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Abstract—While designed for being energy efficient, the de-
ployment of 5G networks will further increase Radio Access
Networks (RANs) energy consumption with the twofold effect
to raise sustainability issues and increase operational costs for
Mobile Network Operators (MNOs). However, the energy waste
occurring during low traffic periods can be mitigated through
Advanced Sleep Modes (ASMs) that make the BSs enter into
progressively deeper and less consuming sleep modes. Deep sleep
modes, unfortunately, have longer reactivation times, and may
jeopardize service quality.

In this paper, focusing on 5G latency requirements in low
traffic periods, we propose a framework to dynamically adapt
the ASM configuration settings to the actual traffic load so as to
meet a desired constraint on the average BS reactivation delay.

Index Terms—Sleep Modes, 5G networks, Energy Efficiency

I. INTRODUCTION

In recent years, we have witnessed a staggering growth of
mobile traffic, posing significant challenges to Mobile Net-
work Operators (MNOs) in terms of network energy demand
and operational costs. This trend is bound to be further
boosted in the next years. According to the Cisco forecast,
almost 30 billion of networked devices are expected by 2023,
and global mobile data traffic will reach almost 80 exabytes
per month by the same year [1]. In this context, the wide
spreading of 5G technology, which enables mobile networks
to provide incredibly huge capacity and ubiquitous and fast
network access, is further pushing the process of mobile net-
work densification. The enhancements that 5G technology is
introducing in terms of higher bandwidth availability and ultra-
low latency are facilitating the deployment of massive Internet
of Things (IoT) applications, from IoT services focused on
environmental monitoring, to smart mobility and autonomous
vehicles, machine-to-machine (M2M) communications for fac-
tory automation in Industry 4.0, Smart Grid management,
Smart Farming, just to cite some examples. By 2023, IoT
devices will represent half of all networked devices, and over
10% of devices and connections will have 5G capability [1].

Considering that up to 80% of the total network consump-
tion is accounted for the access segment [2], a rapid growth
of energy demand to operate cellular networks is entailed
by the boost of traffic volumes. Indeed, MNOs are already
facing a substantial rise in the energy bill due to power
supply [3]. Among the possible solutions to cope with these
challenges, Base Station (BS) Sleep Modes (SMs) can be

used to reduce mobile network consumption by deactivating
unneeded radio resources during periods in which the traffic
demand is low. However, the reactivation time from sleep
modes introduces additional undesirable set-up delays and,
consequently, the risk to deteriorate quality of service. This
has slowed down the adoption of sleep modes. Recently, the
introduction of Advanced Sleep Modes (ASMs), which allow
to progressively deactivate the BS to deeper sleep modes
that correspond to lower power levels but longer reactivation
times [4], are making it possible to find convenient trade-
offs between energy saving and reactivation delay. Clearly,
ASMs can be applied in scenarios, like those expected in
5G deployments, in which the cell layout is dense and a few
macro-cells provide full coverage and are always active, while
several small cells can be activated on demand, only when
needed.

While ASMs are very promising, they are defined through a
large set of parameters whose setting is not straightforward and
might compromise the effectiveness of the overall approach.
To the best of our knowledge, no other work in the literature
analyses the effect on the system performance of varying the
ASM configuration settings and its potential in energy efficient
5G networks. In this paper, by focusing on BS operation
with ASMs, we propose a simple method to optimally set
the parameters that govern ASM so that a desired average
BS reactivation delay is guaranteed while energy saving is
maximized.

A. Related work

Significant potential for enhancing energy efficiency in Base
Station communication is found through vastly studied sleep
mode based techniques that utilize periods with low traffic
load and effectively manage resources for achieving green
communication in mobile networking. [5]–[7]. Deeper sleep
states monotonically decrease average power consumption.
Hence, various sleep policies suggest an effective utilization of
low power modes to foster the need for energy efficient com-
munication in mobile base stations [8]. Performance evaluation
of strategic and random sleeping policies on a stochastic model
is presented for Heterogeneous Cellular Networks (HCN) for
QoS considerate optimization of sleep mode strategy with
low computational complexity [9]. Furthermore, optimal sleep
policy-based wake-up schemes suggest improvement in user-
associated base station parameters [10], [11]. Among several
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techniques for traffic knowledge aware base station sleep
mode optimization [12]–[16], an access algorithm, mobile
station round-robin base stations (MSRRBS), is compared
with existing search methods in terms of complexity and
performance [17].

Mobile cellular technology has been developed to achieve
networking goals with increasing data rate requirements,
which consequently increase the energy demand. As Renew-
able Energy sources are penetrated to power BSs, SM-based
solutions allow for more efficient management of Renewable
Energy generation, which is intermittent and unpredictable.
[5], [7], [18]–[21]. The interest in SM based strategies ex-
pect to further increase with the widespread diffusion of 5G
technologies [6], [22], [23]. Indeed, the 5G paradigm implies
a gradual increase in network density, resulting in higher
energy bills [23], [24]. Diffusion of sleep modes in 5G base
station leads to raise energy gains through increasing SS burst
period periodicity [25]. Moreover, the concept of femtocells
or micro base stations in 5G brings forth the idea of efficient
resource utilization by turning OFF few cells with a low
load while distributing the traffic to the neighbouring cells
[15], [26], [27]. As a result of the deactivation of some base
stations, subscribers benefit from higher data rates due to
less interference in the area, improving the overall capacity
provided by the femtocell cluster [28].

Considering traffic prediction as a crucial factor that in-
fluences the decision of using sleep modes effectively [19],
an approach towards performance specified Machine learning
(ML) is discussed for base station ON-OFF switching using
traffic prediction [12]. Device-to-Device (D2D) incorporation
to prevent traffic loss is proposed for Q-learning based sleep-
wakeup mechanism, in which QoS is offered through de-
activating redundant base stations corresponding to the ob-
tained local traffic profile [13]. Sleep mode techniques show
promising outcomes by decreasing the overall consumption
in base stations. However, they may raise concerns about the
possibility of affecting the Quality of Service due to the time
required to turn on BS components in the event of a new
service request. This additional delay may limit the use of
SMs due to the strict latency constraints for future application
requirements, such as massive IoTs, besides the limitations
defined in the 5G standard for mobile communication. In
[29], authors suggest switching the BS to different sleep
levels according to the traffic location and movement would
maximize the performance by trading off energy and delays.
Similarly, determining the delay distribution under the optimal
policy study defines the linear relationship between the two
parameters and hence the possibility to trade-off delay and
energy efficiency [30], [31]. However, there remains a need
for an efficient method to optimize sleep mode policy in BS
according to delay constrained application requirement in 5G
and imminent 6G technology.

Besides standard ASM operation presented in [4], other
existing works from the literature focus on trading-off delay
and energy consumption for advanced sleep modes. A dis-
tributed Q-learning approach is used to optimize the duration
of sleep modes based on traffic prediction, and a weight is
assigned to prioritize between latency and energy gains [32],

[33]. However, this approach lacks a consistent performance
for delay sensitive applications under varying traffic load. A
similar approach based on reinforcement learning is used to
trade-off energy savings and delays for ASMs [34]. Differently
from other works, our approach is characterized by the peculiar
capability to achieve the desired performance for delay sensi-
tive 5G applications, still maintaining similar gains in terms
of power saving.

In our previous work [35], we suggest an effective uti-
lization of Advanced Sleep Modes (ASMs) to trade-off the
delay and power consumption for different 5G scenarios. In
particular, we propose Tailored SM operation (TO) to trade-
off delays and power consumption by setting the duration of
SMs according to scenarios and expected load. The method
tests on various 5G scenarios and the results show that the
application of ASMs based on TO can be used to dynamically
trade-off delays and power consumption. However, what was
missing is the integration of an automatic procedure in which
the system can tune its parameters according to defined delay
specifications for different 5G verticals. This paper extends our
previous work to overcome this mentioned gap by proposing
the closed-form solution for dynamically adjusting the dura-
tion of SMs under a given arrival rate. The main contributions
are detailed below.

B. Contributions

In this paper, which is an extension of our previous work [35],
we study an optimization method for sleep mode operated
5G BS with delay sensitive applications. Although standard
ASMs setting shows good performance in terms of energy
saving, it triggers up to almost 5.5 ms delay. According to
the 5G standardization and ITU report on 5G performance
requirements, the minimum requirement for user plane latency
is 1 ms for URLLC and 4 ms for eMBB communication
[36], [37]. To overcome the complexity of deciding the best
parameter setting for SM operation, we propose a Delay
Conservative Advanced Sleep Modes (DCASM) approach for
BS operation, a method based on an analytic formulation to
derive the proper SM settings and to better trade off energy
saving and delay. Therefore:

• We develop a closed-form expression to derive the proper
parameter settings for ASM operation under different sce-
narios and arrival rates, to make the system performance
compliant with the required average delay constraints. By
being based on analytic formulation, the approach can be
easily integrated into 5G BS design while incorporating
ASMs.

• Through the derived closed-form mathematical expres-
sion, we obtain the BS power consumption under the
predefined DCASM settings, that allow to meet the
scenario specific delay requirements. In this way, power
consumption can be estimated ahead of time based on
traffic prediction as well as in real time, and ASM
parameters can be tailored to the specific needs of MNOs
and vertical industries.

• We analyze the impact on delay due to the errors in real-
time traffic predictions, which are needed to adapt ASM
parameter setting to the actual traffic variations.
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Fig. 1: Standard Advanced Sleep Mode operation.
II. ADVANCED SLEEP MODES

Mobile access networks are often over-provisioned and prone
to high intra-day load fluctuations, as well as to long low
traffic periods during which a huge amount of energy is lost.
The potential for ASMs to save energy is remarkable in such
periods. The ASM paradigm was first developed by IMEC
[38] within the Earth project [39], and is being integrated
into the standardization process of 5G networks [40], [41].
In release 16 of 5G standardization, low power consumption
and in-active mode is amalgamated for boost cells other than
basic coverage providing cells, which strengthens the concept
of sleep mode utilization in 5G base stations [42]. Here, we
consider the ASM model stated in [4].

Fig. 1 shows the ASM operation as defined in the standard.
A BS enters progressively into deeper SMs during periods of
inactivity, with each SM featuring a specific amount of power
consumption. Distinct subsets of BS components are gradually
deactivated when no data has to be transmitted, starting from
components characterized by the shortest activation delay as
well as the lowest consumption, such as the Power Amplifier
and some processing components. The power consumption of
BS components is measured using the IMEC Power tool [43],
and three SM levels are envisioned as a result. Therefore, the
BS can be in different states that correspond to different power
levels:

• Active state: the BS is transmitting. We denote the state
by 𝐴. Transmission can also include signaling, i.e., the
BS transmits synchronization and control signals (primary
and secondary synchronization signals - PSS and SSS,
respectively - and physical broadcast channel signals -
PBSH) [44].

• Idle state: the BS is active and waiting for traffic to be
transmitted.

• Sleep mode states: the BS can be in three possible sleep
modes, denoted by SM𝑖, with 𝑖 = 1,2,3, that are progres-
sively deeper, corresponding to lower consumption and
higher reactivation times.

• Deactivation states: the BS is in the transition between
two sleep modes, it is deactivating from a sleep mode
SM(𝑖−1) to the deeper one, namely SM𝑖; the state is
denoted by D𝑖. The deactivation from the active or idle
state to state SM1 is denoted by 𝐷1.

• Reactivation states: the BS is reactivating from SM𝑖 to
the active state 𝐴; reactivation states are denoted by R𝑖.

The adopted notation is reported in Table II, together with

other notation and symbols used across the paper.
The transition times are the times required to move from

state SM𝑖 to SM(𝑖 + 1) for the case of deactivation and to
state SM(𝑖 − 1) for reactivation from current state SM𝑖. The
time needed to deactivate the BS from a sleep mode to the
deeper one and the time to make the opposite transition from
a deeper state to the considered one feature the same duration.1

The standard defines the transition times and recommends the
hold time to be spent in each SM before entering a deeper
SM level [4], as reported in Table II. The Table also includes
the power consumption values corresponding to each state.
When the BS is in the idle state, it enters gradually into
deeper SMs according to the pattern shown in Fig. 1. After
entering a SM, the standard suggests that the BS spends a hold
time in that SM before moving to the deeper SM. For SM3,
BS could stay there for an arbitrary period until an request
wakes the BS up. Note that in Fig. 1 both power levels and
deactivation/reactivation times are not drawn to scale for sake
of readability. While the transition times are defined by the
internal switching operation and cannot be changed, the hold
times spent in each SM can be changed and we act on these
times to improve system performance.

When a new signalling or data transmission request arrives
to the system and finds the BS in a SM, three different
situations might occur:

• The BS is in SM𝑖, and it immediately reverts back
to active state to process the request. The request is
temporarily buffered during the transition time required
to move back to active state. The time to reactivate the
BS is given by the sum of the transition times between
all the SM states crossed during the transition from the
current SM𝑖 to the active state.

• The request arrives while the BS is deactivating from SM𝑖

to SM(𝑖 + 1). In this case the deactivation process must
be completed before starting reactivation from the state
it has just been entered to the fully active state.

• The request arrives while the BS has already started the
reactivation procedure due to a previous request. The
remaining reactivation time period must elapse before
starting the process of new request.

In all the three cases, requests are temporarily stored for the
amount of time it takes to fully activate the BS.

The hold time that must be spent in state SM𝑖 before moving
to next state SM(𝑖+1) is denoted by 𝑇𝑖 . Let 𝑇𝑑𝑖,𝑖+1 be the time
required to make the BS enter SM(𝑖 + 1) from SM𝑖, which
coincides with the time needed to move back from SM(𝑖 +1)
to SM𝑖. We denote by 𝑇𝑑0,1 the time to move from the active
state to SM1 and, similarly, 𝑇𝑟1,0 is the time to move from SM1
to active. As already mentioned 𝑇𝑑1,0 = 𝑇𝑟0,1 . The time in the
deactivation state D𝑖 is hence equal to 𝑇𝑑𝑖,𝑖+1 , while the total
time spent in the reactivation state R𝑖 is given by the sum of
the times required to reactivate the BS from the current SM𝑖

through each intermediate state, i.e. SM𝑖 to SM(𝑖−1) up to the
active state. For example, the time to reactivate the BS from

1There exists also a Sleep Mode 4 that is not considered here, as well as
in other related work, since its reactivation time, equal to 0.5 s, is too long
to be compliant with 5G latency constraints.
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TABLE I: Notation.

Notations Symbols

Active state A
Sleep Mode state 𝑖 SM𝑖

Deactivation state 𝑖, i.e. transition from state SM𝑖 − 1) to state SM𝑖 D𝑖

Reactivation state 𝑖, i.e. transition from state SM𝑖 to state A R𝑖
Hold time to be spent in SM𝑖 before entering state 𝑆𝑀 (𝑖 +1) 𝑇𝑖
Time spent in deactivation state D(𝑖 +1) 𝑇𝑑𝑖,𝑖+1
Reactivation time from SM𝑖 to SM(𝑖 − 1) 𝑇𝑟𝑖,𝑖−1
Time spent in reactivation state R𝑖 𝑇𝑟𝑖
Remaining transient time 𝑟

Average arrival rate 𝜆

Average inter-arrival time 𝑇𝑖𝑎
Average service rate 𝜇

Average delay 𝑑

Target delay 𝑑∗

Base station Utilization 𝑈

Average BS Power Consumption 𝑃𝐶

Average BS Power consumption during SM states and transition states 𝑃𝑆𝑀

BS Power consumption during Active state 𝑃𝐴

Average Baseline Power consumption with BS always active 𝑃𝐵

BS Power consumption in SM𝑖 𝑃𝑖

BS Power consumption in transient states D𝑖 𝑃𝑖,𝑖+1
BS Power consumption while in reactivating from state SM𝑖 to SM(𝑖 − 1) 𝑃𝑖,𝑖−1

TABLE II: Power levels, deactivation time to/reactivation time
from a SM, hold time spent in a SM according to the standard
ASM operation.

Active Idle SM1 SM2 SM3

Power level 490 W 328 W 157 W 42.9 W 28.5 W

De- or re-activation - - 35.5 µs 0.5 ms 5 ms

Hold time - - 70 µs 1 ms -

SM2 is given by 𝑇𝑟2 = 𝑇𝑟2,1 +𝑇𝑟1,0 . Note that no constraint is
placed on the hold time to be spent in any SM𝑖 during the BS
reactivation: as soon as an arrival occurs during any SM𝑖, the
BS can be immediately reactivated.

During an activation/deactivation slope, the power consump-
tion corresponds to the power consumption of the level from
which the BS is awaking or from which it is deactivating,
respectively.

III. DELAY CONSERVATIVE ASM OPERATION

We propose a novel operational mode, called Delay Conser-
vative ASM Operation (DCASM), that, by properly setting
the parameters of the ASM operation, minimizes energy
consumption while meeting delay constraints, hence targeting
delay conservative 5G applications. The delay constraint is
defined in terms of the average delay experienced by a request
that arrives when the BS is not active and has to wait for the
BS to fully reactivate from a SM.

To find the optimum configurations, a mathematical frame-
work is developed. In particular, the setting concerns the value
of 𝑇2; indeed, 𝑇1 is set to the same value adopted under the
Standard ASM Operation, i.e., 𝑇1=70 µs, since the reactivation
delay from SM1 is negligible, and does not significantly affect
the average reactivation delay.

In order to guarantee a desired average reactivation delay,
we use 𝑇2 as a control knob to tune the frequency with which,
at its arrival, a request finds the BS in SM3, a state from which
the reactivation delay is large. If 𝑇2 is large, most of the arrivals

find the BS in SM2 and a short average reactivation delay is
experienced. Conversely, if 𝑇2 is small, the BS can often enter
SM3 from which reactivation delay is large.

The complete process of DCASM is depicted in the flow-
chart diagram reported in Fig. 2. Depending on the considered
scenario, a specific target is set for the maximum allowed
average delay, let it be denoted by 𝑑∗. The arrival rate is
estimated and fed as input to the framework which provides
the optimal setting of 𝑇2 such that the delay requirement is
met while the power consumption is minimized, under the
estimated value of the traffic.

We now present the formulation for setting the parameters
in DCASM so as to meet a given delay requirement under
given conditions of traffic.
A. Request Arrivals

We assume that new requests arrive according to a Poisson
process. This assumption is reasonable due to the potentially
large population of users which makes uncorrelated their
behaviour. Since the process is Poisson, the inter-arrival time
𝑇𝑖𝑎 is a random variable with exponential distribution with
parameter 𝜆 such that 𝜆 = 1/𝑇 𝑖𝑎 where 𝑇 𝑖𝑎 denotes the mean
inter-arrival time.

Arrivals can be categorized based on the activation delay
that a new request would incur into and we consider only
arrivals which trigger the BS reactivation, since at low load
the probability to have an arrival in the short time of a
reactivation is small and, in this case, the experienced delay
is only a residual reactivation time. Arrivals occurring during
sleep states SM𝑖, with 𝑖 = 1,2,3 experience a delay that is
given by the reactivation time from SM𝑖. Arrivals occurring
during deactivation states D𝑖 have to wait for the deactivation
to be completed followed by a reactivation.

Fig. 3a shows the probability density function of inter-
arrival times. On the x-axis it is reported the sequence of the
BS states visited during inactivity periods. In particular, the
labels 𝐷1, 𝐷2, 𝐷3 on the x-axis identify those ranges of inter-
arrival times that lead to arrivals occurring during the transition
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Fig. 2: DCASM operation flowchart.

towards a deeper SM, i.e., during the deactivation states D𝑖.
Conversely, the inter-arrival time corresponding to 𝑆1, 𝑆2, 𝑆3
determine arrivals occurring during SM𝑖. Depending on the
state being visited when an arrival occurs, the experienced
delay is different. Therefore, to define the probabilities of
arrival in each state we present a Cumulative Density Function
(CDF) of the inter-arrival times in Fig. 3b. The upper extremes
of each interval is denoted as 𝑡𝐷1 , 𝑡𝑆1 , 𝑡𝐷2 , 𝑡𝑆2 , 𝑡𝐷3 , which
can be found through accumulating the time from starting of
deactivation from active state till the corresponding state. They
are defined as follows:

𝑡𝐷1 = 𝑇𝑑0,1 (1)
𝑡𝑆1 = 𝑇𝑑0,1 +𝑇1

𝑡𝐷2 = 𝑇𝑑0,1 +𝑇1 +𝑇𝑑1,2

𝑡𝑆2 = 𝑇𝑑0,1 +𝑇1 +𝑇𝑑1,2 +𝑇2

𝑡𝐷3 = 𝑇𝑑0,1 +𝑇1 +𝑇𝑑1,2 +𝑇2 +𝑇𝑑2,3

Hence, the probabilities of arrivals occurring in each state can
be derived as:

𝑃(𝑇𝑖𝑎 ∈ 𝐷1) = 1− 𝑒−𝜆𝑡𝐷1 (2)
𝑃(𝑇𝑖𝑎 ∈ 𝑆1) = −𝑒−𝜆𝑡𝑆1 + 𝑒−𝜆𝑡𝐷1

𝑃(𝑇𝑖𝑎 ∈ 𝐷2) = −𝑒−𝜆𝑡𝐷2 + 𝑒−𝜆𝑡𝑆1

𝑃(𝑇𝑖𝑎 ∈ 𝑆2) = −𝑒−𝜆𝑡𝑆2 + 𝑒−𝜆𝑡𝐷2

𝑃(𝑇𝑖𝑎 ∈ 𝐷3) = −𝑒−𝜆𝑡𝐷3 + 𝑒−𝜆𝑡𝑆2

𝑃(𝑇𝑖𝑎 ∈ 𝑆3) = 𝑒−𝜆𝑡𝐷3

S
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Fig. 3: Distribution of inter-arrival times comprising ASMs.

B. Delay Conservation

As described in previous section, an arrival in any sleep state
SM𝑖 triggers a fixed reactivation delay whose value depends
on the SM level; reactivation from SM𝑖 requires a time 𝑇𝑟𝑖 . A
request occurring during a deactivation phase experiences an
additional delay, denoted by 𝑟, beside the reactivation time.
This additional delay 𝑟 represents the remaining time that
must elapse from the moment in which the new request occurs
(during a transition period) to complete the deactivation from
the state SM(𝑖−1) to the state SM𝑖.

The delay, denoted by 𝑑 𝑗 (with 𝑗 ∈ S =

{𝐷1, 𝑆1, 𝐷2, 𝑆2, 𝐷3, 𝑆3}), experienced by requests occurring
during deactivation transient states (𝐷1, 𝐷2, 𝐷3) and sleep
states (𝑆1, 𝑆2, 𝑆3) is given by:

𝑇𝑖𝑎 ∈ 𝐷1 : 𝑑𝐷1 = 𝑟 +𝑇𝑟1; 𝑟 ≤ 𝑇𝑑0,1 (3)
𝑇𝑖𝑎 ∈ 𝑆1 : 𝑑𝑆1 = 𝑇𝑟1

𝑇𝑖𝑎 ∈ 𝐷2 : 𝑑𝐷2 = 𝑟 +𝑇𝑟2; 𝑟 ≤ 𝑇𝑑1,2

𝑇𝑖𝑎 ∈ 𝑆2 : 𝑑𝑆2 = 𝑇𝑟2

𝑇𝑖𝑎 ∈ 𝐷3 : 𝑑𝐷3 = 𝑟 +𝑇𝑟3; 𝑟 ≤ 𝑇𝑑2,3

𝑇𝑖𝑎 ∈ 𝑆3 : 𝑑𝑆3 = 𝑇𝑟3

Where 𝑟 represents the residual deactivation time. In our
computations, we make the conservative assumption that the
residual deactivation time required to reach the next state SM𝑖

is always equal to the upper bound of the remaining time
𝑟, i.e., the complete deactivation time 𝑇𝑑𝑖−1,𝑖 . Furthermore, as
already mentioned in Sec. III, under DCASM operation the
value of 𝑇1 is fixed. The average delay, denoted by 𝑑, must
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be lower than the desired target 𝑑∗:

𝑑 =
∑︁
𝑗∈S

𝑃(𝑇𝑖𝑎 ∈ 𝑗) · 𝑑 𝑗 < 𝑑∗ (4)

From (4), we can derive the hold time 𝑇2 that allows to
maintain the average reactivation delay below the desired
target threshold, 𝑑∗. By replacing the values in (4) with
formulas (2) and (3), we get:

(1− 𝑒−𝜆𝑡𝐷1 ) (𝑇𝑑0,1 +𝑇𝑟1) + (𝑒−𝜆𝑡𝐷1 − 𝑒−𝜆𝑡𝑆1 )𝑇𝑟1 + ....+
(𝑒−𝜆𝑡𝐷3 )𝑇𝑟3 < 𝑑∗ (5)

Likewise, incorporating the expressions from (1) in (5), we
obtain:(

1− 𝑒
−𝜆𝑇𝑑0,1

) (
𝑇𝑑0,1 +𝑇𝑟1,0

)
+
(
𝑒
−𝜆𝑇𝑑0,1 − 𝑒

−𝜆(𝑇𝑑0,1+𝑇1 )
)
𝑇𝑟1,0(

𝑒
−𝜆(𝑇𝑑0,1+𝑇1+𝑇𝑑1,2+𝑇2+𝑇𝑑2,3 )

) (
𝑇𝑟3,2 +𝑇𝑟2,1 +𝑇𝑟1,0

)
< 𝑑∗ (6)

Further simplifying (6) for a given target delay, the hold time,
𝑇2, to be spent in SM2 before deactivating to SM3 is:

𝑇2 > −𝜆−1
{
ln
[
𝑑∗−𝑇𝑟1,0 −𝑇𝑑0,1

(
1− 𝑒

−𝜆𝑇𝑑0,1
)

(7)

−𝑒−𝜆
(
𝑇𝑑0,1+𝑇1

) (
𝑇𝑟2,1 +𝑇𝑑1,2

(
1− 𝑒

−𝜆𝑇𝑑1,2
))]

− ln
[
𝑇𝑑2,3

(
1− 𝑒

−𝜆𝑇𝑑2,3
)
+𝑇𝑟3,2

]}
−
(
𝑇𝑑0,1 +𝑇1 +𝑇𝑑1,2

)
Notice that the setting of ASM operation is decided based on

desired average delay 𝑑∗. This parameter is set by the mobile
operator based on its business models, provided verticals,
expected breakdown of applications. Once it is defined, the
setting of ASM operation follows, as described above.

C. Power Consumption Computation

Base station power consumption under DCASM operation
is evaluated using the IMEC power model, which reports
values of consumption at different sleep states and transient
states [38]. From these values we compute the average power
consumption, denoted by 𝑃𝐶, under a given arrival rate and
considering a specified target delay. To compute the average
power consumption, we consider the base station utilization,
𝑈, defined as:

𝑈 = 𝑃(𝐴)

where 𝑃(𝐴) is the probability that the BS is active. Assuming
that the activity during low traffic periods can be modeled as a
𝑀/𝑀/∞ queue (since the few service requests do not saturate
the BS capacity), we have:

𝑃(𝐴) = 1− 𝑒−𝜆/𝜇

where 𝜇 is the average service rate.
In order to compute the energy saving, we first compute the

average energy consumed during sleeping periods, i.e., during
the periods between the instant in which the deactivation starts
and when the BS is back to full operation. For simplicity we
neglect the transition through SM1, since the time spent in the
transition from active state to SM1 is negligible. In a similar
way to what was previously done, we distinguish different
situations depending on the interval in which the arrival of

a request, which triggers a reactivation, occurs; intervals are
identified in Fig. 2 and defined in (1). The average energy
consumed during a sleeping period can be computed from:

𝐸𝑆𝑀 =

∫ 𝑡𝐷2

0
2𝑃1𝑇𝑑1,2𝜆𝑒

−𝜆𝑡𝑑𝑡 (8)

+
∫ 𝑡𝑆2

𝑡𝐷2

(
2𝑃1𝑇𝑑1,2 +𝑃2 (𝑡 −𝑇𝐷2 )

)
𝜆𝑒−𝜆𝑡𝑑𝑡

+
∫ 𝑡𝐷3

𝑡𝑆2

(
2𝑃1𝑇𝑑1,2 +2𝑃2𝑇𝑑2,3 +𝑃2𝑇2

)
𝜆𝑒−𝜆𝑡𝑑𝑡

+
∫ ∞

𝑡𝐷3

(
2𝑃1𝑇𝑑1,2 +2𝑃2𝑇𝑑2,3 +𝑃2𝑇2 +𝑃3 (𝑡 −𝑇𝐷3 )

)
𝜆𝑒−𝜆𝑡𝑑𝑡

The first integral refers to the case in which the arrival
occurs during deactivation towards SM2: in this case, the
power level is 𝑃1 and the time spent with this level corresponds
to full transition to SM2 plus immediate reactivation for a total
time of 2𝑇𝑑1,2 . The second integral corresponds to the case in
which the request arrives during SM2; in this case, in addition
to the energy needed to deactivate and reactivate the BS, an
amount of time equal to (𝑡 −𝑇𝐷2 ) is spent in SM2, i.e., at
power level 𝑃2. Similarly, the other integrals are derived. By
solving (8), we obtain:

𝐸𝑆𝑀 = 2𝑃1𝑇𝑑1,2 +2𝑃2𝑇𝑑2,3𝑒
−𝜆𝑡𝑆2 + 𝑃2

𝜆

(
𝑒−𝜆𝑡𝐷2 − (9)

𝑒−𝜆𝑡𝑆2
)
+ 𝑃3

𝜆
𝑒−𝜆𝑡𝐷3

The average power during sleep modes is then:

𝑃𝑆𝑀 = 𝐸𝑆𝑀 ·𝜆 (10)

since 1/𝜆 is the average duration of a sleep period. Thus, the
overall expression to compute the average power consumption,
PC for delay constrained DCASM operation is:

𝑃𝐶 =𝑈 ·𝑃𝐴+ (1−𝑈) ·𝑃𝑆𝑀 (11)

where 𝑃𝐴 is the power consumed when the BS is active and
it is transmitting data.

D. Power saving

The power saving, denoted by 𝑃𝑆, is computed as the fraction
of power that is saved with respect to the baseline condition in
which the BS is not performing ASMs operation, i.e., the BS
is always active, even when there is no data to transmit. The
value of 𝑃𝑆 can be derived through the following equation:

𝑃𝑆 =
𝑃𝐵 −𝑃𝐶

𝑃𝐵

(12)

where 𝑃𝐵 is the average power consumed in the baseline
situation, which corresponds to a BS that is either fully active
when traffic or signaling data are exchanged (hence consuming
𝑃𝐴) or idle when no service requests are received (in this case
the consumption is equal to 𝑃𝐼 , as reported in Table II).

IV. DCASM PERFORMANCE

To investigate the performance of DCASM, we consider a
realistic traffic scenario. The paradigm associated with 5G is
dense network deployment, with BSs coverage overlapping
with macro-cells. Unneeded BSs are put in progressively
deeper sleep mode during off peak periods to save energy,
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and, if needed, macro-cell BSs trigger a BS activation when
a new request arrives. Hence, an on demand activation upon
signaling or service request could allow the BSs to operate
with DCASMs.

We consider a scenario, in which the BS handles (low) mo-
bile user traffic. Requests inter-arrival times are exponentially
distributed and the average service duration is equal to 30 s.

First, we validate the proposed mathematical framework
that derives the optimized duration of 𝑇2. To this purpose,
a comparative analysis of theoretically derived 𝑇2 settings and
power consumption values is performed against simulation
based results. Then, we discuss the impact of possible errors
in predicting arrival rates on the evaluation of both reactivation
delays and energy saving. Finally, we consider actual traffic
traces as input to our proposed mathematical framework
to analyze the performance of real-time optimization under
different delay requirements.

A. Validation

A python based simulator is developed using SimPy library for
mimicking the behavior of a BS with ASMs under different
scenarios. The tested value of the average arrival rate varies
in [0.001,0.1] 𝑠−1. The system performance is evaluated for
a duration corresponding to approximately 500,000 arrivals
for each arrival rate. While in the framework we consider an
upper bound for the residual deactivation time, namely the
remaining time 𝑟 in (3), in the simulation the exact remaining
time is used for the computation of the reactivation delay.

Fig. 4a reports the average reactivation delay, 𝑑𝑎, and
Fig. 4b the power saving, 𝑃𝑆, observed at various values of
the arrival rate when the average target delay 𝑑∗ is 1 ms.
Note that in our results the power saving is always computed
with respect to the baseline case, in which ASM operation
is not performed, i.e., the BS is always active. For each
tested value of the arrival rate 𝜆, the value of 𝑇2 that is in
accordance with the considered delay constraint is selected
using analytical DCASM framework. The theoretical values
of delay and power saving obtained according to (4) and
(12) under these DCASM settings are represented by the
blue markers in the graphs. Simulation values of the two
performance indicators that are obtained under the same 𝑇2
and 𝜆 DCASM settings are shown for comparison (orange
symbols). Simulation values obtained under standard ASM
settings are also reported (green symbols) to highlight the
difference in reactivation delays and power saving between
DCASM and the standard ASM approach. It can be observed
that, using standard ASM settings, 5.5 ms average delay is
observed for all the considered values of the arrival rate,
whereas under DCASM settings the desired average reacti-
vation delay, which is fixed to 1 ms, is guaranteed under
any predetermined arrival rate. Moreover, simulation results
validate the performance of DCASM, as reactivation delays
under each arrival rate are almost in-lined with the desired
1 ms delay, further confirming the theoretical results. The
difference observed between simulation and theoretical values
of the average reactivation delay under DCASM is negligible,
confirming that the conservative assumption on the residual
deactivation time does not impact the derivation of the proper
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Fig. 4: Reactivation delay and Power saving validation for
different arrival rates under DCASM settings and standard
ASM settings.

settings that allow to meet the delay constraint.
Notice that the target delay considered in our study is meant

as a constraint on the reactivation delay that is experienced
on average by the arrival of a request while the BS is in
sleep mode. This is a different case with respect to a scenario
in which a minimization of the worst case delay may be
required, i.e., in which a maximum reactivation delay has to
be guaranteed. A maximum reactivation delay can be simply
guaranteed by considering the reactivation time from any state:
if the desired maximum delay is smaller than the reactivation
time from SM𝑖, this sleep mode can simply never be entered.
Considering the scenario analyzed in our work, the proposed
DCASM approach allows to fully satisfy the requirement on
the desired target average delay. Clearly, a fraction of arrivals
occurs during deep sleep modes and undergoes a reactivation
delay which is larger than the average, while a fraction of the
arrivals experiences a lower delay than the average targeted
one. For example, under DCASM operation with target delay
𝑑∗=1 ms, 9% of arrivals experience a reactivation delay larger
than 1 ms. The fraction of arrivals for which the experienced
reactivation delay under DCASM is larger than the delay
constraint, denoted by 𝑓𝑐, can be easily derived under any
setting of 𝑑∗ from the following expression:

𝑓𝑐 =
∑︁
𝑗∈S𝑣

𝑃(𝑇𝑖𝑎 ∈ 𝑗)
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where 𝑆𝑣 is the subset of the states S = {𝐷1, 𝑆1, 𝐷2, 𝑆2, 𝐷3, 𝑆3}
that includes all sleep and transient states 𝑗 for which 𝑑 𝑗 > 𝑑∗.

The power saving is shown in Fig. 4b for increasing values
of the arrival rate. The blue and orange curves representing
the DCASM (model and simulation) are in-lined and this
further validates the proposed model. The BS tends to go
to deeper sleep levels more often at lower rates, resulting in
higher energy savings that reach 85% for low arrival rates.
However, as expected, the power saving curve has a steep
descent as the arrival rate grows larger. The BS under DCASM
achieves a slightly smaller energy saving with respect to the
standard ASM settings (shown in green in the figure) due
to the smaller utilization of deep sleep modes that is needed
to guarantee the delay constraint. The standard ASM setting
achieves marginally better performance than DCASM at the
expense of much higher reactivation delays. This is the ”cost”
to pay to guarantee the desired (lower) value of 1 ms for the
average reactivation delay.
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Fig. 5: Reduction of power saving under DCASM with respect
to standard ASM operation, considerng different values of
arrival rate and target delay.

To further investigate this, Fig. 5 shows the impact of
DCASM delay guarantee on power saving with respect to
standard ASM settings. The plot reports the reduction of power
saving under DCASM in terms of difference between the
power saving obtained under DCASM and the power saving
obtained under standard ASM. Different color bars refer to
different values of the delay constraint, while the points in
the boxes refer to different values of the arrival rate 𝜆, with
increasing values indicated by the blue arrow. As already noted
above, to guarantee the average delay constraint, DCASM
achieves a slightly smaller power saving with respect to the
standard ASM operation (hence, we have negative values),
because DCASM reduces the frequency with which SM3 is
entered. However, this is marginal: for low values of 𝑑∗, such
as 1 ms, less than 4% is lost, while for 𝑑∗ = 4 ms, the effect
is further narrowed to no more than 1.5%.

Note that the Poisson arrival process adopted in our study to
model 5G traffic may not be fully representative of the bursty
traffic that characterizes Massive Machine-Type Communica-
tion, for which traffic modeling with a beta distribution is
recommended by 3GPP [45]. Nevertheless, the higher arrival
rate typically assumed during traffic bursts prevents the BS
deactivation into any sleep modes. Conversely, our model may
as well be representative of the system behavior during inter-
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Fig. 6: Effect of error in arrival rate (𝜆) prediction on reacti-
vation delay using optimized SM2 duration for 1 ms desired
delay.

burst periods, during which the traffic load is low. While the
overall energy saving may change depending on the prevalence
of bursty traffic, we expect that the proper settings of the load
dependent ASM configuration parameters between consecutive
traffic bursts would not result in drastic change.

B. Effect of error in arrival rate prediction

Since the parameter optimization depends on the request
arrival rate 𝜆, and 𝜆 has to be predicted, we examine the
impact of the error in the prediction on the actual delay and
energy savings under DCASM. We consider a 10% error in the
prediction of 𝜆, either a negative error or a positive error, to
evaluate both cases of delay underestimation and overestima-
tion. In Fig. 6 reactivation delays are displayed when the BS
operation is optimized based on DCASM and the prediction
has no error, or the two cases of 10% error. An arrival rate
of 0.001 s−1 is assumed. We keep the required average delay,
𝑑∗, fixed to 1 ms and observe the results obtained by both
approaches, theoretical and simulated. With a negative 10%
error (meaning that the predicted 𝜆 is underestimated by 10%
with respect to the actual value), the estimated probability
of going to SM3 is increased by some percentage points,
consequently raising the average reactivation delay. On the
contrary, if an overestimation error is assumed (such that the
predicted value of 𝜆 is increased by 10% with respect to the
actual value), the system is more frequently driven towards an
active state, hence making it less likely to move to SM3, and
thereby reducing the reactivation delay.

Fig. 7 shows the impact of error in prediction of 𝜆 on
power saving of BS operated under DCASM operation for
varying values of the arrival rate. Again, the desired average
reactivation delay is equal of 1 ms. Positive or negative errors
have no influence on percentage power savings for low values
of 𝜆 and more than 80% saving is possible using the delay
optimized DCASM process. However, for larger values of 𝜆

errors in the prediction produce a difference of power saving
of up to 3%. In conclusion, under the proposed optimization
technique, a 10% underestimation or overestimation error on
𝜆 prediction has a marginal impact on energy saving.

C. Real-time Traffic Prediction and Optimization

Real-time traffic prediction has been studied for quite some
time, with the purpose of tuning the system parameters in ad-
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Fig. 8: Actual Vs Predicted BS traffic pattern of train station
of city in Italy.

vance in real setups for efficient resource utilization in mobile
BS communication. Hence, we investigate the BS performance
under the presented optimization approach considering both
real mobile traffic traces, collected in the city of Milan, Italy,
by an Italian Mobile Operator, and their prediction, obtained
through an Artificial Neural Network (ANN) based prediction
algorithm, i.e. the approach named 1 ANN-4 outputs in [19].
The adopted traffic forecast approach employs one ANN for
each BS in the scenario, hence each ANN is specifically
trained with the corresponding BS traffic profile. At the
beginning of each time slot t, the ANN provides four outputs,
predicting the BS traffic demand at time t (the time slot that
is just beginning), t+1 (the following time slot), t+2 and t+3.
The ANN receives five traffic samples as inputs: the traffic
at the previous time slot, namely t-1, and four traffic samples
corresponding to the time slots t-1 and t from the day ahead
and from two days before.

Fig. 8 reports the actual average traffic pattern (normalized
with respect to traffic peaks) observed during a sample day in
a specific area of the city (blue curve) and the corresponding
predicted values (orange curve). The relative error is reported
in Fig. 9 (on the right) together with the actual and predicted
traffic pattern (on the left). The largest relative error is ob-
served around 4 a.m., at the end of a steep transition from
a relatively higher load to a very low load. A similar steep
descent before 3 a.m. justifies a minor peak of relative error
at that hour, characterized by a higher load than 4 a.m. An
intermediate peak in the relative error results evident at 5 a.m.,
when conversely the load is rather low.

We now study the effect of the error in predicting 𝜆 on
delay and power consumption when the BS is working under
DCASM operation in a real scenario. For our study, we
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Fig. 9: Actual and Predicted BS traffic pattern with error in
prediction [46].

focus on the day period between 3 a.m. and 6 a.m. (see the
zoomed window in Fig. 8), when the arrival rate remains
below 0.1 𝑠−1 and sleep modes can be effectively utilized.
We consider various 5G scenarios characterized by different
requirements in terms of maximum allowed average delay
(𝑑∗). For brevity, we consider three average delay constraints,
i.e. 1 ms, 2 ms, and 4 ms, considering the latest latency
requirements in 5G standards where the user plane constraint
for URLLC communication is 1 ms and 4 ms for eMBB
communication [36], [37].

Fig. 10 shows the delays achieved under DCASM with
the actual traffic pattern depicted in Fig. 8. In the ideal case
(grey curves), BS operation is optimized based on the actual
traffic; the orange curves report the delay obtained under the
actual traffic pattern, when the operation is decided based
on predicted traffic. Fig. 10a illustrates the case of DCASM
operation assuming a target 𝑑∗=1 ms. In addition, the delay
observed under standard ASM settings is also reported as
reference (blue curve); the delay is about 5.5 ms at any
time. Clearly, in the ideal case, when the optimal 𝑇2 value
is applied under the actual traffic profile, the resulting delay
is equal to 1 ms at any time. When BS operation is set based
on predicted traffic, although the actual delay remains far
lower than the delay obtained under standard ASM setting,
it results sometimes higher than the desired target. The worst
performance is observed at 4 a.m., corresponding to the time
when the largest traffic prediction error is registered, as shown
in Fig. 9. Smaller delay deviations appear evident at 3 a.m. and
5 a.m., corresponding to minor peaks in the relative error of
𝜆 prediction. A correlation between the error in traffic predic-
tion and the actual delay observed during real-time DCASM
operation can hence be highlighted by these results, entailing
that larger gaps between predicted and actual traffic values are
responsible for the most relevant delay increase. Furthermore,
during relatively higher arrival rate periods, i.e., from 3:15
a.m. to 3:30 a.m, the system shows more tolerance to traffic
prediction error, with a compliant delay despite almost 35%
prediction error, with respect to periods characterized by lower
arrival rates, i.e. between 5:30 a.m. and 6:00 a.m.. Higher
arrival rates are thus more prone to error in prediction in terms
of reactivation delay as they bound the system towards the
active state and hence less sleep mode utilization.

Fig. 10b and Fig. 10c show similar results for scenarios
characterized by more relaxed delay constraints, i.e., 𝑑∗ is
equal to 2 ms and 4 ms. As the value of 𝑑∗ increases, the
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additional delay observed in a real system exceeding the
maximum desired value tends to become less remarkable,
exceeding by up to only 25% the target delay when 𝑑∗ is set
to 4 ms, against a value that results up to almost 3 fold higher
than the desired maximum delay in the case of 𝑑∗=1 ms.

The proposed optimization technique shows some tolerance
for traffic prediction error. In scenarios having stricter delay
constraints, accurate prediction techniques must be adopted.
Our findings emphasize that the DCASM optimization tech-
nique is robust under any delay sensitive 5G traffic scenario
in terms of achieving required energy saving goals by means
of ASM utilization.

Finally, Fig. 11 reports the power saving obtained with
DCASM BS operation based on traffic prediction. The same
traffic trace depicted in Fig. 8 is considered. The power
consumption is computed based on our proposed mathematical
formulation. As a reference, the blue bars show the power
saving achieved using the standard settings of ASM; i.e.,
without posing any delay constraint. Conversely, the remaining
bars represent scenarios with three different delay require-
ments that are 𝑑∗=1 ms (orange bars), 2 ms (grey bars),
4 ms (yellow bars). BS operation under DCASM achieves
energy consumption reduction of up to about 50% for the
reported traffic profile which consist of low arrival rate periods.
Furthermore, in terms of energy savings, the results reveal
that the ASM operation under standard settings only slightly
outperforms the recommended DCASM optimized settings,
by just few percentage points, hence entailing the capability
of DCASM operation to obtain virtually the same energy
savings. From 3:00 a.m. to 4:00 a.m. the arrival rate exceeds
0.1 𝑠−1 (see Fig. 8) and the BS is often switched on. No
relevant effect due to different settings is observed in this
period. Nevertheless, the presented optimized settings for
delay conservation, DCASM, pose bound on average delays
in real traffic scenarios with respect to standard settings, while
minimally effecting the overall gains in energy saving.

V. DCASM WITH PERIODIC SIGNALLING

Base stations periodically send synchronization and control
signals and the signalling state corresponds to the transmission
of synchronization and control signals (primary and secondary
synchronization signals - PSS and SSS, respectively - and
physical broadcast channel signals - PBSH) [44]. In some
configuration, there could be the need to guarantee some
periodic signaling even if sleep modes are allowed. In this
section, we adapt DCASM to operate in a scenario in which
a periodic signalling has to be guaranteed.

Signaling data are assumed to be transmitted with period-
icity Δ𝑡 , meaning that after a time Δ𝑡 the BS is activated to
transmit signaling information. To derive the setting of 𝑇2 that
is required to guarantee a target delay 𝑑∗ in this scenario, we
adapt the derivation of 𝑇2 by considering time windows of
duration Δ𝑡 . In a time window, requests arrive according to a
truncated Poisson process whose inter-arrival times are limited
to the interval [0,Δ𝑡 ], i.e., according to a random variable
whose CDF is

𝐹𝑖𝑎 (𝑡) =
1− 𝑒−𝜆𝑡

1− 𝑒−𝜆Δ𝑡
𝑡 ∈ [0,Δ𝑡 ] (13)
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Fig. 10: Simulation analysis of reactivation delay for actual
traffic pattern under standard and optimized settings for dif-
ferent average required delays (𝑑∗).

The parameter 𝑇2 that guarantees the delay constraint can be
derived similar to previously, adapting (5) and (6) by using
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Fig. 11: Comparison analysis of power savings in daily actual
traffic pattern with standard ASM and DCASM settings at
different average required delays.

this new distribution for inter-arrival times. We obtain:

𝑇2 > −𝜆−1 {ln (𝑑∗ (1− 𝑒−𝜆Δ𝑡
)
+ 𝑒−𝜆Δ𝑡

(
𝑇𝑟3,2 +𝑇𝑟2,1 +𝑇𝑟1,0

)
(14)

−𝑇𝑟1,0 −𝑇𝑑0,1

(
1− 𝑒

−𝜆𝑇𝑑0,1
)
− 𝑒

−𝜆
(
𝑇𝑑0,1+𝑇1

) (
𝑇𝑟2,1 +𝑇𝑑1,2(

1− 𝑒
−𝜆𝑇𝑑1,2

)))
− ln

(
𝑇𝑑2,3

(
1− 𝑒

−𝜆𝑇𝑑2,3
)
+𝑇𝑟3,2

)}
−

(𝑇𝑑0,1 +𝑇1 +𝑇𝑑1,2 )

Note that 𝑑∗ represents the target average delay experienced
by standard traffic arrivals, whereas signaling data do not
experience delay. Indeed, given signaling periodicity, when the
BS results in sleep mode, it is proactively switched on before
signaling data transmission is needed at the scheduled time.
Fig. 12a and Fig. 12b report the power saving and reactivation
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Fig. 12: Power saving and reactivation delay under standard
ASM and DCASM settings, assuming varying signalling pe-
riodicity and 𝜆 = 0.01𝑠−1.

delay achieved when the BS has to wake up from SM for

periodic signalling considering different signaling periods. We
compare the results for the standard setting and DCASM with
delay constraint 𝑑∗ = 2 ms; the case with no signaling is
also reported for comparison. In the scenario with signalling,
saving is smaller than in the case with no signaling but still
above 65%, with DCASM saving a bit less due to the required
average delay constraint. Whereas the standard setting leads
always to 5.54 ms delay, DCASM meets the 2 ms average
delay constraint considered in this case. The results prove that
DCASM can properly operate even in presence of periodical
signaling. In addition, they show that DCASM is a simple and
flexible framework that can be adapted to different scenarios.

VI. CONCLUSION

The substantial raise of mobile traffic in 5G networks entails
a huge growth of the energy demand and related operational
cost for MNOs. Approaches based on Advanced Sleep Modes
allow to save energy by gradually deactivating the BSs into
progressively lower power levels when the traffic is low.
However, the additional delay experienced by users due to
the time required for BS reactivation may result critical for
delay sensitive 5G applications.

In this work, we propose a closed-form delay optimization
of ASM operation. The approach, called DCASM, is based on
setting ASM parameters based on traffic so as to meet the strict
delay requirements raised in 5G scenarios. Thus, by predicting
traffic, it is possible to dynamically adapt BS operation to
traffic so as to achieve energy saving while guaranteeing delay
constraints.

Our results show that the presented method, unlike the
ASM operation under standard settings, is effective in trading-
off delay and energy saving. DCASM performance is not
significantly affected by limited traffic prediction errors and,
by using ML-based traffic prediction techniques which are al-
ready available, DCASM can be easily implemented to achieve
energy saving while still guaranteeing delay constraints.

The proposed formulation of the ASMs parameter setting
is simple and it enlightens the interplay between activation
delay and energy saving, so as to alleviate one of the main
concerns on the use of ASMs, which is the possible impact
of activation delay. By being simple, the proposed setting can
be easily incorporated in flexible and dynamic configurations
of BSs, following a key principle of 5G networks. Therefore,
DCASM can be effectively adopted in real 5G setups during
low traffic periods to reduce the energy consumption without
impairing Quality of Service, resulting suitable to fulfill the
demanding 5G requirements.
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