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Abstract

The intrinsic stochasticity of gene expression is usually mitigated in higher 

eukaryotes by post-transcriptional regulation channels that stabilise the output 

layer, most notably protein levels. The discovery of small non-coding RNAs 

(miRNAs) in specific motifs of the genetic regulatory network has led to identifying 

noise buffering as the possible key function they exert in regulation. Recent in vitro
and in silico studies have corroborated this hypothesis. It is however also known 

that miRNA-mediated noise reduction is hampered by transcriptional bursting in 

simple topologies. Here, using stochastic simulations validated by analytical 

calculations based on van Kampen’s expansion, we revisit the noise-buffering 
16.e00095

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

mailto:silvia.grigolon@gmail.com
mailto:andrea.demartino@roma1.infn.it
mailto:enzo.marinari@roma1.infn.it
http://dx.doi.org/10.1016/j.heliyon.2016.e00095
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2016.e00095&domain=pdf


Article No~e00095

2 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub

(http://creativecommons.org/licenses/
capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL), a small 

module that is widespread in the gene regulatory networks of higher eukaryotes, in 

order to account for the effects of intermittency in the transcriptional activity of the 

modulator gene. We show that bursting considerably alters the circuit’s ability to 

control static protein noise. By comparing with other regulatory architectures, we 

find that direct transcriptional regulation significantly outperforms the IFFL in a 

broad range of kinetic parameters. This suggests that, under pulsatile inputs, static 

noise reduction may be less important than dynamical aspects of noise and 

information processing in characterising the performance of regulatory elements.

Keywords: Biological sciences, Systems biology

1. Introduction

Because of the inherently stochastic nature of gene expression [1, 2, 3, 4, 5], 

cells dispose of a number of mechanisms to buffer the noise generated by 

regulatory interactions. Noise processing in eukaryotes mainly aims at preventing 

the amplification of fluctuations across different regulatory steps and at stabilising 

the output layer (proteins, RNAs, etc.), and it is normally achieved by combining a 

specific regulatory circuitry with some degree of tuning of kinetic constants. The 

simplest non-trivial example of a noise-processing genetic circuit is perhaps the 

Incoherent Feed-Forward Loop (IFFL) [6, 7, 8, 9, 10], in which a master 

transcription factor (TF) activates the expression of two molecular species, one of 

which inhibits the expression of the other (the target). Fluctuations in the target 

level are controlled by the kinetic constants that govern the system’s stochastic 

dynamics [11], which includes molecular synthesis and degradation steps as well 

as binding-mediated target repression. States for which the target level is more 

stable than what would be achieved in a direct regulator-target circuit lacking the 

intermediate repressor can generically be obtained by selecting specific ranges for 

kinetic rates. Very recently, this type of mechanism has been analysed in detail to 

clarify the role of microRNAs (miRNAs) [12, 13, 14, 15, 16] as noise-buffering 

agents in the post-transcriptional regulatory machinery of higher eukaryotes [17, 

18, 19, 20, 21]. The fact that miRNA-mediated IFFLs—where a microRNA plays 

the role of the repressor—are over-represented motifs in their transcriptional 

regulatory network strongly suggests that static noise reduction might explain, at 

least in part, why this class of non-coding RNAs is so ubiquitous [6, 22]. 

Theoretical in silico studies [17] and experimental in vitro work [23, 24] have 

indeed confirmed that the miRNA-mediated IFFL can, in certain conditions, 

outperform more direct regulatory circuits in generating a stable protein output.

This work aims at adding a further element to the characterisation of the 

noise-buffering capacity of the IFFL. We shall in particular address the question of 
liyon.2016.e00095
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how the latter is affected by transcriptional on/off noise at the level of the modulator 

(the TF). Intermittency in transcription is a well documented phenomenon [25, 26, 

27, 28, 29] that can be driven both by intrinsic factors, like the shuttling of TFs into 

and out of the cell nucleus, small TF copy numbers or the peculiar thermodynamics 

of TF–DNA interaction [30], as well as by external signals [29]. If TF–DNA 

binding/unbinding events are much faster than the time scales characterising RNA 

synthesis, it is usually safe to assume that transcription occurs continuously [17, 

31]. However, it is known that bursting severely hampers static noise buffering in 

simple miRNA-target modules [32]. For this reason, we shall introduce and solve a 

model for a generalised version of the IFFL that accounts for on/off noise in 

transcription and that, in different limits, allows to recover the behaviour of three 

different regulatory circuits (a direct transcriptional regulatory module, 

a miRNA-mediated IFFL, and a direct module with a self-inhibiting output), whose 

performances we shall compare. In brief, our findings show that, in presence of 

intermittent transcription, the IFFL is robustly outperformed by the simpler, direct 

modulator-target scheme. This suggests that, as far as noise buffering is central, 

network architecture may not be the key to control static gene expression noise 

when the upstream modulator is intermittently transcribed. On the other hand, it is 

of crucial importance when on/off transcription noise is smoothed either due to 

time-scale separation or simply because typical times during which transcription is 

active are much longer than those over which the target level stabilises.

This scenario was mostly obtained by numerical simulations performed via the 

Gillespie algorithm [33]. For analytical validation, we resorted to van Kampen’s 

system-size expansion [34], a widely used approximation method for the Master 

Equation. Our approach differs from that employed in [17] and allows to study 

noise-buffering in slightly different conditions. While being hard to generalise 

beyond the Gaussian fluctuation regime, its main advantage is that it can be easily 

extended to cope with more complex circuits. We shall therefore also briefly 

outline the van Kampen’s expansion solution for the standard IFFL model.

2. Results

2.1. miRNA-mediated IFFL: setup

The miRNA-mediated IFFL is an elementary post-transcriptional regulatory 

circuit that accounts for the interactions between a master TF (the modulator), 

a miRNA, and a target protein [17]. In short (see Figure 1A), the modulator 

activates the synthesis of both the miRNA and the target, which is in turn repressed 

by the miRNA. A detailed depiction (see Figure 1B) includes transcription of 

miRNA and messenger RNAs (mRNAs), target and modulator synthesis via 

translation of the mRNA substrates, complex formation and degradation, and target 
liyon.2016.e00095
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Figure 1. MiRNA-mediated IFFL. (A) Schematic view. (B) Detailed view with each of the processes 
considered.

repression mediated by miRNA–mRNA binding that sequesters the target’s mRNA 

thereby inhibiting translation [11, 16]. (In reality, miRNA–mRNA complex 

formation is preceded by several catalysed steps leading to the miRNA being 

loaded onto a specific protein complex; for simplicity, we shall ignore these steps in 

what follows.) We shall denote the modulator and the target proteins, as well as the 

complex, by capital letters (TF, P and C, respectively), whereas we shall use the 

notation mRNATF and mRNAP for the mRNAs. The processes lumped at the 

modulator node (with their respective rates) can be written as

∅
𝛽mTF
←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←
𝛿mTF

mRNATF, (1)

mRNATF
𝜃TF⟶ mRNATF + TF, (2)

TF
𝜃mP⟶ mRNAP + TF, (3)

TF
𝜃𝜇
⟶ miRNA + TF, (4)

TF
𝛿TF⟶ ∅. (5)

In brief, the modulator’s mRNA (mRNATF) is transcribed at rate 𝛽mTF and decays 

at rate 𝛿mTF. Once transcribed, it guides the synthesis of the TF (at rate 𝜃TF). The 

modulator, in turn, fosters the transcription of the mRNA of the target at rate 𝜃mP

and of the microRNA at rate 𝜃𝜇. (For simplicity, we assume that mRNAP and 

miRNA can not be transcribed from alternative loci that do not require the regulator 

TF.) The target’s mRNA is used as a substrate for the synthesis of P at rate 𝜃𝑃 :

mRNAP
𝜃𝑃⟶ mRNAP + P. (6)

The interaction between miRNA and mRNAP is instead described by complex 

formation, dissociation, catalytic decay (with miRNA re-cycling, rate 𝛼) and 

stoichiometric decay (without miRNA re-cycling, rate 𝛿𝑠):
liyon.2016.e00095
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Figure 2. Noise buffering by the miRNA-mediated IFFL (I). Theory (lines) and simulation (markers) 
obtained for the IFFL. (a) Relative fluctuations in the protein number as a function of the rate constant 
of mRNATF synthesis. (b) Mean protein concentration as a function of the rate constant of mRNATF

synthesis. (c) Relative fluctuations in the protein number as a function of the relative fluctuations in the 
number of TFs. Averages over 106 Gillespie algorithm time steps after equilibration. Rate constants are 
as specified in Table 1 (see Methods), with the addition of 𝜃TF = 0.01 min−1, 𝑘+

𝐶
∕𝑘−

𝐶
= 1 nM−1 and 𝛼 =

0 min−1.

miRNA + mRNAP

𝑘+
𝐶

←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←
𝑘−
𝐶

C, (7)

C
𝛼

⟶ miRNA, (8)

C
𝛿𝑠⟶ ∅. (9)

Finally, the miRNA, the target’s mRNA and the target itself are degraded 

respectively at rates 𝛿𝜇, 𝛿mP and 𝛿𝑃 , i.e.

miRNA
𝛿𝜇
⟶ ∅, (10)

mRNAP
𝛿mP⟶ ∅, (11)

P
𝛿𝑃⟶ ∅. (12)

By combining results from simulations performed by the Gillespie algorithm 

with an approximate van Kampen’s expansion-based theory (see Methods) we 

addressed different questions, the first of which concerned the validation of our 

in silico results. Spanning a range of abundance for the transcription factors from 

roughly 50 to around 1000 molecules, we focused on the effects produced by the 

IFFL mechanism on both protein levels and fluctuations first in absence of miRNA 

catalytic degradation. In Figure 2a, we show the behaviour of the Coefficient of 

Variation (CV) for the target protein, i.e. 𝜎𝑃∕⟨𝑛𝑃 ⟩ with 𝜎𝑃 the standard deviation 

and ⟨𝑛𝑃 ⟩ the mean protein level, as a function of the production rate of the mRNA 

associated to the TF. One sees that, as expected, relative fluctuations of the protein 

level decrease while its concentration 𝜙𝑃 increases linearly (Figure 2b). Likewise 

(Figure 2c), the CVs of TF and target are linearly related. In each plot, straight lines 

correspond to the analytical solution obtained via the van Kampen’s expansion. 
liyon.2016.e00095
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The quality of the agreement between theory and stochastic simulations improves 

upon increasing the number of molecules. However, even for small values of 𝜙𝑃

the agreement is satisfactory. This indicates that the van Kampen’s expansion, by 

taking the correlations between variables explicitly into account (see Methods), can 

lead to accurate predictions even for small numbers of molecules. On the other 

hand, the Gillespie algorithm results are validated through an explicit analytical 

approximation scheme.

2.2. Noise buffering by the IFFL is optimised for specific miRNA 

levels and/or repression strengths

We now focus on the noise buffering capacity of the IFFL. At odds with the 

model considered in [17], where repression is described by a Hill-like function, 

here we assume a simpler scenario in which concentration changes are governed by 

the law of mass action, so that miRNA and target can bind at rate 𝑘+
𝐶

and unbind at 

rate 𝑘−
𝐶

. For simplicity, neither degradation terms for the complex are, for the 

moment, taken into account (𝛿𝑠 = 0) nor catalytic decay for the target (𝛼 = 0). 

A regime of optimal noise buffering can be identified upon varying the miRNA 

transcription rate and/or the affinity between miRNA and target at fixed target copy 

numbers, i.e., keeping the target transcription rate constant. In such a way, the 

output mean level of proteins is kept constant, allowing a consistent comparison for 

fluctuations. By the former route, i.e. by increasing the miRNA population in the 

system, protein fluctuations are found to be minimised in a specific range of values 

for miRNA concentration, which appears to be centred around miRNA 

transcription rates roughly 10 times faster than those of the target’s mRNA (see 

Figure 3a and b). (Notice that, when the number of miRNAs becomes too large, 

non-linear effects introduced by the interaction with the target become 

non-negligible and our van Kampen’s expansion solution breaks down.) A very 

similar picture can be obtained by tuning the miRNA–mRNA binding rates, as 

reported in Figures 3c and 3d. In particular, higher binding rates (i.e. stronger 

repression) lead to smaller relative fluctuations and signatures of a minimum 

appear close to 𝑘+
𝐶
∕𝑘−

𝐶
≃ 102 nM−1. Upon increasing 𝑘+

𝐶
∕𝑘−

𝐶
further, the Gillespie 

algorithm slows down considerably since miRNA–mRNA interactions become 

dominant. As in the previous case, the van Kampen’s expansion solution can follow 

simulations only up to the point where non-linear effects can be neglected.

In summary, through miRNA activity, fluctuations in the output layer can be 

reduced by up to 50% compared to those characterising the input layer (obtained in 

absence of miRNAs, i.e., for 𝜃𝜇 → 0), in agreement with results obtained in [17]

for a slightly different repression mechanism. While the quantitative result is 

parameter-dependent, this scenario is very robust at a qualitative level.
liyon.2016.e00095
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Figure 3. Noise buffering by the miRNA-mediated IFFL (II). (a) Theory (lines) and simulations 
(markers) for the relative fluctuations generated by the IFFL in the target number upon varying the 
synthesis rate of miRNA (𝜃𝜇 , in units of 𝜃mP, this last kept constant in our simulations). (b) Corresponding 
distributions of the target copy number obtained for fixed 𝜃𝜇

𝜃mP
= 1 (orange blocks) and 𝜃𝜇

𝜃mP
= 10−4 (blue 

blocks). Parameters are as in Table 1 (see Methods), with 𝛽mTF = 5 ⋅ 10−3 nM min−1, 𝑘
+
𝐶

𝑘−
𝐶

= 1 nM−1

and 𝛼 = 0 min−1. (c) Theory (lines) and simulations (markers) for the relative fluctuations generated by 
the IFFL in the target number upon varying the binding affinity between miRNA and the target mRNA. 
(d) Corresponding distributions of the target copy number obtained for fixed 𝑘

+
𝐶

𝑘−
𝐶

= 1 nM−1 (orange 

blocks) and 𝑘
+
𝐶

𝑘−
𝐶

= 10−4 nM−1 (blue blocks). Averages over 106 Gillespie algorithm time steps after 

equilibration. Parameters are as in Table 1 (see Methods), with 𝛽mTF = 5 ⋅ 10−3 nM min−1, 𝜃𝜇 = 𝜃mP and 
𝛼 = 0 min−1.

2.3. miRNA re-cycling has a weak noise-suppressing role

miRNAs can plausibly act not only by sequestering the mRNA in a complex but 

also by catalysing its degradation, possibly without leading to its own 

destabilisation. This ‘catalytic’ channel of miRNA action can be implemented in 

the model by simply switching on the reaction associated to the rate 𝛼. This leads 

to a degradation of the target mRNA and then to a change in the average protein 
liyon.2016.e00095
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concentration at the steady state. miRNAs are instead fully re-cycled in the process, 

i.e. they re-enter the pool of free molecules after the complex is degraded. By 

varying the strength of catalysis, however, we only observed a weak effect on 

protein fluctuations, described in Figure 4, as the output’s CV generically decreases 

as the TF transcription rate and/or the strength of repression increase. This type of 

effect however is hard to distinguish from the relative noise reduction due to the 

high numbers of molecules (Figure 4a). The competition between the catalytic 

channel and the pure binding-unbinding leads, in the most favourable case, to a 

15% noise reduction roughly (Figure 4b). We conclude therefore that the catalytic 

channel only contributes weakly to the IFFL’s noise buffering capacity.

2.4. Generalised Feed-Forward Loop

In order to compare the noise-buffering performance of the IFFL against other 

types of circuits and/or noise sources, it is convenient to introduce a generalised 

version of the feed-forward loop that accommodates more ingredients and by 

which one may recover simpler modules by turning specific reaction rates on or off. 

The aim is to further dissect the functionality of microRNAs under transcriptional 

bursting by comparing IFFL to other topologies, be they negative feedback-like or 

unregulated ones. To achieve this, we focus here on two additional ingredients, 

namely transcriptional bursts at the level of the modulator (an extra source of 

stochasticity) and target self-inhibition (a possible alternative noise-buffering 

mechanism).

Transcriptional bursting. So far, we have implicitly accounted for the noise related 

to the finite size of the system and the discreteness of molecules while neglecting 

altogether the possibility that transcription suffers from on/off noise due to the 

binding/unbinding of the TFs controlling modulator synthesis to the DNA 

promoter region [35]. Such events are usually assumed to take place on time scales 

much shorter than those that characterise transcription, so that for many purposes 

the latter can be assumed to occur at a constant rate. If the number of TFs is 

sufficiently high, the binding probability (which can be roughly considered to be a 

sigmoidal function of the TF level) is indeed essentially constant and transcription 

from the promoter always occurs at the largest possible rate. When one is interested 

in probing the system’s behaviour on shorter time scales or when the population of 

transcription factors is not sufficiently large, promoter switching noise (under 

which the promoter flips between a transcribing and an idle state) should not be 

neglected. In order to include this mechanism to the IFFL, it suffices to replace 

Eqs. (1)–(2) with (see also [27])

DNATF 𝜃TF⟶ TF + DNATF, (13)

𝑎 𝑎

liyon.2016.e00095
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Figure 4. Effect of catalytic complex decay on the noise buffering capacity of the IFFL. (a) Heat map 
of theoretical protein CVs obtained upon varying both the mRNA transcription rate 𝛽mTF and the catalytic 
rate 𝛼. Kinetic parameters are as in Table 1 (see Methods), with 𝑘

+
𝐶

𝑘−
𝐶

= 10−1 nM−1 and 𝜃𝜇 = 𝜃mP. (b) Same 

as in (a) but now keeping 𝛽mTF = 5 ×10−3 nM min−1 constant and varying the miRNA–mRNA coupling 
rate 𝑘+

𝐶
. c) and d) Simulated (markers) and theoretical (line) protein CVs (c) and protein concentration (d) 

as a function of the catalytic decay rate 𝛼 of the miRNA–mRNA complex. Averages over 106 GA time 
steps after equilibration. Parameters are as in Table 1 (see Methods), with 𝑘

+
𝐶

𝑘−
𝐶

= 10−1 nM−1, 𝛽mTF = 5 ×

10−3 nM min−1 and 𝜃𝜇 = 𝜃mP.

DNATF
𝑖

𝑘+TF⟶ DNATF
𝑎
, (14)

DNATF
𝑎

𝑘−TF⟶ DNATF
𝑖
. (15)

In short, the TF can be synthesised only if the necessary transcriptional machinery 

is in the active state (DNATF
𝑎

), i.e. when all the required transcription factors are 

bound to the correct promoter. In turn, DNA may switch to an inactive state 

(DNATF
𝑖

) at rate 𝑘−TF. The reverse off–on transition is instead assumed to happen at 

rate 𝑘+TF. Denoting by 𝑛FTa and 𝑛TFi the number of promoters in the active and 

inactive state, respectively, one must additionally impose that 𝑛TFa + 𝑛TFi = 1 at all 

times, since we assume that the TF can be transcribed from a single promoter so 

that 𝑛FTa ∈ {0, 1} (and likewise for 𝑛FTi). We shall refer to the set of chemical rules 

given by Eqs. (3)–(12) and (13)–(15) as the bursty-FFL (BFFL).
liyon.2016.e00095
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Target self-repression. In addition, we want to analyse how noise can be buffered 

by an alternative, perhaps more intuitive mechanism. Cells must often respond 

rapidly to changing environmental conditions. The principal way through which the 

cells can quickly adjust their protein levels is the enzymatic breakdown of RNA 

transcripts and existing protein molecules. This raises the question of whether a 

self-repression mechanism implemented by the target itself, through which it would 

inhibit its own expression, could be able to provide a tighter control of fluctuations 

than the BFFL. One way by which the self-inhibition may be implemented is by the 

binding of the target to its own promoter, which in turn blocks accessibility to either 

TFs or RNA polymerase. In such a case, self-repression would become stronger as 

the target level increases. To analyse this scenario, one should replace Eq. (3) with

TF + DNA𝑃
𝑎

𝜃mP⟶ TF + DNA𝑃
𝑎
+ mRNAP, (16)

DNA𝑃
𝑎
+ P

𝑘+
𝑟⟶ DNA𝑃

𝑖
, (17)

DNA𝑃
𝑖

𝑘−
𝑟⟶ DNA𝑃

𝑎
+ P, (18)

where DNA𝑃
𝑎

symbolises that self-repression is not active and transcription of the 

target’s mRNAs can occur, while DNA𝑃
𝑖

denotes an inactive state due to target 

self-inhibition. We shall refer to this module as the Self-Inhibiting Target (SIT). As 

in the previous case, the variables 𝑛Pa and 𝑛Pi denoting, respectively, the number of 

active and inactive promoters, are assumed to take the values 1 and 0 only, so that 

𝑛Pa + 𝑛Pi = 1 is an extra constraint to be enforced.

Description of the GFFL. The schematics of the Generalised Feed Forward Loop 

(GFFL) merging the BFFL and SIT is shown in Figure 5a. Working with the whole 

set of reactions (4)–(12) and (13)–(18), and setting to zero some of the parameters 

of the full model, it is possible to describe the dynamics of the different circuits 

that we wish to compare. For 𝑘+
𝐶
= 𝑘−

𝐶
= 𝜃𝜇 = 𝛿𝜇 = 0 one gets the SIT, while the 

choice 𝑘+
𝑟
= 𝑘−

𝑟
= 0 and 𝑛Pa ≡ 1 leads to the BFFL. On the other hand, the 

straightforward case in which the protein expression is directly controlled by a TF 

(direct transcriptional regulation, or DTR) can be obtained by setting 𝑘+
𝑟
= 𝑘−

𝑟
=

𝑘+
𝐶
= 𝑘−

𝐶
= 𝜃𝜇 = 𝛿𝜇 = 0 and 𝑛Pa ≡ 1.

2.5. Direct transcriptional control outperforms the IFFL under 

bursty transcriptional inputs

Because of the need to introduce the constrained binary variables 𝑛TFa, 𝑛TFi, 

𝑛Pa, 𝑛Pi in the analysis, analytical approaches to the Master Equation through the 

van Kampen’s expansion are in this case prevented. Our results therefore rely on 

stochastic simulations via Gillespie algorithm only. By analogy with the IFFL, we 

monitored the normalised CV of proteins 𝜎𝑝∕⟨𝑛𝑝⟩ for different choices of the 
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Figure 5. Generalised FFL and transcriptional burst effect on noise buffering. (a) Schematic 
representation of the generalised FFL (GFFL). The BFFL is made by the links 1, 2 and 3, the SIT by 
the links 2 and 4 while the pure TF only by the link 2. (b)–(c) Heat map for CVBFFL∕CVDTR (b), and 
CVBFFL∕CVSIT (c). The chemical rates are specified in Table 1, except for 𝜃TF = 0.4 min−1, 𝑘+

𝐶
=

0.01 min−1 nM−1, 𝑘−
𝐶
= 0.0001 min−1, 𝛼 = 0.001 min−1, 𝑘+

𝑟
= 100 min−1 nM−1 and 𝑘−

𝑟
= 0.01 min−1. 

(d)–(e) Heat map for CVBFFL∕CVDTR (d), and CVBFFL∕CVSIT (e). The chemical rates are specified in 
Table 1, except for 𝜃TF = 0.4 min−1, 𝑘+

𝐶
= 0.01 min−1 nM−1, 𝑘−

𝐶
= 0.0001 min−1, 𝛼 = 0.001 min−1, 

𝑘+
𝑟
= 100 min−1 nM−1, 𝑘−

𝑟
= 0.01 min−1, 𝑘+TF = 0.8 min−1 and 𝑘−TF = 200 min−1.

parameters. In the following we will denote by CVBFFL, CVSIT and CVDTR the 

normalised CV of, respectively, the BFFL, the SIT and DRT model.

To evaluate the role of transcriptional noise, in Figure 5 we compared the three 

circuits against changes in 𝑘+TF and 𝑘−TF, the parameters that control the magnitude 

of bursting activity. In order to make consistent comparisons, we checked that the 

mean level of proteins in each circuit stays of the same order of magnitude upon 

varying any parameter. Panel (b) shows the ratio CVBFFL∕CVDTR. One sees that 

direct transcriptional modulation leads to systematically smaller CVs, although 

when the rate of promoter inactivation is sufficiently high and transcriptional bursts 
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are rare the performances of the two circuits become similar. On the contrary, 

panel (c) compares the BFFL against the SIT and shows that miRNA-mediated 

control is generically more effective than self-inhibition, unless the promoter 

inactivation rate is much larger than the activation rate, in which case the two 

circuits generate similar fluctuations.

To further investigate the regions where the three schemes appear to have the 

same level of effectiveness in buffering the noise, we fixed the value of the 

transcriptional noise to 𝑘+TF = 0.8 min−1 and 𝑘−TF = 200 min−1 (for which 

CVBFFL∕CVDTR ≃ 1 and CVBFFL∕CVSIT ≃ 1), and we varied 𝜃mP and 𝜃𝜇. While 

the ratio CVBFFL∕CVDTR, displayed in Figure 5d, shows very little dependence on 

the both the miRNA and mRNAP levels, CVBFFL∕CVSIT (Figure 5e) turns out to 

depend strongly on the value of 𝜃mP. Generically, for large enough 𝜃mP, the ratio is 

less than one, indicating more efficient noise buffering by the BFFL with respect to 

the SIT. However, when the transcription rate 𝜃mP becomes sufficiently small, the 

trend inverts and a SIT leads to a more pronounced noise reduction.

3. Discussion

Stabilising the protein output is one of the central goals of the regulatory 

machinery of cells. In recent years, small non-coding RNAs, such as miRNAs, 

have been found to be involved in post-transcriptional regulation by specifically 

silencing mRNA translation. In silico implementations of overrepresented genetic 

motifs [17] and in vitro experiments on synthetic circuits [23] have elucidated the 

potential of miRNAs as protein noise buffering agents. The miRNA-mediated 

IFFL, in particular, has attracted much attention in these respects. The ability of the 

IFFL to buffer noise is apparent when the strength of the miRNA-target coupling is 

tuned in a relatively small functional range, outside of which the circuit either tends 

to amplify fluctuations (strong coupling limit) or produces a straightforward 

Poissonian statistics for the output variable (weak coupling limit). This suggests 

that miRNA-mediated circuits can be tuned to optimally process high-frequency 

noise. It is unclear whether the same performance can be achieved when 

transcriptional noise is involved. In this work we have indeed shown that noise 

buffering by the IFFL operating in the optimal regime can be severely hampered by 

the presence of transcriptional bursts. In particular, direct transcriptional control 

outperforms the IFFL when the promoter inactivation rate is sufficiently low. When 

the promoter inactivation rate is much larger than the rate of its inverse, finally, 

noise buffering appears to be network-independent as the BFFL, DTR and SIT 

circuits generate similar relative fluctuations.

While most transcriptional activity appears to occur continuously, intermittent 

bursts induced, e.g. by nucleocytoplasmatic TF transport, are increasingly being 
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investigated especially in relation to their potential functional role. Previous work 

has presented evidence that pulsatile transcription can significantly limit the 

ability of miRNAs to control fluctuations within a simple modulator-target 

architecture [32]. This work provides further support to this scenario by showing 

that noise buffering efficiency by more involved regulatory elements is tightly 

coupled to the strength and frequency of bursts. From a viewpoint of static noise 

reduction, frequent bursts would favour the selection of direct transcriptional 

control over other modules. In the other extreme, protein fluctuations appear to be 

very weakly sensitive on network architecture when the frequency of bursting is 

sufficiently low.

On one hand, these results might bring further support to the idea that, while 

undoubtedly useful for reducing fluctuations in some case, microRNAs may carry 

out a more subtle—and hard to assess quantitatively—functional role, possibly as a 

cross-talk intermediary between distinct targets [36, 37, 38, 39, 40, 41]. On the 

other, though, by showing that topology is not a key element in determining how 

well regulatory elements can dampen fluctuations in a bursty transcriptional 

regime, they suggest that dynamical aspects of noise processing may be more 

important than static noise buffering in certain conditions. Intermittent 

transcriptional signals can indeed transmit potentially useful information 

dynamically, for instance in terms of (mean) bursting frequencies, maximal 

transcription rates or possibly encoded in the (exponential) distributions of 

activation times. Our results show that downstream molecules could only exploit 

these specific signals at the expense of static noise reduction. While research on 

dynamical information flow in the context of biochemical networks or gene 

regulation is in its infancy [42, 43, 44], it is likely that these aspects will play a 

major role in understanding how and why specific regulatory input signals and 

circuit topologies are coupled in gene expression.

4. Methods

4.1. van Kampen’s expansion for the IFFL

The mass-action kinetics of the system specified by the reactions (1)–(12) can 

be described by the following equations for the concentrations of the various 

molecular species (𝜙𝑋 = concentration of species 𝑋) involved:

�̇�mTF = 𝛽mTF − 𝛿mTF𝜙mTF,

�̇�TF = 𝜃TF𝜙mTF − 𝛿TF𝜙TF,

�̇�mP = 𝜃mP𝜙TF − 𝛿mP𝜙mP − 𝑘+
𝐶
𝜙mP𝜙𝜇 + 𝑘−

𝐶
𝜙𝐶,

�̇�𝜇 = 𝜃𝜇𝜙TF − 𝛿𝜇𝜙𝜇 − 𝑘+𝜙mP𝜙𝜇 + (𝑘− + 𝛼)𝜙𝐶,
𝐶 𝐶
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�̇�𝐶 = 𝑘+
𝐶
𝜙mP𝜙𝜇 − (𝑘−

𝐶
+ 𝛼 + 𝛿𝑠)𝜙𝐶,

�̇�𝑃 = 𝜃𝑃𝜙mTF − 𝛿𝑃𝜙𝑃 . (19)

Here we focus for simplicity on the case 𝛼 = 0 and 𝛿𝑠 = 0, where the steady state 

reduces to

𝜙∗
mTF =

𝛽mTF
𝛿mTF

, 𝜙∗
TF =

𝜃TF
𝛿TF

𝜙∗
mTF,

𝜙∗
𝜇
=

𝜃𝜇

𝛿𝜇
𝜙∗

TF, 𝜙∗
mP =

𝜃mP
𝛿mP

𝜙∗
TF,

𝜙∗
𝐶
=

𝑘+
𝐶

𝑘−
𝐶

𝜙∗
𝜇
𝜙∗

mP, 𝜙∗
𝑃
=

𝜃𝑃

𝛿𝑃
𝜙∗

mP. (20)

Accounting for the molecular noise induced by discreteness requires tackling the 

Master Equation associated to the system. Denoting by 𝑛𝑋 the number of 

molecules of species 𝑋 and by 𝐧 = {𝑛𝑋} the corresponding vector, with 𝑋 ∈
{mTF, TF, 𝜇, mP, 𝐶, 𝑃 }, the mass-action dynamics of the stochastic model is fully 

described by the following ME for the probability 𝑃 (𝐧, 𝑡) to observe the system in 

state 𝐧 at time 𝑡 (𝑃 ≡ 𝑃 (𝐧, 𝑡)):

�̇� = 𝛽mTF[𝑃 (𝑛mTF − 1, 𝑡) − 𝑃 (𝐧, 𝑡)]

+
𝛿mTF
𝑉cell

[(𝑛mTF + 1)𝑃 (𝑛mTF + 1, 𝑡) − 𝑛mTF𝑃 (𝐧, 𝑡)]

+
𝜃TF𝑛mTF
𝑉cell

[𝑃 (𝑛TF − 1, 𝑡) − 𝑃 (𝐧, 𝑡)]

+
𝛿TF
𝑉cell

[(𝑛TF + 1)𝑃 (𝑛TF + 1, 𝑡) − 𝑛TF𝑃 (𝐧, 𝑡)]

+
𝜃𝜇𝑛TF

𝑉cell
[𝑃 (𝑛𝜇 − 1, 𝑡) − 𝑃 (𝐧, 𝑡)] +

𝛿𝜇

𝑉cell
[(𝑛𝜇 + 1)𝑃 (𝑛𝜇 + 1, 𝑡) − 𝑛𝜇𝑃 (𝐧, 𝑡)]

+
𝜃mP𝑛TF
𝑉cell

[𝑃 (𝑛mP − 1, 𝑡) − 𝑃 (𝐧, 𝑡)]

+
𝛿mP
𝑉cell

[(𝑛mP + 1)𝑃 (𝑛mP + 1, 𝑡) − 𝑛mP𝑃 (𝐧, 𝑡)]

+
𝑘+
𝐶

𝑉 2
cell

[(𝑛mP + 1)(𝑛𝜇 + 1)𝑃 (𝑛𝐶 − 1, 𝑛mP + 1, 𝑛𝜇 + 1, 𝑡) − 𝑛mP𝑛𝜇𝑃 (𝐧, 𝑡)]

+
𝑘−
𝐶

𝑉cell
[(𝑛𝐶 + 1)𝑃 (𝑛𝐶 + 1, 𝑛mP − 1, 𝑛𝜇 − 1, 𝑡) − 𝑛𝐶𝑃 (𝐧, 𝑡)]

+
𝜃𝑃 𝑛mP
𝑉cell

[𝑃 (𝑛𝑃 − 1, 𝑡) − 𝑃 (𝐧, 𝑡)]

+
𝛿𝑃

𝑉cell
[(𝑛𝑃 + 1)𝑃 (𝑛𝑃 + 1, 𝑡) − 𝑛𝑝𝑃 (𝐧, 𝑡)], (21)

where 𝑉cell is the cell volume and 𝑛𝑋 = 𝜙𝑋 ⋅ 𝑉cell. In absence of an exact analytical 

solution, the main route to obtaining approximate solutions consists in focusing on 
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the moments of 𝑃 . In particular, one may hope to be able to compute the first 

(mean) and second (variance) moments of each molecular species via closed 

expressions. In our case, though, it can be seen that the computation of the first two 

moments requires knowledge of higher-order terms. One way to circumvent this 

stumbling block is to consider moments of order higher than the third to be 

negligible and apply van Kampen’s expansion, amounting in essence to assuming 

that [34, 45]

𝑛𝑋 = 𝑉cell𝜙𝑋(𝑡) + 𝜉𝑋

√
𝑉cell (22)

for 𝑋 ∈ {mTF, TF, 𝜇, mP, 𝐶, 𝑃 }. The parameter 𝑉cell represents the “system size”, 

i.e., in practice, the cell volume, which is assumed to be sufficiently large. In other 

terms, one splits the discrete variables 𝑛𝑋 into two components: a deterministic 

term 𝜙𝑋 and a fluctuating term proportional to the random variable 𝜉𝑋. At the 

leading order in 𝑉cell, the distributions appearing in the Master Equation are Dirac 

𝛿-distributions centred around 𝜙𝑋 . In this case, the Master Equation leads to the 

deterministic differential equations for the concentrations 𝜙𝑋 given in (19). The 

next-to-leading order instead corresponds to the assumption that the distributions 

of molecule numbers are Gaussian, centred around 𝜙𝑋 and with a finite variance. 

Since averages are fixed by the macroscopic terms, the Master Equation reduces, at 

this order, to an equation for the distribution of the variances, Π(𝝃, 𝑡) (with 𝝃 =
{𝜉𝑋}). In terms of the van Kampen creation and destruction operators [34]

𝜖±
𝑋
≃ 𝕀 ± 𝑉

−1
2

cell
𝜕

𝜕𝜉𝑋
+ 1

2
𝑉 −1
cell

𝜕2

𝜕𝜉2
𝑋

, (23)

one has

𝑃 (𝑛𝑋 ± 1, 𝑡) = 𝜖±
𝑋
𝑃 (𝑛𝑋, 𝑡), (24)

where we are hiding the dependence on the species whose numbers are not 

changing. Moreover, since by inverting (22) one gets

𝜉𝑋(𝑛𝑋) = 𝑉
−1

2
cell 𝑛𝑋 + 𝑉 −1

cell𝜙𝑋, (25)

we see that distributions of molecular populations can be expressed in terms of 

distributions of the noise variables, i.e.

𝑃 (𝑛𝑋 ± 1, 𝑡) = Π(𝜉𝑋 ± 𝑉
−1

2
cell , 𝑡). (26)

Expanding this expression for large 𝑉cell, we get

Π(𝜉𝑋 ± 𝑉
−1

2
cell , 𝑡) ≡ 𝜖±

𝑋
Π(𝜉𝑋, 𝑡) ≃

≃ Π(𝜉𝑋, 𝑡) ± 𝑉
−1

2
cell

𝜕Π(𝜉𝑋, 𝑡)
𝜕𝜉𝑋

+ 1
2
𝑉 −1
cell

𝜕2Π(𝜉𝑋, 𝑡)
𝜕𝜉2

+ (𝑉
−3

2
cell ). (27)
𝑋
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Likewise, for the left-hand-side of the Master Equation we have

𝑑𝑃 (𝑛𝑋, 𝑡)
𝑑𝑡

=
𝜕Π(𝜉𝑋, 𝑡)

𝜕𝑡
− 𝑉

1
2
cell

∑
𝑋

�̇�𝑋

𝜕Π(𝜉𝑋, 𝑡)
𝜕𝜉𝑋

. (28)

Re-scaling the time with 𝑉cell as 𝑡 → 𝑡∕𝑉cell ≡ 𝜏, we get a Fokker–Plank equation 

for the fluctuations 𝜉𝑋 , which, in the case of the IFFL, reads

𝜕Π
𝜕𝜏

=
𝛽mTF
2

𝜕2Π
𝜕𝜉2mTF

+
𝛿mTF
2

𝜙mTF
𝜕2Π
𝜕𝜉2mTF

+ 𝛿mTF
𝜕

𝜕𝜉mTF
(𝜉mTFΠ)

+ 𝜃TF
𝜙mTF
2

𝜕2Π
𝜕𝜉2TF

− 𝜃TF𝜉mTF
𝜕Π
𝜕𝜉TF

+ 𝛿TF
𝜕

𝜕𝜉TF
(𝜉TFΠ) +

𝛿TF
2

𝜙TF
𝜕2Π
𝜕𝜉2TF

+ 𝜃𝜇
𝜙TF
2

𝜕2Π
𝜕𝜉2

𝜇

− 𝜃𝜇𝜉TF
𝜕Π
𝜕𝜉𝜇

+ 𝛿𝜇
𝜕

𝜕𝜉𝜇
(𝜉𝜇Π) +

𝛿𝜇

2
𝜙𝜇

𝜕2Π
𝜕𝜉2

𝜇

+ 𝜃mP
𝜙TF
2

𝜕2Π
𝜕𝜉2mP

− 𝜃mP𝜉TF
𝜕Π
𝜕𝜉mP

+ 𝛿mP
𝜕

𝜕𝜉mP
(𝜉mPΠ) +

𝛿mP
2

𝜙mP
𝜕2Π
𝜕𝜉2mP

− 𝑘+
𝐶
(𝜉mP𝜙𝜇 + 𝜙mP𝜉𝜇)

𝜕Π
𝜕𝜉𝐶

+ 𝑘+
𝐶
𝜉mP𝜙𝜇

𝜕Π
𝜕𝜉𝜇

+ 𝑘+
𝐶
𝜙mP

𝜕

𝜕𝜉𝜇
(𝜉𝜇Π) − 𝑘+

𝐶
𝜙𝜇𝜙mP

𝜕2

𝜕𝜉𝐶𝜕𝜉𝜇
Π + 𝑘+

𝐶
𝜙mP𝜉𝜇

𝜕Π
𝜕𝜉mP

+ 𝑘+
𝐶
𝜙𝜇

𝜕

𝜕𝜉mP
(𝜉mPΠ) − 𝜙𝜇𝜙mP𝑘

+
𝐶

𝜕2Π
𝜕𝜉𝐶𝜕𝜉mP

+ 𝑘+
𝐶
𝜙𝜇𝜙mP

𝜕2Π
𝜕𝜉𝜇𝜕𝜉mP

+
𝑘+
𝐶

2
𝜙𝜇𝜙mP

𝜕2Π
𝜕𝜉2mP

+
𝑘+
𝐶

2
𝜙𝜇𝜙mP

𝜕2Π
𝜕𝜉2

𝜇

+
𝑘+
𝐶

2
𝜙𝜇𝜙mP

𝜕2Π
𝜕𝜉2

𝐶

− 𝑘−
𝐶
𝜉𝐶

𝜕Π
𝜕𝜉mP

− 𝑘−
𝐶
𝜙𝐶

𝜕2Π
𝜕𝜉𝐶𝜕𝜉mP

− 𝑘−
𝐶
𝜉𝐶

𝜕Π
𝜕𝜉𝜇

+
𝑘−
𝐶
𝜙𝐶

2
𝜕2Π
𝜕𝜉2

𝜇

+
𝑘−
𝐶
𝜙𝐶

2
𝜕2Π
𝜕𝜉2mP

+
𝑘−
𝐶
𝜙𝐶

2
𝜕2Π
𝜕𝜉2

𝐶

+ 𝑘−
𝐶

𝜕

𝜕𝜉𝐶
(𝜉𝐶Π) − 𝑘−

𝐶
𝜙𝐶

𝜕2Π
𝜕𝜉𝐶𝜕𝜉𝜇

− 𝑘−
𝐶
𝜙𝐶

𝜕2Π
𝜕𝜉𝜇𝜕𝜉mP

+
𝜃𝑃𝜙mP

2
𝜕2Π
𝜕𝜉2

𝑃

− 𝜃𝑃 𝜉mP
𝜕Π
𝜕𝜉𝑃

+ 𝛿𝑃
𝜕

𝜕𝜉𝑃
(𝜉𝑃Π) +

𝛿𝑃𝜙𝑃

2
𝜕2Π
𝜕𝜉2

𝑃

. (29)

Once its coefficients have been evaluated at the steady state described by (20), the 

above equation can be used to identify a system of differential equations for the 

second moments of the fluctuations ⟨𝜉𝑋𝜉𝑌 ⟩ (which we do not report for simplicity). 

Because at stationarity ⟨𝜉𝑋⟩ = 0 ∀𝑋, one has

𝜎2
𝑋
= ⟨𝑛2

𝑋
⟩ − ⟨𝑛𝑋⟩2 = 𝑉cell⟨𝜉2𝑋⟩, (30)

which relates the variance of 𝑛𝑋 to that of 𝜉𝑋 . Notice that, within this approach, 

concentrations 𝜙𝑋 directly translate to number of molecules 𝑛𝑋 . For instance, if 𝜙𝑋
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Table 1. Values of fixed model parameters, from [23] and [47]. For simplicity, the 
cell has been approximated as a sphere of radius 𝑅cell, so that 𝑉cell = 4𝜋𝑅3

cell∕3.

Parameter Value Description

𝛿mP 0.02 min−1 Target degradation rate
𝜃mP 0.08 min−1 Target expression rate
𝛿𝜇 0.015 min−1 miRNA degradation rate
𝜃𝜇 𝜃mP miRNA expression rate
𝛿TF 0.01 min−1 master Transcription Factor degradation rate
𝛿𝑃 𝛿TF Protein degradation rate
𝜃𝑃 0.03 min−1 Protein expression rate
𝛿mTF 𝛿mP master Transcription Factor’s mRNA degradation rate
𝑘−
𝐶

0.01 min−1 miRNA–mRNA target dissociation constant
𝑅cell 10 μm Cell radius
𝑁 106 molecules Maximal number of molecules

is expressed in nanomolars, and 𝑉cell is the cell volume measured in μm3, one has

𝑛𝑋 = 𝑁𝐴 𝑉cell 𝜙𝑋 10−9 molecules, (31)

where 𝑁𝐴 is the Avogadro number.

4.2. The Gillespie algorithm

The Gillespie algorithm [33] is an exact method to simulate reaction kinetics lin 

well-mixed systems (though it can be generalised to non-Markovian and 

non-well-mixed systems as well [46]). It is based on a Monte Carlo procedure to 

generate the Markov process described by the Master Equation. Hereby, we shall 

describe how we applied it to our specific case (see [33] for further insights).

In the present study, the system has been initialised in each case at the steady 

state (which can easily be computed from deterministic equations). At each time 

step, we have checked for physical consistency for the number of molecules for 

each species (which should stay positive or zero) as well as for the total number of 

molecules in the system (which, by the finiteness of the volume should not exceed a 

large threshold, which we set to be 106, so as to guarantee that each species 

involved in the circuit can be comparable with experimentally estimated ones). 

After running the Gillespie algorithm for a long enough time to accumulate many 

reaction events, we have extracted the statistics (mean and variance mainly) for the 

number of molecules of each of the species.

Parameters that are not varied across this study were obtained from 

experimental literature and set as in Table 1 in order to guarantee the same 

concentration values for the different species as in the cited experiments. Variable 

parameters have been changed across ranges that guarantee biologically plausible 

steady state concentrations.
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