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FSG-Net: a Deep Learning model for Semantic Robot Grasping
through Few-Shot Learning

Leonardo Barcellona∗,1,2, Alberto Bacchin∗,†,1, Alberto Gottardi1,3, Emanuele Menegatti1, Stefano Ghidoni1

Abstract— Robot grasping has been widely studied in the
last decade. Recently, Deep Learning made possible to achieve
remarkable results in grasp pose estimation, using depth and
RGB images. However, only few works consider the choice of
the object to grasp. Moreover, they require a huge amount of
data for generalizing to unseen object categories.

For this reason, we introduce the Few-shot Semantic Grasp-
ing task where the objective is inferring a correct grasp given
only five labelled images of a target unseen object. We propose a
new deep learning architecture able to solve the aforementioned
problem, leveraging on a Few-shot Semantic Segmentation
module. We have evaluated the proposed model both in the
Graspnet dataset and in a real scenario. In Graspnet, we achieve
40,95% accuracy in the Few-shot Semantic Grasping task,
outperforming baseline approaches. In the real experiments,
the results confirmed the generalization ability of the network.

I. INTRODUCTION
Grasping is one of the most fundamental manipulation

skills for robots to interact with objects. State-of-the-art
solutions already achieved impressive results on single object
picking thanks to the advent of Deep Learning (DL) [1].
Since the increase in performance reached a plateau, re-
searchers shifted the focus to the more challenging scenario
of cluttered environments. Considering the latter situation,
the approaches mainly rely on depth images, since they
contain geometric clues of the objects, obtaining remarkable
performance [2], [3].Afterwards, many authors further im-
proved the solutions by exploiting RGB images [4], [5] or
refining the grasp with the object semantic [6]. That said,
what are the future perspectives in robotic grasping?

In real-world applications, exploiting semantic information
is a very appreciated characteristic for grasping. From object
sorting to autonomous robotic assembly, recognizing the
right object to pick is crucial. Only few works [7], [8] adopt
semantic knowledge and, consequently, are suitable for the
aforementioned challenges. However, the methods proposed
in those works do not easily generalize to unseen objects. In
fact, every time a new category is required, it is necessary
to expand the dataset to re-train the model.

Whereas DL approaches require huge amounts of labelled
data, humans are able to recognize thousands of new and
unseen objects just by few examples [9]. Starting from this

∗Authors equally contributed to the work.
† Corresponding Author
1 Intelligent Autonomous System Lab, Department of

Information Engineering, University of Padova, 35131 Padua, Italy.
barcellona, bacchinalb, gottardial, emg,
ghidoni@dei.unipd.it

2 Politecnico di Torino, 10138 Torino, Italy.
3 IT+Robotics srl, 36100 Vicenza, Italy.

Fig. 1: The FSG pipeline. Given some examples of the object
that we want to pick, FSG-Net generates a grasp pose in the
image of the current scene, namely the query image.

observation, machine learning researchers have already intro-
duced approaches able to reduce the data needed for training.
The few-shot approaches aim to generalize to new categories
or tasks providing only few examples or even one. For
example, Few-shot Semantic Segmentation (FSS) models are
able to segment unseen objects just by showing a small set of
labelled images [10], [11], [12]. Despite the improvement in
generalization brought by few-shot approaches, their usage
is still limited. Furthermore, no previous studies explore
the possibility to combine Few-shot Semantic Segmentation
with traditional grasping pose generation to the best of our
knowledge.

For these reasons, we formulate the Few-shot Semantic
Grasping (FSG). The FSG is the task of generating an
optimal grasp pose of an unseen target object, given only
a few images labelled with semantic information of the
target. We solved the task by designing a DL model, called
FSG-Net, that leverage the generalization capabilities of FSS
models together with a novel grasping pose generator. Figure
1 depicts the FSG pipeline and highlights the role of the
proposed FSG-Net.

In detail, our contributions are:

• A novel Deep Learning model, called FSG-Net, that
given some example images of the object to pick,
computes a suitable grasping pose.

• A pioneering use of Few-shot Semantic Segmentation in
the context of robot grasping, designing an architecture
able to fuse spatial and semantic information.

• Exhaustive experiments on a publicly available dataset
and a real setup which show the capability of the



proposed FSG-Net to generalize to unseen objects,
while retaining state-of-the-art grasping pose estimation
accuracy.

The open source implementation of FSG-Net is available1.

II. RELATED WORKS

A. Few-Shot Semantic Segmentation

In computer vision, semantic segmentation is the dense
classification of the pixels of an image according to the
class they represent. Almost all state-of-the-art solutions
adopt DL approaches [13], [14], [15], [16]. Unet [15] is one
of the most widely used deep neural networks for seman-
tic segmentation and presents an encoder-decoder structure
solving the vanishing gradient problem by concatenating
the encoder features during the decoding. However, these
DL models cannot generalize to unseen classes. Moreover,
adding new classes requires huge amount of new labelled
examples and a new training of the network. To overcome
these limitations, Shaban et al. [10] proposed the Few-
shot Semantic Segmentation, that segments an image, named
query, given only few examples, named support. Despite the
recent introduction of the topic, it caught high attention from
the research community and many solutions were proposed
in the literature [11], [12], [17], [18]. The most prominent
approaches encode the information of the image in a discrim-
inative vector, called prototype, matching its content with the
support images. Prototyping approaches were introduced in
FSS by Dong [19] after the good results obtained in few-shot
classification [20]. In PFENet [11] the authors proposed a
features enrichment decoder able to exploit also high-level
features. In SCL [18] the authors propose a Self-Guided
Module that keeps more discriminative information than the
masked Global Average Pooling proposed in [17]. A very
inspiring approach is Asgnet [12] that introduces a clustering
approach to overcome the problem of occlusion and scale
variation. The idea is to clusterize the prototypes to keep
the spatial information. Despite the promising results, the
applicability is still limited. In our work, we exploit FSS
by means of a specific attention module (see Section IV
for details) that is able to recover some segmentation errors
and to increase the usability of such models. Thanks to this
enhancement, we are among the first to adapt FSS models
for robot grasping.

B. Robotic Grasping

Robot grasping aims to infer the correct gripper pose to
stably pick up objects. Nowadays, the advent of DL over-
comes previous approaches, implicitly modelling complex
relationships between objects shape ad grasping poses. Red-
mon et al. [21] propose a CNN followed by a fully connected
layer to regress the grasp pose as a single tuple of values.
Hence, that work can detect only one grasp per inference.
Conversely, a popular generative network, named Generative
Grasping Convolutional Neural Network (GG-CNN), was
proposed by Morrison et al. [2]. Starting from depth images,

1https://github.com/leobarcellona/FSG-Net

the authors used a multi-branch Fully Convolutional Neural
Network (FCNN) that predicts for each pixel the quality of
the grasp, the orientation and the width of the end-effector.
This information is encoded in three dense heatmaps, directly
computed by the network. In [4], authors further developed
this idea in their Generative Residual Convolutional Neural
Network (GR-ConvNet), using a larger model which also
exploits RGB images and using the smooth L1 loss function
to reduce the gradient divergence. By means of heatmaps,
it is possible to predict an arbitrary number of grasps in a
single inference. Inspired by [2], we also decided to encode
the information in heatmaps, while using L1 loss, as [4].

All the above solutions and most of the grasping frame-
works in the literature are object-agnostic, meaning that
these models select the most suitable object to grasp without
caring about the object type. However, many applications
may require knowledge of what they are going to pick. Con-
sequently, in [7], the authors define the problem of a robot
picking up an object of a user-specified class as semantic
robotic grasping. This introduces further complexity since it
combines geometric information to infer a suitable grasping
pose and semantic information to select the correct object.
The same work proposes different architectures to jointly
learn good 4 DoF poses and semantic labels through a self-
supervised approach using many robots. Sun et al. [22] fuse
the semantic segmentation from a CNN with a robust model
fitting technique in order to inject semantic information into
the grasping task. Training such systems is highly demanding
because introducing new categories requires many efforts.
In our work, we exploit the semantic segmentation to (a)
introduce the class-related information enabling semantic
grasping and (b) improve the estimation of the grasping
pose, as previous works demonstrate [6], [23]. Differently
from previous studies, we integrate into our pipeline a FSS
network to tackle the problem of adding new objects with
low effort. Our method can grasp objects of a specific class
never seen during the training procedure just by proving
few examples while delivering state-of-the-art grasping pose
estimation accuracy.

III. FSG FORMULATION

This section gives a mathematical definition of the FSG
task. Before that, we introduce two strictly related tasks: the
grasp inference and the FSS. Their definitions are essential
to formulate the FSG problem.

Grasp inference. In our work, we define a 4 DoF grasp
pose similarly to [2]. A grasp is defined as the tuple

gr = (x, y, θ, w) , (1)

where x and y are the coordinates of the center of the grasp, θ
is the orientation of the gripper along the axis perpendicular
to the image plane in radians, w is the width of the gripper
suitable to pick up the object without collisions.

Few-shot Semantic Segmentation. We define a support
set as S = {(Is,Ms)i , i = 1, ..., k}, that is a set of k tuples
of images Is and the segmentation masks Ms of a certain
class. Given a query image Iq and a support set S, the FSS
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Fig. 2: A detailed scheme of the proposed architecture. The Few-Shot Module (upper-right corner) extracts semantic
information from RGB images. The Backbone module (upper-left corner) is in charge to output low-level spatial features.
The three heads of the model (bottom) are used for the final prediction of A, W and Q. The light-blue boxes high-lights
self-designed sub-networks, based on Unet [15].

task estimates the segmentation mask Mq of Iq for the class
identified by S . In this setting, we define the training set
as Dtrain = {(Iq,Mq, S)i , i = 1, ..., n} and the test set as
Dtest = {(Iq,Mq, S)i , i = 1, ...,m}. The two sets have no
class in common, formally cls(Dtrain) ∩ cls(Dtest) = {∅},
where cls(·) return the list of classes in a set.

Few-shot Semantic Grasping. From the above defini-
tions, given a query-support tuple (Iq,S), we define the Few-
Shot Semantic Grasping as the task of inferring the optimal
grasp

gr∗s = (x∗, y∗, θ∗, w∗) s.t. cls({Iq(x, y)}) = cls(S) (2)

where Iq ∈ R4×H×W is the RGB-D query image, Is ∈
Rk×3×H×W are the RGB support images and Ms ∈
Rk×H×W are the binary segmentation masks.

Inspired by generative approaches like [2], [4], we for-
mulate a solution for the FSG task as the prediction of
three heatmaps (Q,A,W ) ∈ R3×H×W which respectively
estimate, for each pixel, the grasp quality (i.e. probability of
successfully grasp an object of class Ci), the grasping angle
θ and the gripper width w. Under this setting, we can extract
the following grasping pose:

grs = (x, y,A(x, y),W (x, y)) , (x, y) = argmax
x,y

Q (3)

The aim of the learning procedure is to provide a good
estimation grs ≃ gr∗s .

IV. APPROACH

In this section, we present a novel DL model to grasp a
selected object in a clutter, given Iq as an RGB-D image of
the scene and a support set S with cardinality k = 5. The

model is the composition of 5 modules, namely the Few-
Shot Module, the Backbone, the Angle Module, the Width
Module and the Quality Module. For the Few-Shot Module,
we selected a model from the literature [12], while the other
modules are derived from the Unet [15] encoder-decoder
structure. The main building block consists in the repeated
application of 3x3 convolutions, each followed by Batch-
Normalization and ReLU activation. The building block is
followed by a MaxPooling operation during the encoding
pass and an UpSampling operation in the decoding pass.
Shortcut connections are provided to avoid the vanishing
gradient problem. While the four modules have the same
structure, there are some slight differences in the dimensions
that are detailed in Figure 2. The Backbone, the Angle
Module and the Width Module are composed by 5 building
blocks, while the Quality Module by 3. This difference
comes from experimental observations. Also, we noticed
that the Angle Module benefits from a higher number of
convolutional filters compared to the Width Module. The next
sections will provide more details about each module.

A. Few-Shot Module

The objective of the module is solving the FSS task,
namely segmenting an object from an RGB image given
only the support S that is composed by k=5 image-mask
tuples. The output consists of two heatmaps encoding the
confidence grade of the network in segmenting a pixel as
target object or as background. Segmentation was not used
only for choosing the target object, but also to deliver useful
geometric clues, such as the shape of the object, in order
to improve performance. The modular structure of the entire



model allows using any FSS networks as long as they share
the same input and output. After an empirical comparison of
different models, detailed in Section V, we selected Asgnet
[12] for the Few-shot Module.

B. Backbone Module

The Backbone Module is an Unet architecture with the
sequence of filters reported in Figure 2. It uses the depth
image to extract two attention maps with double functional-
ity: encoding the graspable positions and solving the well-
known problem of class imbalance [24], which is caused by a
dominant extension of the background class that deteriorates
the performance in the training phase. The attention maps
solve class imbalance by implementing a Spatial Attention
Mechanism (SAM) [25], [26], in order to let the Angle, Width
and Quality Module focus on relevant areas of the image, i.e.
areas taken up by graspable objects. Usually, SAM implic-
itly learns some attention maps based on data distribution
[25], [26]; such maps are then fused through element-wise
multiplication. Differently, we force the Backbone Module to
learn attention maps with an explicit meaning, concatenating
them with the input of Angle, Width and Quality Module and
letting these modules learn how to exploit them, similarly to
[27].

C. Angle and Width

The Angle Module and the Width Module share a similar
structure. Both are fed with the concatenation of the depth
query image with the Backbone Module to implement the
aforementioned attention mechanism. We decided to use only
depth images since it contains enough geometric information
to predict a good grasping pose, as demonstrated in [2], [3].
Previous studies [28], [29] indicate that directly applying
regression to complex heatmaps, like A and W , is more
difficult than classification. Therefore, we quantized angle
and width values to formulate the prediction of A and
W as a classification problem. Following [28] suggestion,
rotation angles around the gripper axis have been encoded
between [−π

2 ,+
π
2 ] rad and discretized in 18 bins of size

10°. Similarly, gripper width values are encoded between
[0, 150]mm and discretized in 15 bins. Consequently, the
output of the modules is respectively composed by a set of
18 and 15 activation maps, modelling the probability that
each pixel belongs to a certain bin and mimicking what is
commonly seen in semantic segmentation networks [30]. The
final heatmaps are computed through a depth-wise argmax
operation. The internal design of the network is the same
for both Angle Module and the Width Module, except for the
number of layers because the A prediction is more complex
due to the higher number of categories.

D. Quality Module

The Quality Module fuses semantic and spatial informa-
tion, respectively from the Few-Shot Module and the Back-
bone Module, in order to estimate the grasp quality Q. The
higher the value of Q the higher the probability of grasping
the object. Since Q is highly related to the grasp position

TABLE I: Class id of each split in Graspnet [31].

Split 0 Split 1 Split 2 Split 3
0-2-5-7 14-17-18-20 27-29-30-38 52-58-60-61
8-9-11 21-22-26 41-48-51 62-63-66

and the target object, the concatenation of the backbone
and few-shot heatmaps is fed into this module. Unlike the
previously described modules, we decided to formulate the
inference of Q as a regression problem, obtaining a single-
channel continuous heatmap as output. The continuity of
Q removes the ambiguities while extracting the grasping
position (x, y) as formulated in Eq. 3 and leads to a more
accurate estimation of the final grasping pose. Moreover, the
prediction of Q is less demanding and can be solved through
regression, as shown in previous studies [4], [5] and also by
our empirical observations. For this reason, we designed a
lighter architecture for the Quality Module.

V. EXPERIMENTS

A. Dataset

To train and evaluate the proposed model, we used the
Graspnet dataset [28]. It contains images captured both with
a Kinect Azure and a RealSense D435 of 88 different objects
placed in 190 small cluttered groups, bringing 97,280 images
in total. Each image is densely annotated with 7 DoF grasp
poses and segmentation masks. The dataset comes with
4 predefined splits: “train”, “test-seen”, “test-similar” and
“test-novel”. Each split contains different scenes. The splits
“train” and “test-seen” share the same objects but with a
different disposition, while “test-similar” and “test-novel”
contain completely new objects compared to the “train”
and “test-seen” splits. This division simplifies benchmarking
grasps of unseen objects.

In section III, we defined a 4 DoF grasp in Eq. 1. Since
the Graspnet dataset contains 7 DoF poses, we need to
reduce them to our formulation. To do so, we consider only
grasp poses oriented in the same direction of the camera
with a tolerance of ±0.1 rad. We now have to generate the
ground truth heatmaps QGT , AGT and WGT in order to train
our model, following a procedure similar to [2]. From each
selected grasp pose, we generate an oriented bounding box
BB = (x, y, θ, h, w). Starting from empty heatmaps, each
bounding box contributes to a patch of size h

6 × w
2 centered

in (x, y) filled θ value for AGT and w value for WGT . For
quality heatmap QGT , we filled each patch with value 1 if
BB belongs to the target object and 0.25 for BB belonging
to other objects. Since the Quality Module is trained through
smooth L1 loss, we want to give less weight to errors in
choosing the wrong object than the background. In this way,
we give more emphasis on semantic grasping during the
training process, retaining the overall grasping capability. We
decided to use only Kinect images to match the real setup
(Section VI-C).

Given the modularity of our architecture, we design a step-
by-step training procedure which is different from the end-
to-end approach used in many works. Indeed, Glasmachers in



[32] demonstrated that end-to-end learning may be not effec-
tive for training neural network models composed of multiple
non-trivial modules. Since our model fits this definition, the
training procedure has been split as detailed below.

Few-Shot Module fine-tuning. The datasets used by Few-
shot Semantic Segmentation models are mainly PASCAL-
5i [10] and COCO-20i [33], while the standard metric
is the Intersection over Union (IoU) of the new classes
[10]. Despite that FSS models are able to generalize to
new classes, the performance considerably decreases when
applied to a new dataset. For example, when trained on
COCO-20i and tested on PASCAL-5i, there is a performance
drop [34], [35]. Moreover, Graspnet contains more specific
classes compared to PASCAL-5i or COCO-20i. For these
reasons, we decided to fine-tune the Few-Shot Module before
using it.

Graspnet was not designed for FSS task, so we organized
it to be compliant with the definition of FSS (Section III).
We used the “train” and the “test-seen” splits for train and
validation respectively. The classes inside both splits were
subdivided into four sub-splits to apply the standard k-fold
validation of FSS [10]. The classes of each split are reported
in Table I. Since the modular structure of our model allow
us to insert many different FSS architectures, we compared
three different state of the art solutions: PFENet [18], SCL-
PFENet [17] and Asgnet [12]. We chose Asgnet, as reported
in Section IV-A, because it achieved the best results with an
IoU of 0.459 on Graspnet.

Backbone, Angle and Width Module. Modules that are
independent from semantic information are trained using the
“train” split and validated using the “test-seen” split. Firstly,
we train the Backbone Module using a Cross-Entropy Loss.
The ground truth is obtained from QGT by ceiling 0.25 to 1.
After training, the weights of the backbone are frozen. In this
way, Quality, Angle and Width Modules training process does
not override the knowledge previously learned. Finally, Angle
and Width Modules are trained using the Cross-Entropy
loss [36].

Quality Module. The input of the module is the concate-
nation of backbone attention maps and the FSS heatmaps.
Since the FSS model has been previously fine-tuned on some
classes of the “train-seen” split, the performance on these
classes may be overfitted. To avoid this bias, we trained
the Quality Module only with classes of the “train” split
still unused. Additionally, we included the classes of the
validation split used in the Few-Shot Module fine-tuning,
namely the split 3 of Table I. As training loss, we used
the smooth L1 function defined in [4] to avoid exploding
gradients. Also, we observed a better accuracy in estimating
grs compared to the Cross-Entropy loss.

VI. RESULTS

A. Training Procedure

The section shows the results of the proposed FSG-Net on
the Graspnet dataset and in a robotic workcell where a robot
grasp objects from a clutter placed on a table. To measure
the system performance we employ the grasping accuracy,

TABLE II: Results of our network and two state of the
art generative model from the literature on “test-similar”
and “test-novel” split of Graspnet. The column represent
the accuracy in object selection (ASem), semantic grasp
(ASemGR) and class-agnostic grasp (AAgnGR).

SimilarModel
ASem ASemGR AAgnGR

GGCNN [2] + FSS 41.83 30.24 89.19
GR-ConvNet [4] + FSS 34.57 23.62 69.76

FSG-Net Backbone + FSS 32.95 19.45 69.91
FSG-Net 51.54 43.51 93.88

NovelModel
ASem ASemGR AAgnGR

GGCNN [2] + FSS 43.32 34.09 87.13
GR-ConvNet [4] + FSS 40.05 28.04 73.74

FSG-Net Backbone + FSS 30.42 18.77 67.95
FSG-Net 49.44 40.95 94.42

namely the number of correct grasps divided by the number
of grasps. Since we want to catch a specific object we also
distinguish between successful grasps of the target object and
successful grasps of a wrong object.

B. Results on Graspnet

After training and validating the model on the “train” and
“test-seen” splits we evaluated it on the“test-unseen” and the
“test-novel”. Since these two folds contain new classes not
seen during training, we used them to test the generalization
capability. We adopted the same metric of [6] for evaluating
a grasp. Let grp the grasp obtained by the network and grgt
the ground-truth. We consider grp correct if the following
conditions are satisfied: grp∩grgt

grp∪grgt
> 0.25 and |angle(grp)−

angle(grgt)| < 30 .
We define a correct semantic grasp as the event in which

both conditions hold and the right object is chosen. When
the two conditions hold but the selected object is not the
right target, a correct class-agnostic grasp is obtained. We
also reported the results relaxing the first condition by
lowering the threshold to 0, in order to evaluate the ability
of the network to correctly locate the right target, without
taking into account the grasp success. The percentage of
correct semantic grasps overall is the semantic grasp accu-
racy (ASemGR). Similarly, we define class-agnostic grasp
accuracy (AAgnGR). The ratio between correctly located
objects and the total is instead the semantic accuracy (ASem).
We report the results in Table II comparing our approach
with other models which use heatmaps to encode grasping
poses. We retrained these networks on Graspnet since their
authors exploited other datasets. To create a baseline for Few-
shot Semantic Grasping performance evaluation, we apply
directly the segmentation mask from the Few-Shot Module
to the heatmaps from these networks. Our model is able
to achieve 43.51% and 40.95% accuracy in the similar and
novel splits. Thanks to the Few-Shot Module we are able to
achieve almost the same results in both splits.

To assess the importance of the Quality Module, a specific
test was run after removing the Quality Module from the



(a) (b) (c) (d)

Fig. 3: The heatmaps - (a) foreground and (b) background
- from the Few-Shot Module and (c) the corresponding
segmentation mask. The output of the Quality Module (d),
recovers the target object (the ball) even if the segmentation
partially fails.

proposed architecture. To compute the grasping pose grs, we
apply directly the few-shot segmentation mask to the Back-
bone Module output. We refer to this ablation as FSG-Net
Backbone + FSS. The results demonstrate that the recovery
ability of the Quality Module is non-negligible and is due
to the ability of the module to recover wrong segmentation
masks using the heatmaps. For example, in figure 3 the
Few-Shot Module over-segments the mask, but the Quality
Module is still able to recover the right target (the ball). To
evaluate the pure grasping ability of our network, we have to
consider the correct object grasp metric. Also in this metric,
we outperform the other approaches based on heatmaps,
since GGCNN [2] + FSS was able only to correctly grasp
the 34.09% of the objects, while GR-ConvNe [4] + FSS
even less. We suppose that the semantic information can
help to better refine the grasping pose. Similarly, the use
of the Backbone Module output may help to improve the
estimation of A and W by focusing the modules on the
areas containing good grasps with high probability. The
superimposition of these factors leads to a better accuracy
in grasp pose estimation.

C. Results in Real-world

In this section, we validate our approach in a real scenario
with static cluttered objects. All the experiments were per-
formed using a 6-DoFs Universal Robots UR5 manipulator
equipped with Onrobot’s RG6 gripper and Microsoft Azure
Kinect camera. The camera is mounted on the wrist of
the robot. This setup is shown in Fig. 4. The FSG-Net
computations are performed on a NVIDIA GeForce GTX
1050 Ti Mobile. We used a set of 20 novel objects, depicted
in Figure 4, of various sizes and shapes. We also collected
and labelled the 5 images to use as support for each object.
We perform 10 trials and, for each trial, 10 random objects
were placed on the table. The system selects each of the
10 objects one per time, extracts five support images with
current RGB-D query images and provides them as input to
the FSG-Net. As described in previous sections, the FSG-Net
returns the grasp grp. Finally, this information is reprojected
in 3D and forwarded to the robot that performs the pick-up.
In order to make each grasp comparable, the object taken is
put back on the table.

In the real environment, the ASem that we achieved is

Fig. 4: The setup and the objects used during the real
experiments.

38.38%, while the ASemGR is 32.32%. In general, our
approach is able to complete the gripping of an object with an
AAgnGR of 69.70%. The performance reduction compared
to what was obtained on the Graspnet dataset is due to
the limitations encountered in the real environment, the first
consisting in the different lighting conditions. Secondly, the
quality of the FSS output can be affected by the position
of the camera. Another limitation was caused by the camera
depth measurement. Indeed, we observed that in the furthest
part of the depth image, data was affected by noise. This
effect caused 7 grasp failures. Overall, the performance
assessment described so far leads us to the following con-
clusions: i) the proposed model demonstrated its superior
performance over other systems proposed in the literature on
standard benchmarks, like the Graspnet dataset; ii) our model
is ready for real-world applications, even though a number
of additional factors shall be considered in such scenario.
Our future research activity will target this new challenge.

VII. CONCLUSIONS

In this paper, we proposed FSG-Net, a Deep Learning
model for semantic grasping using few-shot segmentation.
It takes in input an RGB-D image and five examples of a
target unseen object and infers the grasping pose. Thanks
to the Quality Module, which exploits spatial and semantic
information, the model is able to recover the right grasping
position even with wrong segmentation masks. Our proposal
achieves promising results in the Graspnet dataset compared
with similar approaches in the literature. The experiments in
the real setup confirmed the generalizability of our network
taking into account a slight decrease in performance.

In order to reduce the domain gap between real and
synthetic results observed in the real experiments, we plan
to extend our model to predict 7 DoF grasping poses.
Moreover, the segmentation mask predicted by the few-shot
model is still limiting the effectiveness of our model, despite
the recovery capability introduced by the Quality Module.
Therefore, we plan to redesign the Few-shot Module to
increase performance in object segmentation.
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