in the
network in order to apply the penalisation. The functions created are then fed to the
discriminator with some data obtain from DNS.

4.4 Results

As previously, this network will be trained on 80% of the mesh of one geometry and
validated on the other 20% (geometry A) and then tested on a different geometry from

10
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the DNS database (geometry B).

The Figure 17 and 18 show the error of the GAN on the training set (17a) and on
the test set (18a) compared with the SST model (17b and 18b) As we can see, we have
an averall improvement. However, this improvement is not as good as the one we had
previously. But since we added the realizability condition, the results we got with this
strategy tend to satisfy the realizability conditions. The Figure 19 show the constraint
applied to the result of the classic neural network. On the right of the graphe, there is
a zone that is not zero meaning that the constraint is not respected here. However, the
constraint is always respected while using the GAN.

All the test performed in this work are based on a-priori analysis: future work will
be dedicated to a-posteriori analysis in which the corrected models will be implemented
and tested in a CFD solver.

Error SST + GAN correction
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Figure 17: Error of the Reynold stress tensor on the training set on geometry A
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Figure 18: Error of the Reynold stress tensor on the test set on geometry B

11



Thomas Philibert, Angelo Iollo, Andrea Ferrero, Francesco Larocca
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Figure 19: Constraint applied to the result of the Reynolds stress tensor from the Neural

network
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