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Adaptive COVID-19 screening of a
subpopulation

Fulvio Di Stefano and Mauro Gasparini

Abstract Methods are sought to test adaptively whether a subpopulation proportion
follows the same time evolution as the population proportion. The motivating case
study is the COVID-19 screening in a university community, taking into account the
time evolution of the pandemic in the whole country.

Key words: Outbreak detection, Control Charts, dynamic threshold, SARS-CoV-2

1 Introduction

During the ongoing pandemic era, the need arises among members of certain work-
ing, studying or social commmunities to undergo a reinforced screening to immedi-
ately identify outbreaks within the community, as outlined for example in [1]. In our
case study, a screening process is planned within Politecnico di Torino (POLITO), a
public university, to prevent clusters among students who come in person to attend
classes (most classes are also given in an online mode) during the first semester of
academic year 2021-2022, running from 27 September 2021 to 14 January 2022.
Based on the case study, the aim of this work is to compare methods to test, re-
peatedly and dynamically, whether a sub-population of interest is on average sim-
ilar to the general population with respect to a certain binary characteristic (e.g.
infected/not infected) with a time-changing distribution.

Outbreak detection is widely treated in literature and many studies have been
conducted on the topic [2, 3]. Tukey’s fences [4] and other well known static meth-
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ods for outlier detection [5] are aimed at identifying excessive presence of some
characteristic in random samples. Attribute control charts (see for example [6]) ap-
ply the same ideas to time series data. This work extends those models by intro-
ducing forecasting techniques to obtain a general methodology which combines the
forecasting of the characteristic with the detection of the excess of that characteris-
tic in a subpopulation. Thus, the main advantage of control charts, which perform
well in detecting sudden and large deviation of the characteristic of interest [3], is
combined with a forecasting technique which takes into account the variability of
the data. The methodology is then applied to the POLITO case study to obtain an
adaptively varying threshold for the COVID-19 screening in POLITO, taking into
account the time evolution of the pandemic in the whole country, i.e. an alert thresh-
old which is not fixed but is able to adapt to the predicted future evolution of the
pandemic.

2 Methods

2.1 Modeling time evolving proportions

Let Pt ∀t ≥ 0 denote the proportion of individuals in a general population of ap-
proximately constant size NP who carry a characteristic of interest. Suppose also
that Pt is an unknown stochastic process over time, meaning that the number of in-
dividuals who carry the characteristic is a random variable with a time-changing
distribution. Let NS ≤ NP be the size of a well-defined subpopulation of interest.
Let pt ∀t ≥ 0, be proportion of individuals who carry the characteristic of interest
in the subpopulation: pt is a distinct stochastic process over time t. If the subpopu-
lation is conformal to the general population it is a subset of, i.e. the subpopulation
and the general population are homogeneous at all possible scales of observations,
pt should be approximately equal to Pt . However, the characteristic of interest may
evolve differently in the subpopulation with respect to the general population. At a
given time t0, estimates of Pt for some previous time steps t ≤ t0 are available. These
estimates, denoted as P̂t ∀t ≤ t0, are based on samples of varying sizes, but this extra
source of uncertainty is ignored in this work, for reasons explained in detail later on.
The following methodology aims at predicting Pt0+1, having obtained estimates of
Pt , t ≤ t0, to obtain a statistical test of whether the subpopulation proportion pt0+1 is
significantly larger than Pt0+1. The interest in one-sided upper tests is due to the fact
the we are concerned with the possibility of an excessive proportion pt with respect
to Pt , as exemplified by the POLITO case study, where evidence for an excessive
proportion in the subpopulation would cause the reinforcing of restrictive measures
such as confinement or distance learning.
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2.2 Forecasting using ARMA models

Given the observed time series P̂t ∀t ≤ t0, one of the objectives is to forecast the
future value Pt0+1. The reason is two-fold: to have a reference value which moves
over time, according to the progress of the underlying characteristic of interest in
the general population, and to incorporate all the information collected up to this
point in the next prediction.

Well-known methods to forecast the future values of a time series when the un-
derlying process is unknown are ARMA models (a good textbook introduction can
be found in [7]), very popular in the econometric literature. ARMA models have
been generalized in several ways and can easily be adapted to many time series. Far
from claiming ARMA models are sufficient for all predictions, we propose instead
to use them as a working tool to update a population reference value.

Each ARMA model is constructed to have two order parameters, denoted (p,q),
which have to be “identified” based on data with an empirical model selection proce-
dure, and several unknown regression parameters, which have to be estimated based
on data. A generic ARMA(p,q) model can be applied to our variable of interest Pt ,
after a preliminary logarithmic transformation, to account for the inherent positive-
ness of Pt (the fact that Pt is also bounded above by 1 can be neglected, since Pt is
usually a small value, way closer to 0 than to 1):

log(Pt) = K +a1log(Pt−1)+ ...+aplog(Pt−p)+ εt +b1εt−1 + ...+bqεt−q

where K is the underlying mean of the process, the εt are the error terms, ai i =
1, ..., p are the coefficients associated to the auto-regressive part of the model and b j
j = 1, ...,q are the coefficients associated to the moving average part of the model.
The εt are assumed to be independent and identically distributed, following a normal
distribution N(0,σ2).

The estimation of the order and the coefficients of the model is widely treated in
the literature [7, 8] and goes beyond the scope of this work. However, it can briefly
be mentioned that the values of p and q can be chosen to minimise the Bayesian
information criterion (BIC) [8, 9].

In our setup, the estimates P̂t ∀t ≤ t0 can be used as surrogate Pt to estimate
the parameters of the model. Therefore, having determined the order (p,q) of the
model and estimated the parameters âi and b̂ j, for i = 1, ..., p, j = 1, ...,q, K̂ and σ̂2

and having obtained the realizations of the errors ε̂t ∀t ≤ t0, we can proceed with
the forecasting. Given all available information up to t0, the prediction for the next
time-step can be calculated as:

log(P̃t0+1) = K̂ + â1log(P̂t0)+ ...+ âplog(P̂t0−p)+ b̂1ε̂t0 + ...+ b̂qε̂t0−q

This quantity can be thought to be approximately normally distributed with variance
σ2, estimated by σ̂2 for practical purposes.
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2.3 Detecting excessive presence of the characteristic of interest in the
subpopulation

Given the forecast for the next time period in the whole population, inference can
be made over the presence, and in particular over possible excessive presence, of
the characteristic of interest in the subpopulation. Suppose then a random sample
of nS out of NS individuals are tested for the presence of the characteristic in the
subpopulation. Let Xt be the number of individuals who carry the characteristic of
interest among the tested individuals nS at time t; then Xt has a hypergeometric
distribution with (discrete) density

Probpt (Xt = x) =

(NS pt
x

)(NS(1−pt )
nS−x

)(NS
nS

)
which, for NS large compared to nS, can be approximated by the binomial density

Probpt (Xt = x) =
(

nS

x

)
px

t (1− pt)
nS−x

where pt is an unknown parameter evolving over time. We would like to test for-
mally, at level 1−α , the system of hypotheses{

H0 : pt0+1 = Pt0+1

HA : pt0+1 > Pt0+1

Following the methods described in the previous section, at time t0 we have a fore-
cast P̃t0+1 for the next period, accompanied by an estimate σ̂ of its uncertainty. We
can proceed in different ways.

Method 1: direct thresholding. Use the normal approximation retrieved from
the ARMA model to obtain an explicit threshold τ1,t0+1 and use the decision
rule

“Reject H0 if Xt0+1 > τ1,t0+1 := nS exp(log(P̃t0+1)+ z1−α σ̂)”,

where z1−α is the 1−α quantile of the normal distribution.
Method 2: binomial testing. A more traditional approach would be to perform a

standard binomial test at a significance level approximately equal to 1−α (due
to the discreteness of the binomial distribution), with decision rule

“Reject H0 if Xt0+1 > τ2,t0+1”,

where τ2,t0+1 is the (1−α)-quantile of the binomial distribution with parameters
nS and P̃t0+1. This method disregards the uncertainty about Pt0+1.

Method 3: normal testing. If nS is large enough, the binomial distribution can
be approximated by a normal distribution, so that the following decision rule is
obtained:
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“Reject H0 if Xt0+1 > τ3,t0+1 = nSP̃t0+1 + z1−α

√
nSP̃t0+1(1− P̃t0+1)”.

The idea behind these techniques is to combine the main advantage of control
charts, which perform well in detecting sudden and large deviation from the average
[3], with a forecasting technique which is able to take into account the evolution of
the characteristic of interest over time.

2.4 A naive fixed threshold

The three methods previously presented are opposed to a naive method which con-
sists in giving an alert if, at some α level type I error, the null hypothesis H0 : pt = pN
at time t ≥ 0 is rejected, using binomial testing. pN is a pre-determined level of
diffusion of the charactestic of interest in the subpopulation which is considered
acceptable.

Method 4: naive fixed threshold binomial testing. Binomial testing using a
fixed threshold results in the following decision rule.

“Reject H0 if Xt0+1 > τN”,

where τN , is the (1−α)-quantile of the binomial distribution parameters nS and
pN .

This procedure is formally equivalent to a binary attribute control chart [6] and
does not take into account the evolution of the characteristic of interest over time.

3 A case study: COVID-19 testing at Politecnico di Torino.

3.1 Current testing.

In POLITO, during the first semester of the academic year 2021-2022, an estimate
of NS = 21870 students plan to attend classes in person, and the university screens
sample of students on site to develop a system of alert to predict possible outbreaks.
This cluster detection system works alongside the screening and the prevention mea-
sures every national system is implementing. In particular, nS = 250 oropharyngeal
swabs are carried out every Monday, Wednesday and Friday, due to procedural and
technical constrains, leading to the total of 750 swabs weekly. We will discuss the
previous test using nS = 250, whereas in practice the same test will be repeated
three times a week. The test will be conducted on a random sample of students who
have booked to attend their lessons on that particular day. Students can refuse to
be tested. However, up to the 3 December 2021, the number of refusals to the tests
has been of a few units. Usually, students who are symptomatic and acknowledge to
be positive do not come in presence, given the possibility to follow online lessons.
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This fact remarks the necessity of a screening procedure which is able to capture
possible unnoticed clusters, like the ones caused by asymptomatic cases, inside the
university.

Following Section 2, the probability of a positive test in a particular day t ≥ 0 is
denoted by pt . Therefore, following Method 4, an alert will be given if, at some α

level type I error, the null hypothesis H0 : pt = pN at time t ≥ 0 is rejected. Using
α = 0.20,nS = 250 and pN = 0.015, a rough guess of the average pandemic situation
in the country in September 2021, we obtain τN = 5 (the reason for using such a
large level of type I error is explained below). This procedure is the one currently
implemented in POLITO, which the authors have helped to set up. Up to the 3
December 2021, the screening has produced very few positive tests, far below the
threshold, due to particularly stringent rules for accessing the POLITO site.

The current procedure does not take into account the fact that the pandemic is
evolving over time. In particular, in Italy the evolution of the pandemic is monitored
by Istituto Superiore di Sanità and Protezione Civile, who provide day by day data
on the evolution of the pandemic [10]. These data give a clue on how the pandemic
is evolving in Italy and, if the pandemic is worsening in the whole country, it is
expected that it will also worsen in POLITO, provided that the above homogene-
ity assumption holds. The use of national data and not regional (Piemonte) data is
two-fold. Notwithstanding the fact that the current regulation still allocates Italian
regions in different risk areas according to the regional spread of the pandemic, all
restrictions of movements (like travelling between regions) and many social restric-
tions do not apply to people who have obtained the so-called ”green pass certifica-
tion”, which is mandatory also to physically access universities. Moreover, just over
a third of POLITO students residing in Italy come from the Piemonte region: a huge
number of students come from the south of Italy and a big component comes also
from the centre and north-east of Italy. Therefore, given the heterogeneous regional
composition of the students which plan to attend class in person and the freedom
guaranteed to them by the current regulation, which permits to people in possession
of the green pass certification to not experience any of the regional constraints in
place, national data are believed to better represent the considered subpopulation.

In Figure 1, the weekly percentage of positive tests in Italy since the beginning of
the pandemic is shown. Now, for reasons related to the way these data are collected
in Italy, they do not properly represent the proportion of infected people at time t.
As a matter of fact, molecular tests are much more precise than antigenic tests and
are carried out mainly to confirm cases reported via the latter ones, increasing the
estimate of positive cases since they may be reported multiple times. However, the
data on antigenic tests decrease the estimate of positive cases, since a huge number
of these tests are carried out by not vaccinated people to access many working ac-
tivities, in compliance with the current regulation. Moreover, the number of weekly
antigenic tests is approximately twice the number of molecular tests in this phase of
the pandemic, but it is not consistent over time. For these reasons, the percentage of
positive tests probably overestimates the true proportion of infected people at time t,
However, it is difficult to quantify how large the overestimation is, but the expected
percentage of positive tests in POLITO might be lower than those numbers. Rather
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than arbitrarly reduce by a significant fraction those percentages, we prefer to use
the original data but work with a large type I error, following the criterion that in this
situation prevention is better than cure, and a false alarm does not entail dramatic
consequences. In particular, the authors will help in analysing the data coming from
the screening process and, if necessary, start an alarm. Given the alarm, a series of
containment measures will be taken, starting from retesting the positive people with
molecular tests - more precise than the rapid tests used in POLITO - then escalating
to quarantineing people and possibly switch to online teaching for entire classes.
We will therefore use a large α = 0.20 and take as our P̂t ∀t ≥ 0 the values shown in
Figure 1. These are calculated by dividing the total number of new cases reported in
a particular week over the total number of tests (both antigen and molecular) con-
ducted in that particular week. The rationale for using percentages instead of counts
is that they are known to help in facing inconsistency in reporting of cases[2], a
well-known topic in outbreak detection.

Using the dataset from the Istituto Superiore di Sanità and Protezione civile and
the methodology described earlier, a forecast on the percentage of positive tests in
Italy next week can be obtained. If the pandemic is worsening (or improving) in the
whole country, the ARMA(p,q) model will provide an adequate prediction, which
can be used for a more accurate alarm system with respect to a fixed threshold. The
use of the weekly time series permits to have a quantity which can be compared
to the percentage of positive tests among the students at POLITO. Moreover, the
data are grouped weekly for two reasons: the number of tests during the week is
not constant but depends on the day of the week, and the fact that the tests at the
Politecnico are not planned daily, as for those in the whole country.

Finally, due to the highly non-stationary evolution of the pandemic, which de-
pends on many factors such as restrictive measures, vaccines, seasonality, hetero-
geneous intensity of screening (e.g. differing search rates for asymptomatic indi-
viduals), it is recommendable to use only the last portion of the time series; in this
work we use only the last 16 weeks of observations and disregard the previous ones
dinamically in case we are interested in different t0 times.

More accurate methods to predict the number of SARS-CoV-2 positives in a
general population are available in literature: the SIS model [11], the SIPRO model
[12], the SIDARTHE model [13] and its extentions [14], the Covasim model [15],
and many others (for example [16, 17, 18]). However, the number of weekly tests in
Italy is not constant over time and social and economical measures are continuously
taken by the governments to contain the pandemic, making a precise estimation of
Pt very hard. In this situation, far from proposing ARMA models as a well-thought
realistic model for epidemic prevalence, the proposal in this work is to use ARMA
models as a working and adaptive tool which performs well enough to give one-time
step ahead predictions, and no further in time.
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Fig. 1 Percentage of weekly positive SARS-CoV-2 tests in Italy since the beginning of the pan-
demic (Week 0 is 24-02-2020) up to the end of November 2021 (Week 91 is 28-11-2021).

3.2 A proposal for adaptive testing

Using R version 4.1.2 and the package forecast [19], the methodology of Section 2
can be applied to the dataset. Suppose to start the estimation at week 74 after the
beginning of the pandemic, i.e. 25 July 2021. At this date, the weekly percentage of
positive tests in Italy is P̂74 = 0.025, and the curve is slightly increasing. Using R, it
is possible to fit an ARMA(p,q) model to the dataset using the previous 16 weeks’
data.

The best fitting model, according to the minimization of the BIC, is ARMA(4,0).
The following parameters are estimated: â1 = 2.723, â2 =−3.334, â3 = 2.235, â4 =
−0.705, K̂ = −3.876, σ̂2 = 0.009. Using this model, we can forecast P̃75 = 0.026.
This number is bigger than P̂74, as expected since the pandemic is slightly worsening
in this period. Also, the three thresholds described in subsection 2.3 are calculated:
τ1,75 = 8, τ2,75 = 9,τ3,75 = 9, where τ1,75 and τ3,75 have been rounded to the next
integer. Therefore, if the number of positives on Monday, Wednesday or Friday
of week 75 among the 250 swabs at the Politecnico is greater or equal than the
threshold of our interest, we start an alert since we reject the null hypothesis that the
proportion of positives in the university p75 is equal to the proportion of positives in
the whole country P75: there is evidence for an ongoing outbreak in POLITO.

After collecting the national data for week 75, we can proceed to estimate the
threshold for the next week. And then repeat this procedure over time. Figure 2
shows the three different thresholds calculated from week 75 to week 92 since the
beginning of the pandemic, using all the data available from the previous 16 weeks.
Comparing this Figure with Figure 1, it is clear that the progress of the pandemic
has been adequately incorporated in the model. The decrease in the weekly per-
centage of positive after week 77 is captured by the variable thresholds, as it is for
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the uprising trend after week 86. Of the three different thresholds, τ1 is the most
conservative, resulting in the lowest number of positives to be achieved to start an
alarm. On the other hand, τ2 and τ3 give very similar results, with τ2 being the most
conservative of the two. This is because the rationale behind the two thresholds is
the same, but τ3 is derived from a normal approximation of binomial distribution,
which traces the widely used asymptotic test for proportions, while τ2 is the exact
quantile of a binomial distribution. In any case, all these methods outperform the
fixed threshold τN , which is not able to capture any of the fluctuation of the progress
of the pandemic: it can result in a lower threshold compared to the others when the
pandemic is in an expansion phase, or in a higher threshold comparing to the others
when the pandemic is in a regressive phase.

Fig. 2 The variable and fixed thresholds for the SARS-CoV-2 swabs at Politecnico di Torino.

3.3 Operating characteristics of adaptive testing

Given the available data on the progress of the pandemic P̂t , some operating charac-
teristics can be calculated for the different thresholds to check their properties. As
an example, it is possible to start from the previously calculated τ1,75 = 8, τ2,75 = 9,
τ3,75 = 9, τN,75 = 5 and the real percentage of positives tested in Italy in week 75
P̂75 = 0.028, to retrieve power and type I error of the thresholds for this week. In par-
ticular, supposing that the positive tests at POLITO follow a binomial distribution
with parameters nS and p75, the type I error can be defined as:

αi,75 = 1−
τi,75

∑
x=1

(
nS

x

)
(P̂75)

x(1− P̂75)
nS−x
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Fig. 3 Type I error for the different thresholds. The solid line is 0.2.

Fig. 4 Power for the different thresholds. The solid line is 0.8.

for i = 1,2,3,N; while the power can be defined as:

(1−βi,75) = 1−
τi,75

∑
x=1

(
nS

x

)
(3 · P̂75)

x(1−3 · P̂75)
nS−x

for i = 1,2,3,N. This type I error identifies the probability to overcome the given
threshold when in truth p75 = P̂75, resulting a false alarm. On the other hand, the
power is the probability to overcome the given threshold when in truth p75 = 3 · P̂75,
resulting a right alarm. For week 75 α1,75 = 0.271, α2,75 = 0.168, α3,75 = 0.168,
αN,75 = 0.705, (1−β1,75) = 0.999, (1−β2,75) = 0.998, (1−β3,75) = 0.998, (1−
βN,75) = 1.
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In Figure 3 and Figure 4 the type I error and power for the different thresholds
are presented. These are calculated using the available weekly data of P̂t from week
75 to 91, as shown above. It can be seen that the fixed threshold gives an extremely
high type I error but also a very high power when the pandemic is worsening, but
its type I error is controlled under 0.20 and its power decreases down to 0.429 when
the pandemic is in a regressive phase. This means that in a expansive phase of the
pandemic there is a high risk of a false alarm, because of the more plausible high
number of positives, while in a regressive phase it is realistic to not detect a possible
cluster inside the university, as a consequence of the high threshold. Instead, the type
I error of τ1 is almost everywhere above 0.07 and below 0.30, with a peak of 0.431
at week 87 (when the weekly percentage of positive tests changes its convexity and
starts growing again); however, its power is above 0.8 in all weeks. As regards τ2
and τ3, these give very similar results. Their type I error is controlled under 0.20
everywhere except around week 87, with τ2 peaking at 0.256 at week 86 and at
0.221 at week 87 and τ3 peaking at 0.221 at week 87. The power of τ2 is above 0.8
all of the time, while the power of τ3 is above 0.8 most of the times, except on week
86 and 88 where it goes down to 0.772 and 0.776, respectively.

A brief summary of the operating characteristics is shown in Table 1, where it
can be seen that the variable thresholds have better operating characteristics with
respect to a fixed threshold: the proposed methodology results in a lower number of
false alarms and in improved detection of possible outbreaks.

Table 1 Summary of the operating characteristics of the different thresholds.

Threshold Fixed Type I error Power

τ1 No (0.07,0.44) (0.80,1)
τ2 No (0.07,0.26) (0.80,1)
τ3 No (0.02,0.23) (0.64,1)
τN Yes (0.01,0.80) (0.42,1)
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4 Discussion

In this work, a methodology is proposed to identify how conformal a subpopula-
tion is to a general population with respect to the distribution of a binary variable.
This study was motivated by a case study on the SARS-CoV-2 tests in POLITO,
to identify outbreaks inside the university via the screening process organized with
oropharyngeal swabs three days a week.

Making use of a very general ARMA(p,q) model, three thresholds which vary
over time have been determined. These thresholds are used to test the equality of
the proportion of individuals with the characteristic of interest in the subpopula-
tion and the general population. Via the case study, it has been shown that the three
presented variable thresholds are able to capture the progress of the underlying pro-
cess, outperforming a fixed threshold in terms of operating characteristics. The three
presented thresholds exhibit different properties: threshold τ1 performs very well in
terms of power, but type I error is not controlled at the however large α = 0.20
level we decided to work with; thresholds τ2 and τ3 have controlled type I error at a
α = 0.20 level, but a little less power with respect to τ1.

Some limitations and future extension of this work regard the possibility to use
a more accurate model to predict the COVID-19 pandemic in Italy and therefore
obtain more accurate thresholds for the case study. However, this work aims at being
very general, in order to be adapted to various possible scenarios.
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