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AbstractÐ Matrix-Vector Multiplications (MVMs) represent a
heavy workload for both training and inference in Deep Neural
Networks (DNNs) applications. Analog In-memory Computing
(AIMC) systems based on Phase Change Memory (PCM) has
been shown to be a valid competitor to enhance the energy
efficiency of DNN accelerators. Although DNNs are quite resilient
to computation inaccuracies, PCM non-idealities could strongly
affect MVM operations precision, and thus the accuracy of DNNs.
In this paper, a combined hardware and software solution to
mitigate the impact of PCM non-idealities is presented. The drift
of PCM cells conductance is compensated at the circuit level
through the introduction of a conductance ratio at the core of
the MVM computation. A model of the behaviour of PCM cells
is employed to develop a device-aware training for DNNs and
the accuracy is estimated in a CIFAR-10 classification task. This
work is supported by a PCM-based AIMC prototype, designed
in a 90-nm STMicroelectronics technology, and conceived to
perform Multiply-and-Accumulate (MAC) computations, which
are the kernel of MVMs. Results show that the MAC computation
accuracy is around 95% even under the effect of cells drift.
The use of a device-aware DNN training makes the networks
less sensitive to weight variability, with a 15% increase in
classification accuracy over a conventionally-trained Lenet-5
DNN, and a 36% gain when drift compensation is applied.
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I. INTRODUCTION

I
N THE era of big data a plethora of applications
require low-power-consumption computations involving

large amount of information [1], [2]. In this scenario, the
performance of conventional digital computers is limited by
the intrinsic communication bottleneck of the Von Neumann
architecture, which needs data to be moved back and forth
between the memory and the processing unit [3], [4]. In recent
years, novel computational approaches have been investigated
to overcome this limitation. Among those, Analog In-memory
computing (AIMC) based on resistive memory devices has
proven to be a promising non-Von Neumann solution for
the fast and energy-efficient execution of Matrix-Vector
Multiplication (MVM) [5]. As an example, MVMs represent
a heavy workload for both training and inference in deep
learning applications, and being able to perform them at O(1)

time complexity through AIMC solutions would lead to huge
benefits.

The goal of AIMC is to perform computations within
the memory unit, typically leveraging the physical properties
of the memory devices themselves, and taking advantage
of Ohm’s and Kirchhoff’s laws [4], [6], [7]. Among the
technologies that have been considered for AIMC, Phase-
Change Memory (PCM) is one of the most promising due to its
long-term storage of multi-bit quantities and its compatibility
with the traditional CMOS fabrication processes [8], [9].
However, due to the peculiarities of the technology, only
limited computation precision can be achieved. This, in turn,
affects the accuracy of the analog accelerators and thus the
performance at the application level.

The main issues associated to PCM devices are: i) the
non linearity of the I-V characteristic; i i) the random
conductance drift over time; and i i i) the variability of the
programmed cell states [10]. The I-V non linearity is typically
addressed by encoding input values in time as the width of a
constant-voltage signal applied across each cell of the array
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[11], [12], [13], [14], [15], [16]. Conductance drift over time
is usually compensated by post-processing techniques [13],
[17] or employing HW-aware training solutions [18]. Finally,
state-of-art iterative program-and-verify algorithms [19] can be
used to reduce, but not completely remove, the variability in
the state of identically programmed cells. Therefore, device-
to-device variability, due to both drift and programming state,
is still a widely investigated subject that limits the accuracy
of PCM-based systems.

A deeper look at solutions applied to limit the effects
of conductance drift in AIMC applications highlights the
possibilities available at the technological, circuit and software
level.

In [20] an investigation on two back end fabrication
processes of Ge-rich GeSbTe (Ge-GST) PCM cells is
presented along with their influence on devices electrical
characteristics, whose empirical model is discussed in [21].

Circuit solutions are analyzed in [13] and [22]. In the
former, each analog weight matrix is extended, as time
progresses, by the introduction of additional columns (i.e.,
neurons) to account for the lower dynamic range of the MVM
output as conductances become progressively smaller. In the
latter, conversely, it is observed that the typical implementation
of negative weights with positive-only conductance, i.e. having
a second analog array whose output is subtracted from the first,
already leads to some measure of drift compensation. Again,
the dynamic range of the output is shrinked, thus requiring a
renormalization to preserve performance. The renormalization
proposed therein requires an additional array of PCM cells to
estimate the drift of the SET state conductance (for binary-
level applications, i.e. only using cells in the SET and RESET
state).

Finally, solutions can be applied at the software level or in
any case in the digital section of the processing chain. Authors
in [23] define an ad-hoc regularization function applied during
the NN training to limit the variability observed at the
neuron level resulting from perturbations of the individual
conductances. In [24] drift is addressed by renormalizing the
drifted MVM output by modeling the median conductance
decay and rescaling the argument of the nonlinear activation
function following each layer to ensure that the entire
nonlinearity domain is excited as expected for non-drifting
weights. In [18] a periodic calibration procedure is used to
update the parameters of the batch normalization layers, so that
even when weights start to drift, those layers can still remap
their outputs to zero-mean, unit-variance distributions.

Obviously, each technique comes with its own set of
drawbacks, i.e. requiring a different fabrication process
technology [25], a considerable area overhead associated to the
AIMC unit [13], [22], reliance on accurate device models [24]
or the periodic recalibration of the system [18]. By applying
multiple techniques simultaneously the requirements on each
of them can be relaxed, with potential reduction of the incurred
cost.

This paper analyzes a circuit-level solution to mitigate the
impact of the conductance drift on the inference task of Deep
Neural Networks (DNNs), employing PCM devices as the
core synaptic model. The technique being used in this work

is potentially compatible with many of the methodologies
previously described and could lead to even better performance
in their simultaneous application.

This work is supported by empirical results obtained with
an AIMC unit testchip [26] designed to implement Multiply-
and-Accumulate (MAC) operations, i.e., the core of MVMs.
The prototype, implemented in a 90-nm STMicroelectronics
CMOS technology, includes the AIMC unit and a PCM IP, and
it is conceived to extend the features of the memory IP without
modifying its internal structure. The hardware architecture
reduces the effects of PCM cells conductance drift on MAC
operations at the circuit level with negligible area overhead,
so that no post-processing conditioning is required; moreover,
non-linearities in the device I-V characteristics are not excited.
The conductance variability is then addressed in the context of
a DNN-based classification task, by implementing the DNN
training phase in a device-aware fashion, with measurements-
based models. The benefits of the proposed solutions are
evaluated on the CIFAR-10 dataset, employing two neural
networks having significantly different complexities, i.e.,
Lenet-5 and VGG-8.

The paper is organized as follows. In Section II the
architecture and the implementation of the employed testchip
are recalled. In Section III the experimental results of hardware
drift-compensation and accuracy are expanded and discussed.
In Section IV numerical models are fit against programming
variability and drift measurements. The combination of
hardware compensation and device-aware training procedures
is validated in Section V on the CIFAR-10 classification task.
Finally, the conclusions are drawn.

II. AIMC PROTOTYPE

This section briefly describes the architecture of the AIMC
prototype proposed in [26]. The system is used to execute one-
step Multiply-and-Accumulate (MAC) operations with both
signed inputs and coefficients. The prototype, depicted in
Fig. 1(a), contains a peripheral AIMC unit interfaced with
an embedded PCM (ePCM) IP [27]; the whole testchip
is manufactured in a 90-nm STMicroelectronics CMOS
technology, which features a specifically optimized Ge-rich
GeSbTe (GST) alloy for PCM cells. The AIMC unit is directly
connected to the Main BitLines (MBL) of the ePCM IP
(Fig. 1(b)), and extends its functionalities by adding MAC
execution features, while preserving its use as a standard
binary ePCM memory array.

A. Computing Architecture

To perform MAC tasks, the AIMC unit sets the read
voltage of each MBL and reads the current of the cells
belonging to the addressed WordLine (WL). Therefore,
the computation of a MVM requires multiple sequential
activations of different WLs. The proposed implementation of
the AIMC unit architecture has been conceived to mitigate part
of the aforementioned PCM non-idealities cells. In particular,
the adoption of time-coded inputs, along with cells being
read at a fixed voltage, address the issue of a nonlinear
device I-V characteristic. In addition, as explained in detail
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Fig. 1. (a) Die micrograph. The AIMC unit is designed on the top of the ePCM IP. (b) Structure of the AIMC prototype: the AIMC unit is interfaced with
the memory array through its MBLs; the programming and read circuits, as well as the row and column decoders are not modified to grant both AIMC and
standard digital employments. (c) Structure of the AIMC unit architecture, where the MAC computation principle is shown.

in Section III-C, PCM cells drift compensation is achieved by
a hardware technique that makes the MAC output dependent
on a conductance ratio, instead of an absolute conductance
value.

Let us first consider the mathematical description of a
MVM, i.e., z = Wx, with z ∈ R

m , x ∈ R
n and W ∈ R

m×n .
The j-th element of z, is indeed computed through the MAC
operation:

z j = W j · x =

n∑

i=1

w j,i xi , (1)

where W j is the j-th row of W. Each element w j,i of W j =

[w j,1, . . . , w j,n] is expressed through a conductance g j,i for
its magnitude, and through gS, j,i for its sign, each stored in a
single PCM cell of the j-th wordline; thus, from a functional
point of view, the implementation of each weight w j,i is:

w j,i =

{
g j,i if gS, j,i < gth

−g j,i if gS, j,i ≥ gth
(2)

where gth is the conductance threshold to encode a positive or
negative weight sign. The actual details of the device-level

implementation can be found in [26]. Fig. 1(c) shows the
detailed structure of the AIMC unit designed to perform a
single signed MAC operation.

Each element xi of the input array x = [x1, . . . , xn]

is represented by the V1, . . . , Vn analog voltages. The
corresponding time-coded version is obtained by comparing
each Vi , with a shared ramp signal generated by the integration
of a reference current IREF, flowing through a reference cell
gREF having the constant VREF voltage across. The constant
read voltage VREF is also applied across each weight cell
g j,i obtaining the I j,i current. The MBL voltage is forced
to VREF by the Readout Circuits [26], which are interfaced
with each MBL of the ePCM IP. The weighted summation is
then obtained integrating over a fixed time the sum of I j,i ,
each having a duration proportional to xi . The expression of
the differential output VOUT j

, associated to the j-th wordline
is:

VOUT j
= k

[
n∑

i=1

(
±

g j,i

gREF
Vi

)]
(3)
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where k is a dimensionless constant value accounting for
the effects of circuit parameters. The sign of the elementary
product, which corresponds to the direction of the I j,i current
being integrated, is managed by the Readout Circuit according
to the sign of the original product w j,i xi [26]. Considering
Vi and g j,i/gREF as the absolute values of xi and w j,i ,
respectively, VOUT j

= k
∑

i w j,i xi = kz j is therefore
proportional to the ideal signed MAC result z j already
expressed in (1).

This result, obtained with PCM devices being read at
a constant voltage, does not suffer from memory cells
nonlinearity. The adoption of ramp-driven time-coded inputs
is indeed a common solution to overcome the behavior of
PCM devices I-V characteristic [11], [12], [13], [14], [15].
Though, the key-feature of the proposed architecture lies in
the introduction of a conductance ratio in implementing the
MAC weights, which is beneficial to mitigate the effects of
cells drift on the MAC results. It has been proven [28] that the
drift of a generic cell conductance g(t) follows the power law
g(t) = g0(t/t0)

−α , where g0 is the conductance at an arbitrary
initial time t0, and α is the drift coefficient, which is positive
and cell-to-cell variable. Being the MAC result proportional to
the conductance ratio g j,i (t)/gREF(t), and plugging the drift
model of g(t) in (3), the MAC operation evaluated at time
t0 + t , becomes:

VOUT j
(t) = k

[
n∑

i=1

(
±

g0, j,i

g0,REF

(
t

t0

)−(α j,i −αREF)

Vi

)]
(4)

where g0, j,i and g0,REF are the conductances of the weight
and reference cells at t0, respectively. Here time t has
to be intended as significantly longer than an actual
integration window, wherein conductances are assumed to be
constant. The notable aspect of (4) is the effective reduction
of the drift coefficient to

(
α j,i − αREF

)
, so that drift is

partially compensated. At the circuit level, the compensation
mechanism acts on the slope of the shared ramp signal
which decreases as gREF experiences drift. This leads to an
increase in the integration time and compensates for the drift-
induced drop of the weight cells currents. To implement this,
the architecture exploits only a single PCM cell to generate
a reference ramp signal [26]. In case no compensation is
adopted, the reference ramp still must be generated through
a reference conductance. Therefore, the overhead due to the
drift compensation consists only of the use of one PCM cell
per WL, which can not be consequently used to store MAC
weights. The fact of having the MAC output depend on the
ratio of two correlated quantities, i.e. PCM conductances, leads
to a general resilience of the system towards variabilities.

B. Testchip Implementation

The testchip prototype [26] allows for n = 12, i.e., twelve
inputs and coefficients. Its circuits have been designed for a
VDD = 1.2 V power-supply and a read voltage VREF = 0.3 V,
leading to PCM cells currents ranging from hundreds of nA to
tens of µA. The result of each MAC operation was obtained
measuring the voltage VOUT j

on an output pin. Experimental

data were converted using a 16-bit ADC available on a
dedicated evaluation board.

The design and implementation of this prototype are
mainly focused on demonstrating the validity of its hardware
drift compensation feature, and no specific strategy has
been adopted to enhance the computing power consumption.
Although the energy required to implement in-memory
inference tasks depends upon the interconnection scheme of
the network layers [2], [29], theoretical energy efficiency
estimation of the architecture can be still provided. In this
scenario, a MAC operation of size n = 12 is estimated to
be implemented with a ∼ 0.34 TOPS W−1 energy efficiency,
which is approximately two orders of magnitude lower than
the state of the art [12], [18], [30], [31], [32], but still
improvable in future designs based on this first prototype.
In particular, the power consumption is firstly dominated by
the PCM cells current. As in more competitive solutions
[12], [18], cells should be read at lower BL voltages, as well
as programmed at lower conductances. A considerable portion
of power consumption is ascribed to the comparators too,
which have been designed to get high switching speed, so that
the MAC computation is more precise. A different strategy
to encode the inputs may be considered (e.g., with fully-
digital solutions [33]). Finally, the high power consumption
associated to the output integrator is due to the large
amount of cells currents being integrated on its feedback
capacitance [26]. Alternative solutions to the current integrator,
as for example a direct current-to-digital conversion [12], must
be taken in consideration.

III. EXPERIMENTAL EVALUATION OF THE AIMC UNIT

In this section, the performance of the AIMC unit is
observed in terms of peripheral-circuit accuracy and of
drift-compensation capability, providing a more detailed
characterization with respect to [26]. The accuracy of the
peripheral-circuit is estimated by first replacing the PCM
devices with programmable integrated resistors, having a
32-levels resolution, so as to neglect the effects of the
memory devices. In order to understand the variability in
the cells programmed conductance, the iterative programming
algorithm is detailed below as well. Drift compensation is then
tested employing PCM cells as both MAC coefficients and
reference conductance.

A. Accuracy of the AIMC Unit

To evaluate the accuracy of the peripheral circuitry,
without the effects of the PCM cells non-idealities, the
AIMC prototype was initially tested by performing m =

10000 random MAC operations z = [z1, . . . , zm], with
z j =

∑12
i=1 w j,i xi . In this test mode, the ePCM array has

been replaced with an integrated test unit, where integrated
resistors act both as weight coefficients and compensation
reference conductance. Each conductance can be selected
among 32 available levels. Measurements have been performed
on four different testchips, which showed no significant
differences among them. Results related to a sample testchip
are reported in Fig. 2(a), where the yellow curve refers to MAC
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Fig. 2. Accuracy of the AIMC unit: (a) Measured MAC operations as
a function of the ideal MACs, where MAC coefficients are implemented
with programmable integrated resistances. MAC weights wi employed for
the yellow (purple) data are negative (positive). (b) MAC error distributions
of the two data sets.

operations with negative weights, whereas the others employs
positive weights. The experimental data z are distributed
around the red lines representing the ideal MAC output zid ,
obtained by evaluating (1) with the nominal values of the
integrated resistors used as gi, j and gREF.

The distribution of the MAC error ε = zid − z for the two
cases is reported in Fig. 2(b). The accuracy of the circuit,
defined as (1 − σε) [12], where σε is the standard deviation
of ε, is then equal to 98.9% for the positive-weights MACs,
and it is equal to 98.4% for the negative ones.

B. PCM Cells Programming Algorithm

Various works have shown the possibility to reach multilevel
conductance levels in PCM devices through the application of
suitable SET and RESET current pulses [34]. These pulses
cause the heating of a relevant portion of the cell, modifying
his internal structure by an electro-thermal process. The
current pulses are characterized by their maximum amplitude,
time duration and falling-edge slope:

• A SET pulse is a trapezoidal current pulse, consisting of
a melting phase, followed by a slow crystallization phase,
leading the cell resistance to decrease.

• A RESET pulse is a single, high-amplitude, rectangular
current pulse that melts the central portion of the cell,
which will rearrange itself randomly, bringing it into a
high-resistance state.

The experimental environment employed in this work is
the one presented in [35]. The programming algorithm, based
on a SET Stair-Case (SSC) approach [36], is outlined in
Fig. 3. Once the target conductance level ĝ and its absolute
tolerance δg have been defined, a power RESET pulse of
amplitude AR is applied to the cell. Then a sequence of
partial SET pulses is applied to the cell, starting with an initial
amplitude AS0. The cell conductance value is measured after
the application of each pulse. If the conductance level falls
within the target interval, the programming algorithm is then
terminated. If the target interval is exceeded, the algorithm
will start again from the power RESET; otherwise, if the

Fig. 3. Outline of the cells programming algorithm.

Fig. 4. CDFs of 32 levels of programmed cell conductances.

reached conductance is below the target conductance range,
a new SET pulse is applied, whose amplitude is increased
by 1AS . To prevent the algorithm from running indefinitely,
a maximum number of programming attempts is enforced.
Whenever the targeted conductance value is not reached within
the maximum number of iterations, the cell will be excluded
from further calculations. This operation corresponds to the
Iter check box in Fig. 3.

The minimum amplitude AS0 of the initial SET pulse is
selected taking into account the target conductance of each
cell, in order to reduce the number of SET pulses to be applied.
In particular, AS0 is gradually increased from a minimum of
AMIN to a maximum of 3AMIN as a function of the target
conductance range, and the SET-amplitude step 1AS was
chosen equal to AMIN/5.

In this work, 32 conductance levels have been chosen to
program 6400 PCM devices. The targets are equally spaced
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below a maximum target gMAX, with an absolute tolerance
δg = ±0.025gMAX. The result of the programming procedure
at t = t0 is shown in Fig. 4, where the cells cumulative
distribution functions (CDFs) for each programming target is
reported. All the 6400 cells were programmed successfully
within a maximum number of iterations equal to 250. The
conductance level distributions are overlapped to allow the
feasible programming of all 32 levels within the maximum
reachable conductance gMAX.

C. Drift Compensation

Drift-compensation is the main target of the described
AIMC unit and its key element consists in the use of a
reference PCM cell gREF for the ramp generation. Its level
can be chosen: i) to maximize the VOUT output swing, and i i)
to compensate the drift effects on MAC operations.

The output voltage VOUT can vary between ±V MAX
OUT ,

a limit determined by the design of the output integrator.
The maximum output swing, V MAX

OUT , enforces an upper bound
on the maximum MAC operation, i.e., from (3) V MAX

OUT =
kV MAX

IN
gREF

[
max j

(∑n
i=1 g j,i

)]
=

kV MAX
IN

gREF

[
ngMAX

]
. Thus, one can

obtain a minimum value for gREF:

gREF ≥ k
V MAX

IN

V MAX
OUT

[
ngMAX

]
(5)

where V MAX
IN is the analog value corresponding to the

maximum input xMAX. Condition (5) represents the worst-case
constraint on gREF, as it assumes the maximum programmable
conductance gMAX for each stored weight g j,i [35]. However,
in practical implementations, where the w j,i values and
consequently the g j,i of the whole array are known, the
previous condition can be relaxed considering the maximum
amount of conductance per WL:

gREF ≥ k
V MAX

IN

V MAX
OUT

[
max

j

(
n∑

i=1

g j,i

)]
= gmin

REF (6)

If the inequality in (6) is satisfied, all possible MAC operations
are mapped within the available output swing (as shown in
the black line in Fig. 5); otherwise, the output voltage may
saturate (as represented by the purple line). Thanks to the
compensation technique, the first condition is maintained over
time, whereas the drift-induced random drop of MAC weights
would translate into a sensible reduction of the output swing,
as depicted by the yellow curve of Fig. 5, with consequent
issues in any elaboration of the output.

In the proposed AIMC architecture, the value of the
reference cell conductance is crucial for the effectiveness of
the drift compensation, as PCM devices tend to assume drift
coefficients with cell-to-cell variability, and a correlation to
their initial conductance [35], [37], [38], both effects leading
to an imperfect compensation of the drift exponents in (4). The
optimal value of gREF, which satisfies (6), has been found by
simulating 10000 random MAC operations z (the exact same
set of inputs and weights used in Section III-A). VOUT has
been computed according to the model (3) at time t0 with
the target values of cells programming (i.e., without drift),

Fig. 5. Effects of different values for the reference conductance gREF on
the output swing of the MACs. i) optimal swing (Equation (6)); i i) saturation
due to low gREF level; i i i) swing reduction induced by PCM cells drift with
constant gREF.

Fig. 6. MAC accuracy as a function of gREF
gMAX . Continuous lines refer to

simulated results after 2- and 18-hours room temperature and 90◦C bake drift.
Dashed lines represent the MAC accuracy in the same conditions when no
compensation is adopted. Crosses report the results of experimental evaluation
of MAC accuracy for different gREF levels.

obtaining the target MAC values ẑ; then, the effects of drift
have been simulated in z(t) with (4), where the drift coefficient
values have been taken from a previous work [38]. Fig. 6
depicts the MAC accuracy, already defined as (1 − σε), as a
function of the gREF

gMAX
value. Different curves refers to three

considered time intervals, i.e. 2 hours and 18 hours at room
temperature, and after 24-hours 90◦C bake. To simulate the
condition where no compensation is adopted, the reference
conductance has been kept constant in accordance with [26],
letting thus MAC operations depend on drift. It is evident
that the more effective interval of values for gREF is between
∼ [0.4 − 0.6] gMAX. The accuracy gain with respect to the
uncompensated case in the three considered scenarios, when
drift compensation is implemented with gREF

gMAX = 0.5, is 4.79,
5.38 and 7.81%.

As a final check, the same operations have been executed
on the test chip, with gREF

gMAX = 0.3, 0.5, 0.7 and 0.9.
The experimental results are coherent with the numerical
simulations; in particular, the optimal level of gREF

gMAX for
drift compensation is equal to 0.5. The full set of MAC
operations with gREF

gMAX = 0.5 is reported in Fig. 7, where the
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Fig. 7. (Top) Comparison of the MAC output for compensated and uncompensated cells (a) after 2 hours from programming, (b) after 18 hours and (c) after
a 24-hours bake at 90 ◦C. (Bottom) Distribution of the MAC error ε.

measured z(t) are plotted as a function of the ideal MAC
zid , in the three considered time instants. The results are
also compared with the same operations performed with no
compensation. In this case, the reference conductance gREF
is implemented with an integrated resistance; thus, being
the ramp reference current IREF constant in time, no drift
compensation is applied. The distribution of the MAC error
ε = zid − z(t) is also reported in the same figure both with
and without drift compensation. MAC accuracy becomes quite
constant over time when compensation is adopted (97.7%
after 2 hours and 96.8% after 14 hours at room temperature),
even after a drift-induced 24-hours 90◦C bake (94.8%) [17];
otherwise, its standard deviation σ(ε) tends to increase with
a consequent decrease of MAC accuracy over time (92.2%,
90.3% and 81.9%, respectively). It is evident that when
no compensation is adopted, the output swing is reduced,
as previously discussed.

IV. MODELING THE CONDUCTANCE VARIABILITY

Validating the device and circuit performance in a
(simulated) application requires a numerical model for the
device properties, namely the variability of the programmed
conductance under the effect of the iterative programming,
and the conductance drift, both with and without hardware
compensation. To this end, PCM cells were characterized by
executing a MAC operation for each g j,i . To isolate a single
cell, among the 12 that determine a MAC operation, one
external input Vk has been applied at a time, setting the others

to 0. The AIMC output, as expressed in (3), then reads:

VOUT j
=

g j,k

gREF
Vk , (7)

and depends on the single cell g j,k behavior only. The only
nonzero input, Vk , was chosen equal to its maximum value
V MAX

IN for increased accuracy.
Each individual level l can be reasonably approximated by

a normal probability density N (µ
(l)
p , σ

(l)
p ), whose standard

deviations are depicted as crosses in Fig. 8 against the
mean normalized conductance. From the data, a model for
conductances affected by programming variability can be
defined as g0 +1gp(g0), where g0 is the nominal conductance
and 1gp(g0) a zero-mean gaussian perturbation. To obtain the
standard deviation of the 1gp term a continuous function has
been fit to the data, using the equation

σp(g) = σ0 + σ1 tanh(g/γ0) . (8)

The parameters σ0, σ1 and γ0 have been found by a nonlinear
least squares fit using the Levenberg-Marquardt algorithm.
As negative weights are implemented mapping their magnitude
and sign onto different devices, and assuming that only errors
on the former can be observed at the output, the model
is extended towards negative g values by setting σp(g) =

σp(−g). This decision was grounded in the observation of
a similar behavior for positive and negative weights in Fig. 2.

The standard deviation of cells spread at the end of the
programming phase (time t0) is reported in Fig. 8(a) as a
function of the mean programmed conductance of each target
level. As expected, all levels have been programmed with a
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Fig. 8. (a) Standard deviation of the spread resulting from the iterative programming procedure, as a function of the average conductance of each programmed
level. (b) Mean and standard deviation of the drift-induced conductance variation for cells without compensation and (c) with compensation.

spread standard deviation under the programming tolerance
δg = ±0.025gMAX. This tolerance is arbitrarily tunable, and
directly impacts on the energy required for the programming
phase.

Conductance drift has been then observed, both for
compensated and uncompensated cells, in the same settings
described in Section III-C, i.e., after 2 hours, 18 hours and
after a 24 hours bake at 90 ◦C. The mean µ

(l)
d and standard

deviation σ
(l)
d of the conductance variation 1gd = g(t1)−g(t0)

observed in each programmed level are shown in
Fig. 8(b) and (c). Note how the hardware compensation
scheme reduces the mean component of the drift by up to
one order of magnitude (for the cells which underwent a
bake), while the spread of the level is (slightly) increased.
This is caused by the reference cell conductance gREF
being affected by its own variability, thus introducing an
additional perturbation in the PCM-implemented levels.
The standard deviation data has been fitted by model (8).
Conversely, a polynomial of order 3 has been used for
the error in the mean value of the programmed level, with
a saturation applied so that it does not become positive
for sufficiently low conductance values. The resulting
functions µd(g) and σd(g) are the solid lines in Fig. 8.
Though measurements are scarce in the region around 0.1,
the trend predicted by the model is in line with what is
observed in the device characterizations performed in other
works [18].

The curve describing the standard deviation of an
uncompensated drift in Fig. 8(b) after the 24-hours bake
results in an almost straight line. The intuitive explanation
is that conductances observed after the bake are more
densely packed in the lower half of the conductance domain,
as showed in Fig. 9. They end up in the linear-growth region
for the 2-hours and 18-hours models. Moreover, as larger
conductances experience a more significant drift, they also
spread out more, leading to large standard deviations. When

Fig. 9. Evolution over time of two batches of PCM devices, programmed
to a target normalized conductance of 0.35 and 0.85. Both compensated and
uncompensated cells are shown.

such large deviations are mapped to the initial target, the small
post-drift domain occupied by the conductances is expanded
to fill the entire horizontal domain, hence the yellow curve
in the bottom plot of Fig. 8(b) surpassing the other two and
having a linear trend.

As a final note, the models derived for the drift are not
continuous over time, i.e. their description only refers to the
specified test conditions. Furthermore, the models are extended
towards negative weights by assuming the standard deviation
is an even function, i.e., σd(g) = σd(−g) and the mean as an
odd one, i.e., µd(g) = −µd(−g). This choice ensures that in
any case drifts makes the cells more resistive as time goes by.

V. PCM-AWARE DNN TRAINING AND EVALUATION

To evaluate the performance of the proposed variability
mitigation strategies on an actual application, a classification
task on the well know CIFAR-10 dataset has been selected
as a testbench [39]. Two popular neural networks have
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Fig. 10. Accuracy of the trained networks versus the programming
spread scaling coefficient, both for the conventional (dotted line) and
device-aware (DA) trainings: continuous lines refers to training and inference
performed with the same spread multiplier (SM); dashed lines to training
at SM = 1 and inference at different values of SM. (a) Lenet-5 and
(b) VGG-8 DNNs.

been used, the Lenet-5 [40] and the VGG-8 [13], having
significantly different complexities, with ∼8 × 105 and
∼4 × 107 trainable parameters, respectively. Their imple-
mentation has been suitably modified so that each synapse
would emulate a PCM device, with the possibility of
enabling conductance programming variability and drift
at will.

With reference to a typical dense layer, the description of
the j-th neuron output is h j = f (b j +

∑
i w j,i xi ), with

inputs xi , weights w j,i , bias terms b j and nonlinear activation
f (·). A PCM-based layer driven by time-encoded inputs would
instead be represented by:

h j = f

(
b j +

∑

i

k
g j,i

gREF
Vi

)
, (9)

where equation (3) has replaced the MAC in the original
formulation. This same reasoning can be trivially extended
to convolutional layers and allows the definition of a fully
PCM-based DNN.

If programming noise and drift are being introduced, the
elementary synapse conductance becomes

g j,i = g = g0 + 1gp(g0) + 1gd(g0, 1t) , (10)

where 1gp(g0) is the programming-induced variability, having
distribution N

(
0, σp(g0)

)
and 1gd(g0, 1t) models the drift

by drawing from a N (µd(g0, 1t), σd(g0, 1t)) distribution,
using the models depicted in Fig. 8.

Both neural networks have been trained with the Adam
optimizer [41], using the following parameters: exponential
decay rate for the 1st and 2nd moments equal to 0.9 and 0.99,
and learning rate equal to 10−2 for the Lenet-5 network and
10−3 for the VGG-8 one. Whilst training, the learning rates
have been halved whenever the process would reach a plateau
for a predefined amount of epochs.

Let us first observe how the two DNNs, trained without any
weight variability, perform when the 1gp term is introduced
only at inference time. To widen the scope of the analysis,
the injected perturbation is scaled by a multiplying factor.
One reason to do it could be to relax the tolerance δg =

±0.025gMAX of the programming algorithm described in

Section III-B, allowing it to converge in a lower number of
iterations, speeding up the initial setup of the memory or a
possible refresh of its values. The dotted curves in Fig. 10
highlight the subitaneous loss of performance as soon as noise
is injected in the Lenet-5 DNN. The larger VGG-8 network,
other than having a higher accuracy, is also more resilient
towards the injected perturbation. This is thought to be the
effect of the additional redundancy introduced by the larger
number of weights, as in [42]. The datapoint corresponding
to a spread multiplier (SM) of 1 has been highlighted, as it
corresponds to the performance observed under the current
programming parameters.

To make the network aware of the programming spread
affecting its weights, a training methodology inspired by the
fake quantization procedure [43] has been employed. This is
a known methodology for the construction of NNs robust
against synapse variability, and has been used extensively
in the Literature [18], [44]. It requires, at train time, the
addition of a perturbation before the weights are actually
applied to the inputs. This obviously affects the network result,
hence the starting point of the backpropagation algorithm [45].
The weight-update process then computes the derivative with
respect to the original, nominal weights. Empirical evidence
shows that this makes the network more resilient to weight
variations. The original technique was devised for the purpose
of making the network robust towards weight quantization.
In that case, the properties of the injected variability would
have been dependent on the number of allowed levels. For the
PCM-based layers, instead, the injected perturbation models
the programming-induced variability, i.e., the 1gp term in
(10). Results in Fig. 10 plotted as solid lines refer to DNNs
trained and evaluated with an identical spread multiplier.
The performance gain is much more pronounced for the
smaller Lenet-5 than the larger VGG-8, so much so that
the former becomes implementable also on the currently
available technology. At a multiplier of 1, the Lenet-5 shows
a 2.2% drop (69.4% down to 67.2%) in accuracy compared
to the ideal, unperturbed, setup and a 15% increase (52.2% to
67.2%) with respect to the conventionally-trained DNN with
weight perturbation injected at evaluation-time. This result,
in conjuction with recent observations on the issues with the
IR drop in large PCM arrays [46], highlights the value of the
device-aware training technique to construct small and robust
DNNs.

Meaningful observations follow from the behavior described
by the dashed lines in Fig. 10. They represent the DNNs
accuracy as a function of the increasing spread multiplier
applied in the inference phase, while the device-aware training
is performed with a constant multiplier of 1. Performance is
improved with respect to the conventional training, allowing
the network to tolerate higher spreads on the network
coefficients. A direct consequence is the possibility of
relaxing the requirements of the programming technique,
without retraining the network, and with benefits in terms of
programming speed and energy efficiency. At the same time,
additional nonidealities, e.g., quantization of pre- and post-
activation signals or the presence of parasitic elements along
the conductive paths, to mention but a few, could be already
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Fig. 11. Classification accuracy when quantizing the signals applied to
and read from every layer, for NNs trained to exclusively address PCM
programming spread using a multiplier (SM) of 1.

Fig. 12. Accuracy achieved when drift is applied to the DNN weights
at inference time, both with and without compensation. (a) Lenet-5 and
(b) VGG-8 DNNs.

managed by a network not trained specifically to address those
issues, up to a certain level.

Indeed it has been observed how device-aware training
techniques do not need to accurately describe the variability of
interest, because of an inherent ability of the training to lead to
networks robust against effect different from the perturbations
used in training [18], [44]. As an example, Fig. 11 shows the
classification accuracy of the two networks trained at SM=1
to address only PCM programming error, but evaluated with
the introduction of quantized activations between each layer.
Results prove that both networks can tolerate up to 6 bits
of quantization with a performance degradation below 1%,
while 5 bits introduce a loss around 5% points. More severe
perturbations should be explicitly addressed during the training
procedure [47]. In any case, the same perturbation-injection
principle used in this work could be used to address signal
quantization (the original purpose of the technique) or even
the presence of parasitic elements in the analog array [44].

Having a network that can tolerate programming variability,
the final step is to observe its robustness against weight
drift. Both networks, trained with a spread multiplier of 1
(i.e., with programming tolerace δg = ±0.025gMAX), have
been re-evaluated by introducing the drift component of the
conductance 1gd at inference time. From Fig. 12 it is clear
how the presence of the hardware compensation allows the
accuracy to be retained over time. The accuracy gain after

the 24-hours 90 ◦C bake is 36% for the Lenet-5 (even though
the corresponding point for the uncompensated evaluation
falls outside the range of the plot) and 22% for the VGG-8
DNN. While the drop with respect to the no-drift condition
is 3% and 0.2%. Still, the benefit is larger for the smaller
network. However, even the VGG-8 one, which would lose
significant accuracy after the 24-hours bake, would be able to
preserve its original performance with the introduction of the
compensation technique.

VI. CONCLUSION

In this paper a combined hardware and software technique
is employed to enhance Deep Neural Networks (DNNs)
performance in inference tasks using measurements from an
Analog In-memory Computing (AIMC) prototype based on
a Phase Change Memory (PCM) IP. Empirical results show
that the employed test-chip Multiply-and-Accumulate (MAC)
accuracy is kept at around 95% over time, thus validating
the proposed hardware compensation scheme. The spread
and retention of the programmed conductances states have
been characterized and modeled, including the effects of
the hardware drift-compensation technique. The results have
been used in a classification task on the CIFAR-10 dataset,
where a device-aware training procedure was employed to
make the DNNs resilient to weight variability. The tests
show that the proposed combined techniques allows a 15%
increase in accuracy for the Lenet-5 network compared to
the conventionally trained one, with a marginal drop with
respect to the ideal reference setup. Drift compensation enables
the networks to retain accuracy over time and is especially
beneficial for smaller DNNs, recovering up to 36% in accuracy
compared to the uncompensated drift.
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