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ABSTRACT

We solve MacArthur’s resource-competition model with random species-resource couplings in the “thermodynamic” limit of infinitely many
species and resources using dynamical path integrals à la De Domincis. We analyze how the steady state picture changes upon modifying
several parameters, including the degree of heterogeneity of metabolic strategies (encoding the preferences of species) and of maximal resource
levels (carrying capacities), and discuss its stability. Ultimately, the scenario obtained by other approaches is recovered by analyzing an
effective one-species-one-resource ecosystem that is fully equivalent to the original multi-species one. The technique used here can be applied
for the analysis of other model ecosystems related to the version of MacArthur’s model considered here.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0046972

Mathematical models of ecosystems have repeatedly proved use-
ful to understand how species survival, global stability, and
responses to perturbations are controlled by the parameters gov-
erning the interactions between species and resources. Following
Wigner’s recipe, large ecosystems with extended, complicated,
and unknown interaction networks can be usefully modeled
by assuming quenched random species-resources couplings. In
such cases, the statistical mechanics of disordered systems pro-
vides tools to calculate macroscopic properties as averages over
network realizations. Here, we apply one such method, based
on dynamical generating functionals, to MacArthur’s resource-
competition model, a classic model of an ecosystem in which
different species compete for a pool of resources.

I. INTRODUCTION

Despite the complicated structure and dynamics of under-
lying interactions, microbial ecosystems generate robust statisti-
cal outcomes that can now be experimentally probed at genomic
resolution.1–4 To understand the origins and richness of these

features and to derive testable predictions, a variety of mathematical
models have been considered over time, ranging from coarse-
grained ones based on simple differential equations to metabolically
realistic schemes capable of accounting for time- and space-
dependencies.5–9 Statistical mechanics approaches are particularly
well suited to analyze large instances of such models and derive
macroscopic laws, especially when the complex web of intraspe-
cific and trophic interactions can be modeled by quenched random
variables.

Among the schemes that have attracted attention, MacArthur’s
resource-competition model plays a central role as a theoretical
reference frame in view of its flexibility, phenomenological rich-
ness, and the possibility of studying highly diverse communities
with quantitative detail.10,11 The emergent statistical properties of
several versions of MacArthur’s model have recently been stud-
ied by approaches rooted in the theory of disordered systems,
including replica theory and the cavity method (see, e.g., Refs. 12–
21), to address features as diverse as the role of heterogeneity of
species and resources for the stability of large ecosystems,12,13 the
emergence of robust population structures,15,20 the impact of
different kinds of resource supply dynamics,19 or the success of
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different eco-evolutionary strategies of invasion in small vs large
ecosystems.18

In this work, we contribute to this line of studies by solving
MacArthur’s model using dynamical mean field theory (DMFT).22,23

The key advantage of this method over replicas lies in the fact that
it does not rely on specific properties of interactions (e.g., symme-
try) or on the existence of a Lyapunov function of the dynamics. On
the other hand, dynamical path integrals allow to treat such cases
in a more straightforward manner compared to the cavity method.
This makes DMFT more broadly applicable, at least in principle. In
addition, DMFT reduces the dynamics of the multi-species, multi-
resources system to a pair of processes involving one effective species
and one effective resource, whose structure renders explicit the role
of parameters that only impact the original dynamics implicitly.

Besides retrieving the picture derived by other means, more
precisely by the cavity method,17 we will analyze the stability proper-
ties, the role of resource heterogeneity for the survival and numeros-
ity of species, and how a species’ survival probability is modulated by
its prior fitness (i.e., by the fitness it would face in that environment
in absence of other competing species).

II. MACARTHUR’S MODEL

For this paper, MacArthur’s model is defined as, e.g., in Ref. 17.
We consider a system in which N species interact through M shared
resources. If ni denotes the population size of species i (i = 1, . . . , N)
and rµ denotes the level of resource µ (µ = 1, . . . , M), its time evo-
lution is described by the coupled equations for their respective
growth rates gi and gµ (ẋ = dx

dt
),

gi ≡
ṅi

ni

=
∑

µ

c
µ
i rµ − mi, (1)

gµ ≡
ṙµ

rµ
= aµ(Kµ − rµ)−

∑

j

c
µ

j nj, (2)

where c
µ

i measures the contribution of resource µ to the growth rate
(fitness) of species i, mi is a maintenance level for species i (growth
only occurs if the benefit from resources exceeds this threshold),
aµ is the intrinsic growth rate of resource µ and Kµ is the carry-
ing capacity of resource µ. In short, in such a setting, each resource
is externally supplied so that in the absence of species, it undergoes
logistic growth with rate aµ and saturation level Kµ. When species
are present, they predate on resources with fitness benefits described
by the coefficients c

µ
i .

Some basic properties of MacArthur’s model are easily derived
from (1) and (2) under the simplifying assumption that resources
equilibrate much faster than populations. Indeed, in this case, one
can replace rµ in (1) with its steady state value obtained by imposing
gµ = 0. Equation (1) can then be re-cast as

gi = −
∂L

∂ni

, (3)

with

L =
1

2

∑

µ

′ 1

aµ


∑

j

njc
µ
j − Kµaµ




2

+
∑

i

mini, (4)

where the prime indicates that the sum runs over resources whose
level is not zero (“non-depleted” for short) at stationarity. As
L̇ = −

∑
i (ṅi)

2/ni ≤ 0, L is a (convex) Lyapunov function of the
dynamics and its unique minimum describes the steady state pop-
ulation sizes (and in turn resource levels). At stationarity, in partic-
ular, the population sizes of surviving species obey the conditions

∑

j

Jijnj + hi = 0, (5)

where Jij =
∑′

µ c
µ
i c
µ
j /a

µ and hi = mi −
∑′

µ c
µ
i Kµ. Because the rank

of the matrix with elements Jij is at most equal to the number Ms of
non-depleted resources, system (5) contains at most Ms independent
equations. The number Ns of surviving species [i.e., of variables in
(5)], therefore, satisfies Ns ≤ Ms. This implies that the fractions φs

and ψs of surviving species and resources, respectively, are related
by

φs ≤
ψs

ν
, ν =

N

M
. (6)

We shall see that this bound provides a quantitatively accurate
description of the relationship between φs andψs even in the general
case in which the timescales of (1) and (2) are not widely separate.

To model complex interdependencies of species on resources in
extended ecosystems, it is normally assumed that N and M are large
and that c

µ
i s are quenched iid random variables. More specifically,

the statistical mechanics approach studies the statistical properties
emerging when N, M → ∞ at fixed ν [see (6)] and c

µ
i s are quenched

iid random variables with mean c/N and variance σ 2
c /N. σ 2

c is an
especially important parameter here, as it provides a proxy for the
metabolic heterogeneity of species. In the linear approximation and
within the same assumptions leading to (6), setting aµ = 1 for sim-
plicity, one easily sees that a perturbation δni of a steady state
population n̄i > 0 for the MacArthur model evolves as

˙δni = −ni

∑

j

Kijδnj, Kij =
∑

µ

′
c
µ

i c
µ

j . (7)

Stability for the above system is governed by the smallest eigenvalue
of the random matrix {Kij}, which can be calculated using results
from Ref. 24. One finds

λmin = σc

(√
ψs

ν
−
√
φs

)
. (8)

This formula can provide qualitative information about the linear
stability of the ecosystem’s dynamics. In agreement with (6), λmin

vanishes when ν = ψs/φs. Moreover, as both φs and ψs are bound
to change with σc, (8) implies the possibility of a non-trivial depen-
dence of λmin on species heterogeneity. This issue will be explored
more thoroughly in what follows.

Besides that encoded in the coefficients c
µ
i , other sources of

heterogeneity can be accounted for via randomness in other param-
eters. For instance, to model diverse availability of resources, Kµs
can be taken to be quenched iid random variables with mean K and
variance σ 2

K . An important role in our results will be played by the
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“prior fitness” of species i, defined as

fi,0 ≡
M∑

µ=1

c
µ
i Kµ − mi, (9)

in terms of which (1) takes the form

gi = fi,0 −
∑

µ

c
µ

i (K
µ − rµ). (10)

This clarifies how the participation in resource competition affects
the a priori viability of species i. fi,0 measures the fitness that a species
would have if it was introduced in the environment at maximal
resource levels and in the absence of other species. It is reasonable to
expect that fi,0 correlates positively with the survival probability also
in a complex ecosystem with N species. This was shown numerically
in Ref. 17. We shall further explore this issue here by deriving an
approximate quantitative relationship linking these quantities.

III. DYNAMICAL GENERATING FUNCTION AND

EFFECTIVE PROCESSES

The path-integral approach to the system formed by (1) and (2)
is based on the computation of the dynamical generating function

Z[ψ ,φ] ≡
〈
ei
∑

i

∫
dtψi(t)ni(t)+i

∑
µ

∫
dtφµ(t)rµ(t)

〉
paths

, (11)

where the quantities ψ = {ψi} and φ = {φµ} represent auxiliary
fields associated, respectively, to the variables n = {ni} and r = {rµ},
the over-bar denotes an average over quenched disorder (most
notably the coefficients c

µ
i ), while the brackets denote an average

over the realizations (“paths”) of the dynamics of the system at fixed
disorder, which includes possibly random initial conditions. The key
advantage of Z lies in the fact that the moments of the variables ni

and rµ can be written in terms of derivatives of Z over the auxil-
iary fields. For instance, the mean values of ni and rµ (overpaths and
disorder) are given by

〈ni(t)〉paths = −i lim
ψ→0
φ→0

∂Z

∂ψi(t)
, (12)

〈rµ(t)〉paths = −i lim
ψ→0
φ→0

∂Z

∂φµ(t)
. (13)

Notice that these expressions are valid at any time t. As shown in
the Appendix, the explicit calculation of the average over disorder
leads to the identification of a set of macroscopic order parame-
ters whose averages provide a full characterization of the N-species,
M-resources system. These parameters include the mean population
sizes and resource levels, i.e.,

ρn(t) =
1

N

N∑

i=1

ni(t), (14)

ρr(t) =
1

N

M∑

µ=1

rµ(t), (15)

and the two-time correlation functions

Qn(t, t
′) =

1

N

N∑

i=1

ni(t)ni(t
′), (16)

Qr(t, t
′) =

1

N

M∑

µ=1

rµ(t)rµ(t′). (17)

In view of the connection between Z and moments of ni and rµ, it is
clear that Z allows for a full statistical description of the dynamics.

Ultimately, Z can be evaluated in the limit N, M → ∞ (with
fixed ν = N/M) via a saddle-point method following which the full
dynamics is re-cast in terms of a pair of effective stochastic pro-
cesses, one for an effective species with population size n(t), the
other for an effective resource with level r(t) (see the Appendix for
the derivation). Such processes read

ṅ(t)

n(t)
= cρr(t)− m −

σ 2
c

ν

∫
dt′ Gr(t, t

′)n(t′)+ θ(t)+ ξn(t), (18)

ṙ(t)

r(t)
= a(K − r(t))− cρn(t)− σ 2

c

∫
dt′ Gn(t, t

′)r(t′)+ η(t)+ ξr(t),

(19)

where m is the maintenance level of the effective species, a and K
denote, respectively, the rate of growth and the carrying capacity of
the effective resource, ξn and ξr are zero-average Gaussian random
variables with

〈
ξn(t)ξn(t

′)
〉
= σ 2

c Qr(t, t
′), (20)

〈
ξr(t)ξr(t

′)
〉
= σ 2

c Qn(t, t
′)+ a2σ 2

K , (21)

θ(t) and η(t) are auxiliary probing fields, and Gr and Gn are interac-
tion kernels describing the response functions, i.e.,

Gn(t, t
′) =

〈
∂n(t)

∂θ(t′)

〉

?

, (22)

Gr(t, t
′) =

〈
∂r(t)

∂η(t′)

〉

?

, (23)

with 〈·〉? denoting an average over realizations of (18) and (19).
The above equations clarify how disorder affects the dynamics

in the limit of large ecosystems. Heterogeneity in metabolic strate-
gies (i.e., σ 2

c > 0) translates into a term that couples species and
resources along the entire dynamical trajectory. Hence, quenched
random c

µ
i s generate long-term memory in the dynamics despite the

fact that the model defined by (1) and (2) is Markovian. For σ 2
K = 0

and large enough σ 2
c , moreover, the memory term dominates over

the noise term, as the strength of the latter is proportional to σc. On
the other hand, heterogeneity in carrying capacities (i.e., σ 2

K) only
affects the strength of the noise term in (19). Therefore, when the
resource dynamics is dominated by noise in Ks, we should expect
to see that resource levels change in an effectively random way. As
we shall see below in detail, such a variability bears a non-trivial
impact on the abundance of species at steady state. Notice that, as σc

increases, negative values of c
µ
i , corresponding to resources having a
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detrimental effect on species i (e.g., toxic compounds), will become
more frequent. Likewise, as σK increases some resources will have a
“negative carrying capacity,” corresponding in effect to a sink that
drains those resources from the environment.

It is instructive to study the behavior of (18) at small times. Not-
ing that Gr(0, 0) = 0 by causality and that Qr(0, 0) = d (constant),
one sees that the quantity gn(0) = ṅ(0)/n(0) is a Gaussian variable
with mean cρr(0)− m and variance dσ 2

c . Moreover, by virtue of (15),
one has ρr(0) = r0/ν, where r0 denotes the mean of r(0) over the
distribution of initial conditions of (19). Therefore, on average, the
effective species initially increases its population if

r0 >
mν

c
. (24)

As might have been expected, the initial growth rate is more
likely positive in less competitive ecosystems, for species with
less demanding maintenance requirements and/or when metabolic
strategies are more efficient. More precisely, the probability that
gn(0) > 0 is given by π0 ≡ Prob

{
ξn(0) > m − cr0

ν

}
, i.e.,

π0 =
1

2
erfc

νm − cr0

νσc

√
2d

. (25)

Hence, in highly competitive ecosystems (ν � 1), π0 ' 1
2

erfc m

σc
√

2d
,

implying that a stronger metabolic heterogeneity yields a higher
initial fitness.

IV. STATIONARY STATE

In the steady state defined by ṅ = ṙ = 0, we have n(t) → n and
r(t) → r while two-time quantities are bound to be time-translation
invariant, e.g.,

lim
t→∞

Qn(t + τ , τ) = Qn(τ ), (26)

with finite means, average correlations, and integrated responses, i.e.
(x = n, r),

lim
τ→∞

1

τ

∫ τ

0

dt ρx(t) = ρ̄x, (27)

lim
τ→∞

1

τ

∫ τ

0

dt Qx(t) = qx, (28)

lim
τ→∞

∫ τ

0

dt Gx(t) = χx. (29)

Using these properties and definitions, one shows, for instance, that

lim
τ→∞

1

τ

∫ τ

0

dt

∫ t

0

dt′ Gr(t − t′)n(t′)

=
∫ ∞

0

ds Gr(s) lim
τ→∞

1

τ

∫ τ

s

dt n(t − s)

=
∫ ∞

0

ds Gr(s) lim
τ→∞

1

τ

∫ τ−s

0

ds′ n(s′)

=
∫ ∞

0

ds Gr(s) lim
τ→∞

τ − s

τ

1

τ − s

∫ τ−s

0

ds′ n(s′)

= χrn. (30)

Hence, at stationarity, (18) and (19) are easily seen to imply

cρ̄r −
σ 2

c

ν
χrn + σc

√
qr z = m, (31)

r
(
a + σ 2

c χn

)
= aK − cρ̄n +

√
σ 2

c qn + a2σ 2
K z, (32)

with z a Gaussian random variable with zero mean and unit vari-
ance. (The probing fields θ and η can be set to zero, noting that
differentiating with respect to them is equivalent to differentiating
with respect to z, modulo constant factors.) The above equations
coincide with those obtained in Ref. 17 by the cavity method. Since
n, r ≥ 0, the steady state population size and resource level are given
by

n ≡ n(z) =
cρ̄r − m + σc

√
qrz

σ 2
c χr/ν

2(z − zn), (33)

r ≡ r(z) =
aK − cρ̄n +

√
σ 2

c qn + a2σ 2
K z

a + σ 2
c χn

2(z − zr), (34)

where2(x) is the step function while

zn ≡
m − cρ̄r

σc
√

qr

, (35)

zr ≡
cρ̄n − aK√
σ 2

c qn + a2σ 2
K

. (36)

Equations (33) and (34) finally allow to compute macroscopic
parameters from

ρ̄n ≡ 〈n〉? =
〈
n
〉
z
, (37)

ρ̄r ≡
1

ν
〈r〉? =

1

ν

〈
r
〉
z
, (38)

qn ≡
〈
n2
〉
?
=
〈
n2
〉
z
, (39)

qr ≡
1

ν

〈
r2
〉
?
=

1

ν

〈
r2
〉
z
, (40)

χn =
1

σc
√

qr

〈
∂n

∂z

〉

z

, (41)

χr =
1

σc
√

qn

〈
∂r

∂z

〉

z

. (42)

After some algebra, one ends up with the set of equations

ρn =
ν
√

qr

σcχr


 e− z2n

2

√
2π

−
zn

2
erfc

(
zn√

2

)
 , (43)

ρr =
√
σ 2

c qn + a2σ 2
K

ν(a + σ 2
c χn)


 e− z2r

2

√
2π

−
zr

2
erfc

(
zr√
2

)
 , (44)
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qn =
ν2qr

σ 2
c χ

2
r


1

2
(1 + z2

n) erfc

(
zn√

2

)
−

zne− z2n
2

√
2π


 , (45)

qr =
σ 2

c qn + a2σ 2
K

ν(a + σ 2
c χn)

2


1

2
(1 + z2

r ) erfc

(
zr√
2

)
−

zr e− z2r
2

√
2π


 , (46)

χn =
ν

2σ 2
c χr

erfc

(
zn√

2

)
, (47)

χr =
1

2(a + σ 2
c χn)

erfc

(
zr√
2

)
, (48)

which can be solved numerically for any choice of the parameters
ν, c, a, σc, and σK. In turn, one can obtain the fractions of surviving
species and non-depleted resources from

φs =
1

2
erfc

(
zn√

2

)
, (49)

ψs =
1

2
erfc

(
zr√
2

)
. (50)

The distributions of population sizes (p(n)) and resource lev-
els (p(r)) can instead be found by noting that n = n + vnz and
r = r + vrz, with

n =
cρ̄r − m

σ 2
c χr/ν

, vn =
ν
√

qr

σcχr

, (51)

r =
aK − cρ̄n

a + σ 2
c χn

, vr =
√
σ 2

c qn + a2σ 2
K

a + σ 2
c χn

. (52)

This implies that

p(n) = G(n, v2
n) 〈2(z − zn)〉z + δ(n) 〈θ(zn − z)〉z , (53)

p(r) = G(r, v2
r ) 〈2(z − zr)〉z + δ(r) 〈θ(zr − z)〉z , (54)

where G(x, y) denotes the normal distribution with mean x and
variance y (see Fig. 1; notice that abundance distributions quan-
titatively different from truncated Gaussians emerge when factors
that are absent in our model, like space and dispersal, are explicitly
accounted for; we refer the reader to Ref. 25 for a specific discus-
sion of some of these aspects). In the following, we shall explore
the solutions obtained with different choices for the various param-
eters. First, we shall set σK = 0 (i.e., Kµ = K for all µ) to focus on
the role of metabolic diversity. Next, we shall consider the case of
heterogeneous resources (σK > 0). In all cases, a = 1 and m = 1 for
simplicity.

V. RESULTS

A. Survival probability

Numerical solutions of the saddle-point equations can be
directly compared with results from computer simulations of (1)

FIG. 1. Representative example of the distribution p(n) of population sizes for
ν = 0.22, K = 5, σ 2

c = a = m = 1, and σ 2
K = 0. The solid line is the prediction

obtained from (53), the blue marker denoting the weight of the peak at n = 0 (i.e.,
the fraction of extinct species). Bars represent instead the histogram of the popu-
lation sizes of 103 species obtained by averaging the steady state populations of
100 independent realizations of MacArthur’s model (1) and (2).

and (2). Figures 2(a)–2(d) show how the fraction of surviving species
varies with ν = N/M for different choices of σ 2

c and K, with all
other parameters fixed. Expectedly, φs generically decreases as the
species-to-resources ratio ν increases and the ecosystem gets more
competitive. The bound to φs given in (6) is, however, more effi-
ciently saturated for larger values of ν, K, and σc. In other terms,
for any given maximal resource capacity, a higher metabolic diver-
sity allows for a more efficient packing of species into the ecosystem.
(The naïve bound φs = 1/ν, where the number of surviving species
equals that of resources, is also shown for comparison.)

Notice that metabolic diversity (σ 2
c ) appears to impact φs dif-

ferently at high and low ν, as a higher σc seems to confer higher
survival probability only in more competitive ecosystems. This can
also be seen in Fig. 3(a). In less competitive ecosystems (smaller ν),
the survival probability decreases as σc increases due to the stronger
impact of inefficient metabolic strategies (for any fixed c, larger val-
ues of σc imply that negative values of c

µ
i are sampled more and more

often). In other terms, the dynamics for small ν favors species that
can receive a (possibly small) fitness benefit from all resources (low
values of σ ) over ones that receive a (possibly large) fitness bene-
fit only from a subset of resources (higher σ ). In more competitive
systems (high ν), such a trend is reversed, indicating that the ability
to extract higher benefits from some resources provides a competi-
tive advantage despite the costs imposed by metabolic inefficiencies
(negative values of c

µ

i ).
Based on these results, one expects that φs will increase upon

increasing c at fixed σ 2
c at low ν, i.e., when metabolic strategies

become more efficient but more similar. This is indeed the case,
as shown in Fig. 3(b) (red markers). When, however, the increase
in c is accompanied by an increase of σc so that σc/c remains
fixed (implying that strategies become more diverse as they get
more efficient on average), one observes an increase of φs fol-
lowed by a decrease at larger c [Fig. 3(b), green markers]. In other
words, in less competitive scenarios and for any fixed relative
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FIG. 2. Fraction of surviving species φs (survival probability) as a function of ν for constant c = 1, a = 1,m = 1 and fixed K = 1 (panel a), K = 20 (b), σ 2
c = 10 (c), and

σ 2
c = 0.1 (d) and different values of σ 2

c or K as indicated. Markers are averages over the steady states of 100 independent realizations of Eqs. (1) and (2), continuous lines
correspond to theoretical predictions, while dashed lines represent the bounds (6) in each case. Black line is the naïve bound φs = 1/ν.

variability of metabolic strategies, there exists a value of the aver-
age efficiency that maximizes the survival probability. Increases in
efficiency at fixed σc/c, therefore, have opposite effects at low and
high c. In the latter regime (metabolic strategies very efficient on
average), the detrimental effect of larger diversity dominates the
behavior of φs. By contrast, when metabolic efficiency is small,
improvements in this specific quantity are the key determinants
of φs. In competitive ecosystems (large ν), instead, an increase in

FIG. 3. Fraction of surviving speciesφs for different values of ν as a function ofσ
2
c

with c = 1 (panel a) and as a function of c for different choices of σc (panel b).
In both panels, K = 5, a = 1, m = 1. Markers are averages over the steady
states of 100 independent realizations of Eqs. (1) and (2), while continuous lines
correspond to theoretical predictions.

efficiency yields a survival advantage at fixed diversity σc, so that
species can improve their survival probability by either increasing
diversity [Fig. 3(a)] or increasing efficiency at fixed σc [Fig. 3(b),
orange markers]. When σc/c is kept fixed, though, increased effi-
ciency does not substantially improve φs [Fig. 3(b), blue markers].

B. Population sizes

The more efficient species packing found at large ν however
comes at a cost for populations. Mean population sizes indeed
decrease as ν increases when packing is near optimal [Figs. 4(a)
and 4(b)]. This implies that, in such a regime, the introduction of
new species feeds back negatively on the typical species population
size. By contrast, in less competitive ecosystems (smaller ν), surviv-
ing species benefit from the introduction of new species, as their
mean population sizes increase with ν. Population sizes also gener-
ically increase with increased resource capacity [larger K, Fig. 4(a)],
while increased heterogeneity tends to reduce population sizes both
in the less competitive regime (low ν) and when competition is
stronger and survival probability is lowest [Fig. 4(b)]. This contrasts
with the fact that higher σc yields a positive impact (albeit weak)
on the survival probability in a crowded ecosystem. To summarize,
in large random instances of MacArthur’s model, population sizes
benefit from metabolic innovation (i.e., from the introduction of
new species) when competition is weaker, while they benefit from
the discovery of new resources (i.e., from a decrease in ν) when the
competition is strongest (larger ν).

FIG. 4. Mean population size ρn as a function of ν for different values of K and
σ 2
c = 10.0 (panel a) and different values of σ 2

c and K = 20 (panel b). In both fig-
ures, c = 1, a = 1, m = 1. Markers are averages over the steady states of 100
independent realizations of Eqs. (1) and (2), while continuous lines correspond to
theoretical predictions.
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C. Role of the prior fitness of species

The dynamical approach employed for (1) and (2) can be easily
applied to the system defined by (10) and (2). The effective process
now takes the form

ṅ

n
= f0 − cρr(t)−

σ 2
c

ν

∫
dt′Gr(t, t

′)n(t′)+ θ(t)+ ξn(t), (55)

ṙ

r
= a(K − r(t))− cρn(t)− σ 2

c

∫
dt′ Gn(t, t

′)
[
r(t′)− K

]

+ η(t)+ ξr(t), (56)

where f0 is a Gaussian random variable with mean cK
ν

− m and

variance
σ 2

c K2

ν
, while

〈
ξn(t)ξn(t

′)
〉
= σ 2

c Qr(t, t
′), (57)

〈
ξr(t)ξr(t

′)
〉
= σ 2

c Qr(t, t
′)+ σ 2

K . (58)

To distinguish results for this version of the model from those of
Secs. I–IV, we shall denote the steady state quantities by an extra
index ◦ (e.g., n◦ instead of n). One easily sees that the equivalent of
(33) and (34) is now

n◦(z) =
f0 − cρ̄◦

r +
√
σ 2

c q◦
r + σ 2

Kz

σ 2
c χ

◦
r /ν

2(z − z◦
n), (59)

r◦(z) =
K(a + σ 2

c χn)− cρn +
√
σ 2qn + σ 2

Kz

a + σ 2
c χn

2(z − z◦
r ), (60)

where

z◦
n =

cρ◦
r − f0

σc
√

q◦
r

, (61)

z◦
r =

cρ◦
n − K(a + σ 2

c χ
◦
n )√

σ 2
c q◦

n + σ 2
K

. (62)

In turn, saddle-point equations read

ρ̄◦
n =

〈
n◦(z)

〉
z
, (63)

ρ̄◦
r =

1

ν

〈
K − r◦(z)

〉
z
, (64)

q◦
n =

〈
[n◦(z)]2

〉
z
, (65)

q◦
r =

1

ν

〈
(K − [r◦(z)])2

〉
z
, (66)

χ ◦
n =

1

σc
√

q◦
r

〈
∂n◦(z)

∂z

〉

z

, (67)

χ ◦
r =

1

σc
√

q◦
n

〈
∂r◦(z)

∂z

〉

z

. (68)

Because these changes do not alter the actual dynamics, the mean
resource levels and population sizes must be the same, i.e., we

must have
〈
n
〉
=
〈
n◦〉 , (69)

〈
n2
〉
=
〈
[n◦]2

〉
, (70)

〈
r
〉
=
〈
r◦〉 , (71)

〈
r2
〉
=
〈
[r◦]2

〉
, (72)

so that

ρ◦
r =

K

ν
− ρr, (73)

q◦
r =

K2

ν
− 2Kρr + qr. (74)

Having this in mind, we can write the survival probability as a
function of the prior fitness f0 as

φs(f0) =
1

2
erfc


 1

√
2

c
(

K
ν

− ρr

)
− f0

σc

√
K2

ν
− 2Kρr + qr


 . (75)

These results are compared with numerical simulations in Fig. 5.
Notice that φs tends to become more and more step-like as the
ecosystem becomes more competitive [larger ν, Fig. 5(a)], imply-
ing that the fate of species is determined to a greater extent by their
prior fitnesses. In less competitive cases, instead, lower values of f0
are more easily overcome through dynamics. The carrying capac-
ity plays a similar role [Fig. 5(b)]: as K increases and resources
become available at higher levels, species that would be less fit a
priori can face better survival odds; on the other hand, the prior
fitness becomes more relevant for the final fate of a species as car-
rying capacities decrease. Likewise [Fig. 5(c)], larger heterogeneities
in metabolic strategies improve the survival probabilities of species
with lower prior fitnesses. The dependences on σ 2

c and ν are rep-
resented more completely in the heat maps shown in Figs. 5(d)
and 5(e).

D. Stability

Figure 6(a) displays the eigenvalue λmin given in (8) as a func-
tion of the metabolic heterogeneity σ 2

c and for various ν, with all
other parameters fixed. While this quantity strictly speaking controls
stability when the characteristic timescales of species and resources
are widely separated, it can still provide useful indications about how
different parameters may affect the stability of MacArthur’s model.
We focus, in particular, on the metabolic heterogeneity σ 2

c . At low
species-to-resources ratios, λmin generically increases with σc, indi-
cating that higher metabolic heterogeneity improves stability. At
high ν, however, i.e., in more competitive situations, λmin displays
a maximum at relatively small values of σ 2

c , indicating that the sys-
tem becomes less stable when metabolic heterogeneity is too large.
One, therefore, understands that λmin also decreases systematically
as c increases at fixed σ 2

c , as strategies become more homogeneous
(not shown). Likewise, one easily sees from (8) that the introduction
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FIG. 5. Panels (a)–(c): Survival probability φs as a function of f0 for different
values of ν (panel a), K (panel b), and σ 2

c (panel c), with remaining parame-
ters fixed as indicated. (d) Survival probability φs as a function of f0 and σ

2
c for

fixed K = 5, c = 1, a = 1,m = 1, and ν = 1. The dashed line at f0 = 4 cor-
responds to φs = 1/2. (e) Survival probability φs as a function of f0 and ν for
fixed K = 5, c = 1, a = 1, m = 1, and σ 2

c = 1. The dashed line corresponds
to φs = 1/2.

of new species (increase ν) always decreases stability, in agreement
with the classical results of Ref. 26.

Figure 6(b) links instead the behavior of the mean population
size ρn for increasing values of K to that of λmin. In particular, the
value of ν at which ρn tends to peak for K → ∞ corresponds to the
point where the ecosystem becomes marginally stable (λmin → 0)
in the same limit. In addition, it shows that, for a sufficiently large
carrying capacity and in presence of strong competition between
species (large ν), when surviving species saturate the achievable limit
more efficiently, the ecosystem gets as close as possible to becoming
unstable. Likewise, at the species-to-resources ratio that allows to
sustain the largest overall populations, the ecosystem gets closer and
closer to an instability as K increases. Despite the crude assumptions
under which it was derived, Eq. (8), therefore, does appear to pro-
vide key insight into the properties of the stationary state of the full
system.

E. Heterogeneous carrying capacities

To understand the role of diversity in the availability of
resources, we studied the effect of disorder in the distribution of Kµ.
Specifically, we considered a Gaussian distribution for K with fixed
mean and variance σ 2

K changing in the interval [0, 20]. The Gaussian
distribution keeps theoretical calculations feasible while introducing
negative values of K. The latter can be interpreted as an outflow of
resources from the environment (sinks). To simplify the discussion,

FIG. 6. (a) Behavior of λmin, Eq. (8), vs σ
2
c for fixed K = 5, a = 1, m = 1, and

different ν. (b) Behavior of λmin (left) and ρn (right) vs ν for different values of K
(increasing in the direction of the arrow).

the rest of the parameters of the model were kept fixed at σc = a
= m = 1 and we focused on ν = 10 and ν = 0.2 to explore the
emerging picture in highly competitive vs noncompetitive situa-
tions. Results are summarized in Fig. 7. The survival probabil-
ity decreases as σ 2

K increases [Fig. 7(a)], as a consequence of the
enhancement of resource depletion [see also Eqs. (36) and (50): as
σ 2

K increases, zr and, in turn,ψs decrease rapidly]. On the other hand,
mean population sizes increase markedly as σK increases [Fig. 7(b)].
In other words, stronger variability in resource levels (including
sinks) has a (small) negative impact on species survival probabil-
ity but allows for the sustainment of a larger number of individuals.
Both of these features follow directly from the analytical solution.
According to Eq. (59), the mean population level increases as σK

increases. On the other hand, so does the mean resource level [see
Eq. (60)], which, in turn, causes z◦

n [Eq. (61)] to increase as q◦
r [Eq.

(66)] gets smaller. An increase of z◦
n finally implies a worsening of

the survival chances, as φs =
〈
2(z − z◦

n)
〉
z
. The difference between

systems with and without large variability in the level of resources
is further highlighted in Figs. 7(c) and 7(d). One sees that, for all
other parameters fixed, in the presence of heterogeneities in the
carrying capacities, prior fitnesses span a much broader range. How-
ever, species with the same prior fitness can achieve much larger
population sizes in a heterogeneous environment than in a homo-
geneous one.

VI. DISCUSSION

MacArthur’s model provides a versatile theoretical framework
to study emergent properties in large complex ecosystems, with
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FIG. 7. Dependence of survival probability φs (panel a) and of the mean pop-
ulation size ρn (panel b) on σK for ν = 10 (orange) and ν = 0.2 (blue) and
K = 5.0, σ 2

c = a = m = 1. Markers are averages over the steady states of 100
independent realizations of Eqs. (1) and (2), while continuous lines correspond to
theoretical predictions. (c) species population sizes (ni ) vs prior fitness of species
(f0,i ) in the steady state of 100 realizations of Eqs. (1) and (2), with parameters
K = 5, σ 2

c = m = a = c = 1 and N = 100,M = 100, and σ 2
K = 0. A single

realization is highlighted in red. (d) Same as in (c) but with σ 2
K = 10.

much room for improvements that bring the model closer to reality
and allow for testable predictions. In analyzing the simplest ver-
sion, as done here, one mostly aims at defining the set of allowed
behaviors and identifying the elementary mechanisms driving the
response of the ecosystem to perturbations both at the level of
species (e.g., the introduction of new species) or resources (e.g., the
disappearance of a viable resource). Understanding how such per-
turbations affect global features like stability, survival probability,
etc. is indeed the focus point of statistical mechanics approaches. To
summarize, within MacArthur’s model, metabolic heterogeneity far
from generically providing an advantage in terms of stability or sur-
vival, bears different effects in more vs less competitive situations.
In a very competitive scenario, metabolic heterogeneity favors the
survival probability, on the contrary, in a less competitive scenario,
the survival probability decrease, because metabolic heterogeneity
translates essentially into species with lower fitness. Likewise, het-
erogeneity at the level of resources leads to higher population sizes
for smaller numbers of species rather than favoring higher survival
probabilities. Still, diversity at steady state in this system is limited
by competitive exclusion,27,28 which in our case takes the form of
Eq. (6).

In our view, the key defining aspect of MacArthur’s model
is given by the fact that the growth rate of individual species is a
linear superposition of contributions due to different resources.
Such an assumption is unrealistic in many cases, as, e.g., when
some resources are essential and the growth rate of a species is
positive only when that species has access to at least one of these
resources29 or in presence of a bound in the quantities and qual-
ity of the resources that can be consumed.30 Experimental studies
of microbes under co-utilization of different resources have likewise

displayed a more complicated picture.31 Alternatively, other mod-
els capable of overcoming the “niche” scenario exploit dynamical
effects,32,33 and higher-order interactions have also been shown to
impact ecosystem diversity in a non-trial way.34,35 The emergent phe-
nomenology of consumer-resource models in such cases is markedly
more complex. To our knowledge, a statistical mechanics treatment
of fully disordered cases is still lacking, and techniques like the path-
integral method employed here seem to be a proper starting point
for the analysis of these models in the limit of large system sizes.

On another level, a more realistic theory would require the
integration of a more detailed descriptions of metabolism into the
model, possibly along with features like microbial growth laws21

and cross-feeding36 or considering directly how the by-products of
metabolism shape the environment, leading to secondary interac-
tions between the species.37 Work along these lines is likely to shed
new light about the origin, stability, and reproducibility of species
compositions in extended ecosystems.
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APPENDIX: DERIVATION OF THE EFFECTIVE

PROCESSES

We begin by re-writing the dynamics (1) and (2) as

ṅi

ni

−
∑

µ

c
µ
i rµ + mi − θi = 0, (A1)

ṙµ

rµ
− aµ(Kµ − rµ)+

∑

j

c
µ

j nj − θµ = 0, (A2)

where we added auxiliary time-dependent probing fields θi and θµ.
Our goal here is to evaluate the dynamical generating function

Z[ψ ,φ] ≡
〈
ei
∑

i

∫
dtψi(t)ni(t)+i

∑
µ

∫
dtφµ(t)rµ(t)

〉
paths

(A3)

by explicitly carrying out the averages over trajectories of (A1) and
(A2) (“paths”) and over the quenched disorder, represented by the
coefficients c

µ
i and by the carrying capacities Kµ. Correlations and

response functions for population sizes are linked to Z by

−i lim
ψ→0
φ→0

∂Z

∂ψi(t)
= 〈ni(t)〉paths, (A4)
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−i lim
ψ→0
φ→0

∂2Z

∂ψi(t)∂ψj(t′)
=
〈
ni(t)nj(t′)

〉
paths

, (A5)

−i lim
ψ→0
φ→0

∂2Z

∂ψi(t)∂θj(t′)
=

∂

∂θj(t′)
〈ni(t)〉paths (A6)

(with similar formulas for means, correlations and response func-
tions of resource levels using auxiliary fields φ and θµ). The
average over paths can be written explicitly in terms of the equa-
tions of motion (A1) and (A2) using appropriate δ-distributions,
namely,

〈(· · · )〉paths =
∫

Dn Dr (· · · )
∏

i,t

δ

(
ṅi

ni

−
∑

µ

c
µ
i rµ + mi − θi

)

×
∏

µ,t

δ


 ṙµ

rµ
− aµ(Kµ − rµ)+

∑

j

c
µ
j nj − θµ


 ,

where the product over i and t indicates that the condition has to be
imposed for all i at all times (and likewise for the product overµ and
t). In turn, the δ-functions can be expressed using the Fourier rep-
resentations δ(y) ∝

∫∞
−∞ exp(iŷy) d̂y. After simple rearrangements,

this yields

Z[ψ ,φ] =
∫

D(n, n̂)D(r, r̂) e
i
∑

i

∫
dtψi(t)ni(t)+i

∑
i

∫
dt n̂i(t)

(
ṅi
ni

+mi−θi
)

︸ ︷︷ ︸
A(n,̂n)

× e
i
∑
µ

∫
dtφµ(t)rµ(t)+i

∑
µ

∫
dt r̂µ(t)

(
˙rµ

rµ
+aµrµ−ηµ

)

︸ ︷︷ ︸
B(r,̂r)

×
∏

i,µ

eic
µ
i

∫
dt[r̂µ(t)ni(t)−rµ(t)n̂i(t)]

∏

µ

e−iKµ
∫

dtaµ r̂µ

︸ ︷︷ ︸
1(n,̂n,r,̂r)

, (A7)

where we have separated the term 1(n, n̂, r, r̂) that depends on the
quenched random variables c

µ
i and Kµ, which conveniently factor-

izes. Average are easily computed since the c
µ

i s (respectively, Kµs)
are iid Gaussian random variables with distributions G

(
c/N, σ 2

c /N
)

(respectively, G
(
K, σ 2

K

)
). One gets

1(n, n̂, r, r̂) = 11(n, n̂, r, r̂)× e−i
∑
µ aµK

∫
dt r̂µ(t), (A8)

11(n, n̂, r, r̂) = eicN
∫

dt[λr(t)ρn(t)−ρr(t)λn(t)]

× e− σ2
c N
2

∫
dt dt′[Lr(t,t

′)Qn(t,t
′)+Qr(t,t

′)Ln(t,t
′)]

× eσ
2
c N

∫
dt dt′Kr(t,t

′)Kn(t,t
′) × e−

σ2
KN

2 (aµ)2
∫

dt dt′Lr(t,t
′),
(A9)

where we defined the macroscopic quantities,

ρn(t) =
1

N

∑

i

ni(t), ρr(t) =
1

N

∑

µ

rµ(t),

λn(t) =
1

N

∑

i

n̂i(t), λr(t) =
1

N

∑

µ

r̂µ(t),

Qn(t, t
′) =

1

N

∑

i

ni(t)ni(t
′), Qr(t, t

′) =
1

N

∑

µ

rµ(t)rµ(t′),

(A10)

Ln(t, t
′) =

1

N

∑

i

n̂i(t)n̂i(t
′), Lr(t, t

′) =
1

N

∑

µ

r̂µ(t)r̂µ(t′),

Kn(t, t
′) =

1

N

∑

i

ni(t)n̂i(t
′), Kr(t, t

′) =
1

N

∑

µ

rµ(t)r̂µ(t′).

To simplify the notation, we shall henceforth write ni for ni(t) and
n′

i for ni(t
′) (and likewise for all time-dependent quantities). Defin-

ing the vectors π = (ρ,λ, Q, L, K) and π̂ = (ρ̂, λ̂, Q̂, L̂, K̂), we can
insert each of the above definitions into Z again using appropriate
δ-functions, obtaining

Z =
∫

D(π , π̂) eN9(π ,π̂)+N8(π)

×
∫

D(n, n̂)A(n, n̂) e−i
∑

i

∫
dt(ρ̂nni+λ̂n n̂i) e

−i
∑

i

∫
dt dt′

[
Q̂nnin

′
i+L̂n n̂i n̂

′
i+K̂nni n̂

′
i

]

×
∫

D(r, r̂)
[
B(r, r̂)× e−i

∑
µ aµK

∫
dtr̂µ(t)

]
e−i

∑
µ

∫
dt(λ̂r r̂µ+ρ̂rr

µ) e
−i
∑
µ

∫
dt dt′

[
Q̂rr

µ(rµ)′+L̂r r̂µ r̂µ
′+K̂rr

µ r̂µ
′]

, (A11)

where

9(π , π̂) = i

∫
dt
[
ρnρ̂n + ρrρ̂r + λnλ̂n + λrλ̂r

]

+ i

∫
dt dt′

[
QnQ̂n + LnL̂n + KnK̂n + QrQ̂r + LrL̂r + KrK̂r

]
, (A12)

8(π) ≡
1

N
ln11 = ic

∫
dt [λrρn − ρrλn] −

σ 2
c

2

∫
dt dt′ [QnLr + QrLn − 2KnKr] −

a2σ 2
K

2

∫
dt dt′Lr. (A13)
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Finally, upon substituting expressions for A(n, n̂) and B(r, r̂)
from (A7) into (A11), we arrive at

Z =
∫

D(π , π̂) eN[9(π ,π̂)+8(π)+�n(π̂)+�r(π̂)], (A14)

with

�n(π̂) =
1

N

∑

i

ln

∫
D(ni, n̂i) ei

∫
dtψi(t)ni(t) e

i
∫

dtn̂i(t)
(

ṅi
ni

+mi−θi
)

× e−i
∫

dt[ρ̂nni+λ̂n n̂i] e
−i
∫

dt dt′
[
Q̂nnin

′
i+L̂n n̂i n̂

′
i+K̂nni n̂

′
i

]

(A15)

≡ ln

∫
D(n, n̂) ei

∫
dtψ(t)n(t) e

i
∫

dt n̂(t)
(

ṅ
n +m−θ

)

× e−i
∫

dt[ρ̂nn+λ̂n n̂] e
−i
∫

dt dt′
[
Q̂nnn′+L̂n n̂n̂′+K̂nnn̂′

]

(A16)

and

�r(π̂) =
1

N

∑

µ

ln

∫
D(rµ, r̂µ) ei

∫
dtφµ(t)rµ(t)

× e
i
∫

dtr̂µ(t)

(
˙rµ

rµ
−aµ(Kµ−rµ)−ηµ

)

× e−i
∫

dt(ρ̂rr
µ+λ̂r r̂µ) e

−i
∫

dt dt′
[
Q̂rr

µ(rµ)′+L̂r r̂µ r̂µ
′+K̂rrµ r̂µ

′]

(A17)

≡
1

ν
ln

∫
D(r, r̂) ei

∫
dtφ(t)r(t) e

i
∫

dt̂r(t)
(

ṙ
r −a(K−r)−η

)

× e−i
∫

dt(ρ̂rr+λ̂r̂r) e−i
∫

dt dt′[Q̂rrr
′+L̂r̂ r̂r′+K̂r r̂r

′]. (A18)

In the limit N → ∞, integrals like (A14) can be evaluated by saddle-
point integration, implying

Z =
∫

D(π , π̂) eN[9(π ,π̂)+8(π)+�n(π̂)+�r(π̂)] ∼ eN[9?+8?+�?n+�?r ],

(A19)

where the star indicates that the functions are extremized. The
corresponding values of the order parameters are, therefore, to be
obtained from the saddle-point conditions

∂9

∂π
+
∂8

∂π
= 0, (A20)

∂9

∂π̂
+
∂�N

∂π̂
+
∂�R

∂π̂
= 0. (A21)

Computing derivatives explicitly, (A20) takes the form

ρ̂n = −cλr, ρ̂r = cλn, λ̂n = cρr, λ̂r = −cρn,

iQ̂n =
σ 2

c

2
Lr, iQ̂r =

σ 2
c

2
Ln, iL̂n =

σ 2
c

2
Qr, iL̂r =

a2σ 2
K

2
+
σ 2

c

2
Qn,

(A22)

iK̂n = −σ 2
c Kr, iK̂r = −σ 2

c Kn,

while for (A21), we get

ρn = 〈n〉?,n , ρr =
1

ν
〈r〉?,r , λn = 〈̂n〉?,n , λr =

1

ν
〈̂r〉?,r ,

Qn =
〈
nn′〉

?,n
, Qr =

1

ν

〈
rr′〉

?,r
, Ln =

〈
n̂n̂′
〉
?,n

, Lr =
1

ν

〈
r̂̂r′〉

?,r
,

(A23)

Kn =
〈
nn̂′
〉
?,n

, Kr =
1

ν

〈
r̂r′
〉
?,r

,

where we used the shorthands

〈[· · · ]〉?,n =
∫

D(n, n̂) [· · · ] ei
∫

dtψ(t)n(t) e
i
∫

dt n̂(t)
(

ṅ
n +m−θ

)

× e−i
∫

dt[ρ̂nn+λ̂n n̂] e
−i
∫

dtdt′
[
Q̂nnn′+L̂n n̂n̂′+K̂nnn̂′

]

∫
D(n, n̂) ei

∫
dtψ(t)n(t) e

i
∫

dt n̂(t)
(

ṅ
n +m−θ

)

× e−i
∫

dt[ρ̂nn+λ̂n n̂] e
−i
∫

dt dt′
[
Q̂nnn′+L̂n n̂n̂′+K̂nnn̂′

] , (A24)

〈[· · · ]〉?,r =
∫

D(r, r̂) [· · · ] ei
∫

dtφ(t)r(t) e
i
∫

dt r̂(t)
(

ṙ
r −a(K−r)−η

)

× e−i
∫

dt(ρ̂rr+λ̂r̂r) e−i
∫

dtdt′[Q̂rrr
′+L̂r̂ r̂r′+K̂r r̂r

′]

∫
D(r, r̂) ei

∫
dtφ(t)r(t) e

i
∫

dt r̂(t)
(

ṙ
r −a(K−r)−η

)

× e−i
∫

dt(ρ̂rr+λ̂r̂r) e−i
∫

dt dt′[Q̂rrr′+L̂r̂ r̂r′+K̂r r̂r′]
. (A25)

Order parameters involving only n̂ or r̂ can be dealt with by
noting, for instance, that

Ln(t, t
′) ≡

1

N

∑

i

n̂i(t)n̂i(t
′) = −

1

N

∑

i

∂2Z[0, 0]

∂θi(t)∂θi(t′)
= 0, (A26)

since by definition Z[0, 0] = 1 [see (A3)]. One, therefore, easily
finds that λr = Lr = 0, implying ρ̂n = Q̂n = 0, and λn = Ln = 0,

implying ρ̂r = Q̂r = 0.�r then reduces to

�r =
1

ν
ln

∫
D(r, r̂) ei

∫
dtφ(t)r(t) e

i
∫

dt r̂(t)
(

ṙ
r −a(K−r)−η+cρn−iσ 2

c
∫

dt′Kn(t,t
′)r(t′)

)

× e− σ2
c
2

∫
dt dt′̂rQn̂r′ × e−

a2σ2
K

2

∫
dt dt′̂ r̂r′ , (A27)

which corresponds to the effective resources dynamics

ṙ(t)

r(t)
= a(K − r(t))− cρn(t)− σ 2

c

∫
dt′Gn(t, t

′)r(t′)+ η(t)+ ξr(t),

×
〈
ξr(t)ξr(t

′)
〉
= σ 2

c Qn(t, t
′)+ a2σ 2

K , (A28)
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where we re-defined the response function as −iKn = Gn consis-
tently with the definition of Z. Likewise,�n takes the form

�n = ln

∫
D(n, n̂) ei

∫
dtψ(t)n(t) e

i
∫

dt̂n(t)
(

ṅ
n +m−θ−cρr−iσ 2

c
∫

dt′Kr(t,t,
′)n(t′)

)

× e− σ2
c
2

∫
dt dt′ n̂Qr n̂′

, (A29)

leading to

ṅ(t)

n(t)
= θ(t)− m + cρr(t)−

σ 2
c

ν

∫
dt′Gr(t, t

′)n(t′)

+ ξn(t),
〈
ξn(t)ξn(t

′)
〉
= σ 2

c Qr(t, t
′), (A30)

where −iKr = 1
ν
Gr. Equations (A28) and (A30) are the effective

single-resource and single-species processes describing the dynam-
ics of the full system in the limit N, M → ∞ for fixed ν = N/M. We
have, therefore, linked the original (Markovian) system described by
(A1) and (A2) to a new (non-Markovian) system involving a single
effective species and a single effective resource.
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