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A physical description of the flow mechanisms that govern the distribution of the
wall-pressure fluctuations over the surface of a serrated trailing edge is proposed. Three
main mechanisms that define the variation of turbulent pressure fluctuations across the
serrated edge are discussed and semi-empirical models are formulated accordingly. It is
shown that the intensity of the wall-pressure fluctuations increases at the tips under the
effect of an increased convective velocity as a result of sidewise momentum diffusion.
Furthermore, the change of impedance across the edge causes a local reduction of the
pressure fluctuations in the vicinity of the trailing edge. Finally, aerodynamic loading
over the serrations due to the non-symmetric flow created at different angles of attack
establishes secondary flow patterns that induce higher wall-pressure fluctuations over the
serration edges. The latter effect is present only for serrations under high aerodynamic
loading, while the former ones are observed under any conditions. Semi-empirical models
are formulated for predicting the variation of the wall-pressure fluctuations over the
serration surface based on the three physical mechanisms described. These models are
calibrated and compared against experiments conducted on a symmetric airfoil model at
high Reynolds numbers.

Key words: aeroacoustics, hydrodynamic noise

1. Introduction

Trailing-edge noise is a relevant source of nuisance for wind turbines (Oerlemans, Sijtsma
& Méndez López 2007), turbo-machinery (Rozenberg, Roger & Moreau 2010), and
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airframe components (Dobrzynski 2010). A widely applied device to reduce this source
of noise is trailing-edge serrations (Asheim, Ferret Gasch & Oerlemans 2017). The first
physical explanation of the noise reduction associated with serrated trailing edges was
proposed by Howe (1991a). The add-ons create an angle between the convecting turbulent
structures and the trailing edge, consequently reducing the effectiveness of the scattering.

Even though serrations are widely used, the prediction of trailing-edge serration noise
(Howe 1991a,b; Lyu, Azarpeyvand & Sinayoko 2016; Ayton 2018; Lyu & Ayton 2020) is
still an ongoing subject of research, given that large deviations between experiments and
analytical predictions are often reported (Gruber, Joseph & Chong 2011; Arce León et al.
2016; Lyu & Ayton 2020). Consequently, predictions of noise reduction from wind turbines
with serrations still require dedicated experiments or numerical simulations, whereas a fast
assessment and physical interpretation could be provided by more advanced analytical
methods that can capture the dominant effects introduced by the serrations. Available
predictive methods are based on the solution of the acoustic scattering problem from an
incoming gust prescribed in the form of a wavenumber–frequency fluctuation of the wall
pressure (Ayton 2018). The fluctuations are therefore considered to be advected towards
the trailing-edge serration, i.e. frozen turbulence is assumed (Taylor 1938). However,
many experimental (Gruber et al. 2011; Moreau & Doolan 2013; Chong & Vathylakis
2015; Arce León et al. 2016; Avallone, Probsting & Ragni 2016; Ragni et al. 2019), and
numerical (Jones & Sandberg 2012; Avallone, van der Velden & Ragni 2017; Avallone
et al. 2018) works have pointed out that the mean-flow pattern is distorted along with
the distribution and intensity of the turbulent fluctuations surrounding the trailing-edge
serrations, indicating that the assumption of frozen turbulence does not hold true.

Two different conditions are consistently studied in the literature, corresponding to
flow in the absence or in the presence of aerodynamic loading over the serrations, the
latter caused by the misalignment between the serrations and the flow. At low angles of
attack, numerical simulations (Avallone et al. 2017, 2018) and experiments (Chong &
Vathylakis 2015; Ragni et al. 2019) have shown a reduction of the pressure fluctuations
from the root to the tip of a serration at low and mid frequencies and an opposite trend
at higher frequencies, i.e. increasing wall-pressure fluctuations at the serration tip. Also,
the formation of vortex pairs along the serration edges, when the serrations are under
aerodynamic loading, is often ascribed to be the cause of the noise-reduction degradation
at increasing airfoil angle of attack (Arce León et al. 2016, 2017).

The wall-pressure fluctuations are primarily used as input for the modelling of
trailing-edge noise generation (Amiet 1976), but they have only been studied in recent
works (Chong & Vathylakis 2015; Avallone et al. 2017, 2018; Ragni et al. 2019; Lima
Pereira et al. 2020). Although these works have illustrated the overall distribution of the
wall pressure on the surface of serrations, the underlying causes of its distortions have not
yet been established. Thus, improving the analytical modelling of serrated-trailing-edge
noise requires fundamental understanding of the underlying mechanisms that govern the
aerodynamic wall-pressure fluctuations over the serration surface.

The present work proposes a description of the dominant flow mechanisms relevant to
the modification of wall-pressure fluctuations over a serrated trailing edge. Wind tunnel
experiments are conducted on a NACA 633-018 airfoil model at chord Reynolds numbers
from 1 × 106 to 3 × 106 retrofitted with trailing-edge serrations of height (2h) 90 mm
and wavelength (λ) 45 mm. The detailed distribution of the wall-pressure fluctuations on
the serrated trailing edge with varying airfoil incidence is obtained with a wall-mounted
printed circuit board containing embedded microphone sensors. Steady aerodynamic
measurements are carried out with surface pressure taps and stereoscopic particle image
velocimetry (PIV).
938 A28-2
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Wall-pressure fluctuations on serrations

The flow mechanisms proposed follow semi-empirical models that encapsulate their
physical principles. Section 2 describes the physical mechanisms that modify the spatial
distribution and intensity of the wall-pressure fluctuations on the serration surface and
the models proposed for them. The experimental set-up and the properties of the flow
are presented in § 3. Results shown in § 4 compare the measurements with the proposed
models. Main conclusions are summarized in § 5.

2. Description and modelling of the wall pressure over a serrated trailing edge

In this section, the physical mechanisms responsible for the modification of the
wall-pressure statistics on the surface of a serrated trailing edge are postulated, described
and modelled. Three effects are presented based on a critical analysis of the literature and
the current experimental data. These are: (i) the change in the impedance at the edge of
the serration; (ii) the sidewise momentum exchange between free wake and boundary layer
along the serration surface; and (iii) the streamwise vortices generated by serration under
aerodynamic loading. Each of these effects is described separately in this section.

2.1. Impedance change at the trailing-edge boundary
The discontinuous change in impedance from the airfoil solid surface to the fluid-flow
region at the trailing edge is known to be responsible for the scattering of acoustic waves
(Amiet 1976). This discontinuity also affects the aerodynamic pressure fluctuations at the
wall plane as the impedance, defined here as the ratio between the pressure fluctuations
(p) and the wall-normal velocity fluctuations (u2) on the wall (x2 = 0), changes from an
infinite value at the wall to a finite one downstream from the trailing edge. On a serrated
trailing edge, this process occurs, along streamwise locations, more gradually than for the
straight edge. Therefore, modifications of the wall-pressure fluctuations are observed from
the root to the tip of the serration surface.

The influence of this change on the wall-pressure fluctuations can be formulated as a
modification of the boundary conditions along the chord line of the model. The presence
of the wall forces the wall-normal velocity to be zero u2(x2 = 0) = 0, differently from
the unbounded region, exhibiting non-zero wall-normal velocity fluctuations. On the other
hand, in the unbounded flow, velocity fluctuations from both sides influence the pressure
captured along the chord line. This process is illustrated in figure 1. Two schematics are
presented in the figure to explain the flow in the presence and in the absence of a wall. The
pressure at a certain location of the wall plane is dependent on the velocity fluctuations
at its surroundings (Panton & Linebarger 1974), as illustrated by the grey area in the
figures. The wall-bounded flow is equivalent to a mirrored condition (figure 1a), where
the fluctuations below the wall are exactly coherent with the ones on top. Similarly, in the
free flow (figure 1b), both sides contribute to the wall-pressure fluctuations at the chord
line. However, in this case, the velocity fluctuations on both sides, supposedly incoming
from the turbulent boundary layer developed in the upper and lower side of the model, are
not correlated in the near wake.

Assuming that turbulent fluctuations from the top and bottom boundary layers are
uncorrelated in the free-flow region, a relation describing the pressure spectrum (φpp)
along the symmetry line (x2 = 0) in the absence of the wall is formulated (equation (2.1)),
where φpp,free results from a combination of the measured wall-pressure spectrum on the
upper (φpp,upper) and lower (φpp,lower) side of the solid surface. The mathematical process
that leads to (2.1) is expanded in Appendix A. The factor 1/4 comes from the doubling of
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Uc
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x1 x1

x2

Wall

(a) (b)

Upper side

Lower side

pwall pfree

Figure 1. Schematic representation of the velocity fluctuations at the wall and along the symmetry region in
the near wake. In grey, the sphere illustrates the region of influence of the velocity fluctuations that affect the
pressure at a certain location. (a) Wall-bounded flow. (b) Free flow.

the pressure fluctuations in the wall region, as also pointed out by Howe (1978).

φpp,free (x2 = 0) = 1
4φpp,upper + 1

4φpp,lower. (2.1)

As an example, considering the incoming wall-pressure fluctuations from both sides
to be of equal amplitude, a consequence of (2.1) is that the pressure fluctuations at the
symmetry line drop by half (−3 dB) with respect to the value at the wall. This mechanism
can also be visualized from the illustration in figure 1 where the presence of the wall
mimics a free region with pressure fluctuations coherent from both sides, whereas the
free region combines non-coherent fluctuations. The difference between such cases is
3 dB when both sides have the same level of velocity fluctuations. In the case where
no fluctuations are present on the lower side, this difference reaches 6 dB (pressure
fluctuations at the symmetry line outside the wall are a quarter of those measured at the
wall).

These results describe the expected change from the wall-bounded region to the
unbounded one. It is therefore intuitive that, near the trailing edge, a transition between
these two conditions occurs, as discussed in Howe (1978). This process is especially
important for serrated trailing edges since its geometry causes the change of impedance
to happen progressively from the root, where the neighbouring region is bounded by the
wall, until the tip, where the unbounded flow is dominant. The idea translates to a natural
decrease of the pressure fluctuations from the root to the tip of the serration depending
on the considered flow scales. This phenomenon has been reported already in recent
works from Avallone et al. (2017, 2018) and Ragni et al. (2019), both based on numerical
simulations and experiments. In all three studies wall-pressure fluctuations were observed
to reduce to about half (−3 dB) from the root to the tip of the serrations. Similarly, the
experimental work of Chong & Vathylakis (2015) for a serrated plate with flow only
from one side captures a reduction of about −6 dB in the wall-pressure fluctuations of
the serration tip.

This modification of the wall-pressure fluctuations is dependent only on the geometry
of the trailing edge and on the size of the turbulent structures inside the boundary layer.
Therefore, even in the absence of variations of the flow properties on the surroundings of
the trailing-edge region, the wall-pressure fluctuations in the surroundings of the trailing
edge are altered. Here, a semi-empirical relation is proposed to describe the wall-pressure
fluctuations near the complex geometry of trailing-edge serrations. The model takes into
account the above discussed variation of impedance within a radius l, as illustrated in
figure 2.

The geometry of the serration can be represented, in the plane x1x3, by its function g,
such that x1 = g(x3). Function H(x1, x3) represents the model surface and is a Heaviside
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Wall-pressure fluctuations on serrations

U∞

Aw

Aw
xo

πl2

x1

x3

η = 

l

Figure 2. Representative view of the radius of influence of the wall-bounded region in a point
xo = (x1,o, x3,o) and the procedure applied to compute the factor η over a serrated trailing edge.

function defined according to (2.2):

H (x1, x3) =
{

1, x1 � g (x3)

0, x1 > g (x3) .
(2.2)

The factor η is introduced according to (2.3) for a point xo = (x1,o, x3,o) that accounts
for the portion of the circle that overlays the solid wall (grey shaded in figure 2).

It is here hypothesized that the factor l depends only on the size of the turbulent
structures locally. This hypothesis follows the dependency of wall-pressure fluctuations
on the correlation of the velocity fluctuations (Panton & Linebarger 1974). This translates
to the relation shown in (2.4), where the radius of influence l is proportional to the
aerodynamic wavelength and the size of the turbulent structures, i.e. directly proportional
to the convection velocity (Uc) and inversely proportional to the frequency (ω). This
assumption makes the proposed model frequency-dependent. The constant Ci needs to
be determined from experiments and follows the definition of the correlation length from
the work of Corcos (1963).

η (xo) =

∫∫ |x−xo|=l

0
H (x) dx

πl2
, (2.3)

l = Ci
Uc

ω
. (2.4)

The parameter η is then used to establish a linear relationship that describes the
wall-pressure fluctuations (φpp) along the upper side of the serration surface, resulting
in (2.5), where φo

pp,upper(ω) and φo
pp,lower(ω) represent the wall-pressure spectrum

measured sufficiently upstream from the trailing edge.
If η = 1, the pressure at that location corresponds to that of the wall-bounded

case (φpp(x, ω) = φo
pp,upper(ω)). Conversely η = 0 pertains to a point sufficiently far

from the wall, where the mentioned −3 dB correction should apply, i.e. φpp(x, ω) =
1
4φ

o
pp,upper(ω)+ 1

4φ
o
pp,lower(ω).

φpp (x, ω) = 1
4 [1 + 3η (x, ω)]φo

pp,upper (ω)+ 1
4 [1 − η (x, ω)]φo

pp,lower (ω) . (2.5)

The above equation models the reduction of the wall-pressure fluctuations close to the
trailing-edge region and predicts the distribution of the wall-pressure fluctuations over any

938 A28-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.173


L.T. Lima Pereira, F. Avallone, D. Ragni and F. Scarano

trailing-edge geometry. For lower frequencies, the larger extent of the turbulent structures
(larger radius of influence, l) imposes a more gradual change of the parameter η, and thus
the wall-pressure fluctuations are modified from a larger distance to the edge. Instead,
at higher frequencies (smaller radius of influence l), the change remains confined to the
near-edge region. This aspect is demonstrated by experiments and discussed in more detail
in the results section. The model proposed is valid for both serrated and non-serrated
trailing edges. The latter geometry is also expected to present a reduction of the pressure
fluctuations near the vicinity of the edge. However, this reduction does not vary over the
span as happens with a serrated trailing edge.

2.2. Wake development and acceleration of turbulent structures
Besides the natural decrease of the wall-pressure fluctuations imposed by the change in the
impedance across the trailing edge, the sidewise interaction between the free and the wall
region along the serration also affects the distribution of the wall-pressure fluctuations.
Specifically, the near wake developing in the serration gaps modifies the properties of
the flow on the serration surface. Studies in the literature report increasing wall-pressure
fluctuations at the tips of serrations, especially at higher frequencies (Avallone et al. 2017,
2018). An explanation put forward involves the modifications of the turbulent flow near
the serrations, consequently leading to an increase of the scattered noise from the serrated
trailing edges at high frequencies (Gruber et al. 2011).

According to Haji-Haidari & Smith (1988), the modifications of the flow field in the near
wake captured within 25 times the boundary-layer momentum thickness (θ ) downstream of
the trailing edge are restricted to the inner layer. This downstream distance is several times
longer than the serration height (2h). Thus, the influence of the developing near wake on
wall-pressure fluctuations must also remain restricted to the inner scales (ων/uτ 2 > 0.3;
Hwang, Bonness & Hambric 2009). The most important aspect of this flow development
is the increasing mean velocity within the inner scales. The work of Ghaemi & Scarano
(2011) shows that, within less than 5θ from the trailing edge, the velocity along x2 = 0
has evolved to about 50 % of that in the free stream. Hayakawa & Iida (1992) have shown
that, across the near wake, the wall-normal velocity fluctuations are only mildly modified.
Haji-Haidari & Smith (1988) too have concluded that turbulence is not impacted in the near
wake, the main effect being the rapid increase of momentum in the inner-layer region.

The above indicates that the near-wake development along the serration mostly affects
the mean flow velocity near the wall. It is therefore conjectured that the observed
increase in high frequencies of the wall-pressure fluctuations follows a modification of
the convective velocity, while the energetic content of the fluctuations remains the same.
Such increase of convective velocity was already observed by Avallone et al. (2016) from
the root to the tip. Furthermore, a similar trend is observed in the current experiments.

Early works (Corcos 1963; Howe 1991b) have suggested that the convective velocity
approaches 0.6Ue–0.7Ue for a turbulent boundary layer, while values higher than 0.8Ue
are often reported for a near-wake flow (Zhou & Antonia 1992). Thus, an increase of
convection velocity from root to tip is to be expected, following the different values in the
wake (free) and wall-bounded region. Considering that the wavenumber spectrum is not
altered, this acceleration causes a shift of the energy of the smaller structures in the inner
layer, resulting in an increase of the wall-pressure spectrum levels at high frequencies.

Therefore, a correction for the high-frequency increase can be derived from the
semi-analytical wall-pressure formulation of Goody (2008), shown in (2.6). The equation
is slightly modified so that the frequency normalization uses the convection velocity
instead. The model proposed in (2.7) considers the ratio between the levels occurring
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Wall-pressure fluctuations on serrations

at the root (Uc = Uo
c ) and at a position x (Uc = Uc(x)), applying the limit to higher

frequencies and considering the terms of lower magnitude close to 1. The correction
affects only the inner scales (φpp ∝ ω−5) and can be used for predicting the high-frequency
increase of the wall-pressure fluctuations. In the limit of ω → ∞, the correction tends
to φpp/φ

o
pp(x) = (Uc(x)/Uo

c )
5, indicating that a maximum increase is observed at high

frequencies. It is important to note that φpp ∝ ω−5 is a theoretical condition elaborated for
low-pressure-gradient boundary layers (Blake 2017a). The works of Rozenberg, Robert
& Moreau (2012), Catlett et al. (2016) and Lee & Villaescusa (2017) propose different
scalings that depend on the pressure gradient and boundary-layer properties. Introducing
these models can produce more precise predictions for highly adverse pressure gradient
conditions.

φppUe

τw2δ
(ω) =

C2

(
ωδ

Uc

)2

[(
ωδ

Uc

)0.75

+ C1

]3.7

+
[

C3Rt
−0.57

(
ωδ

Uc

)]7
, (2.6)

φpp

φo
pp
(x, ω) =

1 + C3
7Rt

−4
(
ωδ

Uo
c

)5

1 + C3
7Rt

−4
(

ωδ

Uc (x)

)5 . (2.7)

The above correction depends only on the estimation of the convection velocity along
the serration. In this work, the convective velocity is estimated from the wall-pressure
measurements on the serration centre. Further investigations can explore an analytical
description of the convection velocity along the serration surface.

2.3. Aerodynamic loading effect
A third important aspect that affects the distribution of the wall pressure along the
serrations is the aerodynamic loading. When serrations are at an angle with respect to
the flow direction, a pair of streamwise vortices emanates from the serrations, as a result
of the pressure difference between the two sides of the serrations. The presence of these
vortices is commonly associated with the loss of acoustic performance of trailing-edge
serrations under loading (Arce León et al. 2016, 2017).

Recent studies have demonstrated that the vortices cause an increase of the wall-pressure
fluctuations along the outer rim of the serration surface (Lima Pereira, Avallone &
Ragni 2021). An assessment of the mean-shear turbulence terms has pointed out that the
acceleration of the mean flow interacting with the incoming turbulent fluctuations from
the boundary layer is directly related to the modification of the wall-pressure fluctuations
captured.

The presence of the vortex pairs modifies the velocity field, in turn generating new
velocity gradients along the streamwise and spanwise directions. Arce León et al. (2016)
showed that the flow accelerates on the suction side in the central portion of the serration
while on the pressure side the flow accelerates in the gap region. A spanwise flow
component is induced that deflects the streamlines inwards on the suction side and
outwards on the pressure side. The intensity of these streamwise vortices is determined by
the aerodynamic loading, whereas their size by the width of the serration. The incoming
velocity fluctuations from the turbulent boundary layer interact with the mean flow velocity
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–λ –λ/2
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0

h

(b)(a)

Figure 3. Illustrative streamlines of the flow created by the superposition of a Taylor–Green vortex with
wavenumbers defined as k̄1 = π/2h and k̄3 = 2π/λ to the uniform flow. (a) Pressure side. (b) Suction side.

gradients from the streamwise vortices, thus modifying the pressure fluctuations captured
at the wall, following the mean-shear interaction term of the pressure Poisson equation
(Panton & Linebarger 1974).

Therefore, the process can be thought of as the interaction between the incoming
velocity fluctuations from the turbulent boundary layer and a space-periodically varying
mean flow.

In this work, the mean flow caused by the aerodynamic loading is simplified as a
streamwise–spanwise oscillation in the form of a Taylor–Green vortex, following (2.8):

U1 (x1, x3) = Uo + iAo
(
exp(−ik̄1x1) exp(ik̄3x3)− exp(−ik̄1x1) exp(−ik̄3x3)

)
,

U3 (x1, x3) = iAo
k̄1

k̄3

(
exp(−ik̄1x1) exp(ik̄3x3)+ exp(−ik̄1x1) exp(−ik̄3x3)

)
.

⎫⎪⎬
⎪⎭ (2.8)

In the equation, k̄1 and k̄3 define the wavenumbers excited in streamwise and spanwise
directions, respectively. A physical value for these quantities can be taken as k̄1 = π/2h
and k̄3 = 2π/λ. The values represent qualitatively the accelerations experienced by the
flow towards the centre of the serration on the suction side and towards the gap region on
the pressure side. Figure 3 gives an example of the idealized flow conditions created from
the Taylor–Green vortex. In the figure, the deviation of the streamlines towards the gap
region on the pressure side and towards the centre of the serration surface on the suction
side is demonstrated.

A model for the wall-pressure fluctuations due to the mean flow accelerations can be
derived following the same procedure as applied for the prediction of the wall-pressure
fluctuations past a turbulent boundary layer (Blake 2017a). This procedure is detailed in
Appendix B. The equation mentioned in the Appendix does not have a closed analytical
form. Its numerical integration is used to derive a final and simplified formulation that
describes the solution in mid and high frequencies (equation (2.9)). The low-frequency
solution (f < 1

2 Uc/2h) is disregarded given that it predicts the wall-pressure fluctuations
from turbulent structures that are in fact larger than the serration dimension. At such
conditions, the periodic mean-flow oscillation idealized does not represent the actual flow
modified only locally by the presence of the serrations. In the equation, Stδ∗ = f δ∗/Uc,
where δ∗ is the boundary-layer displacement thickness and αs represents the angle between
the serration and the zero-lift serration angle in radians. For the case of the flow over a
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Figure 4. Predicted wall-pressure spectrum due to the presence of vortex pairs for different values of δ∗/2h
(a) and of λ/2h (b).

symmetric airfoil with serrations aligned with the chord line, the angle αs corresponds to
the airfoil angle of attack (αs = α). The semi-empirical constant Cv determines the level
of the wall-pressure fluctuations created by the vortex pairs and must be inferred from
experiments.

φpp (Stδ∗)
ρ2U3

c δ
∗ = Cvαs

2

[(
2h
λ

)2

+ 1
4

](
Stδ∗ − 1

4
δ∗

2h

)2

erfc
[

2.5
(

Stδ∗ − 1
4
δ∗

2h

)]
. (2.9)

The model proposed above features the same power dependence (Stδ∗2) as that proposed
by Goody (2008) while the high-frequency decay follows a complementary error function
(erfc), which comes from the adopted Gaussian velocity cross-spectrum. The resulting
equation indicates that the effect of the vortex pairs does not differ from that of the
turbulent boundary layer. Important modifications are the frequency shift, represented
by the (Stδ∗ − 1

4δ
∗/2h) term, the dependence on the serration lift and the absence of a

universal range. On a boundary layer, the universal range represents the migration from
the wall-pressure fluctuations caused by the turbulent structures in the outer layer to
those caused by the turbulent structures in the inner layer (Blake 2017a). Contrary to
the wall-pressure fluctuations induced on a turbulent boundary layer, the spanwise and
streamwise accelerations adopted in this work are not modified within the layers, and hence
the source term is not altered, resulting in no universal layer.

Figure 4 depicts how the spectrum predicted by (2.9) varies as a function of the ratios
δ∗/λ and λ/2h. Figure 4(a) describes the effect of modifying the boundary-layer height for
a given serration height and wavelength (λ/2h = 0.5). The spectrum attains a maximum
around Stδ∗ = 0.4 and decays rapidly for higher frequencies. Following (2.9), the Stδ∗
where the effect of the vortex pairs is maximum is dependent only on the ratio δ∗/2h
and can be estimated with (2.10):

Stmax
δ∗ = 1

4
δ∗

2h
+

√
π

5
. (2.10)

As the boundary-layer height is increased with respect to the serration, the energy of
the wall-pressure fluctuations is restricted to a narrower band around Stδ∗ = 0.4 as the two
wavenumbers excited (k̄1, and k̄3) approach the smaller scales of the boundary layer. At low
values of δ∗/2h, k̄1 becomes smaller, and the velocity fluctuations excite a broader range
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R2

λ = 45

2
h 

=
 9

0

(b)(a)

Figure 5. (a) The BANC-X NACA 633-018 wing model mounted inside the LTT with Kevlar test section and
(b) serration geometry used (dimensions are shown in mm).

of frequencies. In figure 4(b) the effect of modifying λ, while keeping the serration height
and the boundary-layer thickness constant, is shown. As observed, by increasing λ the
amplitude of the pressure fluctuations decreases without altering the spectral shape. This
happens because the serration wavenumber dictates the intensity of the vortex pairs and
the smaller λ is, the more intense the vortex and consequently the induced wall-pressure
fluctuations.

Overall, the boundary-layer displacement thickness (δ∗) seems to influence the location
of the maximum and the frequency of the decaying spectrum, while the serration height
and wavelength modify the cut-on and the energetic content of the large scales.

3. Experiments

3.1. Wind tunnel and airfoil model
The semi-empirical models presented in § 2 are compared and tuned with experimental
data of the wall-pressure fluctuations on the surface of a serrated trailing edge. The
experiments are conducted in the Low Turbulence Wind Tunnel (LTT) at the Delft
University of Technology. The closed-loop wind tunnel has an octagonal closed test
section of 1.25 m high and 1.6 m wide. The NACA 633-018 airfoil model has a chord
(c) of 0.9 m and a 1.25 m span, and was developed for the Benchmark Problems for
Airframe Noise Computation (BANC) initiative on trailing-edge serrations, held by the
Technical University of Denmark. Experiments are conducted at 17, 34 and 51 m s−1,
corresponding to a chord Reynolds number of 1 × 106, 2 × 106 and 3 × 106, respectively.
The geometric angle of attack (α) is varied from 0◦ to 10◦ in steps of 2◦. This choice
follows the region where no boundary-layer separation is observed along the suction side.
The test section is acoustically treated using foam covered with Kevlar walls. Figure 5(a)
shows the model installed inside the section. The boundary-layer transition to turbulent
is forced by a 0.8 mm (0.4 mm) thick zigzag trip placed at x/c = 0.05 on the pressure
(suction) side. This configuration ensures forced transition occurs on both sides of the
model up to α = 10◦.

A sawtooth-shape serration of 2h = 90 mm, λ = 45 mm, thickness of 1 mm and 2 mm
radius at junctions and tips was manufactured in steel. This design is chosen following
the criteria proposed in Gruber (2012) of h/δ > 1 and 2h/λ = 0.5. The thickness (t)
of the insert is selected to be the same as the airfoil trailing-edge thickness, following
t/δ∗ < 0.3 (Blake 2017b). Figure 5(b) depicts the serration main geometry. The add-on
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Figure 6. Pressure distribution over the surface of the NACA 633-018 wing model compared against X-Foil
predictions. Measurements are taken at Re = 2 × 106.

is attached to one side of the model and a bend angle of 3.2◦ (equivalent to the airfoil
trailing-edge angle) is given to the piece so that the serration is aligned with the airfoil
chord.

Steady lift is monitored with surface pressure taps. Figure 6 compares the pressure
distribution measured over the airfoil with the serration inserts and predictions using
X-Foil. The predictions agree with the measurements up to 8◦ for the airfoil with serration
inserts installed. For higher angles, the low aspect ratio of the model leads to separation
along the edges of the model, reducing the loading over the wing. The presence of the
trailing-edge serrations does not have any noticeable effect on the pressure distribution
over the airfoil, indicating that the incoming turbulent boundary layer develops similarly
for both conditions.

3.2. The PIV measurement apparatus
Stereoscopic PIV is used to measure the velocity field near the trailing edge. Two LaVision
Imager sCMOS cameras (16 bits, 5MP) are placed outside of the test section at 0.8 m from
the laser light sheet, one aligned with the trailing-edge line and the second one upstream
from the first describing an arc with 20◦ separation. Imaging access is given by placing
a Plexiglas wall on the turntable. A Quantel Evergreen laser (200 mJ, 15 Hz) is used to
deliver the illumination shaped into a light sheet in the x1–x2 plane. Further details about
the PIV set-up can be found in Lima Pereira et al. (2021). Measurements are conducted for
the configuration without serrations at α = 0◦, and 4◦, in order to capture the boundary
layer at the trailing edge.

The boundary-layer parameters obtained from the measurements are summarized in
table 1. The values in parentheses show the predictions obtained with X-Foil. The
agreement between the measurements and the predictions serves as a verification of the
code for the current set-up. The boundary-layer values at each angle of attack are used in
the remainder of the analyses and are taken from the software results. Errors are expected
to be larger for the estimations at the maximum angle of attack (α = 10◦) following the
deviations shown in the pressure distribution (figure 6).
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U∞ (m s−1) αeff (◦) Rec (–) δ (mm) δ∗ (mm) θ (mm) Ue (m s−1) uτ (m s−1) Π (–)

17 0 1.0 × 106 28 6.7 (6.3) 4.1 (3.9) 15.3 0.45 (0.48) 2.6
34 0 2.0 × 106 27 6.1 (5.3) 3.9 (3.4) 31.5 0.91 (0.94) 2.5

4 (SS) 2.0 × 106 30 9.0 (8.4) 4.8 (4.7) 31.5 0.69 (0.78) 4.8
4 (PS) 2.0 × 106 17 3.4 (3.6) 2.8 (2.6) 31.0 1.08 (1.08) 1.4

51 0 3.0 × 106 26 5.5 (4.9) 3.6 (3.3) 47.6 1.35 (1.39) 2.4

Table 1. Boundary-layer properties measured at the trailing edge of the airfoil model. Values in parentheses
indicate the predictions using X-Foil software.

3
.3

5

9

2.5

4.5

Figure 7. Instrumented trailing edge mounted on top of the model trailing edge and location of the unsteady
pressure sensors at the trailing-edge serration.

3.3. Unsteady wall-pressure sensors
A total of 22 unsteady pressure sensors are placed over the sawtooth serrations, with
locations shown in figure 7. The Sonion P8AC03 MEMS sensors are used to measure
the pressure fluctuations on the serration, to compute the spectrum and correlation along
the serration. A 0.4 mm printed circuit board with the sensors embedded is installed on
top of the trailing-edge insert within a casing, thus avoiding interference with both sides
of the flow. The sensors are aligned along one edge of the serration, for inspection of the
spectrum near the trailing-edge line. Furthermore, one streamwise row of sensors is placed
at the centre of the serration, to yield correlation and convection velocity assessment.
Finally, four spanwise rows are used to monitor the spanwise correlation. Calibration is
performed with a Linear-X M51 microphone measuring an acoustic field close to the
serrations. The Linear-X is calibrated with a GRAS 42AA pistonphone. The acquisition is
performed with NI cDAQ-9234 boards attached to a synchronous NI cDAQ-9189 chassis.
The data are sampled at 51 200 samples per second for 20 s.

The convective velocity across the serration centre, necessary for the corrections
proposed in § 2.2, is also estimated using the pairs of sensors along the serration centre.
The derivative of the phase in the cross-spectrum of the pressure measurements with
respect to the frequency (equation (3.1)) is used to estimate the convection velocity (Uc),
following the work of Romano (1995). In the equation,ψ is the phase in the cross-spectrum
and 
x1 is the distance between the sensors.

Uc = 2π
x1
dψ
df

−1
. (3.1)
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Figure 8. Measurements of the convection velocity along the centre of the serration. (a) Fit of convection
velocity at the root of the serration (equation (3.2)). (b) Variation of the convection velocity along the serration
compared with a linear fit in dot-dashed line (equation (3.3)).

Using the pair of sensors at the root of the serration, a relation between convective
velocity and the boundary-layer shape factor (H) is obtained by combining the data
at different velocities and angles of attack. This relation follows (3.2) and the fitting
comparisons can be seen in figure 8(a) for the three Reynolds numbers tested in this
experiment. The work of Catlett et al. (2016) has also proposed a linearly decaying
convection velocity with H. The choice for the exponential function in this work follows
the limits expected for H → 1 (uniform flow, Uc = Ue) and H → ∞ (Uc = 0).

Uo
c

Ue
= exp

(
−
(

H − 1
1.5

)3/4
)
. (3.2)

The measurements of the convection velocity along the serration have indicated that
it increases almost constantly from the root to the tip of the serration, as depicted in
figure 8(b). Thus, Uc can be described along the serration following (3.3). This empirical
relation is used in the remainder of the paper in order to produce the corrections described
in § 2.

Uc

Ue
(x1) = Uo

c

Ue
+ 0.14

( x1

2h

)
. (3.3)

4. Results and discussion

In this section, the proposed analytical models are compared against the data from
the experimental campaign to validate the hypotheses formulated and provide ways
of predicting the wall-pressure distribution on the surroundings of a serrated trailing
edge. The first subsection describes the effects that are independent of the aerodynamic
loading of the serrations while the second subsection focuses on the particular effects of
aerodynamic loading.

4.1. Wall-pressure spectrum without loading
Figure 9 shows the measured variations of the pressure spectrum along the serration edge
at Re = 2 × 106 and α = 0◦. It is important to highlight that the wall-pressure fluctuations
measured are also affected by the scattered acoustic waves at the trailing edge. It is hereby
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Figure 9. Measurements of the wall-pressure spectrum along the centre of the serration for α = 0◦ and Re =
2 × 106. The wall-pressure levels (a) with no scaling applied in the frequency and (b) with the frequency scaled
with the local convection velocity. The grey area illustrates the maximum possible reduction hypothesized
(3 dB) from (2.1).

assumed that the variation of the wall-pressure fluctuations over the serration surface is
solely an effect of the modifying convective fluctuations. The assumption is based on the
much larger wavelength of the acoustic waves in comparison with the aerodynamic ones
(of the order of 10 times larger), which is unlikely to vary within the dimensions of the
serration.

The effects highlighted in §§ 2.1 and 2.2 can be observed from the graphs. At low
frequencies, the wall-pressure spectrum levels decrease from the root towards the tip of
the serration. This decrease is, however, bound to no more than 3 dB, as demonstrated
with all the measured wall-pressure spectra within the grey region, which represents 3 dB
below the most upstream sensor (black curve). The reduction seems to affect strongly the
low-frequency content (f < 2000 Hz) and it reduces as the frequency is increased.

At high frequencies (f > 2000 Hz), the opposite trend is noted and the pressure
fluctuations increase instead. In figure 9(b) the same plot is shown but the frequency
is scaled with the convection velocity estimated at the specific sensor location
(following (3.3)). As can be seen, this scaling is able to make all the curves collapse at
high frequencies. The agreement suggests that the high-frequency increase of the pressure
fluctuations observed along the serrations in this experiment is driven solely by the
increase of the convection velocity at the inner scales. Other studies (Avallone et al. 2017,
2018) have observed the same trend of increased levels at high frequencies, which points
to the same effect taking place.

The modifications of the wall-pressure fluctuations along the serrations at a given
frequency can demonstrate the influence of the underlying mechanisms discussed.
Figure 10 shows the distribution of the wall-pressure fluctuations over the serration surface
for six selected frequencies. Figure 10(a–f ) depicts the experimental results linearly
interpolated from the microphone locations while figure 10(g–l) shows the respective
predictions obtained from (2.5) for the impedance change and (2.7) for the modification
of the convective velocity. The predictions of the effect of the impedance modification
are performed using a value Ci = 2.1, i.e. considering a radius of influence 1.5 times
larger than the spanwise correlation length at the specified frequency (according to the
formulation of Corcos (1963) and prediction values of Hu & Herr (2016)). In (2.7), the
value C3 = 1.1 is chosen following Hwang et al. (2009).
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Figure 10. Distribution of the wall-pressure fluctuations over the serration surface for α = 0◦ and Re = 2 ×
106. Reference is set to the sensor at the centre root of the serration. (a–f ) The measured wall-pressure levels
at 250, 500, 1000, 2000, 4000 and 8000 Hz, respectively. (g–l) The predicted distributions at 250, 500, 1000,
2000, 4000 and 8000 Hz, respectively.

At low frequencies, the dominant effect is the impedance change from the wall-bounded
to the free region. Given the larger structures at such frequencies, the radius of influence
(l) is also larger and, therefore, the reduction of the wall-pressure fluctuations is gradual
and takes over a larger portion of the serration surface. This effect can be seen both for
the experimental data (figure 10a–c) and for the model predictions (figure 10g–i). The
predictions proposed in § 2.1 can describe well the phenomenon and the discrepancies
with the experimental data are within the 1 dB accuracy of the plot.

As the frequency increases, the smaller wavelengths of the turbulent waves restrict the
effect of the impedance modification only to the very edge of the serrations, which cannot
be captured by the sensors. On the other hand, the modification of the convective velocity is
responsible for increasing the wall-pressure levels at the serration tip. This is observed for
the two highest frequencies in this measurement (f = 4000 and 8000 Hz). The correction
proposed in § 2.2 produces satisfactory predictions. The hypothesized independence of the
spanwise position on the convection velocity can also be noted from the experimental data,
where the increase of the wall pressure depends only upon the streamwise location along
the serration.

In figure 11, the predicted variations with respect to the root pressure fluctuation (
φpp)
are presented (dash-dotted curves) against the measured ones (circle symbols) for the three
speeds tested. Overall, the predictions capture correctly the trends of the experimental
results. The agreement confirms the physical mechanisms hypothesized for serrations
without aerodynamic loading. Different studies have demonstrated a similar trend of the
pressure fluctuations (Chong & Vathylakis 2015; Avallone et al. 2017, 2018; Ragni et al.
2019) and are believed to be affected by the same phenomena.
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Figure 11. Comparison between measured (circle symbols) and predicted (dash-dotted lines) 
φpp at sensor
positions along the centre of the serration for α = 0◦. Delta values are computed as the difference with respect
to the pressure fluctuations measured by the sensor at the centre root of the serration (x1/2h = 0.10, x3/λ =
0.0). Reynolds numbers (a) Re = 1 × 106, (b) Re = 2 × 106 and (c) Re = 3 × 106.

The proposed corrections are dependent on the Strouhal number and, as such, they are
shifted towards higher frequencies as the flow speed increases. The wake acceleration
correction is also dependent on the Reynolds number as the factor Rt from the Goody
model governs the start of the inner scales.

The predictions follow correctly the experimental observations. Deviations from the
prediction are overall below ±1 dB. Following the consistency of the deviations with
the sensor location, it is here assumed that the deviations are originated from the model
assumptions and not from experimental uncertainties. In comparison, the hypothesis of
frozen turbulence would lead to errors of the order of ±3 dB. Nevertheless, deviations
between the predictions and the experimental data arise in the mid-frequency range. These
deviations are caused by the selection of Ci = 2.1 for the η function and the parameter C3
that controls the starting of the inner scales in the Goody equation.

To summarize, when serrations are tested on an airfoil or flat plate at zero or mild
aerodynamic loading conditions, the following observations should be expected for the
wall-pressure fluctuations:

(i) Low-frequency fluctuations are higher at the root and reduce towards the tip. This
reduction is limited to no more than 3 dB and is caused by the transition between the
wall-bounded region and the unbounded one.
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Figure 12. Distribution of the wall-pressure fluctuations over the serration surface measured on the suction
side at different angles of attack, Re = 2 × 106 and f δ∗/Uc ≈ 0.4. Delta values are computed as the difference
with respect to the pressure fluctuations measured by the sensor at the centre root of the serration (x1/2h =
0.10, x3/λ = 0.0) for each angle of attack: (a) α = 0◦, (b) α = 2◦, (c) α = 4◦, (d) α = 6◦, (e) α = 8◦ and
( f ) α = 10◦.

(ii) High-frequency fluctuations are higher at the tip and lower at the root. The increase
follows the acceleration of the flow near the serration edge and is limited to
50 log10(Uc(x)/Uo

c ) dB.

Further verification of the analytical models against the data presented in the work of
Avallone et al. (2017) and Avallone et al. (2018) can be seen in Appendix C.

4.2. Wall-pressure spectrum with loading
The effect of increasing aerodynamic loading on the distribution of the wall-pressure
fluctuations on the suction side can be observed in figure 12 for angles from 0◦ to 10◦
at non-dimensional frequencies around f δ∗/Uc ≈ 0.4. In the figure, the effect of the
wall-pressure fluctuations induced by the vortex pairs for this experiment is apparent for
angles of attack above 6◦. This effect modifies the previously discussed reduction of the
wall-pressure fluctuations at the serration tip and, instead, an increase of the order of 9 dB
is captured for the highest angle of attack tested. As shown in Lima Pereira et al. (2021)
for this model, the outer rim of the serrations is affected and the pressure fluctuations are
increased along this region.

Figure 13 details the variation of the spectrum along the serration edge for a highly
loaded case (α = 10◦). From the figure, it is clear that the vortex pairs cause an increase in
the pressure fluctuations restricted in a narrow band around f δ∗/Uc = 0.4. This increase
is more clearly observed on the pressure side (figure 13a), where the smaller pressure
fluctuations at low frequencies make the effect of the vortex pairs more prominent.
Nevertheless, a small increase in the pressure levels can also be noted for the spectrum
on the suction side (figure 13b).

Figure 13 further shows the results from the semi-empirical model reported in (2.9) as
dash-dotted lines. The prediction is obtained using Cv = 5.1 × 10−3, the boundary-layer
properties from the suction side and the convective velocity estimated at the root of the
serration at the suction side. The values chosen seem to produce a coherent prediction
of the loading effect on both sides, indicating that the interaction of the vortex pairs
with the suction side fluctuations (the strongest fluctuations in this frequency range) is
dominant. The value of 5.1 × 10−3 is defined to match the spectrum measured at the
serration tip. The simplifications of the mean flow considered for the analytical modelling
do not allow a description of the spatial distribution of the wall-pressure fluctuations as
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Figure 13. Measured variation of the wall-pressure spectrum measured (φpp) along the serration edge for
α = 10◦ and Re = 2 × 106. The spectrum (a) along the pressure side and (b) along the suction side. Predicted
aerodynamic loading effects are presented in dash-dotted lines (Cv = 5.1 × 10−3).
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Figure 14. Comparison between measured φpp (solid lines) and predicted aerodynamic loading effects
(dash-dotted lines) at the sensor located at the serration tip (Re = 2 × 106). The spectrum (a) on the pressure
side and (b) on the suction side.

observed in figure 12. Nevertheless, the model predicts correctly the narrowband increase
of the wall-pressure fluctuations observed in the experiment, reinforcing the assumption
made about this mechanism. Underpredictions are observed in the high-frequency range,
which could be driven by the choice of the Gaussian spectrum. Grasso et al. (2019) have
also observed a faster decay of the predicted pressure fluctuations from the wall-pressure
fluctuations modelled with the Gaussian velocity cross-correlation equation in comparison
with other velocity cross-correlation models.

The proposed analytical model is also compared against the wall pressure captured at
the serration tip in figure 14 for different airfoil angles of attack. Values are presented again
for Cv = 5.1 × 10−3.

The figure depicts how the model describes the narrowband increase measured for the
spectrum at the tip of the serration. Also, the variation of the measured wall-pressure
fluctuations with the angle of attack is presented. The wall-pressure fluctuations due
to the aerodynamic loading for α � 4◦ are well below those induced by the turbulent
boundary layer and, as such, they do not influence the measured spectrum under such
conditions, following the observations from figure 12(a–c). For higher angles, the pressure
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fluctuations induced by the aerodynamic loading are of the same order as those due to
the incoming turbulent boundary layer, and so the effect of the vortex pairs starts to be
part of the observed wall-pressure distribution over the serrations (figure 12d–f ). This
is well in agreement with the predictions from (2.9). Nevertheless, an overprediction is
observed for the spectrum at α = 8◦ from both the suction and the pressure sides. This
can indicate that the assumption of linear variation of the induced velocity with the angle
of attack (discussed in Appendix B) is not appropriate at such high angles and small
serration aspect ratio or that the value of Cv based on the data at 10◦ overestimates the
aerodynamic loading effect at smaller angles. Overall, the model captures the observed
trends correctly and, despite the oversimplifications on the description of the flow field
and velocity fluctuations, it can be used for estimating the effect and influence of the
aerodynamic loading on the wall-pressure spectrum of sawtooth serrations of different
sizes.

Finally, figure 15 compares the spectrum measured along the serration edge at different
angles of attack with that predicted with the semi-empirical equations proposed. The
comparisons are created using the root wall-pressure spectrum as reference and shows
the predictions at x1/2h = 0.10, x1/2h = 0.56 and x1/2h = 0.80 along the edges of
the serration. The plots are obtained with the contributions from (2.5), (2.7) and (2.9)
applied to the reference wall-pressure spectrum measured at the centre and root of the
serration. It is important to recall that the former two effects are multiplied to the
reference spectrum while the latter one is added to it. The agreement for the case of
α = 0◦ was already demonstrated. Figure 15(b,c) shows how the proposed models predict
well the experimental wall-pressure spectrum at different angles of attack. In all the
panels the effect of the near-wake acceleration can be observed. This effect increases the
wall-pressure fluctuations around the tip of the serrations for frequencies above 2 kHz.
The predicted spectra at high frequencies are well compared against the measured ones.
Discrepancies are slightly larger at high angles of attack, e.g. α = 8◦, which could
be associated with the ω−5 scaling assumed by the Goody model. The change of the
impedance along the serration has an effect on the wall-pressure fluctuations that varies
between the suction and the pressure side. The higher fluctuations on the suction side are
reduced from the root to the tip of the serration, as observed in the experiments. However,
the opposite trend is captured on the pressure side. On this side, the tip region is affected
by both the lower pressure fluctuations from the pressure side but also by the higher
fluctuations from the suction side, following (2.1). As a result, the levels are expected
to increase from the root to the tip, as also observed in the figures. The effect of the
vortex pairs can be seen in the α = 8◦ case. A hump close to 800 Hz is predicted for all
the spectra. This hump agrees with the data outside the serration root. Since the model
does not depend on the location over the serration surface, the effect of the vortex pairs
overpredicts the spectrum for x1/2h = 0.10 on the pressure side. This error can be avoided
by applying the equation only to the prediction of the wall-pressure fluctuations along the
edge and tip of the serrations, where the vortex-pair effect is more noticeable.

The results indicate that the semi-empirical models proposed are able to capture
the trend of the wall-pressure fluctuations on the surface of the serrated trailing
edges under different aerodynamic loading conditions. Variations of the spectrum
observed in this experiment ranged from −3 to +9 dB, indicating that prediction of
trailing-edge noise from the incoming wall-pressure fluctuation is prone to errors of
the same magnitude. The semi-empirical models are able to capture this variation
consistently throughout different velocities, angles of attack and locations on the serration
surface.
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Figure 15. Comparison between measured φpp (circle symbols) and predicted wall-pressure spectrum
(dash-dotted lines) along the serration edge for three different angles of attack of (a) α = 0◦, (b) α = 4◦ and
(c) α = 8◦ (Re = 2 × 106). Levels are made non-dimensional with respect to the boundary-layer displacement
thickness at α = 0◦. The analytical predictions are created using the spectrum at the centre and root (x1/2h =
0.1, x3/λ = 0.0) of the serration as reference.

5. Conclusions

Physical interpretation and semi-empirical models of the underlying mechanisms behind
the observed wall-pressure fluctuations over a sawtooth serration surface are proposed.
The interpretation is corroborated with experimental data from measurements of the
wall-pressure fluctuations over a symmetric airfoil model at a high-Reynolds-number
regime. Results compare the semi-empirical models with the measured wall-pressure
fluctuations over the serration surface, demonstrating the importance of the three
mechanisms described and their effects on the wall-pressure fluctuations over the serration
surface.

At low and mild loading conditions, the distribution of the wall-pressure fluctuations is
dictated by the transition between bounded and unbounded flow and the flow accelerations
in the near wake. The former causes the fluctuations to decrease by no more than 3 dB (in
the symmetric case) from the root to the tip. The latter impacts the energy distribution of
the small structures in the frequency domain, causing an increase in high frequency at the
serration tip. The experimental results show that both phenomena are apparent along the
serration surface. Also, the semi-analytical models proposed are able to capture the main
tendencies of the experiment with deviations no larger than 1 dB.

At high loading conditions, the accelerations of the mean flow imposed by the vortex
pairs formed around the serrations affect the wall-pressure distribution at mid-frequencies
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(f δ∗/Uc ≈ 0.4). A proposed model for the influence of the vortex pairs is created by
assuming the streamwise and spanwise accelerations of the mean flow interacting with the
incoming velocity fluctuations dominant. Considering a simple excitation in the form of a
Taylor–Green vortex, an analytical model can be derived for the wall-pressure fluctuations
generated by a forcing wavenumber excitation of the mean flow in the incoming velocity
fluctuations from a turbulent boundary layer. The results show that the derived model can
describe the observed trends of serrations under high loading conditions, predicting the
observed narrowband increase in the wall-pressure levels around the frequency range and
the dependency on the ratio δ/λ. This model still needs to be verified for different serration
aspect ratios.

Overall, the results corroborate with the physical understanding and mathematical
modelling of wall-pressure fluctuations over serrated trailing edges. The mechanisms
highlighted here play an important role in the scattered noise from serrated trailing edges.
The hypothesized frozen turbulence has already been proven to fail in many other cases
(Gruber et al. 2011; Jones & Sandberg 2012; Moreau & Doolan 2013; Avallone et al. 2017,
2018; Ragni et al. 2019). In this work, an attempt is made to first model the deviations of
the wall-pressure fluctuations mentioned. The proposed analytical approach can be further
expanded, without affecting its general validity, to include a more complex wall-pressure
spectrum model for the wake acceleration effect or a different description of the vortex
pairs surrounding the serrated edge. The resulting equations from this work can be used to
improve the fidelity of noise predictions from serrated trailing-edge configurations.
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Appendix A. Relation between wall-pressure fluctuations at the wall-bounded region
and along the wall plane on the near wake

This appendix describes mathematically the relation between the pressure fluctuations
along the wall plane in the presence (referred as ‘wall’ in the remainder of the equations)
and absence (referred as ‘free’ in the remainder of the equations) of a wall. The effect in
the pressure fluctuations at x2 = 0 can be seen from the analytical solution of the pressure
Poisson represented in (A1):

1
ρo

∇2p = q = −2
∂Ui

∂xj

∂uj

∂xi
− ∂

∂xi∂xj

(
uiuj − uiuj

)
. (A1)

The equation can be solved with the appropriate boundary conditions using the
definition of the Green’s function as shown in Lilley & Hodgson (1960). Equation (A2)

938 A28-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.h2020-smartanswer.eu
https://www.h2020-smartanswer.eu
https://orcid.org/0000-0002-5304-3667
https://orcid.org/0000-0002-5304-3667
https://orcid.org/0000-0002-6214-5200
https://orcid.org/0000-0002-6214-5200
https://orcid.org/0000-0002-8014-5650
https://orcid.org/0000-0002-8014-5650
https://orcid.org/0000-0003-2755-6669
https://orcid.org/0000-0003-2755-6669
https://doi.org/10.1017/jfm.2022.173


L.T. Lima Pereira, F. Avallone, D. Ragni and F. Scarano

illustrates the equivalent pressure estimations for the two different conditions illustrated in
this work, where q(y) represents the source term in the Poisson equation:

pfree (t, x, x2 = 0) = − 1
4π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
1

‖x − y‖q (y, t) dy,

pwall,upper (t, x, x2 = 0) = − 1
2π

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
1

‖x − y‖q (y, t) dy.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A2)

The variance of the pressure fluctuations can be used here to represent the effect that the
presence of the wall has on the wall-pressure spectrum levels. Since the integrals along x1
and x3 are the same, these two integrals are replaced by Q(x2) for brevity:

〈p, p〉free (x2 = 0) = 1
16π2

∫ ∞

0

(∫ ∞

−∞
Q (y, t) dy2

)2

dt,

〈p, p〉wall,upper (x2 = 0) = 1
4π2

∫ ∞

0

(∫ ∞

0
Q (y, t) dy2

)2

dt.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A3)

The estimation of the free field can be modified by separating the integral between the
upper (x2 � 0) and lower (x2 � 0) flow regions and further considering that both sides
are uncorrelated. The latter hypothesis should be valid in the vicinity of the trailing edge,
where the flow from both sides has not mixed.

〈p, p〉free (x2 = 0) = 1
16π2

[∫ ∞

0

(∫ −∞

0
Q (y, t) dy2

)2

dt

+
∫ ∞

0

(∫ ∞

0
Q (y, t) dy2

)2

dt

]
,

〈p, p〉wall,upper (x2 = 0) = 1
4π2

∫ ∞

0

(∫ ∞

0
Q (y, t) dy2

)2

dt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

Finally, recognizing that the two terms in the free-field estimation correspond to the
wall-pressure estimations coming from the upper and lower side of the flow, a relation for
the pressure fluctuations at the wall plane for a wall-bounded and free condition can be
created as (A5):

〈p, p〉free = 1
4 〈p, p〉wall,upper + 1

4 〈p, p〉wall,lower. (A5)

Appendix B. Wall-pressure fluctuations induced by turbulent flow over a
spanwise–streamwise oscillating flow field

This appendix describes the derivation of the wall-pressure fluctuations created by a
wall-bounded turbulent flow excited by the mean flow in particular wavenumbers in
spanwise and streamwise directions.

The mean flow excitation is in the form of a Taylor–Green function following (2.8),
where k̄1 = π/2h and k̄3 = 2π/λ. The mean flow is used to derive a source term for the
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pressure Poisson equation (A1), resulting in (B1):

q
(
x, k̄

) = −2
∂Ui

∂xj

∂uj

∂xi

= −
[
∂u1

∂x1
+ λ

4h
∂u1

∂x3
− 4h
λ

∂u3

∂x1
− ∂u3

∂x3

]
k̄1Ao exp(−ik̄1x1) exp(ik̄3x3) . . .

−
[
∂u1

∂x1
+ λ

4h
∂u1

∂x3
+ 4h
λ

∂u3

∂x1
+ ∂u3

∂x3

]
k̄1Ao exp(−ik̄1x1) exp(−ik̄3x3). (B1)

This source function can be extended using the wavenumber decomposition for the
velocity fluctuations:

q
(
x,k, k̄

) =
(

k1 + λ

4h
k3

)[
u1 (x2,k)− 4h

λ
u3 (x2,k)

]
k̄1Aoi exp(−ik̄1x1)

× exp(ik̄3x3) exp(−ik1x1) exp(−ik3x3) . . .

+
(

k1 + λ

4h
k3

)[
u1 (x2,k)+ 4h

λ
u3 (x2,k)

]
k̄1Aoi

× exp(−ik̄1x1) exp(−ik̄3x3) exp(−ik1x1) exp (−ik3x3), (B2)

where k = (k1, k3) and k̄ = (k̄1, k̄3). Following the approach of Willmarth & Roos (1965),
the Fourier transform along x1 and x3 is taken. Since the function is a bilinear combination
of two wavenumbers (k, k̄), a change of variables is necessary, according to the following
identity of the Fourier transform:

F.G (ki) = F
(
ki − k̄

)
.G
(
k̄
)
, (B3)

resulting in the source term for (B2):

q
(
k, k̄

) = Aoi
(

k1 + λ

4h
k3

)
k̄1

[
u1
(
x2,k′)− 4h

λ
u3
(
x2,k′)]

+ . . .Aoi
(

k1 + λ

4h
k3 − 2k̄1

)
k̄1

[
u1
(
x2,k′′)+ 4h

λ
u3
(
x2,k′′)] , (B4)

where k′ = (k1 − k̄1, k3 + k̄3) and k′′ = (k1 − k̄1, k3 − k̄3).
The source function can be used to derive a solution for the pressure at the wall.

Similarly to Appendix A, this is accomplished by the appropriate selection of the Green’s
function, represented in (B5) for the decomposed wavenumbers in the streamwise and
spanwise directions. In the equation, k =

√
k1

2 + k3
2. Therefore, the pressure at the wall

(x2 = 0) can be estimated according to (B6).

G (x2,X2,k) = −exp(−k|x2 − X2|)
2k

− exp(−k|x2 + X2|)
2k

, (B5)

p
(
x2 = 0,k, k̄

) = iρoAo

∫ ∞

0

{[
k1 + (λ/4h) k3

]
k̄1

k

[
u1(k′)− 4h

λ
u3(k′)

]

+ . . .

[
k1+(λ/4h) k3−2k̄1

]
k̄1

k

[
u1(k′′)+ 4h

λ
u3(k′′)

]}
exp(−kX2) dX2.

(B6)
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The wall-pressure wavenumber spectrum is obtained by the averaging of the
multiplication of p by its complex conjugate. The formulation for the spectrum (φpp) is
shown in (B7). The equation has two important considerations for simplification. The
first considers the contribution from the cross-spectrum of different velocity components
negligible with respect to the cross-spectra of the same velocity components (Hodgson
1962). From this assumption, the cross-correlation terms of different velocity components
are neglected. The second hypothesis is of homogeneous turbulence, which results in
φu1,u1 = φu3,u3 = φu,u. The work of Lilley & Hodgson (1960) discusses that the latter
hypothesis suffices for order-of-magnitude analysis, although the decay of the energy
of the smaller structures is underpredicted with respect to experiments. The resulting
equation (B7) depends only on the description of the velocity cross-spectrum along the
wall-normal direction:

φpp
(
k, k̄

) = ρo
2Ao

2

[
k1 + (λ/4h) k3

]2 (k̄1
2 + k̄3

2
)

k2∫ ∞

0

∫ ∞

0
φ′

u,u exp
(−k

(
X2 + X′

2
))

dX2 dX′
2

+ . . . ρo
2Ao

2

[
k1 + (λ/4h) k3 − 2k̄1

]2 (k̄1
2 + k̄3

2
)

k2

∫ ∞

0

∫ ∞

0
φ′′

u,u

× exp
(−k

(
X2 + X′

2
))

dX2 dX′
2. (B7)

In this study, the most simplistic model of the velocity cross-spectrum, the Gaussian
spectrum described in Batchelor (1953), is selected. Several other models exist for the
evaluation of this quantity (von Kármán 1948; Liepmann, Laufer & Liepmann 1951;
Wilson 1997). Those were ruled out as the modelling aims at a first description of
the underlying parameters that govern the wall-pressure fluctuations of serrations under
loading. At a later stage, the model can benefit from a more precise description of the
mean and fluctuating velocity field along the serrations. Considering more complex vortex
models, e.g. the Lamb–Oseen or the Batchelor models, or a precise description of the
decay of energy of the fluctuations and anisotropy are possible ways of improving the
predictions. The cross-spectrum considered assumes the form of (B8), where L is the
characteristic length scale of the flow:

φuu
(
k, x2, x′

2
) = L4

16π

√
�u2

i (x2)
�u2

i
(
x′

2
)
k2 exp

(
−L2k2

4
−
(
x2 − x′

2
)2

L2

)
. (B8)

The equation is further simplified by considering constant velocity fluctuations in the
wall-normal direction, following the work of Kraichnan (1956). Finally, using (B8) in
the integrals of (B7) and solving it, one can obtain a closed form of the wall-pressure
fluctuations due to streamwise and spanwise accelerations induced by the mean flow as
(B9):

φpp
(
k, k̄

) = ρo
2Ao

2L5uu
32

√
π

(
k̄1

2 + k̄3
2
){[

k1 + (λ/4h) k3
]2 k′2 exp

(
−L2k′2

4

)
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+ . . . [k1 + (λ/4h) k3 − 2k̄1
]2 k′′2 exp

(
−L2k′′2

4

)}
exp

(
L2k2

4

)
k3 erfc

(
kL
2

)
,

(B9)

where k′ =
√
(k1 − k̄1)

2 + (k3 + k̄3)
2 and k′′ =

√
(k1 − k̄1)

2 + (k3 − k̄3)
2.

The pressure spectrum can be obtained by considering k1 = ω/Uc and integrating over
all spanwise wavenumbers, following (B10):

φpp
(
ω, k̄

) = 1
Uc

∫ ∞

−∞
φpp

(
k, k̄

)
dk3. (B10)

According to the software of symbolic mathematical handling Mathematica, the former
equation does not seem to produce a closed analytical solution. Nevertheless, a numerical
integration procedure can be used to derive a final and simplified equation that describes
fairly well the solution in mid and high frequencies (equation (2.9)). The parameters
of the equation are converted into simple flow parameters according to the following
assumptions:

L ∝ δ∗, (B11)

uu ∝ Uc
2, (B12)

Ao ∝ Uc
h
λ
αs. (B13)

Assumptions (B11) and (B12) follow the works of Chase (1980) and Blake (2017a) while
assumption (B13) considers the circulation on the serration proportional to the serration
area times the angle with respect to the zero-lift condition (potential lift generation). Vortex
lift (Polhamus 1966) can also have a contribution to the serration lift given the small
aspect ratio and the presence of the vortex pairs around the edges of the serration. The
latter was ruled out due to the small angles and since the vortex pairs are not formed
in the surface of the serration but rather around its corner (see Avallone et al. 2016).
Nevertheless, the contribution of the vortex lift could change the linear dependency of αs
in assumption (B13) to αs

2 at small angles. Further investigations could provide a better
insight into the lift generation mechanism of trailing-edge serrations.

Appendix C. Verification of analytical models with other datasets

This appendix is dedicated to comparisons between the models obtained and available
results from the literature.

The results of Avallone et al. (2017, 2018) are used for the verification of the models
describing the effects that modify the wall-pressure fluctuations at low angles of attack,
namely the impedance change at the trailing-edge region (§ 2.1) and the wake acceleration
effect (§ 2.2). Given that the cited references do not provide the variation of the convection
velocity over the airfoil, the latter correction was created using the convection velocity
equations of this work ((3.2) and (3.3)).

Figures 16 and 17 compare the distribution of the variance of the pressure fluctuations
over the serration surface predicted with the simulated one shown in Avallone et al. (2017)
(figure 9 from that publication) and Avallone et al. (2018) (figure 17 from that publication),
respectively. To create the variance of the fluctuations, the model is integrated over the
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Figure 16. Simulated distribution of the pressure fluctuations over the serration surface from the work of
Avallone et al. (2017) (a,c) compared against the predicted one (b,d). (a,b) The sawtooth serration geometry and
(c,d) the iron-shaped serration geometry. (a) Numerical sawtooth geometry. (b) Analytical sawtooth geometry.
(c) Numerical iron-shaped geometry. (d) Analytical iron-shaped geometry. Panels (a,c) are reprinted under the
licence number 5153050767352.
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Figure 17. Simulated distribution of the pressure fluctuations over the serration surface from the work of
Avallone et al. (2018) (a,c) compared against the predicted one (b,d). (a,b) The sawtooth serration geometry
and (c,d) the combed sawtooth serration geometry. (a) Numerical sawtooth geometry. (b) Analytical sawtooth
geometry. (c) Numerical combed sawtooth geometry. (d) Analytical combed sawtooth geometry. Panels (a,c)
are reprinted under the licence number 5153051246667.

entire frequency range shown in the references. This process leads to the dominance of
the low-frequency (high-energy) content on the quantity displayed. Thus, the effect of the
impedance change dominates the variance of the pressure fluctuations.

Overall, results compare well between the numerical and the semi-empirical models.
Discrepancies are not higher than one colour scale and are mostly an overestimation of the
levels of the pressure fluctuations by the models. Still, the models are able to describe the
tendencies observed among different serration geometries. Both the iron-shaped and the
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Figure 18. Comparison between the wall-pressure fluctuations over the sawtooth serration surface presented
in the works of Avallone et al. (2017) and Avallone et al. (2018) (solid lines) and the predicted one using
the analytical equations described in §§ 2.1 and 2.2 (dash-dotted lines).The spectrum at the root is taken as a
reference for predicting the variations along the serration edge.

combed-sawtooth serration feature a higher surface area than the sawtooth serration. As a
consequence, the reduction of the wall-pressure fluctuations in the different geometries
is more concentrated at the serration tip and the difference between the wall-pressure
fluctuations around the centre and the edge of the serration is not as pronounced as that
observed for the sawtooth serrations.

The wall-pressure spectra measured at the serration root, centre and tip of the reference
sawtooth serration case from the works of Avallone et al. (2017) and Avallone et al. (2018)
are shown in figure 18. In comparison, the predicted wall-pressure spectrum using the
root spectrum as reference is shown in dot-dashed lines. From the graph, it is possible
to observe that the semi-empirical models produce an accurate prediction of the varying
wall-pressure spectrum on the serration surface. At low frequencies, the impedance change
causes a reduction of the wall-pressure fluctuations along the serration tip, well captured
by the model. At high frequencies, the increasing convection velocity leads to an increase
of the wall-pressure fluctuations at the serration tip, which is also correctly described by
the wake acceleration model. Discrepancies seem to be well within 1 dB, as also observed
in this work for the experimental dataset. The results are only shown for the sawtooth
serration since the wake acceleration model would predict the same modifications for all
the geometries tested. This is still in accordance with the results presented in Avallone
et al. (2017) and Avallone et al. (2018), where the geometric modifications do not yield
significant change of the wall-pressure spectrum at the same locations.

In summary, this appendix has demonstrated the ability of two of the proposed analytical
models to predict the variation of the wall-pressure fluctuations over the surface of a
serrated trailing edge. The impedance change model is seen to correctly describe the
low-frequency phenomenon observed on the wall-pressure spectrum and on the variance
of the pressure fluctuations over the serration surface. This model can also be applied
with other serration geometries and results show a similar trend between the predicted
and the simulated distribution of the wall-pressure fluctuations. The wake acceleration
effect dominates the observed variations of the wall-pressure spectrum at high frequencies.
Predictions of this effect using the variation of the convection velocity estimated for the
experimental dataset presented in this work yield good comparisons with the numerical
data from the references. It is therefore shown that the effects described in this work
are the same that modify the wall-pressure fluctuations over the serration surface of the
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references used. Moreover, the semi-empirical models proposed and associated empirical
quantities (Ci and C3) estimated from this work can also be used for different datasets.
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