
30 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Forward fitting STIX visibilities / Volpara, Anna; Massa, Paolo; Perracchione, Emma; Francesco Battaglia, Andrea;
Garbarino, Sara; Benvenuto, Federico; Krucker, S??m; Piana, Michele; Maria Massone, Anna. - In: ASTRONOMY &
ASTROPHYSICS. - ISSN 0004-6361. - 668:(2022), pp. 1-12. [10.1051/0004-6361/202243907]

Original

Forward fitting STIX visibilities

Publisher:

Published
DOI:10.1051/0004-6361/202243907

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977110 since: 2023-06-04T10:19:54Z

EDP SCIENCES



A&A 668, A145 (2022)
https://doi.org/10.1051/0004-6361/202243907
c© The Authors 2022

Astronomy
&Astrophysics

Forward fitting STIX visibilities
Anna Volpara1, Paolo Massa2, Emma Perracchione3, Andrea Francesco Battaglia5,6, Sara Garbarino1,

Federico Benvenuto1, Säm Krucker5,7, Michele Piana1,8, and Anna Maria Massone1,4

1 MIDA, Dipartimento di Matematica, Università degli Studi di Genova, Via Dodecaneso 35, 16146 Genova, Italy
e-mail: volpara@dima.unige.it, massone@dima.unige.it, piana@dima.unige.it

2 Department of Physics & Astronomy, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
3 Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129

Torino, Italy
4 CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
5 University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch, Switzerland
6 ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
7 Space Sciences Laboratory, University of California, 7 Gauss Way, 94720 Berkeley, USA
8 INAF – OATo, Strada Osservatorio 20, 10025 Pino Torinese, Torino, Italy

Received 29 April 2022 / Accepted 17 October 2022

ABSTRACT

Aims. We seek to determine to what extent the problem of forward fitting visibilities measured by the Spectrometer/Telescope
Imaging X-rays (STIX) on board Solar Orbiter becomes more challenging with respect to the same problem in the case of previ-
ous hard X-ray solar imaging missions . In addition, we aim to identify an effective optimization scheme for parametric imaging
for STIX.
Methods. This paper introduces a global search optimization for forward-fitting STIX visibilities and compares its effectiveness with
respect to the standard simplex-based optimization used so far for the analysis of visibilities measured by the Reuven Ramaty High
Energy Solar Spectroscopic Imager (RHESSI). We made this comparison by considering experimental visibilities measured by both
RHESSI and STIX, as weel as synthetic visibilities generated by accounting for the STIX signal formation model.
Results. We found that among the three global search algorithms for parametric imaging, particle swarm optimization (PSO) exhibits
the best performances in terms of both stability and computational effectiveness. This method is as reliable as the simplex method
in the case of RHESSI visibilities. However, PSO is significantly more robust when applied to STIX simulated and experimental
visibilities.
Conclusions. A standard optimization based on local search of minima is not effective enough for forward-fitting the few visibilities
sampled by STIX in the spatial frequency plane. Therefore, more sophisticated optimization schemes based on global search must be
introduced for parametric imaging in the case of the Solar Orbiter X-ray telescope. The forward-fitting routine based on PSO proved
to be significantly robust and reliable, and it could be considered as an effective candidate tool for parametric imaging in the STIX
context.

Key words. Sun: flares – Sun: X-rays, gamma rays – techniques: image processing – telescopes

1. Introduction

Fourier imaging in astronomy was first introduced in radio astro-
physics (Snell et al. 2019) and, indeed, interferometric arrays of
on-Earth radio telescopes record sets of Fourier components of
the incoming photon flux, which are referred to as “visibilities”.
The first application of visibilities in space instruments probably
dates back to around forty years ago during the Yohkoh mission
(Kosugi et al. 1991). However, the first space instrument utiliz-
ing visibility-based imaging in an extensive and systematic way
was designed by G. Hurford at the beginning of this century, with
the NASA RHESSI mission for the hard X-ray observation of
solar flares (Lin et al. 2002; Hurford et al. 2002). Nowadays, vis-
ibilities are the native form of measurements for the Spectrome-
ter/Telescope for Imaging X-rays (STIX; Krucker et al. 2020),
which is one of the remote sensing instruments on-board the
ESA Solar Orbiter mission.

There are crucial differences between the processing of radio
and hard X-ray visibilities. On the one hand, the dishes of radio

telescopes are typically very large and hence collect very large
numbers of photons (of the order of several thousands) char-
acterized by very small energy per photon. On the other hand,
RHESSI and STIX observe a much smaller number of pho-
tons characterized by much higher energies. For RHESSI, the
Nyquist theorem and the requirement for an adequate sampling
of a modulation cycle of its Rotating Modulation Collimators
(Piana et al. 2022) imply that the number of independent visi-
bilities available for imaging purposes is around 300 (however,
statistically significant visibilities are often fewer, typically rang-
ing between a few dozens and one hundred). For STIX, things
are even worse: the sampled frequency points in this case are
determined by the number and geometry of the sub-collimators,
which are only 30.

Physical and geometrical constraints have significant
impacts on the way visibilities are processed for image recon-
struction. In the case of radio astronomy, interpolation in the
visibility space and application of inverse Fourier transform
are sufficient to obtain reliable images of the radio source
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(Arras et al. 2021). In the RHESSI and (even more) in the STIX
frameworks, more sophisticated mathematics based on regu-
larization theory for ill-posed problems is needed to reduce
the ambiguity induced by such a sparse sampling of the
data space (Massa et al. 2020, 2022; Perracchione et al. 2021;
Massone et al. 2009).

Among visibility-based hard X-ray imaging methods,
forward-fitting algorithms are aimed at estimating the input
parameters of pre-defined shapes of the emitting sources by
means of optimization procedures. The idea behind these
algorithms is to model an emitting source by means of a param-
eterized function (typically obtained by modifications and repli-
cations of a 2D Gaussian function) and then to compute the
parameter values that minimize the sum of the squared dis-
tance between the real and imaginary parts of the observed
and predicted visibilities. The crucial tool for implementing
these approaches is the optimization scheme applied in order to
carry out such a minimization. Almost all forward-fitting-based
RHESSI studies relied on simplex Nelder-Mead optimization,
also known as AMOEBA Search (Press 2007; Aschwanden et al.
2002; Hurford et al. 2002), with results that are always reli-
able and robust (Xu et al. 2008; Kontar et al. 2011; Guo et al.
2012a,b, 2013; Dennis et al. 2018). (We note that the only excep-
tion to this simplex-based approach is probably represented by
a study of the February 20, 2002 event where visibility forward-
fitting is realized by means of a sequential Monte Carlo sampler;
Sciacchitano et al. 2018).

Compared to non-parametric imaging methods, forward-
fitting approaches have the advantage of directly providing esti-
mates of the parameters of the X-ray sources (e.g., location,
intensity, and dimension) and related uncertainties. Furthermore,
details on the instrument response function can be more easily
included in the forward-fitting process, thus increasing the accu-
racy and reliability of the results. On the other hand, parametric
imaging methods have a major drawback in that the geometry
of the retrieved X-ray configuration heavily depends on the a
priori choice of number and shape of the parametric functions
that are used for reconstructing the image. Hence, if the cho-
sen parametric configuration does not reflect the actual morphol-
ogy of the source, forward-fitting results could potentially be
biased. However, as proved by comparisons with reconstructions
obtained with non-parametric algorithms (see e.g., Piana et al.
2022; Massa et al. 2022), the parametric shapes that are adopted
for modelling the X-ray sources usually represent a reliable
approximation of the underlying flaring morphology.

The rationale of the present study was to assess whether
simplex-based optimization is reliable as well in the case of
STIX visibilities. The result of our analysis posits that when the
number of available visibilities is as small as in the case of the
ESA space telescope, there are significant experimental condi-
tions where the use of AMOEBA for optimization provides an
unreliable parameter estimation. We then proved that this draw-
back can be fixed by introducing parametric imaging strategies
based on global optimization. In particular, our analysis suggests
that the biology-inspired scheme (Kennedy & Eberhart 1995;
Wahde 2008; Liu et al. 2011; Qasem & Shamsuddin 2011)
– used for fitting STIX visibility amplitudes when fully cali-
brated visibilities were not yet available (Massa et al. 2021) –
performs better than other global search schemes available in
the literature. This optimization strategy is then applied for the
first time to fully calibrated visibilities and its performances are
compared with the ones of simplex optimization in the case of
several data sets made of both synthetic and experimental STIX
visibilities.

The plan of the paper is as follows. Section 2 provides a
simple formalism illustrating the forward-fit problem for STIX.
Section 3 compares some global search techniques for optimiza-
tion problems and introduces the biology-inspired optimization
algorithm. Section 4 contains the results of the analysis of both
synthetic and observed STIX visibilities. Our comments and
conclusions are offered in Sect. 5.

2. STIX forward-fit problem

The mathematical equation describing the image formation
problem for STIX is

F φ = V, (1)

where the function φ = φ(x, y) represents the intensity of the
X-ray photon flux originating from the (x, y) location on the Sun,
V is the array containing the Nv complex values of the visibilities
measured by STIX, and F is the Fourier transform defined by

(F φ)l =

"
φ(x, y) exp (2πi(xul + yvl)) dx dy l = 1, . . . ,Nv,

(2)

where {(ul, vl)}
Nv
l=1 is the set of spatial frequencies sampled by

the instrument. Therefore, the image reconstruction problem
for STIX is the linear problem of determining the photon
flux from a few experimental Fourier components. The STIX
imaging problem in Eq. (1) and more generally, the image
reconstruction problem from hard X-ray visibilities suffers from
non-uniqueness of the solution (due to the limited (u, v) cov-
erage of the telescopes) and from ill-conditioning. Hence, for
overcoming these issues and determining a reliable solution
of the imaging problem, several regularization methods have
been implemented in the last decades. We refer the reader to
Piana et al. (2022) for a recent review of hard X-ray imaging
techniques developed so far.

In this paper we focus on forward fitting methods, whose
goal is to provide estimates of the parameter values of paramet-
ric shapes used for modelling a flaring source. Physical consid-
erations about hard X-rays emission and the experience gained
during the RHESSI mission suggest that appropriate paramet-
ric shapes are those whose contour levels are shown in Fig. 1: a
single Gaussian circular or elliptical source, a double Gaussian
circular source and a loop source. A Gaussian circular source
(circle henceforth) is a bi-dimensional isotropic Gaussian func-
tion described by the array of parameters (xc, yc, ϕ,w) represent-
ing the x and y coordinates of the center, the total flux, and
the full width at half maximum (FWHM), respectively. Like-
wise, a Gaussian elliptical source (ellipse henceforth) consists
of a bi-dimensional Gaussian function described by the array of
parameters (xc, yc, ϕ,wM,wm, α) representing the x and y coordi-
nates of the center, the total flux, the major and minor FWHM,
and the orientation angle, respectively. A double Gaussian cir-
cular source (double henceforth) consists of the sum of two
bi-dimensional isotropic Gaussian functions. In this configura-
tion, the parameters to optimize are the same as in the circle for
each source. Finally, a loop source (loop henceforth) consists of
the replication of a number of circles (in this application we con-
sidered 11 circles) with centers located along a circumference.
This configuration is described by the same parameters as for
the ellipse with the addition of the loop angle β, that is the angle
centered in the center of the circumference representing the
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Fig. 1. Gaussian shapes considered in the parametric imaging process.
Top left: Gaussian circular source (circle); top right: Gaussian ellipti-
cal source (ellipse); bottom left: replication of 11 circles (loop); bottom
right: double Gaussian circular source (double).

curvature and subtended by the loop1. This shape is appropri-
ate for modelling the thermal component of the emission and
was not included in the PSO release used in Massa et al. (2021).
The definition of loop shape we adopted is the same as the one
implemented in the RHESSI forward-fit routine VIS_FWDFIT2

available in the Solar SoftWare (SSW) repository. A loop shape
can be also obtained as a curved Gaussian ellipse, as done in pre-
vious works (see e.g., Aschwanden et al. 2002); however, deter-
mining which definition of loop configuration provides the most
reliable and stable results is beyond the aim of this work and will
be the subject of a future investigation.

We use θ to denote the array of parameters characterizing
each source shape. Then, forward-fitting STIX visibilities for
parametric imaging requires the solution of the optimization
problem:

arg min
θ∈Θ

χ2(θ), (3)

where Θ is the parameter space and the target function χ2(θ) is
defined as:

χ2(θ) =
1

Nv − Nθ

Nv∑
l=1

|Vl − (F φθ)l|
2

σ2
l

, (4)

Nθ is the number of parameters of the source shape function φθ
(either a circle, an ellipse, a double, or a loop) andσl is the uncer-
tainty on the lth measured visibility amplitude.

The parametric imaging problem for STIX consists of select-
ing a specific shape function φθ as the candidate source, solving
the problem in Eqs. (3) and (5) and using the corresponding
source shape with the solution parameters for obtaining the
reconstructed image. The computational core of this procedure
is the optimization scheme applied for solving Eqs. (3) and (5).
In the SSW repository, the VIS_FWDFIT routine utilizes the
simplex scheme (AMOEBA) and was applied for the paramet-
ric imaging of all RHESSI data sets published so far and for the

1 https://hesperia.gsfc.nasa.gov/rhessi3/software/
imaging-software/vis-fwdfit/index.html
2 https://hesperia.gsfc.nasa.gov/ssw/gen/idl/image/
vis/vis_fwdfit_makealoop.pro

creation of the RHESSI image archive3. The effectiveness of this
approach significantly decreases when the number of the avail-
able data becomes smaller, as in the case of STIX measurements.
Therefore, in this framework, new optimization approaches must
be introduced, which are able to avoid local minima by means of
a more effective exploration of the parameter space.

3. From local to global optimization

Optimization problems can be described in terms of local or
global optimization, where local optimization looks for the opti-
mal solution just within a specific region of the search space, while
global optimization explores the whole search space. As a con-
sequence, local search algorithms are able to find global optima
only if they are contained in the (limited) explored region, while
global search algorithms are able to locate the global solution
wherever it is, paying the price of a higher computational bur-
den. The optimization scheme utilized in the VIS_FWDFIT rou-
tine (AMOEBA) belongs to the family of local search algorithms
and relies on the Nelder-Mead algorithm (Avriel 2003). In order
to overcome the AMOEBA limitations due to local search, here
we applied approaches based on the application of global search
techniques (Horst & Pardalos 2013). In particular, we considered
Simulated annealing (Kirkpatrick et al. 1983), an evolutionary
algorithm (Bäck 1996), and particle swarm optimization (PSO;
Eberhart & Kennedy 1995). Simulated annealing implements a
global search based on a probabilistic hill-climbing procedure
inspired by statistical mechanics and mimics small thermody-
namics fluctuations of a system of atoms starting from an initial
configuration. The evolutionary algorithm, whereas, is inspired
by the biological processes that allow population of individuals to
adapt to the environment, assuming genetic inheritance and sur-
vival of the fittest individuals. Finally, PSO is another biology-
inspired technique based on the model of intelligent cooperative
behavior exhibited by certain animals such as flocks of birds or
schools of fish.

In order to determine which global search algorithm bet-
ter performs in the case of STIX parametric imaging, we
implemented a numerical experiment exploiting STIX synthetic
visibilities.

3.1. Comparison of global strategies

Synthetic STIX visibilities can be generated utilizing the STIX
simulation software. Once a specific flare configuration is
selected (e.g., circle, ellipse, double, loop), a Monte Carlo
approach is used to reproduce the trajectory of the photon counts
emitted from the source and measured by the detector pixels.
Visibilities and related uncertainties are then computed from the
simulated count measurements.

We considered three configurations mimicking non-thermal
emissions (configurations C1, C2, C3, represented by two foot-
points in different positions within the field of view and char-
acterized by different dynamic ranges), and three configurations
mimicking thermal emissions (configurations C4, C5, C6, rep-
resented by loop shapes in different position within the field of
view and characterized by different orientation and loop angles).
For each configuration, the three global search techniques have
been applied to 25 random realizations of the corresponding
STIX synthetic visibilities. The average values for the param-
eters characterizing each simulated configuration and the corre-
sponding standard deviations are given in Table 1. The whole

3 https://hesperia.gsfc.nasa.gov/rhessi3/
mission-archive/index.html
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Table 1. Average values and standard deviations of the imaging parameters estimated by the three considered global search techniques for the
reconstruction of the synthetic configurations in the first column of Fig. 2.

First source Second source

Flux FWHM x y Flux FWHM x y
(counts s−1 keV−1 cm−2) (arcsec) (arcsec) (arcsec) (counts s−1 keV−1 cm−2) (arcsec) (arcsec) (arcsec)

C1 Ground truth 5000.0 8.0 0.0 0.0 5000.0 8.0 30.0 30.0
Simulated annealing 4800 ± 600 9.0 ± 2.0 −0.1 ± 0.6 0.1 ± 0.3 5000 ± 600 10.0 ± 3.0 30.3 ± 0.5 30.0 ± 0.4

Evolutionary algorithm 4700 ± 400 8.0 ± 1.0 0.0 ± 0.4 0.1 ± 0.2 5000 ± 400 9.0 ± 1.0 30.1 ± 0.4 29.9 ± 0.3
PSO 4800 ± 100 8.5 ± 0.6 0.2 ± 0.2 0.1 ± 0.3 4800 ± 100 8.2 ± 0.7 30.1 ± 0.2 29.9 ± 0.3

C2 Ground truth 5000.0 8.0 −15.0 −15.0 3000.0 8.0 15.0 15.0
Simulated annealing 4700 ± 600 8.0 ± 2.0 −15.4 ± 0.5 −15.1 ± 0.2 3000 ± 600 13.0 ± 5.0 15.0 ± 1.0 15.0 ± 1.0

Evolutionary algorithm 4900 ± 300 8.6 ± 0.7 −15.0 ± 0.3 −15.0 ± 0.2 3000 ± 200 9.0 ± 1.0 14.9 ± 0.4 14.0 ± 0.3
PSO 4900 ± 100 8.5 ± 0.4 −15.0 ± 0.2 −15.0 ± 0.2 2770 ± 90 8.5 ± 0.9 14.9 ± 0.4 14.9 ± 0.3

C3 Ground truth 5000.0 8.0 −15.0 0.0 5000.0 8.0 15.0 0.0
Simulated annealing 4800 ± 700 9.0 ± 3.0 −15.1 ± 0.7 −0.1 ± 0.5 5000 ± 900 10.0 ± 3.0 15.0 ± 0.6 0.2 ± 0.4

Evolutionary algorithm 4800 ± 500 8.0 ± 2.0 −15.0 ± 0.4 0.1 ± 0.3 5000 ± 600 9.0 ± 2.0 15.0 ± 0.4 0.0 ± 0.2
PSO 4900 ± 100 8.5 ± 0.6 −14.9 ± 0.2 0.1 ± 0.3 4770 ± 90 8.3 ± 0.4 15.1 ± 0.2 0.0 ± 0.2

Loop

Flux FWHM max FWHM min α x y Loop angle
(counts s−1 keV−1 cm−2) (arcsec) (arcsec) (deg) (arcsec) (arcsec) (deg)

C4 Ground truth 80 000.0 22.5 9.0 0.0 20.0 0.0 70.0
Simulated annealing 64 500 ± 500 21.3 ± 0.4 7.0 ± 0.8 −0.2 ± 0.4 20.5 ± 0.1 0.0 ± 0.1 56.0 ± 10.0

Evolutionary algorithm 78 100 ± 700 27.0 ± 2.0 8.9 ± 0.6 0.1 ± 0.4 20.0 ± 0.1 0.0 ± 0.1 69.0 ± 2.0
PSO 78 300 ± 200 24.5 ± 0.9 10.0 ± 0.7 0.1 ± 0.6 20.0 ± 0.2 0.0 ± 0.3 69.0 ± 2.0

C5 Ground truth 80 000.0 22.0 14.0 45.0 20.0 20.0 105.0
Simulated annealing 67 000 ± 1000 17.3 ± 0.3 9.9 ± 0.5 45.0 ± 1.0 20.4 ± 0.1 20.3 ± 0.1 50.0 ± 20.0

Evolutionary algorithm 78 400 ± 500 20.0 ± 0.3 12.1 ± 0.2 44.0 ± 1.0 20.1 ± 0.1 20.0 ± 0.1 99.0 ± 6.0
PSO 78 400 ± 200 19.1 ± 0.3 12.3 ± 0.2 44.0 ± 1.0 20.1 ± 0.1 20.0 ± 0.1 101.0 ± 7.0

C6 Ground truth 9000.0 22.0 12.0 45.0 15.0 15.0 105.0
Simulated annealing 8800 ± 100 22.0 ± 1.0 10.8 ± 0.8 45.0 ± 2.0 15.2 ± 0.2 15.0 ± 0.2 102.0 ± 8.0

Evolutionary algorithm 8800 ± 400 21.0 ± 2.0 10.0 ± 2.0 45.0 ± 2.0 15.3 ± 0.4 15.0 ± 0.4 100.0 ± 20.0
PSO 8800 ± 100 21.1 ± 0.6 11.5 ± 0.5 45.0 ± 2.0 15.2 ± 0.2 15.0 ± 0.2 105.0 ± 6.0

Notes. For each configuration, the algorithms have been applied to 25 random realizations of the STIX synthetic visibility sets.

set of algorithms aptly reconstructs the expected values, with
PSO offering more stable solutions, as suggested by system-
atically smaller standard deviation values. In the case of the
reconstruction of configurations C1, C2, and C3, Simulated
annealing requires an average computational time of 35.3 s, the
evolutionary algorithm required 77.5 s and PSO required 8.2 s.
This test has been performed on a Microsoft Windows 7 Enter-
prise (Intel(R) Core(TM) i7-2600 CPU at 3.40 GHz) machine.
In the case of the reconstruction of configurations C4, C5, and
C6, Simulated annealing required an average computational time
of 18.3 s, the evolutionary algorithm required 72.6 s and PSO
required 10.2 s. Furthermore, Fig. 2 shows an example of the
kind of reconstruction (among the 25 ones) that has been most
frequently provided by each method. In general, the three algo-
rithms show a similar behavior, except for configuration C4,
where PSO clearly demonstrates a better performance. Based on
the results of this analysis, PSO will be used in the following as
the global strategy to realize STIX parametric imaging.

3.2. Some details on PSO

Particle swarm optimization (PSO; Eberhart & Kennedy 1995)
realizes optimization by mimicking swarm intelligence. The
starting point of swarm intelligence is a random initialization
of a set of points (candidate solutions) within the parameter
space Θ, which gives rise to a swarm of particles or birds, with
initial positions and velocities. Then, position and velocity of
each bird are iteratively modified so that the swarm accumu-
lates around the point of Θ corresponding to the minimum of the
objective function (the χ2 function in the parametric STIX imag-
ing). Specifically, at each iteration, the location of each particle
is updated based on its velocity at the previous iteration (inertia),
the best position visited by the particle since the beginning of the
iterative process (individual cognition) and the global best posi-

tion visited by the whole swarm (social learning). For details
on the implementation of this procedure we refer the reader to
Sect. 3 in Massa et al. (2021). The IDL PSO routine we have
implemented and included in SSW is based on the implemen-
tation introduced by Mezura-Montes & Coello Coello (2011).
Differently than for VIS_FWDFIT, the PSO-based approach
(VIS_FWDFIT_PSO from now on) has been implemented in
such a way that the user can decide which parameters have
to be optimized, while keeping the other ones fixed. In both
VIS_FWDFIT and VIS_FWDFIT_PSO implementations, the
uncertainty on the parameters is estimated by generating a confi-
dence strip around each parameter value: several realizations of
the input data are computed by randomly perturbing the exper-
imental set of visibility with Gaussian noise whose standard
deviation is set equal to the errors on the measurements; for
each realization, the optimization method is applied; and, finally,
the standard deviation of each optimized source parameter is
computed.

4. Numerical and experimental results

We compared the performances of VIS_FWDFIT_PSO to the
ones of VIS_FWDFIT in the case of three experiments. First,
we verified that PSO parameter estimates are comparable with
the ones provided by AMOEBA in the case of RHESSI visibili-
ties, when VIS_FWDFIT showed notable reliability and robust-
ness. Then, we generated synthetic STIX visibilities from the
six ground truth configurations considered in Sect. 3.1 and we
applied VIS_FWDFIT_PSO and VIS_FWDFIT to these sim-
ulated data sets. Finally, we compared the robustness of the
two optimization schemes with respect to different choices of
the map center in the case of STIX experimental visibilities
observed during the SOL2021-08-26T23:20 event.
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Fig. 2. Forward-fitting synthetic STIX visibilities associated with configurations mimicking three non-thermal and three thermal emissions, by
means of Simulated annealing, evolutionary algorithm and PSO. First column: simulated configurations (the values of the configuration parameters
are given in Table 1). Considering the 25 realizations of STIX visibility sets already used in Table 1, the second, third and fourth columns show the
kind of reconstruction most frequently provided by Simulated annealing, evolutionary algorithm, and particle swarm optimization, respectively.
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A&A 668, A145 (2022)

Fig. 3. Forward-fitting RHESSI visibilities with AMOEBA and PSO. Top row: reconstructions of the thermal component (6–12 keV) of the
February 13, 2002 event 12:29:40–12:31:22 UT provided by VIS_FWDFIT (left), VIS_FWDFIT_PSO (middle) and MEM_GE (right). Bottom
row: reconstruction of the non-thermal component (22–50 keV) of the February 20, 2002 event 11:06:05–11:07:42 UT.

Table 2. February 13, 2002 flare observed by RHESSI in the energy range 6–12 keV and in the time interval 12:29:40–12:31:22 UT.

Energy (keV) Method Shape Flux (counts s−1 keV−1 cm−2) Orientation (deg) Curvature (deg)

6–12 VIS_FWDFIT Loop 320.0 ± 10.0 6.0 ± 5.0 −80.0 ± 30.0
6–12 VIS_FWDFIT_PSO Loop 330.0 ± 10.0 6.0 ± 5.0 −80.0 ± 30.0

Notes. The parameter values are provided by VIS_FWDFIT and VIS_FWDFIT_PSO when the chosen shape is loop.

Table 3. February 20, 2002 flare observed by RHESSI in the energy range 22–50 keV and in the time interval 11:06:05–11:07:42 UT.

Energy (keV) Method Shape Component Flux (counts s−1 keV−1 cm−2) FWHM (arcsec)

22–50 VIS_FWDFIT Double 1 11.0 ± 0.5 4.6 ± 0.6
22–50 VIS_FWDFIT_PSO Double 1 11.4 ± 0.4 4.8 ± 0.5
22–50 VIS_FWDFIT Double 2 13.1 ± 0.5 7.6 ± 0.6
22–50 VIS_FWDFIT_PSO Double 2 13.7 ± 0.6 7.9 ± 0.7

Notes. The parameter values are provided by VIS_FWDFIT and VIS_FWDFIT_PSO when the chosen shape is double.

4.1. RHESSI visibilities

On February 13, 2002, in the time range between 12:29:40 UT
and 12:31:22 UT a flaring emission of class C1.3 showed a loop
behavior in the thermal energy range between 6 and 12 keV.
RHESSI well observed both such emission and on February 20
one week later, a C7.5 limb flare in the time range 11:06:05–
11:07:42 UT characterized by a clearly visible non-thermal com-
ponent in the energy range 22–50 keV. In Fig. 3 we show the

reconstructions of these events provided by VIS_FWDFIT and
VIS_FWDFIT_PSO. Specifically, for forward-fitting the visibil-
ities observed during the February 13 event, we used a “loop”
configuration; a “double” configuration was instead considered
in the case of the February 20 event. To demonstrate that the
source shapes adopted in the forward-fitting procedures are rea-
sonable, we report in the third column of Fig. 3 the correspond-
ing reconstructions obtained by means of the non-parametric
method MEM_GE (Massa et al. 2020). Tables 2 and 3 contain
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Fig. 4. Forward-fitting synthetic STIX visibilities associated with configurations mimicking three non-thermal emissions, by means of AMOEBA
and PSO. First row: simulated configurations (the values of the configuration parameters are given in Table 4). Second and third rows: examples
of the kind of reconstruction most frequently provided by VIS_FWDFIT. Fourth and fifth rows: examples of the kind of reconstruction most
frequently provided by VIS_FWDFIT_PSO.
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Fig. 5. Forward-fitting synthetic STIX visibilities associated with configurations mimicking three thermal emissions, by means of AMOEBA and
PSO. First row: simulated configurations (the values of the configuration parameters are given in Table 4). Second and third rows: examples of the
kind of reconstruction most frequently provided by VIS_FWDFIT. Fourth and fifth rows: examples of the kind of reconstruction most frequently
provided by VIS_FWDFIT_PSO.
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Table 4. Average values and standard deviations of the imaging parameters estimated by VIS_FWDFIT and VIS_FWDFIT_PSO for the recon-
struction of the six synthetic configurations in the first row of Figs. 4 and 5.

First source Second source

Flux FWHM x y Flux FWHM x y
(counts s−1 keV−1 cm−2) (arcsec) (arcsec) (arcsec) (counts s−1 keV−1 cm−2) (arcsec) (arcsec) (arcsec)

Simulated 5000.0 8.0 0.0 0.0 5000.0 8.0 30.0 30.0
C1 VIS_FWDFIT 4900 ± 500 8.0 ± 2.0 −1.0 ± 0.4 −0.2 ± 0.6 5100 ± 500 20.0 ± 10.0 35.0 ± 5.0 35.0 ± 5.0

VIS_FWDFIT_PSO 4780 ± 90 8.5 ± 0.7 −0.1 ± 0.2 0.1 ± 0.2 4840 ± 60 8.7 ± 0.4 30.1 ± 0.2 30.1 ± 0.2
Simulated 5000.0 8.0 −15.0 −15.0 3000.0 8.0 15.0 15.0

C2 VIS_FWDFIT 4000 ± 3000 40.0 ± 10.0 −5.0 ± 3.0 −5.0 ± 3.0 4000 ± 2000 40.0 ± 10.0 −2.0 ± 5.0 −1.0 ± 5.0
VIS_FWDFIT_PSO 4880 ± 80 8.4 ± 0.6 −14.9 ± 0.2 −15.0 ± 0.2 2840 ± 90 8.3 ± 0.9 14.9 ± 0.5 14.9 ± 0.4

Simulated 5000.0 8.0 −15.0 0.0 5000.0 8.0 15.0 0.0
C3 VIS_FWDFIT 5100 ± 300 10.0 ± 1.0 −14.9 ± 0.4 −0.1 ± 0.4 4700 ± 200 12.0 ± 4.0 18.0 ± 4.0 0.1 ± 0.3

VIS_FWDFIT_PSO 4800 ± 200 8.5 ± 0.6 −15.1 ± 0.2 0.1 ± 0.3 4800 ± 100 8.4 ± 0.6 15.0 ± 0.3 −0.1 ± 0.2
Loop

Flux FWHM max FWHM min α x y Loop angle
(counts s−1 keV−1 cm−2) (arcsec) (arcsec) (deg) (arcsec) (arcsec) (deg)

C4 Ground truth 80 000.0 22.5 9.0 0.0 20.0 0.0 70.0
VIS_FWDFIT 78300 ± 200 24.5 ± 0.9 10.0 ± 0.7 0.1 ± 0.6 20.0 ± 0.2 0.0 ± 0.3 69.0 ± 2.0

VIS_FWDFIT_PSO 78300 ± 200 24.5 ± 0.9 10.0 ± 0.7 0.1 ± 0.6 20.0 ± 0.2 0.0 ± 0.3 69.0 ± 2.0
C5 Ground truth 80 000.0 22.0 14.0 45.0 20.0 20.0 105.0

VIS_FWDFIT 78 400 ± 200 19.1 ± 0.3 12.3 ± 0.2 44.0 ± 1.0 20.1 ± 0.1 20.0 ± 0.1 101.0 ± 7.0
VIS_FWDFIT_PSO 78 400 ± 200 19.1 ± 0.3 12.3 ± 0.2 44.0 ± 1.0 20.1 ± 0.1 20.0 ± 0.1 101.0 ± 7.0

C6 Ground truth 9000.0 22.0 12.0 45.0 15.0 15.0 105.0
VIS_FWDFIT 8800 ± 100 20.8 ± 0.6 11.0 ± 2.0 45.0 ± 2.0 15.1 ± 0.2 15.0 ± 0.2 106.0 ± 6.0

VIS_FWDFIT_PSO 8800 ± 100 21.1 ± 0.6 11.5 ± 0.5 45.0 ± 2.0 15.2 ± 0.2 15.0 ± 0.2 105.0 ± 6.0

Notes. For each configuration, the two algorithms have been applied to 25 random realizations of the STIX synthetic visibilities.

the values of the parameters retrieved by VIS_FWDFIT and
VIS_FWDFIT_PSO in the case of the February 13 and of the
February 20 event, respectively.

4.2. PSO and AMOEBA for STIX synthetic visibilities

We used the STIX simulation software to generate 25 new ran-
dom realizations of synthetic visibility sets associated to the
same six ground truth configurations considered in Sect. 3.1.
We then applied VIS_FWDFIT and VIS_FWDFIT_PSO against
these simulated sets and reported the corresponding results in
Figs. 4 and 5. Specifically, in each figure the first row contains
the ground truth configurations; the second and third rows con-
tain examples of the kind of reconstructions that are most fre-
quently provided by VIS_FWDFIT; and the fourth and fifth rows
contain examples of the kind of reconstructions that are most fre-
quently provided by VIS_FWDFIT_PSO. Table 4 contains the
averaged values of the imaging parameters provided by the two
routines, together with the corresponding standard deviations.
Finally, the reduced χ2 values of the reconstruction in Figs. 4
and 5 are shown in Table 5.

4.3. PSO and AMOEBA for STIX experimental visibilities

On August 26, 2021 STIX observed a GOES C3 class flare
close to the limb, whose light curves are represented in Fig. 6.
We considered the data set corresponding to the time range
between 23:18:00 and 23:20:00 UT and separately studied the
thermal emission in the energy range between 6 and 10 keV and
the non-thermal emission in the energy range between 15 and
25 keV. Furthermore, for this experiment, we did not use the six
visibilities measured by the sub-collimators with finest resolu-
tion, since they are not yet fully calibrated. We first computed
the discretized inverse Fourier transform of these visibilities
by applying the back projection algorithm and we identi-
fied the location of the maximum of the reconstructed ‘dirty
maps’ as reference map centers. We applied VIS_FWDFIT
and VIS_FWDFIT_PSO to the visibility set corresponding to
the thermal emission using the reference map center and we

Table 5. Reduced χ2 values associated with the reconstructions pro-
vided by VIS_FWDFIT and VIS_FWDFIT_PSO and shown in Figs. 4
and 5.

Configuration Method χ2

C1 VIS_FWDFIT 11.3 7.0
VIS_FWDFIT_PSO 1.2 1.2

C2 VIS_FWDFIT 32.2 17.1
VIS_FWDFIT_PSO 1.1 1.1

C3 VIS_FWDFIT 11.3 1.2
VIS_FWDFIT_PSO 1.2 1.2

C4 VIS_FWDFIT 3.2 3.1
VIS_FWDFIT_PSO 3.2 3.1

C5 VIS_FWDFIT 1.2 1.8
VIS_FWDFIT_PSO 1.2 1.2

C6 VIS_FWDFIT 1.5 1.5
VIS_FWDFIT_PSO 1.5 1.5

Notes. First column: considered configurations (C1–C6); second col-
umn: adopted reconstruction method; third column: reduced χ2 values
associated with the reconstructions of the second and fourth rows (left)
and of the third and fifth rows (right) of Figs. 4 and 5.

obtained the reconstructions represented in the first row of Fig. 7.
Specifically, in these two panels, the level curves of the maps
provided by VIS_FWDFIT and VIS_FWDFIT_PSO are man-
ually superimposed on the EUV maps measured by SDO/AIA
in the same time interval. Following the procedure described in
Battaglia et al. (2021), the AIA maps were reprojected to make
them appear as they would be seen from Solar Orbiter. In order to
test the robustness of the PSO-based approach to a non-optimal
choice of the map center, we then re-applied the two routines, but
this time with the map center shifted by |∆x| = |∆y| = 10 arcsec.
The results of this second experiment are provided in the two
bottom rows of the same figure. Finally, we have repeated this
experiment several times, for several values of the shift ∆x in
both directions, while keeping ∆y fixed at ∆y = 0. Just referring
to the non-thermal regime reconstructions, in Table 6 we report
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Fig. 6. Light curves for the August 26, 2021 event in the time range
23:16:46–23:21:14 UT.

the computed values for the FWHM of each source. We high-
lighted in red all cases where the relative variation of the FWHM
is bigger than 10% with respect to the optimal case ∆x = 0, for
at least one source.

4.4. Analysis of the computational burden

As a final validation step, we analyzed the differences in the
computational burden for the two schemes in the four cases
involving the experimental RHESSI and STIX visibilities con-
sidered in this study. Specifically, Table 7 compares the compu-
tational costs needed by VIS_FWDFIT and VIS_FWDFIT_PSO
both in the setting when the algorithms compute the uncertain-
ties on the estimated parameters and in the setting when just one
realization of the visibility set is considered. Tests have been per-
formed on an Apple MacBook Pro M1 (Chip Apple M1, CPU
8-core, GPU 8-core) processor.

5. Comments and conclusions

The image reconstruction problem when data are hard X-ray vis-
ibilities is intrinsically linear and numerically unstable. Image
reconstruction methods relying on regularization theory for ill-
posed linear inverse problems have the advantage of provid-
ing reconstructions without any a priori assumption on the
source morphology and typically via algorithms characterized
by a relatively low computational burden. However, these linear
approaches do not explicitly provide estimates of the imaging
parameters. Parametric imaging relies on prior assumptions on
the shape of the flaring source and often involves optimization
schemes able to automatically provide estimates of the imaging
parameters together with estimates of the corresponding statisti-
cal uncertainty.

This paper proved that AMOEBA, namely, the optimization
scheme at the core of the SSW VIS_FWDFIT routine and which
has shown a notable reliability for the forward fitting of RHESSI
visibilities, sometimes produces unreliable results when applied
to STIX visibilities. This is particularly evident in the tests pre-
sented in Figs. 4 and 5, where we used the same parametric
configuration as the ground truth one for fitting the synthetic
STIX visibilities. We are aware that in an operational setting,
the actual flaring morphology is not a priori known; however,
even under these simplified conditions, VIS_FWDFIT some-
times fails in reproducing the ground truth configuration (see
e.g., configuration C2). The AMOEBA optimizer provides also

Fig. 7. Parametric images of the August 26, 2021 event obtained by
applying VIS_FWDFIT (left column) and VIS_FWDFIT_PSO (right
columns) on STIX observations. First row: contour level of the thermal
(red) and non-thermal (blue) components superimposed onto the rotated
AIA map (the 50% contour level of the AIA image is plotted in green).
Second row: parametric images of the thermal component with the map-
center shifted of |∆x| = |∆y| = 10 arcsec. Third row: same as the second
row, but for the case of the non-thermal component.

unstable results when the center of the reconstructed map does
not perfectly coincide with the centroid of the flaring morphol-
ogy (see Fig. 7 and Table 6). For these reasons we have imple-
mented and included in SSW a new forward fitting routine,
namely, VIS_FWDFIT_PSO, in which the optimization step is
performed by means of a biology-inspired algorithm, namely
particle swarm optimization (PSO). This new routine has the
same good performances with respect to VIS_FWDFIT in the
case of RHESSI data, but is significantly more reliable in the
case of STIX visibilities. Specifically, the new routine is more
robust with respect to even slight modifications of the map cen-
ter. The map-center location is currently estimated by perform-
ing a back-projection full-disk image and by determining the
location of the most intense pixel. So, its uncertainty may depend
on the back-projection pixel size and on the possible presence
of sidelobes more intense than the back-projection core. In both
cases we may have uncertainties larger than ∼4 arcsec (some-
times even much larger). The unreliable results provided by
VIS_FWDFIT when the map-center is shifted from the reference
location (i.e., the location of the peak of the back projection)
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Table 6. FWHM values associated to the two sources reconstructed in the parametric images of the August 26, 2021 event, non-thermal regime,
by applying VIS_FWDFIT and VIS_FWDFIT_PSO to STIX visibilities for different map center values.

Shift (arcsec) Source FWHM (arcsec)
VIS_FWDFIT VIS_FWDFIT_PSO

∆x = +20 First source 23.0 ± 1.0 14.0 ± 2.0
Second source 10.0 ± 40.0 18.0 ± 2.0

∆x = +15 First source 18.0 ± 1.0 14.0 ± 2.0
Second source 17.0 ± 8.0 18.0 ± 2.0

∆x = +10 First source 13.0 ± 1.0 14.0 ± 2.0
Second source 19.0 ± 3.0 18.0 ± 2.0

∆x = +5 First source 12.0 ± 2.0 14.0 ± 2.0
Second source 22.0 ± 2.0 18.0 ± 2.0

∆x = 0 First source 14.0 ± 2.0 14.0 ± 2.0
Second source 18.0 ± 2.0 18.0 ± 2.0

∆x = −5 First source 14.0 ± 4.0 14.0 ± 2.0
Second source 19.0 ± 3.0 18.0 ± 2.0

∆x = −10 First source 9.71 ± 0.03 15.0 ± 3.0
Second source 22.0 ± 3.0 18.0 ± 2.0

∆x = −15 First source 1.0 ± 7.0 14.0 ± 2.0
Second source 25.0 ± 9.0 18.0 ± 2.0

∆x = −20 First source source 0.0 ± 10.0 15.0 ± 2.0
Second source 28.0 ± 3.0 18.0 ± 2.0

Notes. Each entry in the third and fourth column is the estimated FWHM value when the map-center is shifted of ∆x arcsec, while keeping ∆y = 0.
The red (green) color points out the reconstructions for which the relative variation of the FWHM is bigger (smaller) than 10% with respect to the
optimal case ∆x = 0, for at least one source.

Table 7. Computational time for VIS_FWDFIT and VIS_FWDFIT_PSO in the case of the four experimental data sets recorded by RHESSI and
STIX during the events considered in the paper and summarized in the first column.

Event Method Shape Computation time (s)
Uncertainty

On Off

13-Feb.-2002 VIS_FWDFIT Loop 1.66 0.10
VIS_FWDFIT_PSO 62.1 3.00

20-Feb.-2002 VIS_FWDFIT Double 0.42 0.04
VIS_FWDFIT_PSO 37.6 5.20

26-Aug.-2021 VIS_FWDFIT Ellipse 0.15 0.07
VIS_FWDFIT_PSO 2.54 0.18

26-Aug.-2021 VIS_FWDFIT Double 0.55 0.10
VIS_FWDFIT_PSO 21.8 3.60

Notes. Each reconstruction is performed ten times by selecting a specific shape, as reported in the third column. The average computational time is
presented in the fourth and fifth columns, where the labels “on” and “off” indicate whether the uncertainty on the retrieved parameters is estimated
or not, respectively.

are a reflection of the general instability of the method when
applied to STIX visibilities. Increasing the accuracy in the esti-
mate of the correct map-center would not be a solution for the
VIS_FWDFIT misbehaviours, since the AMOEBA optimizer
can get stuck in local minima even when the center of the
map coincides with the center of mass of the flaring configu-
ration (as shown in Figs. 4 and 5). The PSO optimizer is also
able to provide satisfactory results with regard to the recon-
struction of source configurations associated to the non-thermal
regime, when the foot points are characterized by similar inten-
sities. The misbehaviours, presented by VIS_FWDFIT when
utilized against STIX visibilities, are probably due to the lim-
ited number of data available in this context (about one order
of magnitude lower than those measured by RHESSI). Com-
pared to the RHESSI case, the ambiguity of the solution of

the image reconstruction is more pronounced in the STIX case
and this is possibly reflected in a larger number of local min-
ima in the objective χ2 function. As shown in Table 5, every
time VIS_FWDFIT provides unreliable results, the associated
χ2 value is larger than that of the corresponding (and reliable)
VIS_FWDFIT_PSO reconstruction. This proves that the reason
of the misbehaviours is in the AMOEBA optimizer getting stuck
in the local minima. In contrast, the PSO optimizer is consis-
tently able to reach the global minimum, thus demonstrating
its superiority over AMOEBA in this context. The price to pay
for this increased reliability is a heavier computational burden,
which is more than one order of magnitude higher when the set-
ting requires the computation of the uncertainties on the param-
eter estimates. However, this extra time is smaller with respect
to other global search optimization schemes and is still very
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well within a reasonable time frame for data analysis in this
context.

Finally, it may be possible to improve the performances of
AMOEBA by finetuning the initialization of the parameters to
be optimized. However, the changes to the initialization would
be event-dependent and would require a priori information on
the solution (e.g., an estimate of the location of the sources). In
contrast, PSO is able to provide stable results without the need
for an ad hoc initialization of the parameters, while only requir-
ing as input a lower and upper bound for each parameter to be
optimized.
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