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ARTICLE OPEN

A yield-cost tradeoff governs Escherichia coli’s decision
between fermentation and respiration in carbon-limited growth
Matteo Mori1, Enzo Marinari2,3 and Andrea De Martino4,5

Living cells react to changes in growth conditions by re-shaping their proteome. This accounts for different stress-response
strategies, both specific (i.e., aimed at increasing the availability of stress-mitigating proteins) and systemic (such as large-scale
changes in the use of metabolic pathways aimed at a more efficient exploitation of resources). Proteome re-allocation can,
however, imply significant biosynthetic costs. Whether and how such costs impact the growth performance are largely open
problems. Focusing on carbon-limited E. coli growth, we integrate genome-scale modeling and proteomic data to address these
questions at quantitative level. After deriving a simple formula linking growth rate, carbon intake, and biosynthetic costs, we show
that optimal growth results from the tradeoff between yield maximization and protein burden minimization. Empirical data confirm
that E. coli growth is indeed close to Pareto-optimal over a broad range of growth rates. Moreover, we establish that, while most
of the intaken carbon is diverted into biomass precursors, the efficiency of ATP synthesis is the key driver of the yield-cost tradeoff.
These findings provide a quantitative perspective on carbon overflow, the origin of growth laws and the multidimensional
optimality of E. coli metabolism.

npj Systems Biology and Applications            (2019) 5:16 ; https://doi.org/10.1038/s41540-019-0093-4

INTRODUCTION
The physiology of cell growth and its relation with gene
expression and metabolism have been studied quantitatively for
decades. Refining the picture developed since the 1950s,1,2

changes in growth conditions have been found to be accom-
panied by a re-organization of the cellular proteome, with
resources being redistributed among different tasks (nutrient
import, biosynthesis, etc.).3–8 For E. coli, this adaptation underlies
significant adjustments in cellular energetics and metabolism,
with the ‘acetate switch’9–11 being the most apparent manifesta-
tion of the interplay between metabolism and gene expression.
Slowly growing E. coli cells tend to operate close to the theoretical
limit of maximum growth yield (growth rate per unit of intaken
carbon);12–15 at fast growth, instead, they display lower yields with
the excretion of carbon equivalents (acetate). The transition
between the two conditions is accompanied by large changes in
gene expression.6,11 A similar scenario also occurs in other
proliferating cell types, like yeast16,17 or cancer cells.18–21 Several
phenomenological theories address the question of how meta-
bolism and gene expression coordinate to optimize growth in
bacteria,4,11,22–27 while mechanistic models of metabolism can
describe changes in the usage of pathways at the crossover.28–30

Here we combine genome-scale modeling with experimental data
analysis to obtain a direct quantitative characterization of the
yield-cost tradeoff in E. coli.
We first show that, under carbon limitation, the growth rate can

be explicitly decomposed into inter-dependent contributions from
the growth yield and from growth-associated protein costs.
Maximum growth then implies a tradeoff between the growth

yield and the proteome fraction allocated to metabolic enzymes.
At fast (slow) growth, the latter (former) is optimized, and the
objective function changes smoothly as carbon availability is
limited and one passes from one regime to the other. We
quantitatively evaluated this scenario in a genome-scale model of
E. coli’s metabolism. In this framework, maximum growth leads to
a Pareto front in the yield-cost landscape. Remarkably, an analysis
of proteomic data for carbon-limited cells6 validates this picture.
To get insight into which metabolic variable drives the crossover,
we further quantified the partitioning of carbon into biomass- and
energy-producing pathways, both of which contribute to growth.
While the relative amount of carbon converted into biomass
precursors significantly exceeds that going into energy (i.e., ATP),
the latter accounts for almost all of the observed change in
growth yield at the crossover, implicating the ATP yield as the key
biological driver of the acetate switch. The behavior of the
corresponding proteome mass fractions extrapolated from data
confirms this conclusion.
These results provide a quantitative characterization of the

multidimensional optimality of E. coli13,31 that directly addresses
the crosstalk between growth and gene expression by connecting
metabolic flux analysis to proteomic data.

RESULTS
Increasing the growth yield as a basic response to carbon shortage
Bacterial growth is known to be hindered by the synthesis of
inefficient proteins.3 Because of this, modulating the proteome
composition is a major fitness strategy for exponentially growing
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bacteria. In E. coli, for instance, a substantial reshaping of the
protein repertoire takes place upon carbon limitation, with
ribosome-affiliated proteins and biosynthetic enzymes taking up
a smaller fraction of the proteome as the growth rate μ decreases,
while carbon-import and motility proteins are upregulated.3,5,6,8

Similar changes are observed in cells subject to other modes of
limitation.6 Such modifications indicate major shifts in growth
strategy in response to stress.
For a minimal phenomenological description of this fact, let JC

denote the cellular carbon intake flux (in mmol/gDWh), which we
assume to be subject to limitation (see Supplementary Text, Table
S1 for a list of symbols used in this work). The carbon influx JC is
related to the growth rate μ via the specific intake flux q (i.e., JC=
q ⋅ μ), representing the amount of in-taken carbon needed to
generate a unit of biomass (in units of mmol per gram of dry
weight). q depends not only on the specific nutrient source, but
more in general on the growth conditions (e.g., oxygen
availability, osmolarity, pH). The inverse of the specific intake flux
is proportional to the growth yield, which is usually expressed in
terms of grams of dry weight per gram of intaken carbon; the
specific carbon intake q is, however, more convenient for our
purposes. For fixed specific intake q, as carbon is limited and the
stress level increases, JC decreases and μ is proportionally reduced.
In turn, the proteome share ϕC allocated to the carbon import
system will also be affected, as more proteins devoted to
importing carbon will generically be needed to sustain a
prescribed rate JC under limitation. The cost associated to this
macromolecular burden can be modeled via a coefficient wC > 0
constraining the catabolic proteins and the carbon intake, ϕC=
wC ⋅ JC, and serving as a proxy for the level of stress to which the
cell is subject. Putting things together, the growth rate μ can be
expressed as

μ ¼ ϕC

q � wC
: (1)

Eq. (1) suggests that cells can counteract an increase of wC (i.e.,
higher stress associated to carbon limitation) in two ways (Fig. 1a).
The first is by increasing the protein fraction associated to carbon
transport, ϕC: indeed, E. coli expresses a whole array of catabolic
systems in response to carbon shortage.5,6 The second is by
decreasing the specific intake rate q, i.e. increasing the growth
yield. The switch from fermentative to respiratory metabolism
upon carbon limitation is an example of this type of response,9–11

with the specific intake q reaching a minimum when acetate
excretion flux is negligible. E. coli adopts both strategies under
carbon limitation;6 the key difference between them is that, while
the former only involves a specific set of processes (i.e., those
involved in carbon uptake), the metabolic rewiring needed to
decrease the specific intake q implies the coordination of
expression levels across multiple metabolic pathways, even not
directly subject to limitation.

The role of protein costs
Any increase in ϕC under carbon limitation has to be compensated
by a reduction of the share of the rest of the proteome (Fig. 1a). In
E. coli, the mass fraction of many biosynthetic proteins, from
anabolism to protein synthesis, indeed decreases with the growth
rate in an approximately linear fashion.3,5,6 For simplicity, let us
assume that the proteome fraction devoted activities other than
carbon-import, which we denote as ϕNC ≡ 1− ϕC, adjusts with the
growth rate so that ϕNC= ϕNC,0+ εNCμ, with an offset term ϕNC,0

and a slope εNC (see Supplementary Text, Note 1 for a more
general formulation). When plugged in Eq. (1), this results in

μ ¼ 1� ϕNC;0

εNC þ q � wC
: (2)

The term ϕNC,0 includes both constitutively expressed, “unne-
cessary” proteins (not required to grow in the given medium but
important in fluctuating conditions32) and the basal abundance of
metabolic enzymes. The coefficient εNC, governing the growth-
dependent part of the proteome, depends instead on the
expression level of metabolic enzymes as well as on the efficiency
of the metabolic pathways, including energy generation and
anabolic processes.5,6,30 Because changes in proteome allocation
impact the efficiency of carbon utilization, q and εNC cannot be
varied independently. This will lead to tradeoffs in Eq. (2). Under
sever carbon shortage (high stress, large wC), μ is dominated by
the carbon efficiency term, i.e., μ∝ (q ⋅wC)

−1 as in (1), and
maximum growth coincides with minimum q. In carbon-rich
conditions (low stress, small wC), instead, μ∝ 1/εNC and maximum
growth is achieved by minimizing the proteome cost of the other
metabolic activities.
Eq. (2) is purely phenomenological. We will now re-derive it

within a genome-scale model of E. coli metabolism based on
empirical growth laws.4 This will allow us to quantitatively
describe the changes in cellular metabolism and proteome
organization that occur under carbon limitation.

Empirical growth laws quantitatively link growth rate, specific
carbon intake, and enzyme costs
Multiple studies have shown that, in carbon-limited growth,
E. coli’s proteome is partitioned into sectors whose relative sizes
adjust with the growth conditions.3,5,6 For our purposes, the
simplest partition involves four sectors, three responding to the
growth condition [ribosome-affiliated proteins (R), metabolic
enzymes (E) and proteins involved in the carbon-uptake system
(C)], and the fourth with a fixed proteome share (‘housekeeping’
sector Q). Assuming proportionality to enzyme expression,
metabolic fluxes effectively mediate proteome re-shaping.3,5,30 In
this scenario the normalization of proteome mass fractions takes
the form (Fig. 1b and Methods)

wCJC þ
X
i2E

wijvi j þ wRμ ¼ ϕmax; (3)

where JC is the carbon intake flux, vi is the flux of reaction i, and
ϕmax is a constant set by the baseline expression levels of all
proteins. The terms on the left-hand side of (3) correspond to the
condition-dependent C-, E- and R-sectors. In particular (see
previous sections), wCJC describes the proteome share devoted
to the limited activity, with wC quantifying the level of nutritional
stress. The R- and E-sectors, instead, form the non-limited
proteome. The coefficients wi hence represent the ‘cost’ of each
reaction i∈ E in terms of the proteome share to be allocated to its
enzyme per unit of net flux, while wR quantifies the proteome
share of ribosome-affiliated proteins per unit of growth rate.
Eq. (3) implies that increased nutrient stress (i.e. larger wC)

causes a flux-mediated re-shaping of the cellular proteome that in
turn affects the growth rate (Fig. 1c). JC is related to μ by the
specific intake rate q= JC/μ; likewise, we define the specific
protein cost ε ¼ P

i2E wijvij=μ. Using these definitions one can
isolate μ from (3), obtaining

μ ¼ ϕmax

εþ wCqþ wR
: (4)

Eq. (4) is the quantitative counterpart of Eq. (2). As in the latter,
the interplay between carbon and enzyme efficiency is controlled
by the stress level wC, while wR and ϕmax are parameters that can
be derived from experiments. Note that, by definition, q and ε do
not depend separately on the flux vector v= (JC, {vi}) and on the
growth rate μ but, rather, are functions of the ratio v/μ≡ ξ, a
vector whose entries ξi give the contribution of reaction i to the
cellular biomass in terms of mmol of metabolites transformed per
gram of dry cell. Hence ξ characterizes the “metabolic state” of the
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cell, and the vector v= μξ can in turn be seen as a parametrization
of metabolic fluxes in terms of the state ξ and of the growth rate μ.
From the point of view of regulation, instead, the vector ξ
represents a regulation program, prescribing the growth-
dependence of enzyme mass fractions.
Note that this linear parametrization of the fluxes is correct at

sufficiently fast growth, i.e., for μ≳ 0.5/h (Methods). This range
includes the acetate switch and is the condition on which we
focus here. At slower rates, the approximation will deteriorate due
to the presence of non-negligible maintenance fluxes (Methods).

In silico states of maximum growth display a Pareto optimal
tradeoff between specific intake and protein costs
Based on (4), maximizing μ is equivalent to minimizing the total
cost

CðξÞ ¼ εðξÞ þ wC qðξÞ: (5)

More precisely, for each value of wC, finding the flux vector v
that maximizes μ subject to (3) is equivalent to finding the
metabolic state ξ minimizing (5) (Supplementary Text Fig. S1). In
other terms, the constraint (3) associates to each state ξ a growth
rate μ(ξ) via (4). Such a μ(ξ) will be highest when ξ minimizes (5).
Fluxes are then given by v(ξ)= ξμ(ξ) and satisfy the constraint (3)
by construction. As wC varies, cells must strike a compromise
between the specific intake q and biosynthetic costs ε in order to
maximize μ. The ensuing tradeoff between q and ε can be
described by a Pareto front that separates an accessible region of
the (q, ε) plane, such that each point lying therein represents a
viable state ξ, from an inaccessible one, with states of maximum
growth lying on the front (Fig. 2a). μ increases as one moves along
the Pareto front towards larger values of specific intake q,
corresponding to lower growth yields.
Pareto-optimal and sub-optimal states for E. coli can be

generated using a genome-scale model of metabolism (Fig. 2b,
Methods and Supplementary Text, Note 2). Sub-optimal values of
q and ε expectedly lie in the feasible region to the right of the
Pareto front (black line). Markers in Fig. 2b, varying from blue
(mostly respirative, lower q) to red (mostly fermentative, lower ε)
show that E. coli’s metabolism is robustly characterized by

respiration at slow growth and upregulated fermentation at fast
growth, in agreement with experiments.

Empirical data support Pareto-optimality
The above picture can be validated by estimating ε from mass
spectrometry data6 and q from genome scale-modeling con-
strained by the empirical acetate overflow (Methods). The
resulting curve in the (q, ε) plane (Fig. 2c) qualitatively agrees
with the theory. At a quantitative level, the normalized protein
cost ε predicted in silico for low-q states matches the observed
enzyme cost at μ≃ 0.7/h. For faster growth, where acetate
excretion sets in, our model underestimates the decrease in ε by
only about 10%, most likely due to the reduced efficiency of
respiration enzymes.11 Likewise, at slow growth (below about
0.6/h) our prediction appears to underestimate ε, possibly due to
the decrease in enzyme efficiencies that is known to set in at low
μ29,33–36 and which is not accounted for in our constraint-based
framework.

The ATP yield is the key driver of the tradeoff
The structure of metabolic states shown in Fig. 2b suggests a tight
link between growth and energy metabolism, as fast (slow)
growth favors the use of low (high) ATP yield pathways.11 Whether
the efficiency of energy biosynthesis is the driver of carbon
overflow is however not obvious from Eq. (5). In schematic terms
(Fig. 3a), one can think that cells channel the in-taken carbon
through pathways contributing respectively to the overall
production of energy and to the synthesis of biomass precursors.
However, about 1/3 of the energy production sustains anabolic
processes underlying the synthesis of biomass building blocks
(Supplementary Text Fig. S2), and therefore the corresponding
carbon flux can also be associated to the biosynthesis of biomass
precursors. Hence, we focus on the fluxes denoted respectively as
JC→B and JC→E in Fig. 3a, corresponding to the carbon flux
associated to biomass biosynthesis and the carbon flux associated
to the production of energy feeding the cellular processes
downstream of metabolism, e.g., protein synthesis, respectively.
The two fluxes satisfy

JC ¼ JC!B þ JC!E ; (6)
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Fig. 1 Schematic view of the proteome allocation problem. a Effect of growth limitation via carbon starvation on proteome composition. An
increase in the cost of the catabolic (C) sector reduces the growth rate. Part of the non-catabolic (NC) sector, no longer required at slower
growth, is freed and can be reallocated. The decrease in growth can be counteracted by expanding the C-sector (i.e., by increasing ϕC) and/or
by allocating part of the NC-sector to re-organize metabolism so as to decrease the specific carbon intake q= JC/μ. b Proteome sectors
considered for E. coli, namely ribosomal (R), enzymatic (E), carbon-import (C), and housekeeping core (Q). Following ref. 30 we assume that all
sectors but the core have condition-dependent parts denoted by Δϕj. By normalization, their sums are constrained as in Eq. (3). c A change in
the nutrient level affects the cellular metabolism and gene expression. In Constrained Allocation FBA,30 the interplay between metabolic
fluxes, protein levels, and growth rate leads to optimal phenotypes with maximum growth rate
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Fig. 2 Tradeoff between minimum specific carbon intake and minimum enzyme cost in E. coli. a Multi-objective optimality and Pareto front.
Two cost functions (specific carbon uptake q and specific proteome cost ε) are shown, together with the feasible (in white) and infeasible (in
gray) regions, separated by the Pareto front. Optimal (i.e., growth maximizing) solutions lie on the latter. At slow growth, the optimal
metabolic state corresponds to small q and large ε. As the growth rate increases (green arrow), optimal states move along the frontier,
increasing q and reducing ε. b In silico prediction for optimal E. coli growth on lactose-limited minimal medium. The black line corresponds to
the computed Pareto front, while individual points in the feasible region describe sub-optimal solutions. Blue (red) markers represent
solutions dominated by respiration (fermentation), while purple markers denote mixtures. c E. coli states obtained by integrating mass
spectroscopy data for lactose-limited growth from ref. 6 with in silico yields qualitatively reproduce (with quantitative accuracy for the yield)
the predicted Pareto front. The values of μ reported next to the experimental points represent the experimental growth rates; colors represent
the switch between respiration (in blue) and fermentation (in red), as determined experimentally (inset, data from Basan et al.11). Error bars
represent the standard deviation
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with JC being the total the carbon import rate. Based on (6), we
can write the specific intake q= JC/μ as

q ¼ qB þ σqE : (7)

The quantity qB= JC→B/μ represents the amount of carbon used
to synthesize biomass precursors (in units of mmol of carbon per
gram of dry weight). The term qE= JC→E/(σμ) instead stands for
the carbon intake associated to ATP production (i.e., the inverse
number of ATP molecules regenerated per lactose molecule),
where we accounted for the fact that at fast growth the overall
energy requirement JE of processes downstream of metabolism
(e.g. translation) is proportional to the growth rate μ via a fixed
growth-associated maintenance rate σ, i.e. JE= σμ (Methods). To
assess the partitioning of carbon into energy production and
biomass precursors one has to estimate qE and qB. This can be
done using a genome-scale model of E. coli’s metabolic network
upon generalizing the parametrization v= μξ to the linear
combination v= JEη+ μβ, where the vectors η and β can be
univocally determined by perturbing the energetic demand of the
cell (Supplementary Text, Note 3). In this setting, the metabolic
state of the cell is described by the pair of vectors (η, β) rather
than by the single vector ξ, but it is still possible to compute
optimal and sub-optimal states together with the corresponding
values of qB and qE (Supplementary Text, Note 3C).
Our results indicate that the carbon flux JC is diverted

preferentially into the synthesis of biomass precursors, with JC→B

amounting to 60–75% of JC (Fig. 3b). Still, most of the variation in
the specific intake q with μ is accounted for by a significant
increase in qE (Fig. 3c), corresponding to a dramatic decrease in
ATP yield (1/qE, Fig. 3d) from 40 ATP per lactose for respiration-
based states to about 20 for fermentation-based ones, in
agreement with estimates from ref. 11 On the other hand, the
biomass yield (1/qB, Fig. 3e) does not display any significant
change. In other terms, the energy yield appears to be the main
driver of the acetate switch despite the significantly uneven
partitioning of carbon between ATP and biomass precursor
synthesis pathways.
By exploiting the same decomposition of v we are also able to

infer whether individual reactions are mostly associated to the
synthesis of energy or biomass precursors. This information is
encoded in the entries of η and β, which relate fluxes respectively
to the energy and the biomass class. Non-zero entries of η occur
mostly for reactions belonging to glycolysis, TCA cycle, and

oxidative phosphorylation pathways. The corresponding pro-
teome mass fractions derived from proteomics sum up to about
11% of the total in all conditions (Fig. 3f), while the crossover
between TCA and glycolytic proteins starts at growth rates faster
than 0.7/h (Figs 3g and 2c, inset) in agreement with previous
determinations.11 In turn, the mass fraction of proteins associated
to the production of biomass precursors increases almost
proportionally to the growth rate for μ≳ 0.7/h (Fig. 3f), implying
that the decrease in ε= ϕE/μ observed at fast growth (Fig. 2c) is
mostly due to the fact that the proteome share allocated to
energy metabolism remains roughly constant as μ changes.

A two-state model of E. coli’s acetate switch
These results strongly implicate energy metabolism in the increase
in the specific carbon uptake q and the corresponding drop in the
protein cost ε observed at fast growth. The presence of two well-
defined types of states (associated respectively to respiration and
fermentation), the shift in the efficiency of the optimal energetic
metabolism, and the lack of significant changes in the efficiency of
anabolic processes point to a minimal two-state model of E. coli’s
acetate switch. We classify states on the Pareto front in two broad
sets (Fig. 4a). The first corresponds to a ‘fermentation’ phenotype
with large specific carbon intake (qfer≳ 6 glac/gDW, Fig. 2c) but low
specific protein cost (εfer≃ 0.3 h), showing carbon overflow and
robust fermentative flux. The second one has lower carbon intake
(qres ≳ 5.5 glac/gDW) but higher protein costs (εres≃ 0.35 h) and
relies on respiration for ATP production. We assume that generic
flux patterns are described by linear combinations of these
phenotypes with parameter α (0 ≤ α ≤ 1), thereby giving a
combined specific carbon intake q(α)= αqres+ (1− α)qfer and
protein cost ε(α)= αεres+ (1− α)εfer. The growth rate μ is then

μðαÞ ¼ ϕmax

wR þ εðαÞ þ wC qðαÞ (8)

(see Eq. (4)). This model predicts (Supplementary Text, Note 4)
that, at optimal growth, a transition between the fermentation
phenotype (fast growth) and the respiration phenotype (slow
growth) occurs when the extra cost of importing carbon in the
former matches the extra protein cost of respiration in the latter
(Fig. 4b). The transition occurs when wC takes the value

wac
C � εres � εfer

qfer � qres
’ 0:1

gDW � h
mmol lac

; (9)

Fig. 4 Phenomenological two-state view of E. coli carbon-limited growth. a Respiration and fermentation phenotypes as characterized by the
multi-objective optimal states on the Pareto front of E. coli’s metabolism. The respiration phenotype has a larger yield (smaller q) and larger
specific protein costs, while the fermentation phenotype carries lower yields (higher q) and smaller cost. b Growth rate (μ) versus carbon-
intake cost wC as obtained from the phenomenological two-state model discussed in the text (see Supplementary Text, Note 4). For each wC,
the optimal phenotype is the one for which μ is largest. The switch from the fermentation to the respiration phenotype occurs when wC
matches the extra protein cost required by respiration
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corresponding to μac≃ 0.7/h, close to the experimentally deter-
mined onset of the acetate switch (Fig. 2c). While a discontinuous
respiration-fermentation transition is unrealistic, this model
emphasizes the role of the ATP yield and the interplay between
specific carbon intake and protein costs in determining carbon
overflow in E. coli. The value wac

C above which the fermentation
phenotype becomes dominant and acetate excretion sets in can
be interpreted as the external carbon level for which the two
strategies provide the same cost-benefit balance, therefore giving
the same growth rate. A comparison between this toy model and
other phenomenological approaches is given in Supplementary
Text, Note 4.

DISCUSSION
We have provided a description of E. coli’s carbon-limited growth
in terms of a multi-objective optimization problem in which the
cell optimizes for both the efficiency of carbon utilization and the
protein cost of metabolism. As the external carbon level is varied,
the optimal solution interpolates between the two functions,
focusing the optimization on protein costs (carbon efficiency) in
carbon-rich (carbon-poor) media. The emergent scenario depicts,
with quantitative accuracy, the economics underlying the yield-
cost tradeoff in E. coli. States associated to respiration or
fermentation lie in different regions of the plane spanned by
the specific carbon uptake q and the specific protein cost ε.
Because of the proteome allocation constraint Eq. (3), a
predominantly respirative, yield-maximizing strategy is optimal
at slow growth, while a cost-minimizing strategy relying on
fermentation sets in at fast growth. The Pareto front bends
between μ≃ 0.6/h and μ≃ 0.9/h, signaling the gradual shift from
one strategy to the other. Remarkably, this range contains the
empirical acetate onset point, which lies at μ≃ 0.7/h.11 To clarify
which variable drives the change in growth yield observed along
the crossover, we developed a genome-scale in silico framework
to decompose the carbon influx into terms contributing
respectively to biomass and energy synthesis. We found that the
partitioning is significantly uneven, with most carbon going into
biomass precursors. The energy-biosynthetic component, how-
ever, accounts for most of the change seen in the growth yield.
The efficiency of ATP production hence appears as the key driver
of the yield-cost tradeoff, and a minimal two-state model based
on this result can indeed recapitulate the overflow scenario.
The analysis of optimal growth in terms of a yield-cost tradeoff

and the decomposition of the carbon uptake into energy and
biomass contributions are the main results of this work. When
integrated with proteomic data, such a decomposition allows to
comprehend the behavior of metabolic fluxes and proteome mass
fractions in a unified framework. It is noteworthy that a detailed
study of carbon partitioning had so far been carried out only
within streamlined models.37–40

The two-state scheme presented here differs from other coarse-
grained models of carbon overflow in many respects. For instance,
the yields and cost parameters for respiration and fermentation
used in ref. 11 refer to the ATP yield (as opposed to the growth
yield) and to specific “respiration” and “fermentation” proteomes.
Here, both pathways belong to the same E-sector and the focus is
on the global re-allocation of the proteome rather than the up- or
down-regulation of specific pathways. Secondly, the cost of
carbon uptake (i.e., wC) is implicitly assumed to be nil in ref.,11

implying that metabolism is completely determined by the
normalization of proteome fractions and by the carbon and
energy flux balance. Under Pareto optimality, instead, it derives
from the tradeoff between the C- and E-sectors. This makes it in
principle possible to describe strains with different “acetate
overflow lines” (e.g., mutants41,42 or “acetate feeding” strains
obtained in evolution experiments43,44), which correspond to
feasible (albeit sub-optimal) cellular states that would be harder to

describe by the model of ref., 11 which characterizes an “optimal”
strain. Experiments probing the fitness advantages of different
metabolic strategies in different environmental and ecological
contexts might shed light on the evolution of the acetate switch.
By extending the model of Basan et al.,11 Vazquez and Oltvai45

have linked overflow metabolism to a macromolecular crowding
constraint along the lines of refs. 46,47 (A similar constraint plays an
important role in the self-replicating cell model discussed in ref. 22)
For E. coli, this scenario appears to be at odds with the empirical
fact that the cell volume adjusts in response to changes in the
macromolecular composition of the cell so as to maintain the
density roughly constant across distinct conditions.48,49 While this
reinforces the idea that cytoplasmic crowding is finely regulated,50

a constant intracellular density is unlikely to be the main driver of
the acetate switch. In addition, however, ref. 45 points out that, at
slow growth, an increase of the proteome share of proteins other
than those associated to respiration and fermentation has to take
place. Our results are in line with this observation. In fact, proteins
included in the C-sector are upregulated at low μ, in agreement
with quantitative measurements.6

It is known that many different organisms share E. coli’s
behavior in terms of growth laws4 and carbon overflow. The
detailed picture may, however, differ significantly from E. coli’s. For
instance, recent work on L. lactis, an industrial bacterium that
displays a transition between different types of fermentations
rather than between fermentation and respiration, indicates that
protein costs are not a determinant factor in its growth
strategies.51 On the other hand, many features observed in E.
coli are shared by S. cerevisiæ,52 despite the fact that carbon
overflow in yeast appears to respond to the carbon intake flux
rather than to the macroscopic growth rate.53 Likewise, relation-
ships like Eqs. (1) and (2) hold under more general types of
limitations than carbon shortage, provided JC is replaced by the
flux of the limited activity and wC by a proxy for the level of stress
to which the cell is subject. The tradeoff theory presented here is
therefore likely to be more broadly applicable than the case study
on which we have focused.

METHODS
Derivation of the proteome constraint, Eq. (3)
The proteome normalization condition using the C-, R-, E- and Q-sectors
reads

ϕC þ ϕR þ ϕE ¼ 1� ϕQ|fflfflffl{zfflfflffl}
fixed

:
(10)

Based on the bacterial ‘growth laws’ characterized in refs., 3,6 each of the
three condition-dependent terms in Eq. (10) is of the form ϕX= ϕX,0+ ΔϕX,
where ϕX,0 is a constant offset value, the minimal value of ΔϕX is zero, and
X∈ {C, R, E}. In turn, if metabolism mediates the adjustment of each of the
three ΔϕX terms, these can be expressed in terms of their driving
fluxes.3,5,6,30 In particular, using a linear enzyme-flux relation ϕi= ϕi,0+wi|
vi| one gets to the following expressions for the condition-dependent parts
of the proteome:

ΔϕCðJCÞ ¼ wC JC ;

ΔϕRðμÞ ¼ wR μ;

ΔϕEðvÞ ¼ P
i2E

wi jvi j:
(11)

Substituting these into Eq. (10) immediately leads to Eq. (3) upon
including all condition-independent terms in the constant ϕmax= 1− ϕC,0

− ϕR,0− ϕE,0, where ϕE,0 corresponds to the sum of the offsets of the
individual metabolic enzymes: ϕE;0 ¼

P
i2E ϕi;0.

Metabolic network reconstruction
All computations were carried out on the iJR904 GSM/GPR genome-scale
metabolic model54 with a lactose-limited minimal medium.
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Constraint-based model to compute optimal metabolic fluxes
In order to compute reaction fluxes corresponding to maximum growth
within a genome-scale model, we have resorted to Constrained Allocation
Flux Balance Analysis (CAFBA). Flux Balance Analysis (FBA55) approaches to
metabolic network modeling search for optimal flux vectors v= {vi} within
the space F defined by the mass balance conditions Sv= 0, S denoting
the stoichiometric matrix, and by lower and upper bounds for the fluxes:

F ¼ v : Sv ¼ 0 and vmin � v � vmaxf g: (12)

The most common bounds encode for thermodynamic constraints
imposing that vi ≥ 0 for irreversible reactions. Other fluxes might instead be
set to prescribed values, as the ATP hydrolysis flux related to maintenance
(ATPm), which is fixed at 7.6 mmol/gDWh in the iJR904 model. FBA usually
looks for the flux vector v 2 F that maximizes the growth rate μ subject to
a cap on the nutrient intake, and is solved by Linear Programming (LP).55

CAFBA30 is a modification of FBA where F is further constrained by
Eq. (3). CAFBA is explicitly stated as

max
v2F

μ subj: to wCJC þ wRμþ
X
i2E

wi jvi j ¼ ϕmax: (13)

As shown in ref., 30 CAFBA can be solved by LP as long as the protein
constraint is growth-limiting. Importantly, no bounds on the influx of
nutrients present in the growth medium (e.g., the carbon source) are
required. In CAFBA, different degrees of limitation of the carbon source are
modeled by increasing the value of wC, which is thus the main control
parameter. We set ϕmax and wR to their E. coli-specific empirical values of
0.48 and 0.169/h, respectively.3 In addition, the costs wi of reactions in the
E-sector were assumed to take on the same value for each i, namely wE=
8.3 × 10−4 gDWh/mmol.30 This value imposes a maximum achievable
growth rate, obtained in the limit wC→ 0, of 1/h, comparable to that seen
in.6 (See ref. 30 for a discussion of alternative choices.) For sakes of
simplicity, we have also assumed that the stoichiometry of the biomass
synthesis reaction whose rate quantifies μ is growth-rate independent.55

The case of growth-rate dependent biomass composition does not yield
significant differences with the scenario we present.30

Growth-associated and maintenance energy fluxes
In genome-scale models of metabolism, the energy requirements of the
cell are described by an ATP hydrolysis flux JE= σ0+ σμ formed by a
growth-independent “maintenance” flux σ0 (the ATPm) and a growth-
associated term σμ. These terms account for process not included in the
metabolic network, like protein synthesis. In E. coli, the ratio σ0/σ is
estimated to lie between 0.05 and 0.15/h.30,56,57 As a consequence, σ0 can
be neglected at growth rates above roughly 0.5/h.

Computation of the Pareto front
The Pareto front shown in Fig. 2b was computed by solving CAFBA for
different values of wC after silencing ATPm. To compensate for the lack of
maintenance-associated energy costs, we increased the growth-associated
ATP hydrolysis rate by an amount equal to the ATPm flux (i.e., 7.6 mmolATP/
gDW), so that the total ATP hydrolysis flux at the maximum achievable
growth rate of 1/h is the same as in the default model. The difference in
the overall ATP hydrolysis flux (including maintenance and growth-rate
dependent components) between this implementation of CAFBA and the
standard one30 is within 15% for growth rates above 0.5/h. For each
CAFBA-derived optimal state ξ= v/μ, the specific intake q= JC/μ and the
specific protein cost ε ¼ wE

P
i jvi j=μ were computed, returning a set of

points (one per state) in the (q, ε) plane. The Pareto front is obtained by
joining all optimal states via straight lines; as wC is varied, the optimal
solution jumps between the states defining the front, leading to the
discontinuities seen in Fig. 2b (see Supplementary Note 2 for mathematical
details and an illustration of the optimal states in CAFBA). Such abrupt
shifts are at odds with the smooth behavior observed in experiments11 and
are due to our choice to work with at fixed weights wi.

30 The version of
CAFBA with randomized weights described in ref. 30 makes use of an
averaging procedure that yields the same qualitative picture but
quantitative agreement with experiments. Here we have chosen to stick
to the non-random case for sakes of simplicity.

Generation of sub-optimal CAFBA solutions
In order to generate the sub-optimal CAFBA solutions shown in Fig. 2b, we
computed the values of q and ε for flux vectors v= (JC, {vi}) different from

the optimal ones. To ensure that such states lie close to the Pareto front,
we used flux vectors that are optimal for a version of CAFBA in which
homogeneous costs (wi=wE for each i) are replaced by independent
identically-distributed random costs with mean wE and dispersion δ, as
discussed in ref. 30 After generating a large number of such vectors for
different values of wC, we computed the corresponding metabolic states ξ
by normalizing each of them by its growth rate. For each such ξ, we then
computed the specific uptake q= ξC and protein cost ε ¼ wE

P
i jξ i j, using

homogeneous weights for the latter. This method yields viable but sub-
optimal solutions to CAFBA with homogeneous weights. The typical
distance of sub-optimal solutions from the Pareto front is controlled by the
dispersion δ of the individual costs wi.

30 Sampled solutions approach the
Pareto front as δ→ 0. Upon increasing δ, protein costs get more variable
and metabolic states far from the Pareto front become increasingly likely.

Computation of ATP and biomass yields
Optimal and sub-optimal CAFBA solutions shown in Fig. 3 were generated
as follows. For each solution v to CAFBA with randomized protein costs
(obtained as described above), we computed a “perturbed” solution v′
using a small but non-zero ATPm (σ0= 10−2 mmol ATP/gDWh). The vectors
β and η, in terms of which flux vectors can be decomposed, can be
obtained uniquely as linear combinations of v and v′. The growth rate
corresponding to a sub-optimal solution to the CAFBA problem with
homogeneous proteins costs are instead computed from a generalization
of Eq. (4) that includes an explicit dependence on σ0. Details are found in
Supplementary Text, Note 3.

Computation of protein costs from mass spectrometry data and
comparison with the predicted Pareto front
Mass spectrometry data from6 quantify protein levels for E. coli NQ381 (a
strain with titratable LacY enzyme derived from the prototrophic K-12
strain NCM3722) grown in minimal lactose media. Five different growth
rates were obtained by inducing different levels of LacY. Relative protein
abundances were converted into absolute mass fractions following the
method used in.11 Briefly, we rescaled relative mass fractions with absolute
abundances from ribosome profiling data obtained for E. coli strain
MG165558; strain-specific differences were accounted for by using the
proteomics dataset from ref. 8 as a bridge between NCM3722 and MG1655.
The specific cost ε of the E-sector shown in Fig. 2c was obtained as follows.
First, reactions were assigned to the E-sector according to the partition
used in ref. 30 Next, for each reaction, we obtained a corresponding list of
enzymes from the Gene-Protein-Reaction matrix included in the iJR904
reconstruction. We denote by ni,tot the number of reactions in which
enzyme i participates (irrespective of whether they are assigned to the E-
sector or not), and by ni,E the number of such processes included in the E-
sector. Given the experimental protein mass fractions ϕi, our estimate for
the mass fraction of the E-sector ϕE, and its proteome cost ε are given
respectively by

ϕE ¼
X
i2E

ni;E
ni;tot

ϕi and ε ¼ ϕE

μ
: (14)

Unfortunately, growth yields for these dataset are not available. Instead,
these were estimated with FBA by minimizing the carbon intake flux while
constraining the growth rates and acetate fluxes to their experimental
values. Notice that yields may vary considerably across experiments, and
that their value depends on those of maintenance and growth-dependent
ATP hydrolysis rates. For our purposes, though, the key feature is the
decrease that occurs at fast growth rates (above approx. 0.7/h) due to
acetate excretion, which is robust and independent on the carbon source
used.11,30

Computation of energy- and biomass-associated proteome
fractions
To provide a condition-independent partitioning of the protein mass
fraction of the experimental E-sector into a biomass- and an energy-
associated component we adopted a criterion that relies on the flux
decomposition v= βμ+ JEη and on the whole set of sampled metabolic
states shown in Fig. 3. Because of the inherent conceptual difficulty in
disentangling the contribution of energy to biomass synthesis, our choice
is rather conservative with respect to the biomass-associated proteome
fraction. Specifically, a reaction is considered “energy-associated” (index ε)
if the following conditions are satisfied simultaneously in at least one of
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the metabolic states shown in Fig. 3: (i) its flux vi is significantly non-zero
(specifically, |vi| > 10−6 mmol/gDWh); (ii) its ηi component is sufficiently
large compared to βi (specifically, |ηi| > 0.1 ⋅ |βi|). Otherwise, it is “biomass-
associated” (index B). The biomass- and energy-associated proteome
fractions are then defined as

ϕB
E ¼

X
i2B

ni;E
ni;tot

ϕi and ϕε
E ¼

X
i2ε

ni;E
ni;tot

ϕi ; (15)

respectively. These quantities are shown in Fig. 3f along with
ϕE ¼ ϕB

E þ ϕε
E . The majority of proteins in ε belongs to basic energy-

producing pathways (Fig. 3g). The pathway membership of each reaction
was based on the “subsystems” description in the iJR904 model (‘Citric
Acid Cycle’ for TCA cycle, ‘Glycolysis/Gluconeogenesis’ and ‘Pyruvate
Metabolism’ for Glycolysis, and ‘Oxidative Phosphorylation’ for OxPhos).
Notice that the size and composition of the energy sector ε resulting from
our conservative classification is in agreement with that found in ref.,11

where reactions were subdivided manually.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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