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Abstract

microRNAs (miRNAs) regulate gene expression at post-transcriptional level by repressing

target RNA molecules. Competition to bind miRNAs tends in turn to correlate their targets,

establishing effective RNA-RNA interactions that can influence expression levels, buffer

fluctuations and promote signal propagation. Such a potential has been characterized math-

ematically for small motifs both at steady state and away from stationarity. Experimental evi-

dence, on the other hand, suggests that competing endogenous RNA (ceRNA) crosstalk is

rather weak. Extended miRNA-RNA networks could however favour the integration of many

crosstalk interactions, leading to significant large-scale effects in spite of the weakness of

individual links. To clarify the extent to which crosstalk is sustained by the miRNA interac-

tome, we have studied its emergent systemic features in silico in large-scale miRNA-RNA

network reconstructions. We show that, although generically weak, system-level crosstalk

patterns (i) are enhanced by transcriptional heterogeneities, (ii) can achieve high-intensity

even for RNAs that are not co-regulated, (iii) are robust to variability in transcription rates,

and (iv) are significantly non-local, i.e. correlate weakly with miRNA-RNA interaction param-

eters. Furthermore, RNA levels are generically more stable when crosstalk is strongest. As

some of these features appear to be encoded in the network’s topology, crosstalk may func-

tionally be favoured by natural selection. These results suggest that, besides their repres-

sive role, miRNAs mediate a weak but resilient and context-independent network of cross-

regulatory interactions that interconnect the transcriptome, stabilize expression levels and

support system-level responses.

Author summary

Large regulatory networks integrate a huge number of molecular interactions into robust

system-level outcomes. This capability can emerge even when individual interactions are

weak and/or strongly heterogeneous. We show this in the context of human post-tran-

scriptional regulation driven by microRNAs (miRNAs). These small non-coding RNAs

mediate an extended network of weak cross-regulatory interactions between their targets.

We characterize such a network in silico using a variety of quantitative measures. Despite

their weakness, miRNA-mediated couplings constitute a highly interconnected regulatory
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layer with robust interaction patterns that contribute to the stabilization of expression lev-

els and allow for tunable system-level responses to specific signals. As some of these fea-

tures are encoded, to a large degree, in the network’s topology, natural selection appears

to have favored the evolution of this “soft mode” of cross-regulation between RNAs.

Introduction

Competition to bind substrates, enzymes or gene expression machinery is ubiquitous in bio-

logical networks and impacts regulatory processes in several ways [1–12]. For instance, the ini-

tiation and translation rates of different transcripts are effectively coupled by the competition

for the ribosome pool, so that modifications of a given RNA species can alter the translational

dynamics of other RNAs [13]. Quite generally, competition for limited and shared molecular

resources induces effective interactions between the competing species, with signs (positive or

negative) that depend on the specifics of the underlying processes [14]. While such interactions

constitute in principle an additional layer of indirect regulation, their intensity is strongly con-

text-dependent [9]. The functional role of competition-driven crosstalk therefore has to be

evaluated on a case-by-case basis.

Competition for miRNAs (or, more generally, small regulatory RNAs) among long tran-

scripts is undergoing much scrutiny in this respect [15]. In silico studies of small motifs, sum-

marized e.g. in [16, 17], have characterized how the strength, selectivity and directionality of

miRNA-mediated RNA crosstalk are modulated by kinetic and topologic ingredients, leading

to highly adjustable output profiles [18–20], differential processing of intrinsic and extrinsic

heterogeneities [21–24], stabilization of protein levels [25, 26] and long-range effects [27],

both at steady state and during transients [28]. Experimental evidence, however, suggests that,

in order to fully develop its potential, RNA crosstalk presupposes rather specific conditions,

either in terms of the size of the perturbation required to generate a significant response [29–

31] or in terms of molecular abundances and kinetic parameters [32–34] (see e.g. [35, 36] for

reviews). When such conditions are not met, miRNAs only provide a weak coupling channel

for RNAs.

Generally speaking, weak individual crosstalk interactions by themselves do not necessarily

imply a reduced physiological role. This is especially true in large networks, where many inter-

actions can aggregate and perturbations can propagate by exploiting topological and kinetic

heterogeneities [18, 22, 37]. On-going explorations of miRNA-RNA networks are indeed

uncovering a high degree of hard-wired complexity [38, 39]. In the light of these studies,

achieving a better understanding of RNA crosstalk from a systemic perspective has become a

pressing issue.

Our goal here is to examine RNA crosstalk in silico in extended miRNA-RNA interactomes

as a function of various parameters, including global miRNA levels, degrees of parameter het-

erogeneity, and topological characteristics of the networks. To cope with the lack of knowledge

about kinetic parameters, we make use of a maximum-entropy assumption [40]. In short, after

obtaining the steady states of the miRNA-RNA network in terms of a small number of kinetic

parameters, we focus on the statistics of different quantities induced by a probability distribu-

tion of these parameters. This allows to extract context-independent, or typical, features at the

cost of weakening our ability to make predictions for individual crosstalk interactions.

In short, our main results can be summarized as follows.

1. Although typically weak, the emergent crosstalk structure is a robust feature of the miR-

NA-RNA network; for instance, its mean intensity is modulated by miRNA levels but is
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otherwise weakly affected by transcriptional and/or kinetic heterogeneities (including bind-

ing affinities).

2. On the other hand, variability in transcription rates generically enhances the maximal

crosstalk intensity achievable as well as non-local effects (i.e. the emergence of long-range

crosstalk mediated by chains of miRNA-RNA interactions).

3. The stability of expression profiles is generically higher when crosstalk is strongest.

4. The degrees of RNA and miRNA nodes are the key topological controllers of the above

picture.

Overall, these points suggest that miRNA-RNA networks encode for complex and adaptive

crosstalk patterns that feed back on the stability of expression profiles despite the fact that the

typical crosstalk link is very weak. A relatively small number of stronger couplings drives this

scenario, while transcriptional and topologic heterogeneities allow to extend the range of

crosstalk up to network scale.

Results

Mathematical model

To model a network comprising M miRNA species and N RNA species we have extended the

mathematical framework employed in [18] for the study of small motifs. Conforming to exper-

imental evidence according to which mature miRNAs are mostly bound to Argonaute [41],

the model assumes molecule availability as the only inhibition-limiting factor and describes

the interaction between miRNA species a (ranging from 1 to M) and RNA species i (ranging

from 1 to N) in terms of (see Fig 1a)

• synthesis rates (bi for the RNA, βa for the miRNA)

• degradation rates (di for the RNA, δa for the miRNA)

• miRNA-RNA association and dissociation rates (kþia and k�ia respectively)

• miRNA-RNA complex degradation rates (κia for the catalytic pathway leading to miRNA

recycling [42] and σia for the stoichiometric pathway without recycling)

Assuming deterministic mass-action kinetics, molecular levels (mi for RNA species i, μa for

miRNA species a) evolve according to

dma

dt
¼ ba � da ma �

XN

i¼1

kþiami ma þ
XN

i¼1

ðk�ia þ kiaÞcia ;

dmi

dt
¼ bi � di mi �

XM

a¼1

ðkþiami ma � k�iaciaÞ;

dcia
dt

¼ kþiami ma � ðk�ia þ kia þ siaÞcia ;

ð1Þ

where cia denotes the level of the complexes formed by RNA species i and miRNA species a.

Such a system possesses a unique asymptotically stable steady state [43], where molecular

levels attain the values (here and in the following, we denote the steady state value of
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variable x as [x])

½ma� ¼
m?a

1þ
PN

i¼1

½mi �

m0
ia

;

½mi� ¼
m?

i

1þ
PM

a¼1

½ma �

m0
ia

;

½cia� ¼
kþia½mi�½ma�

ðk�ia þ kia þ siaÞ
;

ð2Þ

Fig 1. Basic modeling and network features. (a) Scheme of the interaction between RNA species i and miRNA species a. Synthesis, degradation,

association and dissociation processes are shown with their respective rates. (b) Sketch of a bipartite miRNA-RNA network. RNA species can crosstalk

via chains of miRNA-mediated effective interactions, as can do species 1 and 3 in this example. (c1-c4) Classes of miRNA-RNA interactions considered

in this work (following [45]): (c1) perfect k-base-pairing in the seed region (’k-mer’ mode); (c2) seed base-pairing with up to one mismatched or bulged

nucleotide (non-canonical mode or ‘seed-nc’); (c3) non-seed base pairing with bulged and/or mismatched nucleotides (’noseed-9nt’ mode); (c4) non-

seed binding within weak diffuse regions (’noseed’ mode). (d) Frequency of each binding mode in the CLASH dataset (from [45]). (e) Distributions of

RNA transcription rates used in this work: each rate is assumed to be drawn independently from a lognormal distribution with given mean (same for

each RNA species). Increased transcriptional heterogeneity (TH) corresponds to increased values of the relative fluctuations (CVtr). (f) Scenarios of

miRNA-RNA binding heterogeneity (BH) analyzed in this work. From left to right: low BH, where each miRNA-RNA pair interacts with the same

strength; medium BH, with k-mer interactions (stronger) distinguished from the rest (weaker); high BH, where the full structure described in panel (d)

is employed. (g) Relative abundance of miRNAs and RNAs as a function of the global average miRNA transcription rate in the CLASH interactome for

representative values of kinetic parameters. The ‘susceptible’ regime in which global RNA levels are more sensitive to variations in miRNA availability

occurs at intermediate values of �b.

https://doi.org/10.1371/journal.pcbi.1007474.g001
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with m?
i � bi=di and m?a � ba=da the concentrations of RNA and miRNA species in absence

of inhibition. The quantities m0
ia and m0

ia are given respectively by

m0
ia ¼

di

kþia
1þ

k�ia
sia þ kia

� �

; ð3Þ

m0
ia ¼

da
kþia

1þ
k�ia þ kia

sia

� �

; ð4Þ

and effectively quantify the inverse repression strengths of miRNAs and RNAs. Specifically,

see Eq (2), RNA species i is unrepressed (or, respectively, repressed) by miRNA species a
when ½ma� � m0

ia (½ma� � m0
ia). Hence the smaller is m0

ia the stronger the repression that a can

exert on i. Similar considerations hold for m0
ia: the smaller it is, the more miRNA species a

will be sequestered by RNA species i.
The strength of miRNA-mediated RNA crosstalk at steady state can be estimated by the

change in the steady-state level of RNA species i induced by a (small) variation in the tran-

scription rate of species j, quantified by the susceptibility [18]

wij � dj
@½mi�

@bj
: ð5Þ

(The prefactor dj in Eq (5) serves the only purpose of making χij dimensionless.) Note that (i)

χij� 0 (i.e. the effective interaction tends to increase or decrease the levels of both RNAs) and

(ii) χij and χji are a priori different (see [44] for a detailed discussion of this aspect). The advan-

tage of the susceptibility over alternative measures of crosstalk, like the Pearson correlation

coefficient, lies in the fact that it focuses on the role of competition, disregarding indirect

effects due e.g. to fluctuations in miRNA levels. An extended comparison of different crosstalk

measures can be found in [17].

Starting from Eq (2), one can derive an analytical expression allowing for the convenient

computation of χij for each (i, j) pair in any miRNA-RNA network specified by a given set

of kinetic parameters (see S1 Text, Section 1). In compact form, the susceptibility matrix

χ̂ ¼ fwijg
N
i;j¼1

turns out to be given by

χ̂ ¼ ð1̂ � ŴÞ� 1diag
m
m?

� �
; ð6Þ

where diag m
m?

� �
denotes the N-dimensional diagonal matrix with elements mi=m?

i (i = 1, . . ., N)

while Ŵ is an N × N matrix with elements

Wij ¼
½mi�

2

m?
i

X

a2ði\jÞ

1

m0
jam

0
ia

½ma�
2

m?a
; ð7Þ

the sum running over all miRNA species that co-target RNAs i and j. Note that Eq (6) implies

that i and j need not be targeted by a common miRNA species in order for χij to be non-zero,

as crosstalk can propagate through chains of miRNA-mediated interactions [17, 27] (see Fig

1b). A toy model explicitly displaying this mechanism is discussed in S1 Text, Section 2.

Choice of networks and parameters, and simulated scenarios

We shall mainly focus on the human miRNA interactome reconstructed in [45] using the

CLASH (Crosslinking, Ligation And Sequencing of Hybrids) protocol. We refer to this as

the ‘CLASH interactome’ for short; see Materials and methods for details. The 4 types of
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miRNA-RNA couplings we consider are described in Fig 1c: (c1) perfect pairings of k miRNA

seed nucleotides (“k-mer” for brevity, with k ranging from 6 to 9); (c2) sequence-specific pair-

ings with up to one bulge or mismatch in the seed region (non-canonical pairings, or “seed-

nc” for short); (c3) a 9 nt stems no-seed interaction allowing for bulged nucleotides in the tar-

get (“noseed-9nt”); and (c4) a no-seed interaction with distributed weak pairings (“noseed” for

short). Non-canonical pairings are the most abundant in the CLASH interactome, accounting

for roughly 77% of all miRNA-RNA interactions [45] (see Fig 1d). They are also weaker than

canonical ones and seem to exert a very limited repressive role [46]. Nevertheless, they in prin-

ciple contribute to miRNA titration and hence to RNA crosstalk. We therefore included them

in our analysis. Our results will however turn out to be qualitatively independent of whether

non-canonical sites are accounted for. A summary of basic features of the CLASH subnet-

works spanned by different classes of interactions is given in S1 Table.

For sakes of simplicity, we assume κia = κ and σia = σ for each (i, a) pair, δa = δ for all a and

di = d for all i. With this choice, one has, for each miRNA-RNA pair,

m0
ia

m0
ia

�
di

da

sia

sia þ kia
¼
ld
d

; ð8Þ

with l ¼ s

sþk
the ‘stoichiometricity ratio’. Using values of λ, d and δ compatible with empirical

evidence (see Table 1), we set m0
ia=m

0
ia ’ 0:59. With this choice, network parameters are fully

determined by specifying (i) transcription rates (βa for miRNAs and bi for RNAs), and (ii) the

values of either m0
ia or m0

ia for each miRNA-RNA pair. We shall consider different scenarios for

these quantities (see below). Once parameters are set, emergent crosstalk patterns are obtained

by solving Eq (6) numerically.

Transcription rates and transcriptional heterogeneity (TH). Throughout this study, we

assume that both RNA transcription rates bi (i = 1, . . ., N) and miRNA transcription rates βa
(a = 1, . . ., M) are log-normal i.i.d. random variables with means �b and �b, and variances s2

b

and s2
b
, respectively. The mean RNA transcription rate �b is kept fixed at 8 molecules/h (see

Table 1), while we use the mean miRNA transcription rate �b as a control parameter upon vary-

ing which crosstalk patterns are analyzed. To assess the impact of heterogeneity in transcrip-

tion rates across molecular species (TH for short), we study how crosstalk patterns change as

the magnitude of fluctuations increases, assuming the same transcriptional variability for miR-

NAs and RNAs. Our goal is to understand how the effective interaction network processes dif-

ferent degrees of variability in transcription rates, particularly at the level of RNAs. We hence

tune TH by changing the coefficient of variation of individual rates (standard deviation over

mean, see Fig 1e), which we denote by CVtr. In particular, we have exploited the log-normality

of transcription rates to explore a 20-fold range of values of CVtr, from CVtr = 0.1 to 2.

Binding strengths and binding heterogeneity (BH). To appraise how heterogeneities in

the miRNA-RNA interaction strengths (binding heterogeneity or BH for short) affect the

emergent crosstalk landscape, we consider three variants of the structure of binding affinities

Table 1. Summary of parameter values.

Parameter Value Description Ref.

d 0.08 [h−1] RNA degradation rate [37]

δ 0.027 [h−1] miRNA degradation rate [37]

λ 0.2 stoichiometricity ratio [37]

�b 8 [molecules/h] mean RNA transcription rate [37]

μ0 4 [molecules]

https://doi.org/10.1371/journal.pcbi.1007474.t001
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encoded in the CLASH interactome (see Fig 1f). At the lowest level of diversity, we assume a

homogeneous network in which m0
ia ¼ 2m0 for each miRNA-RNA pair, with μ0 a constant

taken to be equal to 4 molecules (see Table 1). (Assuming a negligible miRNA-RNA unbinding

rate, this corresponds roughly to an association rate of 0.02/molecules/hour, in agreement

with values reported in [37].) At the intermediate level, we discriminate (i, a) pairs interacting

via k-mer pairing (for which we take m0
ia ¼ m

0, i.e. stronger coupling) from the rest (m0
ia ¼ 2m0).

Finally, at the highest level we associate different binding strengths to each of the four types of

miRNA-RNA pairs, assuming a 2-fold change in m0
ia between groups in agreement with esti-

mates from [45]. In each case, m0
ia’s are computed from Eq (8).

Role of network topology. We furthermore characterize the extent to which crosstalk

patterns are induced by the specific wiring of the CLASH interactome by comparing it to the

patterns that arise in randomized versions of the same network. In particular, we study ensem-

bles of networks obtained by re-assigning each (i, a) link to a miRNA-RNA pair drawn ran-

domly among all possible pairs with equal probability. This type of re-wiring disregards

topological correlations of all orders, including node connectivities [47]. To evaluate the

impact of the specific degree sequences encoded in the mapped miRNA interactome on the

emergent system-level crosstalk patterns, we also analyze networks generated by a more con-

servative procedure based on degree-preserving edge-swaps [48]. Details of the latter are given

in S1 Text.

The mean RNA crosstalk intensity is a robust property of the miRNA-RNA

network

Expectedly, the overall abundance of free RNAs and free miRNAs change in opposite direc-

tions as miRNA transcription is globally upregulated and RNAs are increasingly repressed (see

Fig 1g). Susceptibilities are bound to be larger when RNAs are more sensitive to changes in

miRNA levels, i.e. in the so-called susceptible region at intermediate values of �b [17]. Repre-

sentative susceptibility distributions derived by solving Eq (6) and describing the CLASH net-

work’s crosstalk pattern for different degrees of TH and BH are displayed in Fig 2a and in S1

Fig. Fig 2b focuses instead on a systemic feature, namely the mean susceptibility hwi, where the

brackets h� � �i denote an average over all pairs of distinct RNA species while the over-bar

stands for an average over different realizations of transcription rate profiles at fixed CVtr. hwi

informs about the typical strength of RNA crosstalk in the network and is shown as a function

of the mean transcription rate of miRNAs.

miRNA availability modulates hwi so that it peaks within the susceptible region and is van-

ishingly small outside of it (see Fig 2b), where molecular levels are practically unaffected by

varying miRNA transcription rates. Notably, this picture is substantially unchanged by modi-

fying the degrees of TH and/or BH, save for a modest expansion of the susceptible region.

Such a behaviour therefore describes a ‘basal level’ of crosstalk that occurs in the network in

any given condition. To appraise its significance, one can gauge it against the self-susceptibility

wii ¼ di
@mi
@bi

, which quantifies the change in the level of free transcripts of species i induced by a

small modification of its own transcription rate. (Note that, by definition, χii� 1.) S2 Fig dis-

plays the mean self-susceptibilities computed in the conditions of TH and BH of Fig 2b. One

sees that hwi is about four orders of magnitude smaller than the mean self-susceptibility. In

this respect, crosstalk appears to be on average very weak.

On the other hand, the picture just derived strongly suggests that the mean susceptibility

profile is determined to a large extent by the topology of the network. We shall validate this

hypothesis in the following. This conclusion, as well as the overall qualitative crosstalk
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characteristics illustrated by Fig 2a, will be seen to remain valid also when the contribution of

non-canonical binding sites is disregarded.

The achievable crosstalk strength is enhanced by transcriptional

heterogeneities

Fig 2c displays the behaviour of the mean maximum susceptibility �wmax ¼ maxði;jÞwij , where the

maximum is taken over all pairs of different RNA species (i.e. with i 6¼ j). �wmax quantifies the

maximum achievable intensity of crosstalk interactions in each scenario, therefore providing a

proxy for the strength of the most significant miRNA-mediated couplings arising between dif-

ferent RNA species in the network. Like hwi, �wmax also peaks in the susceptible regime, albeit

for smaller values of the mean miRNA transcription rate. The strongest crosstalk hence typi-

cally occurs when RNA levels are just weakly sensitive to changes in miRNA availability.

Remarkably, �wmax is four orders of magnitude larger than hwi. The backbone of the RNA cross-

talk network formed by the most intense interactions is therefore comparable in intensity to

the maximum achievable self-susceptibilities, see S2 Fig.

Fig 2. Quantitative features of RNA crosstalk in the CLASH interactome derived by solving Eq (6). (a) Representative distributions of

susceptibilities obtained for the CLASH interactome for five different realizations of parameters with different values of �b, CVtr = 0.4 and maximal BH.

(b) Mean susceptibility (averaged over pairs of distinct RNAs and over 100 independent realizations of TH) as a function of the mean miRNA

transcription rate �b. (c) Mean maximal susceptibility (computed over all pairs of distinct RNAs and averaged over 100 independent realizations of TH)

as a function of the mean miRNA transcription rate �b. Results are shown for the 3 BH scenarios considered. Parameter values are reported in Table 1.

The yellow shaded area qualitatively marks the region where the mean susceptibility is significantly different from zero, which coincides with the

susceptible regime [18]. In each case, the standard error of the mean is equal to or smaller than the size of the markers.

https://doi.org/10.1371/journal.pcbi.1007474.g002
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At odds with hwi, however, �wmax is strongly context-dependent, being modulated by both

BH and (more significantly) TH. This finding agrees with the proposed role of kinetic hetero-

geneities in creating favourable paths in the miRNA-RNA network through which perturba-

tions can efficiently propagate, as discussed e.g. in [17, 27].

Crosstalk becomes more selective upon increasing heterogeneity

Along with a higher potential for propagation, increased TH makes crosstalk more selective by

systematically involving a smaller number of targets, both in terms of in-coming regulation

(i.e. of the number of different transcripts that can regulate a given RNA) and, more signifi-

cantly, in terms of out-going regulation (i.e. of the number of different transcripts that are reg-

ulated by a given RNA). To quantify this aspect, we evaluated the quantities

Sin ¼
1

N

XN

i¼1

gi ; gi ¼
P1;N

j6¼i w
2
ij

ð
P1;N

j6¼i wijÞ
2

; ð9Þ

Sout ¼
1

N

XN

j¼1

hj ; ; hj ¼

P1;N
i6¼j w

2
ij

ð
P1;N

i6¼j wijÞ
2
: ð10Þ

Both gi and hj vary between 0 and 1, as do Sin and Sout. A value gi’ 0 indicates that a large

number of RNA species can almost equally affect the steady state of RNA species i, whereas a

value of gi’ 1 indicates that RNA i is regulated by a small number of other RNA species. Like-

wise, when hj’ 0 a perturbation of the transcription rate of RNA j affects the steady state of a

large number of other RNA species almost equally, while if hj’ 1 RNA j only affects a small

number of other RNAs. In turn, g � 1
i and h� 1

i provide an indication of the number of upstream

and, respectively, downstream miRNA-mediated contacts of a given RNA species. If follows

that Sin (respectively Sout) represents the average of the inverse number of RNAs, a perturba-

tion of which can considerably affect the level of a given RNA (resp. whose level can be affected

by a perturbation of a given mRNA). We will call Sin the incoming selectivity and Sout the outgo-
ing selectivity, respectively.

Fig 3 displays the inverse incoming (Fig 3a) and outgoing (Fig 3b) selectivities as functions

of the mean miRNA transcription rate �b for the CLASH interactome. One sees that the typical

number of crosstalk partners is modulated significantly only in the susceptible region. Higher

degrees of transcriptional heterogeneity in particular tend to make crosstalk increasingly more

selective (i.e. to lower S� 1
in and S� 1

out). On the other hand, different degrees of binding heteroge-

neity (BH) appear to impact this scenario rather weakly.

Because the selectivity is ultimately a global property tied to susceptibility distributions, a

few characteristics of these curves can be understood from features of the latter. For instance,

the high selectivity achieved outside the susceptible region is likely due to the existence of

strongly crosstalking pairs, enhanced by transcriptional heterogeneities (cf. Fig 2c). Peak

inverse selectivity is instead achieved when susceptibility distributions tend to become more

homogeneous (cf. S1 Fig). Likewise, transcriptional heterogeneity makes distributions less

homogeneous, thereby increasing the selectivity. On the other hand, the divergent behaviour

of incoming and outgoing components is harder to understand based on these aspects alone,

as it possibly involves topological ingredients.

Keeping in mind that susceptibilities χij are not a priori symmetric, one can also quantify

the degree of asymmetry in terms of the mean relative difference between χij and χji. Results

(see S1 Text, Section 3) show that, in the CLASH network, a properly defined asymmetry
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index is robustly maximized in the susceptible regime, where it can achieve a significantly high

value that is weakly modulated by TH.

Summing up, while the behaviour of the mean crosstalk intensity appears to be hard-wired

in the topology of the CLASH interactome, other features are tuned by the degree of heteroge-

neity. Most notably, crosstalk gets stronger and more selective as transcription rates become

more diverse, while binding heterogeneities appear to specifically affect the maximum cross-

talk intensity achievable. Finally, when crosstalk is strongest, individual crosstalk interactions

tend to become more asymmetric, i.e. χij and χji are typically different. As this feature is

observed independently of the degree of TH, the emergence of directional crosstalk appears to

be an inherent property of miRNA-RNA networks.

Transcriptional heterogeneities elicit non-local RNA crosstalk

Increased crosstalk intensity and selectivity are accompanied by the establishment of non-local

effects, represented by strong effective interactions coupling RNAs that are separated by more

than one miRNA species in the miRNA-RNA network. This phenomenon has been addressed

e.g. in [27, 44] in the context of small motifs. To quantify it in a large-scale network, we

Fig 3. Crosstalk selectivity in the CLASH interactome. (a) Inverse of incoming and (b) outgoing selectivities as functions of �b for varying degrees of

TH (different curves in the same panel) and BH (reported by the 3-state gauge in different panels). Curves are averaged over 100 independent

realizations of transcription rate profiles.

https://doi.org/10.1371/journal.pcbi.1007474.g003
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consider the quantity

Kij �
1

M

XM

a¼1

1

m0
ia

1

m0
ja

: ð11Þ

By definition, Kij is non-zero only if RNAs i and j are co-targeted by at least one miRNA spe-

cies, while it vanishes for pairs (i, j) that do not share a miRNA regulator. (About 90% of

potentially crosstalking RNA pairs involves species that are not co-regulated in the CLASH

interactome.) In brief, as m0
ia is inversely proportional to the binding affinity between miRNA a

and RNA i, larger values of Kij imply a stronger crosstalk potential between RNA species i and

j based only on the network’s local interaction structure and kinetic parameters. If crosstalk

mostly occurs between co-regulated RNAs one should therefore expect the pattern of suscepti-

bilities to match that of Kijs, at least qualitatively. We hence focus on the Pearson correlation

coefficient between the Kijs and the susceptibilities χijs, i.e.

r ¼
hwijKiji � hwijihKiji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhw2
iji � hwiji

2
ÞðhK2

iji � hKiji
2
Þ

q ð0 � r � 1Þ : ð12Þ

By construction, ρ’ 1 when RNA crosstalk occurs mainly between co-regulated RNA species,

while it gets smaller as the number of non-neighbouring targets that significantly crosstalk

increases. Hence ρ effectively quantifies the degree of non-locality in crosstalk patterns (higher

ρ implying more local crosstalk).

Fig 4 shows the behaviour of �r, the average being over realizations of TH. While the corre-

lation peaks in the susceptible region, crosstalk patterns generically appear to correlate poorly

with local topology in the CLASH interactome, as �r≲ 0:2. Most notably, �r decreases signifi-

cantly as TH is strengthened. This implicates kinetic heterogeneities in the establishment of

extended interaction paths that reduce the effective diameter of the interactome by connecting

Fig 4. Non-local effects in the RNA crosstalk scenario derived for the CLASH interactome. (a) Mean Pearson coefficient �r

quantifying the degree of locality of crosstalk patterns as a function of the mean miRNA transcription rate �b for different degrees of

TH. (b) Behaviour of �r as a function of �b in different BH scenarios for a given TH scenario (CVtr = 0.4). Results are obtained in the

high-BH scenario by averaging over 100 independent realizations of transcription rates for each degree of TH. In each case, the

standard error of the mean is equal to or smaller than the size of the markers.

https://doi.org/10.1371/journal.pcbi.1007474.g004
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distant RNAs via miRNA-mediated interactions. In this respect, miRNAs appear to operate on

RNAs both as specific repressors of individual transcripts and as a diffuse regulatory layer

affecting the transcriptome as a whole.

The most marked effect induced by binding heterogeneities consists in an increase of �r at

small �b and a shift of the peak correlation at smaller values of �b. Interestingly, changes appear

only when the full-fledged variability of binding sites is considered (high BH), while both the

homogeneous case (low BH) and the case in which only k-mer and non-k-mer interactions are

distinguished (medium BH) return very similar results. The particular structure of non-k-mer

interactions reported in the CLASH data therefore only seems to bear a weak impact on the

structure of crosstalk patterns.

Fig 4 has an important practical implication: relying on local kinetic parameters like m0
ia (or,

equivalently, on the binding affinity kþia) to predict crosstalk interactions could be ineffective

due to the significant long-range crosstalk that emerges as the network becomes more and

more heterogeneous, especially in terms of transcription rates. This conclusion is most rele-

vant in the susceptible regime, where cells presumably operate and RNA levels are more sensi-

tive to changes in miRNA levels.

More robust expression profiles are associated to stronger RNA crosstalk

By controlling the availability of their targets, miRNAs effectively process the variability

induced by RNA transcription rates. In some cases (e.g. in presence of specific patterns of

correlation between transcription rates), fluctuations can be reduced leading to more finely

tuned expression levels [17, 18, 22, 23]. In general, though, crosstalk tends to amplify target

variability, especially when different species are transcribed independently [18]. The exact rela-

tionship between crosstalk intensity and transcript variability in extended networks is however

bound to depend on the specific features of the crosstalk patterns.

In Fig 5a and 5b we show the coefficient of variation of RNA levels, averages being taken

over many independent realizations of TH, as a function of the mean miRNA transcription

rate �b in different BH scenarios. Relative fluctuations exhibit a maximum at large values of �b

within the susceptible region and generically increase with the degree of TH. Variability in

transcription rates therefore expectedly promotes variability in the resulting expression pro-

files. However the increase of fluctuations with respect to the unregulated case (�b ! 0) is neg-

ligible or very modest in a broad range of values of �b within the susceptible region. On the

other hand, at fixed TH, different BH scenarios do not appear to affect the robustness of

expression profiles (see Fig 5b).

Recalling the behaviour of the maximal susceptibility �wmax (see Fig 2b), one notices that the

strongest maximal crosstalk is associated to more robust expression profiles within the suscep-

tible region and, vice-versa, stronger fluctuations in expression profiles occur when crosstalk

gets weaker (see Fig 5c). In other terms, uncorrelated transcriptional heterogeneities tend to be

amplified when crosstalk is suppressed (higher miRNA expression levels), while they are more

efficiently contained when the strongest crosstalk emerges. This scenario is summarized in Fig

5d: for any given degree of TH, as miRNA availability increases, crosstalk intensity on one

hand and fluctuations of the output levels on the other are subject to a tradeoff that gets stron-

ger as transcription rates becomes more homogeneous.

These results clearly implicate transcriptional heterogeneities as a key determinant of the

stability of expression profiles even in presence of crosstalk, in line with previous observations

on small networks [17, 23]. It is however important to remark that this picture was obtained

under the assumption of uncorrelated extrinsic fluctuations in RNA transcription rates. The

presence of correlations might considerably alter this conclusion, as was first discussed in [18].
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Crosstalk patterns are resilient to transcriptional heterogeneity

After analysing systemic properties, we now ask to what degree crosstalk patterns are pre-

served upon increasing the level of transcriptional heterogeneity. A global analysis shows (see

Fig 6) that susceptibilities are remarkably well preserved statistically as the degree of transcrip-

tional heterogeneity increases. Most notably, about 75% of the RNA pairs that are in the top

sextile for crosstalk intensity at the lowest CVtr (CVtr = 0.1) persist in the top sextile when TH

is 20-fold larger (CVtr = 2). Such a fraction is larger than would be expected by chance (about

58%), implying the existence of a significant backbone of RNA-RNA interactions resilient to

transcriptional heterogeneity. A similar picture holds for the other sextiles. It is also instructive

to inspect robustness specifically for RNA pairs that do not share any miRNA regulators,

which amount to roughly 90% of the total. S3 Fig shows that, even for such ‘distant’ RNAs,

about 73% of the most strongly interacting pairs are conserved across all degrees of TH. For

reference, the 15 most strongly interacting pairs overall and among distant RNAs are displayed

Fig 5. Robustness of expression profiles from the CLASH interactome in the presence of crosstalk. (a) Coefficient of Variation (CV) of RNA levels

as a function of the overall mean miRNA transcription rate �b for different degrees of TH. (b) Behaviour of the CV as a function of �b in different BH

scenarios in a fixed TH scenario (CVtr = 0.4). (c) Comparison between the rescaled normalized maximal susceptibility ~wmax (varying between 0 and 1)

and the rescaled normalized Coefficient of VariationgCV as a function of the overall mean miRNA transcription rate �b at fixed TH (CVtr = 0.4) and BH

(high). (d) ~wmax vsgCV for different degrees of transcriptional heterogeneity (CVtr) and high BH. Results are obtained by averaging over 1000

independent TH realizations. In each case the standard error of the mean is equal to or smaller than the size of the markers.

https://doi.org/10.1371/journal.pcbi.1007474.g005
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in S4 and S5 Figs. (Notice that distant pairs carry a susceptibility that is two orders of magni-

tude smaller than the maximum but two orders of magnitude larger than the average.)

Weak sensitivity to changes in transcriptional heterogeneity would be expected if crosstalk

interactions were functionally significant. Remarkably, this appears to be the case across a

broad range of degrees of TH, both for short-range (mediated by a single miRNA species) and

long-range (resulting from extended miRNA-mediated chains) crosstalk interactions.

Node degrees are the key topological determinants of the crosstalk scenario

in the CLASH interactome

To appraise the role of the specific wiring encoded by the CLASH data in determining the sce-

nario described so far, we compared our results against a null model obtained by randomly re-

wiring the CLASH interactome. Specifically, we re-assigned each link to a randomly chosen

miRNA-RNA pair, thereby preserving only the overall numbers of links and nodes while alter-

ing all other topological features like node degrees, degree-degree correlations, etc (see Meth-

ods). Each independent re-wiring process leads to a different final network. These randomized

versions diverge from the original miRNA-RNA network in two basic aspects. In first place,

they are slightly more compact, as evidenced by the distribution of the shortest miRNA-medi-

ated paths between any two RNAs shown in Fig 7a. In addition, the randomization alters the

distribution of node degrees by effectively eliminating the most highly connected RNA and

miRNA species that are found in the CLASH data (see Fig 7b and 7c). Results obtained for key

crosstalk descriptors in the CLASH and randomized networks (averaged over many realiza-

tions of the randomization protocol) are illustrated in Fig 7d–7g.

Randomized networks display a much larger (about two-fold) mean susceptibility for cross-

talk than the CLASH interactome, possibly due to the fact that miRNA targets are generically

closer in the randomized versions. However, the maximum achievable crosstalk strength �wmax

Fig 6. Global robustness of crosstalk patterns from the CLASH interactome with increasing degrees of transcriptional heterogeneity. For each

susceptibility sextile, the marking above the arrow reports the fraction of crosstalk interactions that are preserved upon increasing the degree of TH.

The last column reports the fraction of interactions that are conserved passing from the lowest to the highest degree of TH. Results are obtained by

averaging over 100 independent TH realizations, assuming high BH and mean miRNA transcription rate �b ¼ 30 (deep in the susceptible regime).

Different intermediate values of �b return qualitatively identical scenarios.

https://doi.org/10.1371/journal.pcbi.1007474.g006
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is about 4 times smaller in the random networks compared to CLASH. Moreover, the suscepti-

bility profile is more concentrated in the randomized network than it is for the CLASH net-

work, reflecting a significantly narrower susceptible region (see S6 Fig). Naturally selected

miRNA-RNA networks therefore appear to foster the emergence of stronger crosstalk links. In

addition, the Pearson coefficient �r quantifying the linear correlation between susceptibilities

and local interaction parameters attains a much larger value in the randomized network with

respect to the CLASH interactome throughout most of the susceptible region (see Fig 6f).

miRNA-mediated crosstalk in random networks is therefore significantly more local, and

thereby easily predictable e.g. by miRNA-RNA affinities, than it is in a network shaped by nat-

ural selection. Finally, expression profiles generated in the randomized network are slightly

more stable than those found in the CLASH interactome (as quantified by the coefficient of

variation, see Fig 6f). This feature is however more marked at higher miRNA expression levels,

where RNA crosstalk is generically weaker. The basic traits of the RNA crosstalk emerging in

randomized versions of the CLASH data are hence substantially different from those charac-

terizing the interactome. S1 Text, Section 3 and S7 Fig report the behaviour of the asymmetry

and selectivity indices in randomized networks. At odds with the results obtained for the inter-

actome (for which the asymmetry is weakly dependent on parameter heterogeneity), crosstalk

in randomized networks becomes drastically more asymmetric and selective with increasing

degrees of TH, although the number of interaction partners is generically higher in the ran-

domized topology than it is in the interactome. In other terms, such features appear to be less

robust to parameter heterogeneity in random structures than they are in naturally selected

networks.

Fig 7. Comparison between RNA crosstalk in the CLASH interactome and its randomized counterparts. (a) Frequency of shortest miRNA-

mediated paths between RNA species. The length corresponds to the minimum number of miRNA species that can mediate a crosstalk interaction

between two RNA species. (b, c) Distributions of node degrees for RNAs (top) and miRNAs (bottom). (d, e) Mean and maximum susceptibilities as a

function of �b. (f, g) Pearson coefficient �r quantifying crosstalk locality and coefficient of variation of the levels of free RNAs as functions of �b. In panels

d through g, TH is fixed at CVtr = 0.4 and averages performed over 1000 independent realizations of TH under high BH. In each case, the standard

error of the mean is equal to or smaller than the size of the markers.

https://doi.org/10.1371/journal.pcbi.1007474.g007
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Note that, by applying a more conservative protocol that reshuffles miRNA-RNA links

while preserving node degrees, one retrieves a crosstalk scenario that is essentially identical to

that found for the original CLASH interactome (see S1 Text, Section 4). This indicates that

degree sequences (i.e. the topology of miRNA-RNA interactions encoded by the different

types of couplings), as opposed to e.g. degree-degree correlations or other higher-order topo-

logical features, are the key geometric controllers of RNA crosstalk patterns. Enhanced cross-

talk and non-locality therefore appear to be encoded by selection within the structure of the

miRNA-RNA network interaction.

Canonical and non-canonical binding sites control different aspects of

RNA crosstalk

A key question at this point is whether the observed crosstalk scenario is mainly due to the

canonical (stronger) k-mer pairings or, rather, if non-canonical (weaker) binding sites contrib-

ute to its establishment. A breakdown of the topology of the subnetworks induced by the dif-

ferent classes of interactions in the CLASH data shows significant similarities (see S8 Fig).

Based on topology alone, then, appraising the role of non-canonical interactions is not simple.

To clarify this point, one can repeat the above analysis by successively adding each type of

pairings shown in Fig 1c to the subnetwork induced by k-mer interactions in the CLASH data.

After evaluating susceptibilities in each case, one sees (see Fig 8) that the crosstalk scenario

underlied by the k-mer layer is qualitatively similar to that retrieved for the complete CLASH

interactome. In particular, the k-mer network alone expectedly suffices to explain the maxi-

mum achievable crosstalk with quantitative accuracy. However, k-mer interactions by them-

selves would yield stronger mean susceptibility, slightly more local crosstalk patterns and

significantly larger variability of output profiles compared to the full network. Perhaps surpris-

ingly, each of these aspects therefore appear to be quantitatively modulated to some degree by

the weaker non-canonical interactions.

To further validate this picture, we have analyzed the RNA crosstalk scenario in the cancer-

specific interactomes reconstructed in [37]. These networks comprise canonical pairings only

and their basic topological characteristics are noticeably distinct from those found in CLASH

(see S9 Fig). Results are summarized in S10 Fig. The low-�b behaviour starkly contrasts with

that found in the CLASH reconstruction, in that crosstalk carries a stronger local component.

In addition, maximal susceptibilities are roughly four times weaker in these networks. As a

consequence, crosstalk is generically attenuated compared to CLASH and the potential to pro-

cess (amplify) transcriptional heterogeneities is limited. Output profiles are consequently

more stable against transcriptional variability across the whole range of levels of miRNA

expression. These differences aside, the emergent crosstalk pattern robustly shows enhanced

maximal intensity and non-locality with respect to their randomized counterpart, in qualita-

tive agreement with the emergent crosstalk picture derived for the CLASH interactome.

Discussion

Methodological choices

The system-level crosstalk scenarios studied here were derived under a few key methodological

choices. First, we focused on the steady states of the mass action kinetics of miRNA-RNA

interactions, Eq (2). While reasonable for timescales of the order of 1/d and 1/δ (and compati-

ble with those analyzed in the experimental literature), this choice excludes from our analysis

the rich phenomenology observed during transients [28], when crosstalk can be amplified over

timescales determined by the details of the interaction kinetics. Likewise, we can’t account
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directly for intrinsically dynamic regulatory mechanism like the dependence of miRNA decay

rates on the round of recycling observed in [42]. Second, we opted to set a few parameters to

values compatible with experimental evidence (see Table 1) while treating miRNA and RNA

transcription rates as independent, identically distributed quenched random variables with

prescribed probability distributions. All our results were then obtained by averaging over

many realizations of such parameters. Such an approach highlights features of the emerging

crosstalk patterns that may be expected to be independent of the specific choice of transcrip-

tion rates. On the flip side, we are unable to characterize crosstalk for specific, possibly more

realistic choices of transcription rates. Finally, we used the mean miRNA transcription rate as

the only control parameter. While we explored a very broad range of values thereof, the physi-

ologically relevant regime is likely to lie at intermediate miRNA transcription intensities,

where RNA levels are more sensitive to changes in miRNA levels.

By assuming constant mean transcription rates we are effectively discarding the possibility

that different RNAs or miRNAs are transcribed at very different rates (at least at low enough

values of CVtr). Significant inhomogeneities in the average biosynthesis rates of individual

molecular species may affect our results. Yet, the highly interconnected structure of miR-

NA-RNA networks and the hierarchical organization of miRNA-RNA binding affinities [38]

Fig 8. Crosstalk features in k-mer-based CLASH subnetworks and in their randomized counterparts. (a, b) Mean and maximum susceptibilities as

functions of �b. (c) Pearson coefficient �r quantifying crosstalk locality. (d) Coefficient of Variation of the levels of free RNAs as a function of �b. The

degree of TH is fixed at CVtr = 0.4 (with averages performed over 1000 independent realizations of TH) and high BH is assumed. In each case, the

standard error of the mean is equal to or smaller than the size of the markers. The term ‘CLASH-noseed’ indicates the full CLASH interactome except

for ‘noseed’ type of interactions.

https://doi.org/10.1371/journal.pcbi.1007474.g008
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suggest that RNA crosstalk could be more influenced by global miRNA availability than by the

specific structure of the miRNA population, at least in standard physiological conditions (i.e.

in absence of strong miRNA induction). This is ultimately the scenario we probe in our study.

Likewise, we are ignoring the possibility that heterogeneity parameters are correlated. As men-

tioned before, correlations between transcription rates would alter the picture regarding the

processing of fluctuations [18]. Likewise, correlations between topological and transcriptional

parameters, like those observed in [49], would the effects of heterogeneity, thereby significantly

affecting crosstalk patterns.

To test the degree to which selection-shaped features of the miRNA interactome influence

the emergent crosstalk pattern, we then studied how effective interactions are modulated by

the structure of miRNA-RNA binding strengths and by the specific wiring encoded in data. In

the former case, we were interested in evaluating the relevance for crosstalk of non-canonical

binding sites, whose repressive efficiency is likely very limited [46]. In the latter, we aimed

instead at understanding (i) whether crosstalk in naturally selected miRNA-RNA networks is

qualitatively different from that arising in random networks and, if so, (ii) which topological

features of real networks underlie the observed disparities.

Outlook

In broad terms, our analysis shows that RNA crosstalk in an extended network is modulated

by miRNA availability both in terms of its basal level measured by the mean intensity and in

terms of its maximal achievable strength. The typical crosstalk interaction is relatively weak. In

specific, it is roughly four orders of magnitude smaller than the mean self-susceptibility, i.e.

the mean change in the level of free transcript induced by a variation of its own transcription

rate. Still, a multitude of strong crosstalk interactions arise, whose intensity is comparable to

that of self-interactions. This in turn generates highly selective and directional crosstalk pat-

terns. Notably, while co-regulated RNAs typically bear the strongest crosstalk links, non-co-

regulated, or distant, RNAs can still crosstalk at significant intensities (roughly two orders of

magnitude above the basal level). In such conditions, the typical RNA-to-RNA distance, in

terms of number of links of the miRNA-mRNA interaction networks, above which one species

can be considered to be insensitive to perturbations carried out on another species becomes

comparable to the diameter of the network. A perturbation in the transcription level of one

RNA can then be broadcast (via a chain of miRNA-mediated effective interactions) to distant

RNA nodes, potentially propagating over the entire network. Such a feature is intrinsically due

to competition and renders local kinetic parameters ineffective priors to predict crosstalk

interactions. miRNAs therefore appear to manage a system-level regulatory layer where they

operate collectively to mediate a complex, heterogeneous and robust network of RNA cross-

regulation. More work is however required to fully unravel its functional capabilities, especially

concerning the buffering of fluctuations and gene expression noise.

The scenario we describe is qualitatively preserved if crosstalk is assumed to be carried by

canonical interactions alone. In particular, the latter are highly effective modulators of cross-

talk intensity. Non-canonical binding sites however, while substantially ineffective repression-

wise, can enhance non-locality thereby extending the crosstalk range. Topological features of

the naturally selected interactome were also found to bear a significant effect on crosstalk. Spe-

cifically, they lead to a broader susceptible region, higher maximal susceptibility, and more

pronounced non-local effects than their randomized counterparts. In this respect, selection

appears to have favoured the emergence of such features at system level.

It is important to stress that the crosstalk interactions on which we focus are quantified by

susceptibilities, Eq (5). This implies that (i) they are driven by competition effects exclusively,
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and (ii) they are generated by small perturbations of RNA levels (as opposed e.g. to the models

of [37, 38]). Our scenario might therefore be close to a standard, homeostatic physiology in

which transcription rates only undergo small variations. In this respect, the emergence of sig-

nificant non-local effects is a surprising consequence of networking. Large perturbations, like

the strong induction of a particular miRNA species, should be expected to amplify the cross-

talk picture discussed here. However, responses to perturbations may become non-linear

when the applied stimulus exceeds a threshold [28]. In such conditions, susceptibilities or stan-

dard correlation coefficients are likely inappropriate to describe crosstalk. More theoretical

work on miRNA-RNA networks is required to fully sort out this case.

Unfortunately, probing the crosstalk scenario we describe in experiments could be chal-

lenging essentially due to weakness and non-locality. To validate the picture we describe, both

in terms of individual interactions and of global features, one may however resort to transcrip-

tomic data. Recent work has indeed identified a specific group of correlation functions that,

under certain conditions, yield excellent approximations for the real susceptibilities [44]. Eval-

uating such quantities on RNA readouts would then provide a direct, data-driven snapshot of

RNA crosstalk.

Conclusion

Besides their important role as negative controllers of gene expressiom, miRNAs mediate the

establishment of extended networks of RNA cross-regulation. Several features of these net-

works appear to be hard-wired in the topology of the underlying miRNA-RNA interactome,

while others are modulated by transcriptional and/or binding heterogeneities. Whereas the

typical crosstalk interaction generated by small changes in RNA availability is weak, non-local

effects are significant. Crosstalk-based regulation therefore appears essentially as a system-

wide phenomenon, enhanced by variability in kinetic parameters. In physiological conditions,

such a regulatory layer can potentially contribute to a variety of functions, such as the process-

ing of transcriptional heterogeneities and the coordination of large-scale rearrangements of

RNA levels, similar to the responses observed in [38]. The broader picture we have derived

might however apply more generally to networks of molecular species competing for a com-

mon resource.

Materials and methods

miRNA interactomes

For the CLASH interactome, after parsing the original bipartite network derived in [45] to

remove degeneracies and disjoint nodes, we found N = 6, 943 RNA species (implying about

4.8 × 107 potential crosstalk interactions) and M = 383 miRNA species connected by 17,411

edges carrying different binding strengths. The same pipeline was applied to the tumor-type

specific miRNA-RNA networks obtained in [37] and based on the Cupid protocol for predict-

ing microRNA-target interactions [50], which accounts for canonical pairings exclusively. The

resulting miRNA-RNA networks are considerably larger than the CLASH interactome, as evi-

denced by the degree distributions shown in S9 Fig.

Computational analysis

With parameters set as described, Eq (6) was solved numerically for each of the networks

cosidered using Python scripts based on NumPy [51] and SciPy [52]. The code is available

from https://github.com/matmi8/RNAnet. In presence of TH, results were averaged over mul-

tiple independent realizations of the vectors b ¼ fbig
N
i¼1

and β ¼ fbag
M
a¼1

of RNA and miRNA
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transcription rates (respectively) for each value of CVtr. The number of realizations was chosen

in each case to ensure a stable estimation of different quantities. Details are given in figure cap-

tions. All other parameters, both kinetic and topologic, were kept fixed. Likewise, in the case of

topological heterogeneity, results were averaged over 100 networks obtained by independently

randomizing the original miRNA-RNA network while keeping all other parameters, both tran-

scriptional and kinetic, fixed. 100 independent randomizations of the interactome sufficed to

ensure stable averages in each condition.

Supporting information

S1 Text. Supporting text. Supplementary text.

(PDF)

S1 Fig. Representative susceptibility distributions. Distributions of susceptibilities between

different RNA pairs for single realizations of the CLASH interactome with different values of

the mean miRNA transcription rate �b and degrees transcriptional heterogeneity, and at fixed

(high) binding heterogeneity. Note that the maximum achievable self-susceptibilities are equal

to 1 (or to log10 χ = 0).

(TIFF)

S2 Fig. Quantitative features of RNA crosstalk in the CLASH interactome derived by solv-

ing Eq (6) (Main Text): Self-susceptibilities. (a) Mean self-susceptibility (averaged over RNA

species and over 100 independent realizations of transcriptional heterogeneity) as a function

of the mean miRNA transcription rate �b. (b) Mean maximal self-susceptibility (computed

over all RNA species and averaged over 100 independent realizations of TH) as a function of

the mean miRNA transcription rate �b. Results are shown for the 3 BH scenarios considered.

Parameter values are reported in Table 1 (Main Text). The yellow shaded area qualitatively

marks the region where the mean susceptibility is significantly different from zero, which coin-

cides with the susceptible regime. In each case, the standard error of the mean is equal to or

smaller than the size of the markers. The self-susceptibility is maximal when miRNA levels are

low, in which case the availability of free RNA molecules increases roughly linearly with the

transcription rate. As �b increases, miRNA repression gets stronger and self-susceptibilities

decrease until, at large enough �b, RNAs are fully repressed and therefore insensitive to small

changes in their transcription rates. (c) Comparison between maximum self-susceptibility

(averaged over TH realizations), mean self-susceptibility (averaged over TH realizations) and

wmax for different degrees of TH in the high BH scenario. The intensity of crosstalk between dif-

ferent RNAs, measured by the latter quantity, is indeed of the same order of magnitude as self-

susceptibilities.

(TIFF)

S3 Fig. Stability of crosstalk interactions among distant RNAs in the CLASH network

upon increasing degrees of transcriptional heterogeneity. For each susceptibility sextile, we

report the fraction of crosstalk interactions between distant RNAs (i.e. RNAs that do not share

any miRNA regulator) that are conserved upon increasing the degree of TH. The last column

reports the fraction of interactions that are conserved passing from the lowest to the highest

degree of TH. Results obtained by averaging over 100 independent realizations of transcrip-

tional heterogeneity in each case, assuming high binding heterogeneity and mean miRNA

transcription rate �b ¼ 30. Different intermediate values of �b return qualitatively identical sce-

narios.

(TIFF)
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S4 Fig. 15 strongest crosstalking RNA pairs in different scenarios of transcriptional het-

erogeneity for the CLASH interactome. Note that involved susceptibilities (given by color

code at the bottom) are of the order of the self-susceptibility. Results were obtained by averag-

ing over 100 independent realizations of TH for each value of CVtr, assuming high BH and

mean miRNA transcription rate �b ¼ 30.

(TIFF)

S5 Fig. 15 strongest crosstalking RNA pairs not sharing miRNA regulators in different sce-

narios of transcriptional heterogeneity for the CLASH interactome. A significant degree of

conservation is seen at low and high CVtr. Note that involved susceptibilities (given by color

code at the bottom) are roughly 2 orders of magnitude larger than the mean susceptibility (see

Main Text, Fig 2). Results were obtained by averaging over 100 independent realizations of

TH for each value of CVtr, assuming high BH and mean miRNA transcription rate �b ¼ 30.

(TIFF)

S6 Fig. Relative overall molecular abundances in CLASH (a) and degree-preserving ran-

domized networks (b). Note that the susceptible regime in the latter is narrower compared to

the original CLASH network.

(TIFF)

S7 Fig. Crosstalk selectivity in randomized CLASH networks. (a) Inverse of incoming and

(b) outgoing selectivities as functions of �b for varying degrees of TH (different curves in the

same panel) and BH (reported by the 3-state gauge in different panels). Curves are averaged

over 100 independent realizations of transcription rate profiles and over 100 independent real-

izations of the randomization process.

(TIFF)

S8 Fig. Degree distributions of CLASH subnetworks induced by individual classes of miR-

NA-RNA interactions. Degree distributions for RNA nodes (left) and miRNA nodes (right)

are displayed for the entire network (top panels) and for the four subnetworks defined by the

interaction classes considered in this work (see Main Text, Fig 1c).

(TIFF)

S9 Fig. Degree distributions of the tumor specific networks reconstructed in [37]. Degree

distributions for RNA nodes (left) and miRNA nodes (right) representing the miRNA-RNA

networks for prostate adenocarcinoma (PRAD), ovarian adenocarcinoma (OV), breast adeno-

carcinoma (BRCA) and glioblastoma (GBM) cells. Data from [37]. Notice that the basic char-

acteristics of degree distributions appear to be conserved across different networks. This is

possibly in line with the fact that such networks present a significant context-independent

component. See [37] for a more detailed analysis.

(TIFF)

S10 Fig. Global RNA crosstalk descriptors derived for the tumor specific networks recon-

structed in [37] as a function of the mean miRNA transcription rate �b. Different columns

represent results obtained for prostate adenocarcinoma (PRAD), ovarian adenocarcinoma

(OV), breast adenocarcinoma (BRCA) and glioblastoma (GMB) cells. (a) Mean susceptibil-

ity. (b) Maximal susceptibility. (c) Pearson correlation coefficient between susceptibilities

and local kinetic parameters. (d) Coefficient of variation of RNA levels. TH was set at CVtr =

0.4 and the lowest degree of binding heterogeneity was assumed. Averages were performed

over 100 realizations of TH in all cases except for panels (d), where 1000 realizations were
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taken. Results for other cases are qualitatively similar.

(TIFF)

S1 Table. Summary of the CLASH subnetwork compositions. Each subnetwork is obtained

by selecting all links associated to the same kind of interaction occurring between the miR-

NA-RNA couples. If the subnetwork thus obtained is disjoint, the largest connected compo-

nent was selected. The term ‘CLASH-noseed’ indicates the full CLASH network except for

noseed type of interactions.

(PDF)
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