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ABSTRACT  

This work intends to present a novel numerical approach for carrying out virtual Vibration 

Correlation Technique (VCT) in stiffened and unstiffened structures subjected to mechanical and 

thermal loadings in order to predict the buckling load, to characterize the natural frequencies 

variation for progressively increasing loads, and to provide a verification of the experimental VCT 

results. The study has been performed using the well-established Carrera Unified Formulation (CUF) 

able to describe several kinematic models for one-dimensional (1D) and two-dimensional (2D) 

structures. All Green-Lagrange strain components are employed because far nonlinear regimes are 

investigated. Furthermore, the geometrical nonlinear equations are written in a total Lagrangian 

framework and solved with an opportune Newton-Raphson method along with a path-following 

approach based on the arc-length constraint. Different structures have been investigated and 

compared with the Abaqus solution in order to validate the proposed approach and provide some 

benchmark solutions. The results document the good accuracy and reliability of the proposed 

approach and show this numerical tool's potentialities. The virtual VCT can be used effectively during 

the preparation of experimental tests in order to appropriately investigate the boundary conditions to 

be applied or it can be a powerful method to be used to investigate cases that are difficult to analyze 

experimentally, such as structures subjected to thermal or shear loads. 

 

Keywords: VCT; Natural frequencies; Buckling; Geometrical nonlinearity; Thermal loading; 

Structural testing. 

1 INTRODUCTION 

One of the most important experimental methods used in aerospace industry for the assessment of the 

buckling is the Vibration Correlation Technique (VCT) [1,2]. This nondestructive experimental test 

allows to calculate the buckling load and the equivalent boundary conditions by interpolating the 

natural frequencies of the structures for progressively increasing applied loads without reaching 

instability. The first experimental VCT investigations were performed by Lurie [3], Meier [4] and Chu 

[5]. In view of its importance and potential, several experimental tests and studies were carried out for 

decades.  Recently, Abramovich et al. [6] adopted the VCT to evaluate the buckling load of metallic 

and laminated structures. Jansen et al. [7] presented the capability of analysis tools for supporting and 

improving the accuracy of the VCT results obtained through semi-empirical methods. For the sake of 

brevity, readers are referred to [8,9] for further detailed investigations. The literature on VCT analyses 

of isotropic and classical composite one-dimensional (1D) and two-dimensional (2D) structures is vast 

[10,11]. However, in practical industrial applications, this method exhibits some limitations due to 

complicated boundary conditions or particular types of loading, such as thermal. 
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The principal goal of this work is to overcome these limitations and provide an efficient methodology 

based on high-accuracy but efficient layerwise (LW) models to investigate the dynamic characteristics 

of unstiffened and stiffened metallic and composite beam, plate and shell structures under extreme 

compressive and thermal loadings. This approach presents a powerful methodology to study cases that 

are difficult to investigate experimentally, such as structures subjected to thermal or shear loads and 

with complicated boundary conditions, among others. 

In this context, the structures are formulated in the Carrera Unified Formulation (CUF) [12] 

framework in order to obtain accurate results. The main advantage of the CUF is to be able to consider 

the structural model order as an input of the analysis. In this way, the refined generic models do not 

need specific formulations. One of the advantages of the present formulation with respect to the 

others, often based on linear approaches, is to consider the geometrical nonlinearities that allow to 

guarantee a remarkable accuracy of the results. In fact, the nonlinear governing equations and the 

relative finite element (FE) arrays of the 2D theories are written in terms of Fundamental Nuclei 

(FNs). FNs represent the basic building blocks of the presented formulation. 

The investigated structures are subjected to progressively higher applied loads, and for each state of 

equilibrium, on the deformed structure, the natural frequencies are calculated by solving a linearized 

eigenvalue problem, obtained from an analysis of the free vibration on the structure. 

 

2 VIBRATION AROUND NONLINEAR EQUILBRIUM STATES 

The application of the presented methodology to investigate the vibration around nonlinear 

equilibrium states can be described in the following steps: 1) first, the static geometrical nonlinear 

problem is solved using the Newton-Raphson method based on the arc-length approach. 2) Once the 

nonlinear equilibrium is computed, the tangent stiffness matrix KT  is obtained in each states of interest. 

3) Then, since the modal behavior of a structure is not a property of the geometric and mechanical 

characteristics, but it is a property of the state of equilibrium, the free vibrations analysis is carried out 

around a linearized (non-trivial) equilibrium state along the nonlinear path. Namely, the linearization 

of the equation of motion is written as: 

 𝛿(𝛿𝐿𝑖𝑛𝑡 + 𝛿𝐿𝑖𝑛𝑒 − 𝛿𝐿𝑒𝑥𝑡) = 𝛿𝒒𝑠𝑗
𝑇 𝑲𝑇

𝑖𝑗𝜏𝑠
𝛿𝒒𝜏𝑖 + 𝛿𝒒𝑠𝑗

𝑇 𝑴𝑖𝑗𝜏𝑠𝛿�̈�𝜏𝑖 (1) 

where 𝑴𝑖𝑗𝜏𝑠 is the FN of the mass matrix and it is assumed to be linear, 𝑲𝑇
𝑖𝑗𝜏𝑠

 represents the FN of the 

tangent stiffness matrix and 𝒒𝜏𝑖 indicates the vector of the unknown nodal variables. 4) By assuming 

harmonic motion around non-trivial equilibrium states, the equation of motion is simplified into a 

linear eigenvalues problem, Eq. (2), from which it is possibile to evaluate natural frequencies and 

mode shapes. 

 (𝑲𝑇
𝑖𝑗𝜏𝑠

− 𝜔2𝑴𝑖𝑗𝜏𝑠)𝛿�̃�𝜏𝑖 = 0 (2) 

in which ω indicates the natural frequencies and 𝛿�̃�𝜏𝑖 is the eigenvector. If the full nonlinear tangent 

stiffness matrix is considered the method is called full nonlinear approach, whereas in the case of 

small rotations and linear pre-buckling, 𝑲𝑇
𝑖𝑗𝜏𝑠

 can be approximated as the sum of the linear stiffness 

(𝑲𝟎 = 𝑲𝑆(𝑞 = 0)), with 𝑲𝑆 the secant stiffness matrix, and the geometric (pre-stress) contribution 

𝑲𝜎, 

 

                                                                                                                 𝑲𝑇 ≈ 𝑲0 + 𝑲𝜎                                                                    (3) 

 

the method is called trivial linearized solution. It is important to underline that, in the simplified case, 

the 𝑲𝜎 matrix refers to the linear contribution of the stress. 

These vectors and matrices are expressed in the CUF domain. According to CUF, the three-

dimensional (3D) displacement field in the dynamic case for a generic composite 1D/2D model, 

represented using a Cartesian system (x, y, z), is defined as a general expansion of the primary 

unknowns: 
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{

 𝟏𝑫:   𝒖𝑘(𝑥, 𝑦, 𝑧; 𝑡) = 𝐹𝜏
𝑘(𝑥, 𝑧)𝒖𝜏

𝑘(𝑦; 𝑡)

 𝟐𝑫:   𝒖𝑘(𝑥, 𝑦, 𝑧; 𝑡) = 𝐹𝜏
𝑘(𝑧)𝒖𝜏

𝑘(𝑥, 𝑦; 𝑡)
τ = 1,..., M 

(4) 

in which 𝒖𝜏is the generalized displacement vector,  𝐹𝜏 represent the expansion functions of the 

thickness coordinate z, M denotes the order of expansion in the thickness direction, k indicates the 

layer index in laminated composite structures and t stand for time.  

In this research, Lagrange polynomials (LE) are adopted for the expansion functions. In the CUF 

domain, the nine-point (L9) Lagrange polynomials were adopted to formulate the higher-order 

kinematic beam model, while the three-node quadratic (LD2) Lagrange expansion was employed in 

the thickness direction to obtain the higher-order kinematic of the plate/shell model. 

For brevity, readers are referred to [12] for a full explanation about the mathematical derivation of the 

1D/2D FE formulation in the domain of CUF. 

The finite element method (FEM) is used to approximate the in-plane generalized displacement vector 

employing the shape function 𝑁𝑖. 

 
{

𝟏𝑫:  𝒖𝜏
𝑘(𝑦; 𝑡) = 𝑁𝑖(𝑦)𝒒𝜏𝑖

𝑘 (𝑡)

 𝟐𝑫:  𝒖𝜏
𝑘(𝑥, 𝑦; 𝑡) = 𝑁𝑖(𝑥, 𝑦)𝒒𝜏𝑖

𝑘 (𝑡)
i = 1,..., Nn 

(5) 

in which Nn stand for the number of nodes per element and i indicates summation. For clarity, the four-

node (B4) cubic beam element is adopted in this work as shape function or the classical nine-node 

quadratic (Q9) for the plate element. 

In this study, employing the total Lagrangian formulation, the full Green-Lagrange nonlinear strain 

vector is adopted.  

 𝜺𝑘 = 𝜺𝑙
𝑘 + 𝜺𝑛𝑙

𝑘 = (𝒃𝑙 + 𝒃𝑛𝑙)𝒖𝑘 (6) 

where 𝒃𝑙 and 𝒃𝑛𝑙 represent the linear and nonlinear differential operators [13].  

The stress vector is computed from the constitutive relation: 

 𝝈𝑘 = 𝑪𝑘𝜺𝑘 (7) 

in which C  is the material elastic matrix for orthotropic materials and it is defined in [14].  

Considering the linear thermo-elasticity, the elastic strain vector 𝜺𝑒
𝑘 is equal to: 

 

                                                                     𝜺𝑒
𝑘 =  𝜺𝑘 − 𝜺𝑇

𝑘                                                                 (8) 

 

where 𝜺𝑇
𝑘  represents the strain vector due to the temperature change ΔT=T-T0, that is expressed as: 

 

                                                                 𝜺𝑇
𝑘 = 𝜶𝑘𝜟𝑇                                                                   (9)  

 

in which T0 indicates the reference temperature and α stands for the linear thermal expansion 

coefficients vector. 

Consequently, the introduction of the thermal contribution leads to the definition of a new constitutive 

law and to a component related to the thermal load (𝑭𝑇) in the integral of the virtual variation of the 

internal work and a new contribution in the geometric stiffness matrix (𝑲𝜎 𝑇
). For the sake of brevity, 

the complete description with thermal contribution is not provided here, the interested reader is 

referred to [15].  

 

3 NUMERICAL RESULTS 

In order to show the potential of the presented approach, some results obtained based on the use of 

virtual VCT for metallic and composite structures are illustrated below [16,17]. 
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For the representative purpose, different metallic plates subjected to compressive load are investigated 

as first example. In detail, one unstiffened plate and two stiffened structures are considered. These 

structures have the following geometrical and material data: width (a) equal to 355 mm, the length (b) 

is 355 mm, a total thickness (h) of 2 mm. The dimensions of the stiffener are: l = 7 mm and d = 4 or 7 

mm, respectively. The material properties are: E = 70 GPa, υ = 0.33 and ρ = 2780 kg/m3. The 

boundary conditions of this plate are illustrated in Fig. 1. 
 

 

Figure 1: Geometry and boundary conditions of the unstiffened and stiffened plate structures. 

For the following discussions, the convergent model is obtained by adopting at least 11x10Q9 for the 

in-plane mesh approximation and only one LD2 in the thickness direction. For the stiffened structure, 

another LD2 is added to describe the stiffener. 

Figure 2 depicts the equilibrium curves of the unstiffened and stiffened plates computed by the 2D 

CUF nonlinear model. Furthermore, in this figure, the linearized buckling load values, representing by 

the horizontal lines, are also displayed. A defect load applied in the center of the plate, d = 0.01 N, was 

used in order to simulate geometrical imperfections. 
 

    

Figure 2: Equilibrium curves for the unstiffened and stiffened plates under in-plane compressive loads. CUF model 

makes use of LD2 kinematics and 11x10Q9 FE mesh approximation. 
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Figure 3 shows the comparison between the variation of the natural frequencies for progressively 

increasing loads via the trivial linearized solution and full nonlinear approach for the three cases 

considered. For completeness the first ten free vibration modes shapes for the stiffened plate with d = 

7 mm are reported in Fig. 4. 

 

 
 

Figure 3: Comparison between the natural frequencies variation versus compressive loading via the trivial linearized 

solution (L) and full nonlinear approach (NL) for the (a) unstiffened plate, (b) stiffened plate with d = 4 mm and (c) 

stiffened plate with d = 7 mm. 
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Figure 4: Characteristic first ten free vibration mode shape for the stiffened plate structures with d = 7 mm. 

The results show that the approach based on the trivial linearized solution allows one to evaluate the 

frequency variation of this case at lower levels of the compressive load with accuracy. The deviation 

of the linear results from the nonlinear ones becomes remarkable for higher compressive load levels. 

In detail, the first vibration mode reaches a minimum value near the critical load, and after the 

buckling, the frequencies increase. This definite change in the slope of the frequencies represents a 

criterion for the buckling prediction. The results suggest that the proposed methodology provides an 

excellent procedure to predict the critical load and to evaluate the natural frequencies variation in 

nonlinear regime with high reliability. In addition, the presented approach allows to model the 

structure with high accuracy and also take into account the deformation of the stiffener, as illustrated 

in Fig. 4. For completeness, a Modal Assurance Criterion (MAC) graphical representation is reported 

in Fig. 5. This figure compares the first 10 modes of the deformed structure in different states of the 

nonlinear analysis with the undeformed one. As reported by these graphical representations, natural 

modes for a low load (Fig. 5a) are identical to those related to the undeformed case; i.e., all the MAC 

values in the diagonal are equal to 1. As the load increases, more and more boxes are different from 1 

and the state is entirely nonlinear. 
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Figure 5: MAC values between the modes of the undeformed structure and those of the deformed structure for the 

stiffened plate with d = 4 mm. 

 

 

 

A 3-layer [90+<0/45> / 0+<0/45> / 90+<0/45>] hinged variable angle tow (VAT) composite shell 

subjected to in-plane compressive and transverse load is illustrated as second assessment. This 

structure has the following data: L = 508 mm, Rα = 2540 mm, θ = 0.1 rad, h = 12.7 mm, E1 = 3300 

MPa, E2 = E3=1100 MPa, G12 = G13 = 660 MPa, υ12 = υ13 = 0.25, ρ = 1 kg/mm3. All nodal 

displacements are restrained along the hinged edges, see Fig. 3. The present shell is modelled adopting 

10x10Q9 for the in-plane mesh approximation and one LD2 in each layer in the z-direction. 

The equilibrium curves of the considered shell structure are provided in Fig. 6.  
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Figure 6: Equilibrium curves evaluated at the center of the hinged VAT composite shell under compressive and 

transverse loads. 

 

Figure 7 illustrates the comparison between the first two natural frequencies variation obtained via the 

trivial linearized solution and the full nonlinear approach. In this figure, the red dots and the relative 

numbers refer to those displayed in Fig. 6. The results prove that for this type of structure to evaluate 

the trend of the natural frequencies accurately is needed to perform a nonlinear analysis. 

 

 
 

Figure 7: Comparison between the approach based on trivial linearized solution and full nonlinear solution for the 

variation of the first two non-dimensional natural frequencies for the hinged VAT composite shell subjected to 

compressive and transverse loads. (�̃� = 𝜔 (
𝑎2

ℎ
√

𝜌

𝐸2
)) 
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As a final example, a clamped-clamped laminated composite [0°/90°/0°] beam structures subjected to 

thermal loadings is analyzed, see Fig. 8b. The geometrical and material properties are: L = 1 m, a = 

0.01 m, h = 0.01 m, E1 = 144.8 GPa, E2 = E3 = 9.65 GPa, ν12 = 0.3, G12 = G13 = 4.14 GPa, G23 = 3.45 

GPa, ρ = 1450 kg/m3, α11 = −2.6279𝑥10−7 °C-1 and α12 = 30.535𝑥10−6 °C-1. The convergent model 

for this beam structure is reached by using at least ten B4 FE along the beam axis and two Q9 for each 

layer. 

In Fig. 8a the comparison between the natural frequencies variation for progressively increasing 

thermal loadings computed via the presented trivial linearized approach and Abaqus (Hex20). For 

completeness, the first four free vibration mode shapes of the composite beam are depicted in Fig. 8c, 

8d, 8e, 8f. 

 

 

Figure 8: (a) Natural frequencies variation versus thermal loadings for the composite beam; (b) Geometry and 

boundary conditions; (c) I flexural xy mode; (d) I flexural yz mode; € II flexural xy mode; (f) II flexural yz mode. 

 

4 CONCLUDING REMARKS 

The presented method allows to determine the buckling load of metallic and composite unstiffened 

and stiffened structures subjected to mechanical and thermal loadings, to evaluate the natural 

frequencies variation and to provide a verification of the experimental VCT results with high 

reliability. Furthermore, the virtual VCT becomes a useful technique during the preparation of the 

experimental test or a powerful method when it is necessary to investigate cases that are difficult to 

analyze experimentally, such as structures subjected to thermal or shear loads and with complicated 

boundary conditions, among others. The results demonstrated the potential of this approach and 

provide reasonable confidence for future applications in this topic. In detail, a full nonlinear approach 

is needed to perform accurate investigations. It was shown that eigenfrequencies and eigenmodes can 

suffer abrupt aberrations in deep nonlinear regimes. Moreover, mode aberration is evident compared 

to the modes calculated using the full nonlinear approach with those obtained using the trivial 

linearized solution.  
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