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Abstract: In this paper, we present a numericalmethod based on the coupling between a CurvedVirtual Element
Method (CVEM) and a Boundary Element Method (BEM) for the simulation of wave fields scattered by obsta-
cles immersed in homogeneous infinite media. In particular, we consider the 2D time-domain damped wave
equation, endowed with a Dirichlet condition on the boundary (sound-soft scattering). To reduce the infinite
domain to a finite computational one, we introduce an artificial boundary on which we impose a Boundary
Integral Non-Reflecting Boundary Condition (BI-NRBC). We apply a CVEM combined with the Crank–Nicolson
time integrator in the interior domain, and we discretize the BI-NRBC by a convolution quadrature formula
in time and a collocation method in space. We present some numerical results to test the performance of the
proposed approach and to highlight its effectiveness, especially when obstacles with complex geometries are
considered.

Keywords: Unbounded Domain, Wave Propagation Problems, Complex Geometries, Curved Virtual Element
Method, Convolution Quadrature, Boundary Element Method, Non-Reflecting Boundary Condition
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1 Introduction

Time-domainwave scattering problems in infinite or very largemedia appear inmany fields of engineering and
applied physics such as, for example, acoustics, geophysics and seismology. The development and the analysis
of numerical methods for the approximation of the solution of Partial Differential Equations (PDEs) that model
these phenomena is a very challenging task, due to the intrinsic difficulty of treating unbounded domains. For
this reason, in recent years, the interest of the scientific and industrial communities in the topic has increased,
and many efficient methodologies have been proposed. A well-established procedure consists in reformulating
the original PDE as a Boundary Integral Equation (BIE), whose discretization is referred to as Boundary Element
Method (BEM). In the history of time-domain BIE methods, a milestone is the weak formulation proposed by
Bamberger and Ha Duong in [7], forerunner of a lot of contributions that enriched the range of applications of
the BEM. Among the main benefits of BEMs, we mention the possibility to reduce the spatial problem dimen-
sion by one, and to represent the wave field in the unbounded region only by a discretization of the obstacle
boundary. However, a well-known drawback is that the linear BEM systems are populated by blocks of dense
matrices so that acceleration techniques are usually employed. Most of them are based on the compression of
the underlying matrices in order to apply efficient direct or iterative solvers (see e.g. fast multiple methods [41],
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panel clustering [30], hierarchical matrices [18], adaptive cross approximation [2] and wavelet techniques [21]).
However, irrespective of the BEM approaches and of their particular implementation, the reconstruction of the
field of the original PDE at points of the exterior domain entails a post-processing evaluation of boundary inte-
grals which involve the computed boundary density. This procedure may be not efficient, especially when the
solution has to be evaluated in an entire region surrounding the physical obstacle and the boundary has a com-
plex geometry. This is also the case because in its vicinity the boundary integrals have near singularities, whose
non-trivial evaluation must be suitably performed.

Alternatively to the pure BEM,when the scattering phenomenon is of interest in a particular area surround-
ing the obstacle and/orwhen themediumpresents inhomogeneities within a bounded region, it is convenient to
introduce an artificial boundary and to reduce the original domain to a finite computational one, neglecting the
infinite residual sector. Then the new problem, defined in a bounded region, can be solved by domain methods
such as, for example, the classical Finite Element Method (FEM) or finite differences. In order to prevent spu-
rious reflections, which could eventually pollute the solution, a suitable transparent Non-Reflecting Boundary
Condition (NRBC) has to be imposed on the artificial boundary. Even if in the last decades a great effort has been
devoted to design high-order local NRBCs (see [35]), in the applications, those of Boundary Integral (BI) type are
more popular. These latter, besides being exact and suited for outgoing and incoming waves, can be defined on
artificial boundaries of general shapes. The global scheme, obtained by combining finite elementwith boundary
element methods, is usually referred to as FEM-BEM coupling.

Many approaches of this type have been proposed in literature, amongwhichwemention the Costabel–Han
[3, 10, 20, 33, 34, 36] and the Johnson–Nédélec [26, 37] couplings. The former involves a couple of BIEs and results
quite onerous from the computational point of view, due to the presence of a hypersingular boundary integral
operator; on the contrary, the latter (also known as the one-equation coupling) is based on a single BIE and
involves only weakly singular and singular operators. Furthermore, contrary to the Costabel–Han approach,
the Johnson–Nédélec one exhibits some technical difficulties in the theoretical analysis. For this reason, nowa-
days, this latter has been developed only for time independent problems (see [40, 44]). Nevertheless, due to the
easiness of its implementation, the one-equation coupling is widely used to addressmany engineering problems
(see, for example, [4] and the references therein).

Very recently, the authors have proposed an approach based on the coupling between the one-equation
BEM (collocation or Galerkin) and the (standard or curved) Virtual Element Method (VEM) for the numerical
solution of exterior Helmholtz problems [23, 24]. This strategy revealed to be efficient and accurate, even for
obstacles with complex geometries. Later, the same procedure has been applied to Poisson problems [22] with
decoupled approximation orders, which allowed to retrieve high accuracy by a high-order VEM and a low-order
BEM. This aspect is crucial since, for the success of the strategy, tailored quadrature techniqueswould be needed
for the accurate computation of high-order BEM matrices.

The effectiveness of the proposed approach mainly relies on the properties of the VEM which, originally
introduced in [11, 12], is a domain method dealing with polygonal or polyhedral mesh elements, on which local
discrete spaces and sets of degrees of freedomare defined in such away that suitable polynomial projections are
exactly computable. Consequently, the elementarymass and stiffnessmatrices are computedwithout theneedof
explicitly knowing the expression of the basis functions, with easiness of implementation even for high approx-
imation orders. Such advantages have encouraged the application of VEMs to a wide variety of problems (see
[5, 6, 16] for recent results). To the best of the authors’ knowledge, VEM-BEM couplings for exterior wave propa-
gation problems have been considered only in the frequency-domain (see the abovementioned [23, 24] and [31]).

In this paper, we fill this gap by considering 2D sound-soft time-domain wave propagation problems in
homogeneousmedia, with scatterers of generic shape, including curvilinear edges. For their numerical solution,
on the basis of the results obtained in [21, 23, 24], we propose the coupling between a Curved VEM (CVEM) and
a BEM, with decoupled space approximation orders. In particular, in the interior of the computational domain,
we propose a Galerkin discretization by means of a CVEM, combined with the Crank–Nicolson scheme in time.
We choose a CVEM instead of a standard (polygonal) VEM since the use of curvilinear elements allows us to
avoid the approximation of the geometry and to retrieve the optimal rate of convergence for accuracy orders
higher than 2, even when dealing with curvilinear obstacles. For the discretization of the BI-NRBC, we apply the
Lubich Convolution Quadrature (CQ) method [38], based on A-stable second-order ODE solvers for the approx-
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imation in time of the integrals therein involved, coupled with a classical collocation BEM in space. The CQ
formulas have the fundamental property of using the Laplace transform of the integral kernels involved in the
BI-NRBC instead of their space-time expression, the former having better smoothness properties. Moreover, the
quadrature weights can be computed simultaneously by applying the Fast Fourier Transform (FFT) algorithm,
and hence the computational complexity of the time discretization is reduced to the order N logN (N being
the number of time instants). For these properties, the CQ formulas have become a very appealing tool for the
numerical simulation of wave propagation problems and have been applied in several contexts.

The paper is organized as follows. In the next section, we present the model problem for the time-domain
sound-soft scattering, its restriction to a bounded region of interest by the introduction of the BI-NRBC and the
variational formulation associated to the problemreformulated in thefinite computational domain. In Section 3,
we detail the time discretization of the problem, while in Section 4, we describe the main steps that lead to its
space discretization. Section 5 is devoted to the algebraic reformulation of the fully discrete scheme. Numerical
results, validating the performance of the proposed approach, are illustrated and discussed in Section 6. Finally,
some conclusions are drawn and perspectives are given.

2 The Model Problem

In afixedCartesian coordinate systemx = (x1 , x2), we consider an openboundeddomainΩ0 ⊂ R2with Lipschitz
boundary Γ0 having positive Hausdorff measure. We denote by Ωe := R2 \ Ω0 the exterior unbounded domain
in which we consider the damped scalar wave equation

̈ue(x; t) + α ̇ue(x; t) − c2Δue(x; t) = 0, x ∈ Ωe , t ∈ [0, T]. (2.1)

Here and elsewhere, the superposed dot stands for time differentiation, Δ denotes the Laplace operator, ue is the
unknown wave field, T is the final time of interest, c > 0 and α ≥ 0 are the constant wave speed and damping
parameter, respectively. Equation (2.1) is endowed with null initial conditions

ue(x; 0) = ̇ue(x; 0) = 0, x ∈ Ωe ,

and a Dirichlet boundary condition

ue(x; t) = g(x; t), x ∈ Γ0 , t ∈ [0, T],

with g( ⋅ ; t) ∈ H 1
2 (Γ0) for all t ∈ [0, T]. In the context of scattering problems, the Dirichlet datum g coincideswith

the opposite of an incident wave uinc along the boundary of the obstacle, i.e. g(x; t) = −uinc(x; t) on Γ0 × [0, T].
To retrieve the solution in a bounded region, as many practical applications require, we truncate Ωe by

introducing an artificial boundary Γ, which divides the original domain into two subdomains: an infinite exte-
rior one Ω∞ and a finite computational one Ω, bounded internally and externally by Γ0 and Γ, respectively.

In what follows, u and u∞ stand for the restrictions of the solution ue to Ω and Ω∞, and n and n∞ for
the unit normal vectors to Γ pointing outside Ω and Ω∞, respectively. Denoting by ∗ the convolution product,
defined as

u(t) ∗ v(t) :=
t

∫
0

u(t − τ)v(τ) dτ,

we consider the following BIE associated to the solution u∞ on Γ × [0, T]:
1
2u∞(x; t) = ∫

Γ

G(x, y; t) ∗ ∂u∞
∂ny
(y; t) dΓy − ∫

Γ

∂G
∂ny
(x, y; t) ∗ u∞(y, t) dΓy ,

which expresses thenatural relation between u and its normal derivative at eachpoint of the artificial boundary,
and which will be then used as exact (non-local) BI-NRBC. The kernel G is the fundamental solution of the 2D
damped wave equation, whose expression is given by

G(x, y; t) := c
2π cosh( α2c

√c2t2 − r2) H[ct − r]
√c2t2 − r2

e−
α
2 t , (2.2)
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where r := ‖x − y‖ represents the distance between the source point x and the field point y, and H[ ⋅ ] denotes
the Heaviside function. Note that, when α = 0, G is the fundamental solution of the classical 2D wave equation.
Taking into account the compatibility and equilibrium conditions

u(x; t) = u∞(x; t),
∂u
∂n
(x; t) = −∂u∞

∂n∞
(x; t) (x; t) ∈ Γ × [0, T],

the new problem defined in the domain of interest Ω takes the form

{{{{{{{{
{{{{{{{{
{

̈u(x; t) + α ̇u(x; t) − c2Δu(x; t) = 0, (x; t) ∈ Ω × [0, T],
u(x; t) = g(x; t), x ∈ Γ × [0, T],

u(x; 0) = ̇u(x; 0) = 0, x ∈ Ω,
1
2u(x; t) + V

∂u
∂n
(x; t) − Ku(x; t) = 0, x ∈ Γ × [0, T],

(2.3a)
(2.3b)
(2.3c)

(2.3d)

where V and K denote the well-known single- and double-layer integral operators defined by

Vψ(x; t) := ∫
Γ

G(x, y; t) ∗ ψ(y; t) dΓy , (x, t) ∈ Γ × [0, T], (2.4)

Kφ(x; t) := ∫
Γ

∂G
∂ny
(x, y; t) ∗ φ(y; t) dΓy , (x, t) ∈ Γ × [0, T]. (2.5)

To obtain a well-posed coupling between the interior PDE and the BIE, we introduce the unknown λ defined
on the boundary Γ, that a posteriori will be ∂u

∂n , and we consider the weak form of (2.3a) and the strong one
for (2.3d). To this end, for f ∈ H 1

2 (Γ), we introduce the space

H1
f,Γ0 (Ω) := {u ∈ H

1(Ω) : u|Γ0 = f },

the bilinear forms a : H1(Ω) × H1(Ω)→ R and m : L2(Ω) × L2(Ω)→ R,

a(u, v) := ∫
Ω

∇u(x) ⋅ ∇v(x) dx, m(u, v) := ∫
Ω

u(x)v(x) dx, (2.6)

and the duality pairing ⟨ ⋅ , ⋅ ⟩ on H− 12 (Γ) × H 1
2 (Γ).

Setting u(t) := u(x; t), λ(t) := λ(x; t) and g(t) := g(x; t), the variational formulation of problem (2.3) consists
in the following: for each t ∈ [0, T], find u(t) ∈ H1

g(t),Γ0 (Ω) and λ(t) ∈ H
− 12 (Γ) such that, for all w ∈ H1

0,Γ0 (Ω), we
have

{{{
{{{
{

m( ̈u(t), w) + αm( ̇u(t), w) + c2a(u(t), w) − ⟨λ(t), w⟩ = 0,
u(0) = ̇u(0) = λ(0) = 0,

1
2u(x; t) + Vλ(x; t) − Ku(x; t) = 0, x ∈ Γ.

(2.7a)
(2.7b)
(2.7c)

3 Discretization in Time

We consider a decomposition of the time interval [0, T] consisting of N + 1 equally spaced instants tn := nΔt ,
n = 0, . . . , N , Δt := T/N denoting the time step size. First, we describe the time-marching scheme associated to
the interior domain method, and then that associated to the BI-NRBC on Γ. These are defined by the Crank–
Nicolson scheme and a CQ, respectively, which are both of second (convergence) order. Although in principle
other methods can be considered, we have chosen the Crank–Nicolson scheme, which revealed to be efficient
and unconditionally stable (even for large time intervals of analysis), here and in other contexts (see [26, 27, 29]).
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Discretization of the Variational Problem by the Crank–Nicolson Scheme

We start by introducing the new unknown v(t) := ̇u(t) associated to the second-order ODE system (2.7a)-(2.7b)
and we reformulate the variational problem as follows:

{{{
{{{
{

m(v̇(t), w) + αm(v(t), w) + c2a(u(t), w) − ⟨λ(t), w⟩ = 0,
̇u(t) = v(t),

u(0) = v(0) = λ(0) = 0.

Denoting by un , vn and λn the approximations of u(tn), v(tn) and λ(tn), respectively, the Crank–Nicolson scheme
applied to the above problem reads: starting from u0 = v0 = λ0 = 0, for n = 1, . . . , N ,

{{{
{{{
{

m(vn − vn−1 , w) + Δt2 αm(v
n + vn−1 , w) + Δt2 c

2a(un + un−1 , w) − Δt2 ⟨λ
n + λn−1 , w⟩ = 0,

un − un−1 = Δt2 (v
n + vn−1).

(3.1)

From the second relation, we get
vn = 2

Δt
(un − un−1) − vn−1

which, inserted in the first relation, leads to

̃αm(un , w) + ̃c2a(un , w) − Δ
2
t
4 ⟨λ

n , w⟩ = ̃αm(un−1 , w) − ̃c2a(un−1 , w) + Δtm(vn−1 , w) +
Δ2t
4 ⟨λ

n−1 , w⟩,

where ̃α := α Δt
2 + 1 and ̃c := c

Δt
2 .

Discretization of the BI-NRBC by the CQ

By collocating the integral relation (2.7c) at the discrete time instant tn , n = 1, . . . , N , we apply the CQ formula
and we get

1
2u

n(x) +
n
∑
j=1
[∫
Γ

ωVn−j(x, y; Δt)λj(y) dΓy − ∫
Γ

ωKn−j(x, y; Δt)uj(y) dΓy] = 0, (3.2)

where ωJ
j (x, y; Δt), J ∈ {V, K}, are the convolution weights, whose corresponding integral representations are

ωJ
j (x, y; Δt) :=

1
ı2π ∫
|z|=ϱ

ĜJ(x, y; γ(z)Δt
)z−j−1 dz. (3.3)

In the above equation, ĜV := Ĝ and ĜK := ∂̂G
∂ny are the Laplace transforms of the kernels G and ∂G

∂ny appearing in
(2.4) and (2.5), respectively, i.e.

ĜV (x, y; s) = 1
2π K0(

r
c
√s2 + αs) and ĜK(x, y; s) =

√s2 + αs
2πc
(x − y) ⋅ n

r
K1(

r
c
√s2 + αs),

having denoted by K0 and K1 the modified Bessel functions of second kind and orders 0 and 1, respectively,
and recalling r = ‖x − y‖. Additionally, in (3.3), γ(z) := z2

2 − 2z + 3
2 represents the characteristic quotient of the

Backward Differentiation Formula of order 2 (BDF2), ı is the imaginary unit and the parameter ϱ is chosen such
that the circle |z| = ϱ lies in the domain of analyticity of ĜJ(x, y; γ(z)Δt ). The convolution weights defined in (3.3)
can be approximated numerically, using the L-point trapezoidal rule as follows:

ωJ
j (x, y; Δt) ≈

ϱ−j

L

L−1
∑
ℓ=0

ĜJ(x, y; γ(ϱe
ıℓ 2πL )
Δt
)e−ıjℓ

2π
L .

We choose L = N and ϱN = ε 1
2 since Lubich has shown in [38] that these values lead to an approximation of ωJ

j
with relative error of size ε 1

2 if ĜJ is computed with a relative accuracy bounded by ε. In the forthcoming
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numerical tests, the parameter ε has been chosen in such a way that the desired accuracy has been reached, in
particular ε = 10−12.

All the ωJ
j can be computed simultaneously by the FFT algorithm, withO(N logN) flops, and this represents

one of the main benefits of the CQ in terms of its computational cost.

Remark 1. We highlight that, among the most commonly used A-stable ODE solvers of second order, the trape-
zoidal rule can be considered as an alternative to BDF2 (see, for example, [8, 25]). To apply this solver, it is
sufficient to replace the characteristic quotient in formula (3.3) with γ(z) = 2(1 − z)(1 + z)−1 . In all the numer-
ical tests we have performed, these twomethods have given very similar results. In particular, we point out that
both the above mentioned ODE solvers guarantee a quadratic convergence order in time (see [38]).

4 Discretization in Space

We introduce a family of meshes {ThΩ }hΩ of Ω, each consisting of general elements E, whose boundaries
∂E = e1 ∪ ⋅ ⋅ ⋅ ∪ enE , for simplicity of the presentation, have at most one curved edge, the latter lying either on
the physical boundary Γ0 or on the artificial one, Γ. In particular, we identify the curved edge by e1, to which we
associate a regular invertible parametrization γe1 : Ie1 → e1, where Ie1 ⊂ R is a closed interval. Furthermore, as
typical in the VEM literature, we suppose that there exists a constant η > 0 such that each E, having diameter hE ,
is star-shaped with respect to a ball of radius larger than ηhE and the length of any (eventually curved) edge
of E is larger than ηhE . The mesh parameter hΩ corresponds to the largest hE . We remark that the CVEM allows
us to avoid approximation of the geometry; indeed, for each tessellation ThΩ , it holds Ω = ⋃E∈ThΩ

E. Finally, in
order to fully decouple the approximation in space of the interior CVEMwith that of the BEM, we denote by ThΓ
a decomposition of the artificial boundary Γ, which consists of a finite number MΓ of curvilinear parts joined
with continuity, of maximum edge size hΓ .

Discretization of the Variational Problem by the CVEM

We briefly recall the main features of the CVEM which are useful for the description of the space discretization
of equation (3.1). The reader is referred to the seminal papers [1, 11, 12, 15] for a thorough description.

Let E ∈ ThΩ and denote by PkΩ (E) the space of polynomials on E up to degree kΩ . A basis MkΩ (E) for the
space PkΩ (E), particularly suited for the computation of the integrals involved in the numerical calculations
(see [12, 21]), consists of scaled monomials on E, i.e.

MkΩ (E) := {mα(x) = (
x1 − xE1
hE
)
α1
(
x2 − xE2
hE
)
α2
, α = (α1 , α2) : |α| = α1 + α2 ≤ kΩ},

where xE = (xE1 , xE2 ) denotes the mass center of E.
We define the H1-projection operator Π∇,EkΩ : H1(E)→ PkΩ (E) such that

{{{{{
{{{{{
{

∫
E

∇Π∇,EkΩ v(x) ⋅ ∇p(x) dx = ∫
E

∇v(x) ⋅ ∇p(x) dx for all p ∈ PkΩ (E),

∫
∂E

Π∇,EkΩ v(x) ds(x) = ∫
∂E

v(x) ds(x),

and the L2-projector Π0,E
kΩ : L

2(E)→ PkΩ (E) such that

∫
E

Π0,E
kΩ v(x)p(x) dx = ∫

E

v(x)p(x) dx for all p ∈ PkΩ (E).

Since the local CVEM spaces contain not explicitly known functions, the above projectors Π∇,EkΩ and Π0,E
kΩ are

needed to compute in practice the contribution of non-polynomial functions to the local stiffness and mass
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matrices, respectively. Before defining the CVEM space we will work with, we start by introducing the local
finite-dimensional space

̃VkΩhΩ (E) := {vhΩ ∈ H
1(E) : ΔvhΩ ∈ PkΩ−2(E), vhΩ |e1 ∈ P̃kΩ (e1), vhΩ |ei ∈ PkΩ (ei) for all i = 2, . . . , nE},

where P̃kΩ (e1) := { ̃p = p ∘ γ−1e1 : p ∈ PkΩ (Ie1 )} and P−1(E) := {0}. We remark that this space was originally intro-
duced in [11] (for the standard polygonal VEM) and in [15] (for the curved VEM), where the authors considered
Poisson problems. In these two papers, it has been shown that the following degrees of freedom are unisolvent
for vhΩ ∈ ̃VkΩhΩ (E):
∙ the values at the vertices of E;
∙ the values at the kΩ − 1 internal points of the (kΩ + 1)-point Gauss–Lobatto quadrature rule on each straight

edge of ∂E;
∙ the values at the kΩ − 1 internal points of the curved edge of ∂E, that are the images through the parame-

trization γe1 of the (kΩ + 1)-point Gauss–Lobatto quadrature rule on the parametric interval Ie1 ;
∙ the moments up to the order kΩ − 2,

1
|E|
∫
E

vhΩ (x)p(x) dx for all p ∈MkΩ−2(E),

where |E| denotes the Lebesgue measure of E. According to the above listed degrees of freedom, for each
vhΩ ∈ ̃VkΩhΩ (E) the projector Π

∇,E
kΩ vhΩ is computable since, by using Green’s formula, we have, for all p ∈ PkΩ (E),

∫
E

∇Π∇,EkΩ vhΩ (x) ⋅ ∇p(x) dx = ∫
E

∇vhΩ (x) ⋅ ∇p(x) dx = −∫
E

Δp(x)vhΩ (x) dx + ∫
∂E

∂p
∂n
(x)vhΩ (x) ds(x).

It then turns out that, for the standard Poisson problems, the explicit knowledge of the projector Π∇,EkΩ is enough
to complete the discretization process and to perform the analysis. Furthermore, by using themoments up to the
order kΩ − 2, we are also able to compute Π0,E

kΩ−2vhΩ . However, in more general cases like ours, due to the pres-
ence of a mass term, it is necessary to have an explicit knowledge, together with Π∇,EkΩ also of the projector Π0,E

kΩ .
For this reason, we introduce the space

VkΩhΩ (E) := {vhΩ ∈ H
1(E) : ΔvhΩ ∈ PkΩ (E), vhΩ |e1 ∈ P̃kΩ (e1), vhΩ |ei ∈ PkΩ (ei) for all i = 2, . . . , nE ,
(Π∇,EkΩ vhΩ − Π

0,E
kΩ vhΩ ) ∈ PkΩ−2(E)},

that, as shown in [1], shares with ̃VkΩhΩ (E) the same degrees of freedom and allows for the computation
of Π0,E

kΩ . This latter is the space we will use to define our generalized Galerkin method. To this end, setting
ME

Ω := dim(VkΩhΩ (E)) and choosing an arbitrary but fixed ordering of the degrees of freedom, we define the
operators dof i : VkΩhΩ (E)→ R such that

dof i(vhΩ ) := the value of the i-th local degree of freedom of vhΩ , i = 1, . . . ,ME
Ω ,

and we introduce the canonical basis functions {ΦE
j }j for the space VkΩhΩ (E), satisfying the condition

dof i(ΦE
j ) = δij , i, j = 1, . . . ,ME

Ω ,

δij being the Kronecker delta. Consequently, a generic function vhΩ ∈ VkΩhΩ (E) can be written by means of the
following Lagrange-type interpolation identity:

vhΩ =
ME

Ω

∑
j=1

dof j(vhΩ )ΦE
j .

From the definition of the spaces VkΩhΩ (E), we build the global virtual element spaces V
kΩ
hΩ by gluing the local

ones, i.e.
VkΩhΩ := {vhΩ ∈ H1(Ω) : vhΩ |E ∈ VkΩhΩ (E) for all E ∈ ThΩ },
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and we define the discrete bilinear forms ahΩ : VkΩhΩ × V
kΩ
hΩ → R andmhΩ : VkΩhΩ × V

kΩ
hΩ → R, counterparts of a and

m in (2.6), as

ahΩ (uhΩ , vhΩ ) := ∑
E∈ThΩ

aEhΩ (uhΩ , vhΩ ) and mhΩ (uhΩ , vhΩ ) := ∑
E∈ThΩ

mE
hΩ (uhΩ , vhΩ )

with

aEhΩ (uhΩ , vhΩ ) := a
E(Π∇,EkΩ uhΩ , Π

∇,E
kΩ vhΩ ) + s

E((I − Π∇,EkΩ )uhΩ , (I − Π
∇,E
kΩ )vhΩ ) (4.1)

mE
hΩ (uhΩ , vhΩ ) := m

E(Π0,E
kΩ−1uhΩ , Π

0,E
kΩ−1vhΩ ). (4.2)

The local bilinear forms aE( ⋅ , ⋅ ) and mE( ⋅ , ⋅ ) are the restriction of a( ⋅ , ⋅ ) and m( ⋅ , ⋅ ) to E, respectively, while
I denotes the identity operator. We remark that the bilinear form aEhΩ ( ⋅ , ⋅ ) consists of two terms: the first one
accounts for the consistencywith polynomials of degree up to kΩ , while the second one is a suitable stabilization
term added to guarantee the coercivity of the form. A standard choice in VEM literature (see [14] and [15] for the
polygonal and the curved versions of VEM, respectively), that we have adopted here, is the dofi-dofi stabilization
form, defined as

sE((I − Π∇,EkΩ )uhΩ , (I − Π
∇,E
kΩ )vhΩ ) :=

ME
Ω

∑
j=1

dof j((I − Π∇,EkΩ )uhΩ ) dof j((I − Π
∇,E
kΩ )vhΩ ).

We stress that, according to the choice of the degrees of freedom of VkΩhΩ (E), the local projection operators Π
∇,E
kΩ

and Π0,E
kΩ , as well as all the quantities in the right-hand sides of (4.1) and (4.2), are computable.

For what concerns the approximation of the unknown λ, we introduce the boundary element space XkΓhΓ
associated to the partition ThΓ of the artificial boundary Γ which, for a fixed approximation order kΓ , is

XkΓhΓ := {λhΓ ∈ L
2(Γ) : λhΓ |e ∈ ̃PkΓ (e) for all e ∈ ThΓ }.

The generalized Galerkin method applied to (3.1) then reads as follows: starting from u0hΩ = v
0
hΩ = λ

0
hΓ = 0, for

each n = 1, . . . , N , find (unhΩ , λ
n
hΓ ) ∈ (V

kΩ
hΩ ∩ H

1
g(tn),Γ0 (Ω)) × X

kΓ
hΓ such that, for all whΩ ∈ (VkΩhΩ ∩ H

1
0,Γ0 (Ω)),

̃αmhΩ (unhΩ , whΩ ) + ̃c2ahΩ (unhΩ , whΩ ) −
Δ2t
4 ⟨λ

n
hΓ , whΩ⟩

= ̃αmhΩ (u
n−1
hΩ , whΩ ) − ̃c2ahΩ (u

n−1
hΩ , whΩ ) + ΔtmhΩ (v

n−1
hΩ , whΩ ) +

Δ2t
4 ⟨λ

n−1
hΓ , whΩ⟩, (4.3)

and then update
vnhΩ =

2
Δt
(unhΩ − u

n−1
hΩ ) − v

n−1
hΩ .

Remark 2. We have focused on problems set in homogeneous domains, even if in principle the CVEM dis-
cretization can be extended to inhomogeneous ones. The treatment of non-constant coefficients would imply
non-trivial modifications in the numerical scheme, in particular for what concerns the approximation of the
bilinear forms mhΩ and ahΩ . We dealt with such issue in [23] for a CVEM-BEM coupling applied to exterior
Helmholtz problems with space dependent wave numbers, and we refer the reader to [13], where the polygonal
version of the VEM for general second-order elliptic problems was considered.

Discretization of the BI-NRBC by the Collocation BEM

For the discretization in space of the BI-NRBC (3.2), we employ a standard collocation method at the collocation
points {xκ}kΓMΓ

κ=1 ⊂ Γ. To detail the computation of the integrals therein involved, we start by splitting the integral
on the whole Γ into the sum of the contributions associated to each boundary edge Γℓ in ThΓ ,

1
2u

n(x) +
n
∑
j=1
[
MΓ

∑
ℓ=1
∫
Γℓ ω

V
n−j(x, y; Δt)λj(y) dΓy −

MΓ

∑
ℓ=1
∫
Γℓ ω

K
n−j(x, y; Δt)uj(y) dΓy] = 0
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for ℓ = 1, . . . ,MΓ . Then, by introducing for each ℓ the corresponding parametrization γℓ : Iℓ → Γℓ, we reduce
the integration over Γℓ to that over the parametric interval Iℓ,

1
2u

n(xκ) +
n
∑
j=1
[
MΓ

∑
ℓ=1
∫
Iℓ ω

V
n−j(xκ , γℓ(σ); Δt)λj(γℓ(σ))‖γℓ(σ)‖ dσ

−
MΓ

∑
ℓ=1
∫
Iℓ ω

K
n−j(xκ , γℓ(σ); Δt)uj(γℓ(σ))‖γℓ(σ)‖ dσ] = 0 (4.4)

for κ ∈ S̃Γ := {1, . . . , kΓMΓ}.

5 Algebraic Formulation of the Fully Discrete Problem

To describe the algebraic formulation of the global scheme, we denote by {ΦΩ
i }i∈S the set of the basis functions

of the virtual element space VkΩhΩ defined on the tessellation ThΩ . For what follows, it is convenient to split the
complete index set S in three subsets SΩ , SΓ0 and SΓ: the former is related to the internal degrees of freedom,
while the second and the third ones collect those lying on Γ0 and Γ, respectively. Taking into account the degrees
of freedom associated with Γ0, where we have imposed the Dirichlet datum in a strong form, we decompose the
approximation as follows:

un(x) ≈ unhΩ (x) = ∑
i∈S

dof i(unhΩ )Φ
Ω
i (x) = ∑

i∈SΩ

unΩ,iΦΩ
i (x) + ∑

i∈SΓ

unΓ,iΦΩ
i (x) + ∑

i∈SΓ0

dof i(g( ⋅ ; tn))ΦΩ
i (x), (5.1)

in terms of the unknowns un := [uni ] ∈ R|SΩ∪SΓ |, split as un = [unΩ unΓ], with obvious meaning of the underscript
notation.

Moreover, we introduce a set {ΨΓ
i }i∈S̃Γ of basis functions for the boundary element space X

kΓ
hΓ so that we

write
λn(x) ≈ λnhΓ (x) = ∑

i∈S̃Γ

λni ΨΓ
i (x) (5.2)

in terms of the unknowns λn := [λni ] ∈ R|S̃Γ |. Hence, inserting relations (5.1) (as well as the analogous for vnhΩ )
and (5.2) into the fully discrete problem (4.3), we get

[ ̃α𝕄 + ̃c2𝔸]un −
Δ2t
4 ℚλ

n = [ ̃α𝕄 − ̃c2𝔸]un−1 + Δt𝕄vn−1 +
Δ2t
4 ℚλ

n−1 (5.3)

for each n = 1, . . . , N . In the above equation, we have introduced themassmatrix𝕄, the stiffnessmatrix𝔸 and
the matrixℚ, whose entries are respectively defined by

𝕄i1 i2 := mhΩ (ΦΩ
i2 , Φ

Ω
i1 ) and 𝔸i1 i2 := ahΩ (ΦΩ

i2 , Φ
Ω
i1 ), ℚi3 i4 := ⟨Ψ

Γ
i4 , Φ

Ω
i3⟩,

with i1 , i2 ∈ SΩ ∪ SΓ , i3 ∈ SΓ and i4 ∈ S̃Γ .
To obtain the matrix form of the BI-NRBC, we insert relations (5.1) and (5.2) into the fully discrete equation

(4.4), and we get, for n = 1, . . . , N and κ = 1, . . . , kΓMΓ ,

1
2 ∑i∈SΓ

unΓ,iΦΩ
i (xκ) +

n
∑
j=1
[ ∑
i∈S̃Γ

λji
MΓ

∑
ℓ=1
∫
Iℓ ω

V
n−j(xκ , γℓ(σ); Δt)ΨΓ

i (γℓ(σ))‖γ

ℓ(σ)‖ dσ

− ∑
i∈SΓ

ujΓ,i
MΓ

∑
ℓ=1
∫
Iℓ ω

K
n−j(xκ , γℓ(σ); Δt)ΦΩ

i (γℓ(σ))‖γ

ℓ(σ)‖ dσ] = 0.

Introducing the matrices𝕍,𝕂 andℕ, whose entries are, respectively, for j = 1, . . . , N ,

𝕍ji1 i2 :=
MΓ

∑
ℓ=1
∫
Iℓ ω

V
j (xi1 , γℓ(σ); Δt)ΨΓ

i2 (γℓ(σ)) ‖γ

ℓ(σ)‖ dσ, i1 , i2 ∈ ̃SΓ ,
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𝕂ji1 i2 :=
MΓ

∑
ℓ=1
∫
Iℓ ω

K
j (xi1 , γℓ(σ); Δt)ΦΩ

i2 (γℓ(σ))‖γ

ℓ(σ)‖ dσ, i1 ∈ ̃SΓ , i2 ∈ SΓ ,

ℕi1 i2 := ΦΩ
i2 (xi1 ), i1 ∈ ̃SΓ , i2 ∈ SΓ ,

the final matrix form of the BI-NRBC reads

(
1
2ℕ −𝕂

0)unΓ +𝕍
0λn =

n−1
∑
j=1
𝕂n−jujΓ −

n−1
∑
j=1
𝕍n−jλj , n = 1, . . . , N. (5.4)

According to the partitioning of the index set S, previously introduced, 𝕄 and 𝔸 can be decomposed in the
following block structures:

𝕄 = [
𝕄ΩΩ 𝕄ΩΓ
𝕄ΓΩ 𝕄ΓΓ

], 𝔸 = [𝔸ΩΩ 𝔸ΩΓ
𝔸ΓΩ 𝔸ΓΓ

].

Finally, starting from u0Ω = u
0
Γ = λ

0 = 0 and coupling equations (5.3) and (5.4), for each n = 1, . . . , N , we solve
the global linear system

[[[

[

̃α𝕄ΩΩ + ̃c2𝔸ΩΩ ̃α𝕄ΩΓ + ̃c2𝔸ΩΓ 𝕆
̃α𝕄ΓΩ + ̃c2𝔸ΓΩ ̃α𝕄ΓΓ + ̃c2𝔸ΓΓ −

Δ2t
4 ℚ

𝕆 1
2ℕ −𝕂

0 𝕍0

]]]

]

[[[

[

unΩ
unΓ
λn

]]]

]

=
[[[[

[

[ ̃α𝕄ΩΩ − ̃c2𝔸ΩΩ]un−1Ω + [ ̃α𝕄ΩΓ − ̃c2𝔸ΩΓ]un−1Γ + Δt𝕄ΩΩvn−1Ω + Δt𝕄ΩΓvn−1Γ
[ ̃α𝕄ΓΩ − ̃c2𝔸ΓΩ]un−1Ω + [ ̃α𝕄ΓΓ − ̃c2𝔸ΓΓ]un−1Γ + Δt𝕄ΓΩvn−1Ω + Δt𝕄ΓΓvn−1Γ +

Δ2t
4 ℚλ

n−1

∑n−1j=1 𝕂
n−jujΓ −∑

n−1
j=1 𝕍

n−jλj

]]]]

]

and update
vn = 2

Δt
(un − un−1) − vn−1 .

Remark 3. For the accuracy of the global scheme, it is crucial to compute the integrals defining the BEMmatrix
elements with a high precision. The numerical integration difficulties are due to the logarithmic asymptotic
behavior of the Bessel function K0(r) near the origin, the latter being the Laplace transform of the kernel in
the single-layer operator V . In particular, these are associated to the entries of the matrix 𝕍 belonging to the
main diagonal and to the co-diagonals, for which the collocation points belong or are close to the supports of
the basis functions. For their accurate computation by a few nodes, we have used the very simple and effi-
cient polynomial smoothing transformation proposed in [39], referred to as the q-smoothing technique. After
having introduced the q-smoothing transformation, with q = 3, we have applied the ν-point Gauss–Legendre
quadrature rule with ν = 16. For the computation of all the other integrals, we have applied a standard 8-point
Gauss–Legendre quadrature rule. Finally, we point out that the integrals involving the Bessel function K1(r),
appearing in the Laplace transform of the kernel of the double layer operator K, do not require a particular
quadrature strategy since its singularity 1

r is factored out by the same behavior of ∂r
∂n near the origin (see [28]).

Hence, for the computation of the entries of the matrix 𝕂, we have directly applied a standard 8-point Gauss–
Legendre quadrature rule. The above described quadrature strategy has guaranteed the computation of all the
mentioned integrals with high accuracy for both kΓ = 1 and kΓ = 2.

6 Numerical Results

In this section we show the effectiveness of the proposed approach, presenting four examples selected in our
extensive numerical testing, and we highlight its competitiveness by applying it to some problems from the
literature.

We organize this section as follows. In the first example, we provide a numerical convergence study by
applying the proposedmethod to a benchmark problemboth for the classicalwave equation and for the damped
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Figure 1: Two representative meshes for complex geometries: on the left for a kite-shaped scatterer (Example 2), on the right for
a simplified submarine obstacle (Example 3).

one. In Examples 2 and 3, we deal with complex curved geometries and we compare our numerical results with
some present in literature, showing the performance of our method applied to real life applications. In the last
test, we consider amultiple obstacle scattering problem andwe solve it bymeans of a CVEM-BEM coupling with
decoupled orders for the interior and the boundary discretizations.

In all the reported numerical tests, we have used the GMSH software (see [32]) to construct unstructured
conforming polygonal CVEM meshes {ThΩ }hΩ . To generate curvilinear edges, those bordering with the interior
boundary Γ0 or with the artificial one Γ, we transform the associated straight ones into curved edges by means
of the corresponding parametrizations (see Figure 1 for two representativemeshes). Even if in principle it is pos-
sible to fully decouple the interior and boundary elements, both for the choice of the approximation orders and
for that of the meshes, for simplicity, we consider the boundary meshes {ThΓ }hΓ inherited by the interior ones.

All the numerical computations have been performed on a cluster with dual socket Intel Xeon Skylake Gold
6130 (2.1 GHz clock frequency, 16 cores, 22MB L3 cache) and 192 GB RAM (DDR4 2666MHz with ECC) by means
of parallel Matlab® codes.

Example 1

Let Ωe be the unbounded region, external to the unitary disk Ω0 = {x = (x1 , x2) ∈ R2 : x21 + x22 ≤ 1}. We consider
equation (2.1) with c ∈ {1, 343}, α ∈ {0, 10} and the Dirichlet datum g(x; t) = t3e−t cos (x1 + 2x22), prescribed on
the boundary Γ0 = ∂Ω0. We choose as artificial boundary Γ the circumference of radius 2 so that the finite
computational domain Ω is the annulus bounded internally by Γ0 and externally by Γ.

To develop a convergence analysis, we start by choosing a coarsemesh, associated to the level of refinement
zero (referred to as lev. 0), and all the successive refinements are obtained by halving each side of its elements.
Based on the analysis performed in [22, 23] for the Helmholtz and Poisson problems, and recalling that we are
applying second-order methods in time, we expect that, for a sufficiently smooth solution u, the L2(Ω)-norm
and H1(Ω)-seminorm errors behave like

max
n=0,...,N
|u( ⋅ ; tn) − unhΩ |H1(Ω) = O(h

kΩ
Ω + h

kΓ+1
Γ + Δ2t ), (6.1)

max
n=0,...,N
‖u( ⋅ ; tn) − unhΩ‖L2(Ω) = O(h

kΩ+1
Ω + h

kΓ+2
Γ + Δ2t ). (6.2)

To test our numerical approach, the order kΩ of the approximation spaces is chosen equal to 1 (linear)
and 2 (quadratic), and kΓ = kΩ . Moreover, since the exact solution u is not explicitly known, we compare the
approximations with a reference one denoted by uh̃Ω ,Ñ , which is obtained with a sufficiently fine space and
time refinements (Figure 2). In particular, in Tables 1, 2 and 3, uh̃Ω ,Ñ is obtained with the space refinement lev. 5,
for which h̃Ω = 2.84e−02, and with a proper Ñ which is specified in the corresponding captions. Due to the limi-
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Figure 2: Example 1. Reference solution at the time instants t = 1
2 (left plot) and t = 1 (right plot).

tations of the hardware used for our simulations, we were not able to compute the reference solution with finer
space-time refinements. However, the observed error behavior seems to confirm the theoretical expected one.

Recalling that both the approximate and reference solutions are not known inside the elements,we estimate
the absolute errors and the corresponding Estimated Order of Convergence (EOC) by means of the following
computable formulas:

H1(Ω)-seminorm: ε∇,kΩlev,n := √ ∑
E∈ThΩ

|Π∇,EkΩ u
n
h̃Ω ,Ñ
− Π∇,EkΩ u

n
hΩ |

2
H1(E) ,

L2(Ω)-norm: ε0,kΩlev,n := √ ∑
E∈ThΩ

‖Π0,E
kΩ u

n
h̃Ω ,Ñ
− Π0,E

kΩ u
n
hΩ‖

2
L2(E) ,

EOC := log2(
ε∗,kΩlev+1,n

ε∗,kΩlev,n
), ∗ = ∇, 0.

This is a natural choice, justified by the following estimate, easily derived from classical results concerning VEM
(see, for example, [17]):

|Π∇,EkΩ u
n
h̃Ω ,Ñ
− Π∇,EkΩ u

n
hΩ |H1(E) ≤ |Π∇,EkΩ u

n
h̃Ω ,Ñ
− u( ⋅ ; tn)|H1(E) + |u( ⋅ ; tn) − Π∇,EkΩ u

n
hΩ |H1(E)

≤ |Π∇,EkΩ u
n
h̃Ω ,Ñ
− unh̃Ω ,Ñ |H1(E) + |unh̃Ω ,Ñ − u( ⋅ ; tn)|H1(E) + |u( ⋅ ; tn) − Π∇,EkΩ u

n
hΩ |H1(E)

≤ C(hkΩΩ + h̃
kΩ
Ω )|u( ⋅ ; tn)|HkΩ+1(E) ≤ hkΩΩ |u( ⋅ ; tn)|HkΩ+1(E) ,

where C is a constant not depending on hΩ and hΓ , and similarly for the L2-norm.
The above errors are computed using the 8-point quadrature formulas proposed in [42, 43]. For curved

polygons, we have applied the generalization of the latter as suggested in [15, Section 4.3].
In Table 1, to show the CVEM-BEM convergence in space, we fix the time discretization by choosing a suffi-

ciently fine Δt such that the error depends only on the space discretization. In particular, for the standard wave
equation (α = 0) with c = 1, we report ε0,kΩlev,N , ε

∇,kΩ
lev,N at the final time tN = T = 1 and the corresponding EOC by

varying the space mesh refinement from lev. 0 to lev. 4. As we can see, the H1-seminorm and the L2-norm
error estimates confirm the expected convergence order of the method. In particular, we observe a super-
convergence for the H1-seminorm when using the linear CVEM. This phenomenon has been confirmed by an
extensive numerical testing, performed by varying the problem data, the mesh refinements and applying the
polygonal version of the VEM instead of curvilinear one. Therefore, it could be ascribed to the regularity of the
meshes, the smoothness of the solution and the type of error considered, which involves a reference solution
instead of an exact one.

We omit here the results obtained with the coupling kΩ = 2 and kΓ = 1 since they are very similar to those
reported in Table 1 for the choice kΩ = kΓ = 2. This is coherent with formulas (6.1) and (6.2), recalling that the
boundarymeshes are those inherited from the interior ones, so that hΓ ≤ hΩ . We further highlight that we have
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L2-norm H1-seminorm

lev. hΩ ε0,1lev,64 EOC ε0,2lev,400 EOC ε∇,1lev,64 EOC ε∇,2lev,400 EOC

0 8.02e−01 1.71e−03 3.02e−03 1.14e−02 2.97e−03
1.5 2.9 1.6 2.2

1 4.28e−01 6.66e−04 3.99e−04 4.90e−03 6.38e−04
1.6 2.8 1.7 2.4

2 2.22e−01 2.27e−04 5.57e−05 1.77e−03 1.21e−04
1.8 2.8 1.6 2.0

3 1.13e−01 6.57e−05 7.99e−06 6.30e−04 3.13e−05
2.2 2.8 1.8 2.1

4 5.68e−02 1.05e−05 1.18e−06 9.65e−05 7.54e−06

Table 1: Example 1. Absolute errors and EOC for Ñ = N = 64 when kΩ = kΓ = 1, and Ñ = N = 400 when kΩ = kΓ = 2.

kΩ lev. 0, N = 32 lev. 1, N = 64 lev. 2, N = 96 lev. 3, N = 128
1 1.89e−03 9.25e−04 3.09e−04 8.74e−05
2 3.03e−04 5.04e−05 9.90e−05 4.29e−06
3 8.88e−05 3.11e−05 5.15e−05 3.52e−06
4 3.65e−05 1.47e−05 6.31e−06 3.08e−06

Table 2: Example 1. Absolute L∞ errors on Γ for Ñ = 400 and kΓ = 1.

c = 343, α = 0 L2-norm H1-seminorm

lev. hΩ N ε0,1lev,N EOC ε∇,1lev,N EOC

0 8.02e−01 8 8.96e−04 3.66e−03
1.9 1.5

1 4.28e−01 16 2.44e−04 1.31e−03
1.9 1.6

2 2.22e−01 32 6.61e−05 4.45e−04
2.0 1.7

3 1.13e−01 64 1.66e−05 1.41e−04
2.3 2.1

4 5.68e−02 128 3.35e−06 3.38e−05

c = 1, α = 10 L2-norm H1-seminorm

lev. hΩ N ε0,1lev,N EOC ε∇,1lev,N EOC

0 8.02e−01 8 2.42e−03 9.91e−02
1.8 1.3

1 4.28e−01 16 7.08e−04 4.07e−03
1.9 1.5

2 2.22e−01 32 1.90e−04 1.43e−03
2.0 1.6

3 1.13e−01 64 4.70e−05 4.70e−04
2.3 1.9

4 5.68e−02 128 9.57e−06 1.30e−05

Table 3: Example 1. Absolute errors and EOC for kΩ = kΓ = 1, by varying hΩ .

built unstructured conforming meshes, by employing the Mesh.ElementOrder option within the GMSH code. In
particular, to simplify the creation of the meshes used in this example, we have generated the decomposition of
the computational domain in such a way that hΓ = hΩ

2 .
To underline further the advantage of decoupling the interior and boundary orders of accuracy, in Table 2,

we show the absolute L∞ errors on Γ at the final time instant T = 1, by fixing kΓ = 1 and varying kΩ . The dis-
cretization parameter N has been properly chosen in such a way that the error in time does not affect that in
space. As we can see, for a fixed space refinement, the error decreases by increasing kΩ , and the low-order BEM
approximation does not significantly pollute that of the VEM for the refinements levels 0, 1 and 2, while it is
(as possibly expected) nomore negligible for level 3 by using kΩ = 3, 4. Therefore, the order decoupling strategy
allows to avoid the over-resolution of boundary variables and represents a great gain in terms of computational
cost andmemory saving since higher-order BEMs are demanding for the efficient computation of the associated
matrices.

To show the quadratic convergence order in time stated in estimates (6.1) and (6.2), in Figure 3, we report the
H1-seminormand L2-norm errors obtained by fixing the spacemesh corresponding to level 3 and by varying the
time step Δt . We remark that in [9] a theoretical and numerical error analysis has been presented for a similar
coupling approach, observing the convergence order O(Δ2t ).



14  L. Desiderio et al., CVEM-BEM Coupling for Time-Domain Scattering

Figure 3: Example 1. H1-seminorm and L2-norm convergence errors with respect to the time step Δt .

In Table 3, we show the global space-time error behavior. In particular, we report the absolute errors and
the corresponding EOC for T = 1. These are obtained by choosing kΩ = kΓ = 1, starting with a fixed mesh in
time and in space, and then halving Δt and hΩ at each refinement step. We consider c = 343 and α = 0 in the
left table, and c = 1 and α = 10 in the right table. Also in these cases, the results are in agreement with estimates
(6.1) and (6.2), and we observe a super-convergence in the H1-seminorm. Finally, we remark that similar results
have been obtained for other choices of c and α, but for brevity, we omit them.

Example 2

As second example, we apply the proposed numerical scheme to a problem solved in [19, Section 6.1]. The test
aims at simulating the scattering of transient acoustic waves by an infinitely long cylindrical obstacle on a flat
sound-soft substrate. The surrounding space consists of a homogeneous medium. Supposing the substrate and
the incident field invariant with respect to a fixed direction, the problem is reduced to a two-dimensional one.
The incident wave, generated by a causal signal λ(t) simultaneously emitted by a line source, takes the form

uinc(x, ys; t) = G(x, ys; t) ∗ λ(t), (6.3)

where G is the wave equation kernel (see (2.2) with α = 0) and ys = (ys,1 , ys,2) ∈ R2 is a point on the line source.
The convolution product in (6.3) has been efficiently computed by the CQ, with the same number N of time
instants used in the numerical approach of the associated BIE.

In [19], the authors have solved the problem by a BEM in the half-space x2 ≥ 0, combining the CQ with
a Nyström method in space. Instead, we consider here the wave equation in the full bi-dimensional space for
which, taking into account the antisymmetric property of the solution, the boundary datum consists of the sum
of two reflected fields,

g(x; t) = −uinc(x, ys; t) + uinc(x, yρs ; t),

where we have denoted yρs = (ys,1 , −ys,2) the reflection of ys about the x1-axis. We remark that the function −g
can be regarded as the wave field emitted from the source points ys and yρs : precisely, the points ys and yρs emit
the signals λ and −λ, respectively.

In our numerical simulation, we have considered c = 1 and λ(t) = sin(4t)e1.6(t−3)2 . The time interval of
interest [0, 11.2] is subdivided into N = 512 sub-intervals so that Δt = 2.2e−02. The source point is

ys = (4 cos(
2π
5 ), 4 sin(

2π
5 )),
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Figure 4: Example 2. Snapshots of the approximate solution at the instants t ≈ 5.9, 7.6, 9.4, 11.1 (from top left to bottom right).

and the obstacle Ω0 is a kite-shaped scatterer whose boundary Γ0 has the following parametrization:

q(ϑ) = (cos(ϑ) + 0.65 cos(2ϑ), 1.5 sin(ϑ)), ϑ ∈ (−π, π].

We consider the approximation orders kΩ = kΓ = 1 and we fix the level of refinement with hΩ = 1.64e−01
(14,811 degrees of freedom). The snapshots of the scattered field uhΩ at the time instants t ≈ 5.9, 7.6, 9.4, 11.1 are
shown in Figure 4. By comparing them with those presented in [19, Figures 4 and 5], we observe a qualitative
accordance of the solution and that its antisymmetric property is preserved. Moreover, contrary to what is
shown in [19], the propagating mode is well approximated by our approach, without the presence of wavy or
undulating effects. Indeed, these latter are not expected taking into account the smoothness of the problem data
and the geometry regularity of the obstacle.

Example 3

Weconsider a scattering problemwhere the incidentwave is given by the convolution between the fundamental
solution of the wave equation (see (2.2) with α = 0) and a time periodic signal, perturbed by a Gaussian spatially
distributed source, i.e.

uinc(x; t) = e−
log 2
0.04 ‖x−ys‖

2
G(x, ys; t) ∗ sin(8πt),

whereys = (4, 0) is the emissionpoint. The obstacleΩ0 is a submarine,whose simplified configuration is detailed
in [45, Figure 23], the artificial boundary Γ is the circumference of radius 8 and the speed of wave propagation
is c = 1.
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Figure 5: Example 3. Snapshots of the approximate scattered field at the instants (from top left to bottom right)
t5 , t45 , t85 , t125 , t165 , t205 , t245 , t285 , t325 , t365 , t405 , t445 , t485.

In Figure 5, we show some snapshots of the scattered field, obtainedwith the choice kΩ = kΓ = 1, for amesh
with hΩ = 5.42e−02 (590,768 degrees of freedom), and by a uniform partitioning of the time interval [0, 15] into
513 instants. As we can see, the scattered field is well approximated by the global scheme and the artificial
boundary is perfectly transparent since no pollution effects are present near Γ. In support of this, we compare
our solutionwith that provided by the FEM-BEM coupling. In particular, in the left plot of Figure 6, we report the
time history of the scattered fields uhΩ (x̂; t), obtained by both approaches at the fixed point x̂ = (8, 0) ∈ Γ. In the
right plot, we show the absolute error between the two solutions; as we can see, the maximum gap is of order
1.0e−06, which implies a good agreement of the two approaches and validates the correctness of the scattered
field computed by the new proposed strategy.

Example 4

Similarly to [24, Example 3.3], we consider the acoustic field, solution of equation (2.1) with c = 1 and α = 0, scat-
tered by five obstacles, whose circular sections Ω0,p , p = 1, . . . , 5, are disks of radius r = 0.3. The corresponding
centers are O1 = (0, 0), O2 = (2, 0) = −O3, O4 = (0, 2) = −O5. In this configuration, the reproduction of the scat-
tered field is extremely complex in the region between the obstacles, when these are bumped by incident waves.
Aiming at determining an accurate solution in that region, we surround the scatterers by a proper non-convex
flower-shaped curve, defined by Γ = {f (ϑ)(cos ϑ, sin ϑ), ϑ ∈ (−π, π]} with f (ϑ) = 2.35(1 + 0.7 cos(4ϑ)). We con-
sider the Dirichlet datum g defined by the sum of eight plane incident waves, four coming from north east and
four coming from south west,

g(x; t) =
4
∑
j=1
e−β(x⋅d+dj−t)

2
+

4
∑
j=1
e−β(x⋅d−dj+t)

2

with β = 35, d = (1, 1) and dj = j + 4 for j = 1, . . . , 4.
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Figure 6: Example 3. Comparison between the FEM-BEM and CVEM-BEM couplings: time history of uhΩ (x̂; t), with x̂ = (8, 0) ∈ Γ (left plot)
and the corresponding absolute error (right plot).

The computational domain has been decomposed into 4,580 quadrilaterals, with mesh size hΩ = 1.80e−01,
and the discrete solution has been obtained by the decoupled CVEM-BEM coupling with orders kΩ = 4 for the
interior CVEM and kΓ = 1 for the BEM. The total number of degrees of freedom is 61,576.

To test the performance of the proposedmethod in case of non-convex artificial boundaries with re-entrant
curves like the one considered, and hence the reliability of the corresponding numerical results, we compare the
solution obtained in the flower-shaped domainwith that retrieved in a larger one, which encloses the obstacles.
To this aim, we choose the circle centered in O = (0, 0) with minimum radius containing the flower, i.e. with
radius 3.995. For both tests, we have considered T = 10 and N = 512.

As we can see, the snapshots in Figure 7 for the flower domain perfectly match with the restriction to the
flower of those represented in the annulus domain. It is worth noting that, to achieve a reliable solution by
a comparable mesh size hΩ = 1.38e−01, the choice of the larger circular domain implies higher computational
cost and memory requirements. In particular, in our case, its decomposition has required 15,744 quadrilaterals.
With such a choice, the total number of degrees of freedom, obtained with the same approximation orders
kΩ = 4 and kΓ = 1, is 206,780. Therefore, the feasibility in the choice of an ad hoc artificial boundary allowed us
to save about 70% in memory storage.

Conclusions and Perspectives

We have proposed a new approach for the simulation of time-domain wave fields scattered by obstacles with
complex geometries in unbounded domains. For its solution, we have applied the coupling of a domain method
with a boundary one, the latter associated with an integral non-reflecting boundary condition imposed on an
artificial contour of arbitrary shape. The novelty of this paper consists in using a CVEM to determine the solution
in the computational area limited by the artificial boundary. Among the main benefits of the CVEM, in this
paper, we have exploited the easiness of constructing high-order approximation spaces associated with generic
curvilinear polygons, and of using decoupled orders of accuracy for the interior and the boundarymethods. The
latter represents a crucial issue, the implementation of high-order boundary element methods being a difficult
task, because of the necessity of computing accurately boundary integrals involving non-smooth kernels. The
good performance of the proposed scheme encourages us to extend its application to other contexts such as, for
example, elastodynamic exterior problems, for which accurate simulations involving a high number of degrees
of freedom are required in complex geometries and over large time intervals of analysis.
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Figure 7: Example 4. Snapshots of the approximate solutions at the instants t10 , t15 , t20 , t25 , t30 , t35 , t40 , t45 , t50 , t55 , t60 , t65 (from top left
to bottom right).
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