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A B S T R A C T   

Size effect in quasi-brittle material cannot be described simply by Linear Elastic Fracture Mechanics, which 
moreover is limited to cracked geometries. In the present paper we apply Finite Fracture Mechanics to determine 
the size effect on the flexural strength of notched and un-notched quasi-brittle material specimens under quasi- 
static mode I loadings. Although the framework is general, special attention is paid on the Three Point Bending 
and Semi-Circular Bending test geometries. The scaling of flexural strength is of particular interest for concrete 
and concrete-like materials because of the large variation from laboratory to real structural sizes. Theoretical 
predictions are discussed and compared with several experimental data from the literature, related to both 
concrete and rock specimens. The excellent matching with the experimental data proves the soundness of the 
Finite Fracture Mechanics approach, even more valuable because of its simplicity: just two shape functions are 
needed to determine the scaling of the flexural strength (or of the nominal fracture toughness) for a given 
geometrical shape.   

1. Introduction 

In structural mechanics, the term size effect usually refers to the 
variation of the strength of a structure as its size scales proportionally. 
The classical continuum mechanics approach along with (local) stress 
failure criteria is not able to catch any size effect into account. However, 
scientists and engineers became soon aware of the importance of the 
scaling of structural strength. Of course, understanding size effects has 
become even more important in the last years along with the develop
ment of nanotechnologies. Thus, size effect is an ongoing key research 
topic, relevant both from the theoretical and the applied points of view. 
Quoting Bažant [1], ‘‘Scaling is a quintessential problem of every 
physical theory. If the scaling is not understood, a viable theory does not 
exist’’. Note that the source of size effect can be either statistical, 
deterministic, or both. Herein we focus on deterministic aspects. 

About one century ago, while trying to determine the strength of a 
cracked structure, Griffith proposed his infinitesimal energy balance to 
decide whether a crack is propagating or not. It was the base for the 
development of the Linear Elastic Fracture Mechanics (LEFM) theory. 
LEFM is able to predict size effects in cracked structures because of the 
interplay between the stored strain energy, proportional to the volume, 

and the dissipated energy, proportional to the fracture surface. How
ever, LEFM can be applied only to pre-cracked structures and to 
perfectly brittle materials. 

For what concerns quasi-brittle materials, i.e., materials where en
ergy during failure is mostly dissipated on crack surfaces but with an 
Irwin’s material length not so small with respect to specimen size, 
several approaches were proposed in the second half of the last century. 
Among them, here we can cite the Theory of Critical Distances – TCD 
[2,3] – and the Cohesive Crack Model – CCM [4].The basic assumption 
of the TCD is that failure takes place when the (linear elastic) stress at a 
given (material) distance from the notch tip reaches its critical value. On 
the other hand, CCM assumes that stress among crack faces does not 
drop to zero suddenly, but smoothly as the crack opening increases in 
the so-called process zone. TCD is appealing due to its simplicity. 
However, it loses accuracy as the structural size approaches the material 
distance. On the other hand, CCM, although accurate, is computation
ally expensive, requiring non-linear analyses with fine meshing in the 
process zone. 

More recently, a new fracture model named Finite Fracture Me
chanics (FFM) has been proposed, based on the assumption of a finite 
crack growth under proper stress and energy conditions [5]. The FFM 
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approach has proven successful since it retains the advantages of the 
TCD and CCM approaches (simplicity and accuracy, respectively), while 
overcoming their disadvantages (unreliability at small sizes and high 
computational costs, respectively). Furthermore, FFM turns out to be 
very effective in addressing size effects issues, as can be seen by a 
literature review. To cite but a few, here we like to mention the con
tributions by Leguillon et al. [5], on size effect in cross-ply glass fiber 
reinforced composites; by Leguillon et al. [6], on size effect in solids 
containing cylindrical holes; by Erçin et al. [7], extending the holed 
plate analysis to composite laminates; by Cornetti et al. [8], on size ef
fect in V-notched structures under mixed mode loadings (see also Doi
trand et al. [9]); by García et al. [10], on the fiber size effect in 
fiber–matrix debonding; by Torabi et al. [11], on holed Brazilian disks; 
by Gentieu et al. [12], on particle debonding; and by Chao Correas et al. 
[13], on fracture onset in solids containing spherical voids. 

Aim of the present paper is to apply the FFM criterion to the analysis 
of the size effects for typical concrete testing configurations (all under 
mode I load conditions), extending earlier results presented in Cornetti 
et al. [14]. Particularly, the Three Point Bending (TPB) and the Semi- 
Circular Bending (SCB) test geometries will be analyzed and compared 
with several data from the literature related also to rock materials. 

The paper is onward organized as follows: Section 2 presents the 
equations FFM is based on. Section 3 is devoted to the analysis of the size 
effect on plain specimens under pure bending. For such a geometry, the 
expressions of the large and small size asymptotes are derived analyti
cally; moreover, an approximate formula providing the well-known size 
effect of increasing maximum flexural stress with decreasing specimen 
size is also given. Section 4 shows the size effect on notched and un- 
notched TPB specimens. Theoretical results are compared with data 
from the literature on concrete specimens. Section 5 is devoted to the 
size effect analysis of cracked SCB tests and a comparison with experi
mental data on rock specimens from the literature is provided. Finally, 
conclusions are drawn in Section 6. 

Before starting, it is worth saying that the Literature about the size 
effect is huge, especially for what concerns concrete structures, where 
the difference between laboratory and real sizes is usually large and, 
thus, the understanding of size effect is of paramount relevance. Here we 
refer to the fundamental books on the subject by Bažant and Planas [15] 
and Bažant [16] and to references therein. Note that size effect laws 
claiming universality have been proposed in the past, like the Size Effect 
Law by Bažant [17], the Multi Fractal Scaling Law by Carpinteri et al. 
[18] or the asymptotic size effect analysis by Karihaloo [19]. All these 
laws are based on parameters that have to be fitted for any specific 
geometry. In the present work the goal is less ambitious, since we restrict 
the investigation on the size effect on the flexural strength of notched 
and un-notched specimens. On the other hand, the only parameters 

needed are the fracture energy and tensile strength, i.e., material pa
rameters with a clear physical meaning. Note that this latter feature is 
shared by the Boundary Effect Model, originally proposed by Hu and 
Wittmann [20] to take the effect of process zone lengths close to the 
ligament width into account, and then deeply investigated and 
improved (see e.g. Guan et al. [21–23]) to include the effect of the 
maximum grain size on concrete and rock fracture. 

2. Finite Fracture Mechanics 

As mentioned in the Introduction, local strength criteria along with 
linear elasticity are not able to predict any size effect as for lacking any 
internal length. One of the simpler ways to overcome such a drawback is 
requiring the stress to be higher than material strength σc not just at the 
crack onset point, but over a region (a length in 2D geometries), in order 
to have failure. Referring to Fig. 1a, we can, for instance, impose that the 
stress exceeds the tensile strength ahead the crack tip over the length Δ 
upon failure: 

σy(x) ⩾ σc, 0 < x < Δ (1)  

Alternatively, we can demand the average stress to exceed the tensile 
strength, i.e.: 
∫ Δ

0
σy(x)dx ⩾ σcΔ (2)  

In order Eqs. (1) and (2) to provide the same LEFM predictions for suffi
ciently large cracks, it is easy to check that Δ must be equal to (1/2π) lch 
and (2/π) lch respectively, lch being Irwin’s (characteristic) length of the 
material (KIc/σc)2 and KIc the material fracture toughness (Taylor [3]; 
Louks et al.[24]). 

Eqs. (1) and (2) are the base of TCD. Although in several cases they 
work pretty well, they lack a clear physical background and, most 
important, TCD predictions become unreliable as the material length 
and the ligament size get comparable. Considering, for instance, a ge
ometry where the stress resultant over the ligament is null (like in 
bending, see Fig. 2), Eq. (2) clearly provides an infinite failure load for a 
ligament length equal to (or lower than) (2/π) lch. 

In order to overcome such a shortcoming and, at the same time, to 
provide a deeper physical meaning to non-locality, either Eq. (1) or (2) 
have been coupled with the discrete energy balance for finite crack 
growth, leading to FFM fracture criterion (sometimes also called 
Coupled Criterion). Accordingly, the crack advance Δ is no longer a 
material property and the actual failure load is the minimum among the 
ones satisfying the following inequalities [5] 

Fig. 1. TCD (a) and FFM (b) reference schemes.  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σy(x) ⩾ σc , 0 < x < Δ

∫ a+Δ

a
G(a′) da′ ⩾ GcΔ

(3)  

where Eq. (1) has been chosen as stress condition and the second 
equation implies that the energy available for crack growth from a 
to a + Δ must exceed the energy GcΔ needed to create the new fracture 
surface, Gc being the material fracture energy. Alternatively, opting for 
Eq.(2), one gets [14]: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ Δ

0
σy(x)dx ⩾ σcΔ

∫ a+Δ

a
G(a′)da′ ⩾ GcΔ

(4)  

Let us now focus on Eq. (4). The integrand function in the first equation 
is usually monotonically decreasing, whereas the integrand function in 
the second one is generally monotonically increasing (in this case the 
geometry is named positive, and cases considered herein will fall in this 
class). It follows that the former inequality is satisfied for loads P 
increasing with Δ while the latter one for loads decreasing with Δ (see 
Fig. 1b). Thus, the minimum load satisfying Eq. (4) is the one for which 
both inequalities are strictly fulfilled. On the basis of this consideration 
and of Irwin’s relationship, we can recast Eq.(4) in terms of Stress In
tensity Factor (SIF, KI) and fracture toughness KIc as: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ Δ

0
σy(x) dx = σcΔ

∫ a+Δ

a
K2

I (a
′)da′ = K2

IcΔ

(5)  

Eq. (5) is a system of two equations in two unknowns, P and Δ, P being 
implicitly embedded in σy(x) and KI(a) functions. Its two solutions 
provide the actual crack advance Δc and corresponding failure Pc (see 
Fig. 1b). 

Note that, as the CCM can be implemented by means of different 
cohesive laws, analogously FFM can be used by implementing different 
stress requirements [25]. In the following we will use the average stress 

condition (and, thus, Eq. (5)) since, in comparison to Eq. (3), it provides 
a milder size effect on flexural strength which usually better agrees with 
the experimental data on concrete and rock specimens (see Appendix A). 

3. Pure bending of plain specimens 

As a first example of the capabilities of the FFM approach to detect 
size effects on the strength of a structure, let us consider the case of pure 
bending of an un-notched beam with a rectangular cross section 
(Fig. 2a). The stress field over a generic cross section is given by 
elementary beam theory as: 

σy(x) = σN(1 − 2x/H) (6)  

being σN the (maximum) normal stress at the beam intrados. According 
to the simple maximum normal stress criterion, failure is expected 
whenever σN reaches the material tensile strength, i.e., σN,f = σc what
ever the structural size H is. However, it is well known that σN,f increases 
as the structural size decreases (see e.g., Doitrand et al. [26]). We will 
show that FFM is able to catch such an effect and will derive it. 

For brittle materials, the specimen is expected to fail by a vertical 
crack starting from the beam intrados (Fig. 2b). A highly accurate 
expression (error less than 1% for any relative crack depth) for the SIF 
for such a crack is provided by Guinea et al. [27]: 

KI = σN
̅̅̅̅
H

√
fk∞(α) (7)  

where: 

fk∞(α) =
̅̅̅
α

√

(1 − α)3/2
(1 + 3α)

p∞(α) (8)  

p∞(α) = 1.99 + 0.83α − 0.31α2 + 0.14α3 (9)  

and α = a/H is the relative notch depth, i.e., the ratio between the crack 
depth and the specimen height. The symbol ∞ is used because pure 
bending can be seen as the limit case of TPB when the beam slenderness 
tends to infinity. We can now substitute Eqs. (6) and (7) into the FFM 
system (5). Simple analytical manipulations lead to: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σN

σc
=

1
1 − δ

(
σN

σc

)2

=
δ

ρ
∫ δ

0
f 2
k∞(α)dα

(10) 

Fig. 2. Pure bending: plain specimen (a); cracked specimen (b).  
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where ρ = H /lch is the dimensionless size and δ = Δ/H is the dimen
sionless discrete crack increment. For a given size (i.e., a given ρ), the 
discrete crack increment is achieved by squaring the first equation and 
equating the right-hand sides: 

δ(1 − δ)2
= ρ

∫ δ

0
f 2
k∞(α)dα (11)  

Once the root δ = δc of Eq. (11) is (numerically) computed, its substi
tution into either the first or the second equation of the system (10) 
provides the failure load, i.e., the critical nominal stress σN,f. 

However, if we are interested just in the size effect, there is no need 
to solve Eq. (11). In fact, from the second equation of the system (10), we 
can explicit ρ as a function of δ and σN,f/σc. By the first equation, σN,f/σc 
can then be expressed as a function of δ, so that we finally get: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ(δ) = δ(1 − δ)2

∫ δ

0
f 2
k (α)dα

σN,f

σc
(δ) =

1
1 − δ

(12)  

Eq. (12) represents the size effect on the nominal failure stress (i.e., the 
flexural strength) expressed in dimensionless parametric form and it is 
plotted in Fig. 3; the parameter is δ and it can vary within the range 
0 < δ < 1. 

Looking at Fig. 3, it is clear that the nominal strength has two as
ymptotes in the bi-logarithmic diagrams. The one for large sizes is 
obviously horizontal, represented by the material tensile strength. For 
small sizes (ρ → 0), the asymptote is slant, with a slope − 1/4. That is, 
σN,f /σc = dρ− 0.25. In order to prove analytically this result and, at the 
same time, to determine the constant d, we need to solve the following 

limit: 

d4 = lim
δ→1−

[

ρ
(

σN,f

σc

)4
]

= lim
δ→1−

δ
/
(1 − δ)2

∫ δ
0 f 2

k (α)dα
(13)  

where we used Eq. (12). Both numerator and denominator diverge as 
δ → 1− . By de l’Hôpital rule we can remove the singularity. Then, by Eqs. 
(8) and (9): 

d4 = lim
δ→1−

(1 + δ)
/
(1 − δ)3

f 2
k (δ)

= lim
δ→1−

(1 + δ)(1 + 3δ)2

δ p2
∞(δ)

=
32

p2
∞(1)

= 4.56 (14)  

That is, d = 1.46. Hence the asymptotes of the size effect curve are: 

σN,f = σc , H→∞ (15a)  

σN,f = 1.46
̅̅̅̅̅̅̅̅̅̅̅
KIcσc

√

̅̅̅̅
H4

√ , H→0 (15b)  

and are plotted in Fig. 3. Note that, while the overall solution is just 
approximate (yet highly accurate), being based on the polynomial 
interpolating function Eq. (9), the small size effect slope − 1/4 is an exact 
result: it follows (beyond from the FFM approach) from the singular 
behavior of the SIF for a vanishing ligament (here ruled by the term 
(1 − α)3/2 at denominator in Eq. (8)). 

Fig. 3 shows that, from an engineering point of view, the size effect 
on the flexural strength becomes negligible for specimen heights larger 
than ten times Irwin’s length, since the nominal strength increment is 
less than 5% of the asymptotic value σc when H > 10 lch. On the other 
hand, for small sizes the size effect curve approaches its asymptote from 
below. This relatively odd behavior makes the small size asymptote 
provide accurate nominal strength values only for very small sizes and, 
thus, Eq.(15b) is of little help. 

The crack advance normalized with respect to the specimen height 
and the material length are reported in Fig. 4a and 4b, respectively. 
These graphics show that the finite crack increment Δ tends to cover the 
whole ligament H for small sizes, whilst for large sizes Δ tends to the 
value 2lch/(πc2), with c = 1.1215. This value can be achieved analyti
cally by observing that, for large un-cracked size, the SIF to be inserted 
in the discrete energy balance approaches the expression KI = c σN

̅̅̅̅̅
πa

√
. 

It is noteworthy to observe that the small size limit Δ = H is just a 
structural parameter, whereas the large size limit Δ = 2lch/(π c2) is just 
dependent on the material. In all the intermediate cases, the finite crack 
growth (and the corresponding strength) depends on both material and 
geometry. 

Following an approach similar to that given in Doitrand et al. [26], 
here we introduce a master curve, i.e., an analytical expression approx
imating the FFM solution, as: 

σN,f = σc

(

1 +
2.5 lch

H

)0.27

(16)  

Fig. 3. Size effect on flexural strength of plain specimens: bi-logarithmic plot.  

Fig. 4. Finite crack advance normalized with respect to the ligament (a); Finite crack advance normalized with respect to the characteristic length (b).  
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Eq. (16) provides the size effect on the flexural strength with an error in 
comparison to the FFM solution lower than 1.5% (see Fig. 3 and Fig. 5) 
for any specimen height H > 0.02 lch, a range that is supposed to cover 
most of the engineering applications. By testing at least two different 
sizes, the master curve by Eq. (16) can provide an estimate of the true 
material tensile strength starting from the experimental size-dependent 
flexural strength. 

4. Three point bending test 

In the present section the FFM coupled criterion presented in Section 
2 is applied to the TPB geometry. Both plain and cracked specimens are 
considered. Attention is focused on the size effect. Comparison with four 
sets of experimental data from the scientific literature on concrete 
specimens is then provided. 

4.1. Finite Fracture Mechanics 

Let us consider a TPB specimen as in Fig. 6: H is the specimen height, 
S is the span (i.e., the distance between the supports), B the thickness 
and a the crack depth. We further introduce the slenderness β, defined as 
the ratio between the span and the height (i.e., β = S/H). 

By suitable interpolation of the solutions for pure bending (β → ∞, 
given in the previous section) and for slenderness equal to four (β = 4), 
Guinea et al. [27] provided the following expression for the SIF: 

KI = σN
̅̅̅̅
H

√
fk(α, β) (17)  

where σN = (3PS)/(2BH2) is the nominal stress, i.e., the stress at the 
beam intrados at mid-span according to elementary beam theory and in 
absence of a crack. The shape function fk is given by: 

fk(α, β) =
̅̅̅
α

√

(1 − α)3/2
(1 + 3α)

{

p∞(α) +
4
β
[p4(α) − p∞(α)]

}

(18)  

where the polynomial function p∞(α) is the one given in Eq. (9) while 
p4(α) is: 

p4(α) = 1.9 + 0.41α + 0.51α2 − 0.17α3 (19)  

Guinea et al. [27] claim that Eq. (18) can be used with high accuracy for 
any crack depth and for any slenderness β > 2.5. By means of Finite 
Element Analyses (FEA), we checked that it can be successfully applied 
also to less slender geometries (2< β< 2.5), the error with respect to 
numerical values being always less than 1%. 

Eq. (17) allows a straightforward implementation of the discrete 
energy balance. In order to set the average stress requirement, also the 
stress field ahead the crack tip is needed. This task is achieved by linear 
elastic FEAs (one for each relative crack depth). Since, for notched 
specimens, the stress field is singular, numerical problems could arise 
when performing the integral of the stress ahead the crack tip. However, 
the problem is easily bypassed by isolating the singular part that, by 
means of the SIF expression previously introduced, can be both 
expressed and integrated analytically. In formulae: 

σy(x) =
KI
̅̅̅̅̅̅̅
2πx

√ + σN fσ(α, x/H) (20)  

where fσ is the stress shape function to be evaluated by proper FEAs, 
representing in dimensionless form the difference between the actual 
stress field and the asymptotic one. From LEFM theory we know that 
lim
x→0

fσ = 0 [28] and, thus, a mesh refinement around the crack tip is 

generally not needed. By means of Eq. (17) and introducing the 
dimensionless variable ξ = x/H, Eq. (20) can be re-written as: 

σy(α, ξ) = σN

[
fk(α)
̅̅̅̅̅̅̅̅
2πξ

√ + fσ(α, ξ)
]

(21)  

where, for the sake of simplicity, we drop the dependence on β. We can 
now substitute Eq. (21) and Eq. (17) into the system (5). By using the 
same notation exploited in the previous section, simple analytical ma
nipulations lead to: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σN

σc
=

δ

fk(α)
̅̅̅̅̅̅̅̅̅̅
2δ/π

√
+

∫ δ

0
fσ(α, ξ) dξ

(
σN

σc

)2

=
δ

ρ
∫ α+δ

α
f 2
k (α′)dα′

(22)  

It is worth observing that Eq. (22) holds for both cracked and un-cracked 
geometries. In the latter case, α = 0 and the first term at denominator in 
the first equation vanishes. Note also that Eq. (22) includes Eq. (10) i.e., 
the pure bending case analyzed in the previous section (α = 0 and 
β = ∞). 

The discrete crack increment is achieved by squaring the first 
equation and equating the right-hand sides in Eq. (22). Its substitution 
into either the first or the second equation of system (22) yields the 
failure load. However, as we saw in Section 3, if we are interested just in 
the size effect, it is more effective providing ρ and σN,f /σc as a function of 
δ. This leads to: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(δ) =

[

fk(α)
̅̅̅̅̅̅̅̅̅̅
2δ/π

√
+

∫ δ

0
fσ(α, ξ) dξ

]2

δ
∫ α+δ

α
f 2
k (α′)dα′

σN,f

σc
(δ) =

δ

fk(α)
̅̅̅̅̅̅̅̅̅̅
2δ/π

√
+

∫ δ

0
fσ(α, ξ) dξ

(23)  

Fig. 5. Percentage error between flexural strength predicted by the master 
curve - Eq. (16) - and the FFM solution - Eq. (12) - vs dimensionless size. 

Fig. 6. TPB test set-up specimen.  
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For a given geometry (i.e., for given α and β values), Eq. (23) represents 
the size effect curve of the flexural strength σN,f expressed in dimen
sionless parametric form. The parameter is the dimensionless finite 
crack advance δ, spanning from 0 (very large sizes) to 1 − α (very small 
size), when the crack advance tends to cover the whole ligament. Eq. 
(23) clearly shows that, according to the FFM approach, the knowledge 
of the two shape functions fσ and fk are enough to determine the whole 
size effect curve. 

In Fig. 7 we plot the FFM predictions for β = 2.5 and α = 0, 0.2, 0.5, 
while in Fig. 8a we plot the finite crack advance normalized with respect 
to the ligament (i.e., Δ/(H − a) = δ/(1 − α)) and in Fig. 8b the finite 
crack advance normalized with respect to the characteristic length 
(i.e., Δ/lch = δ×ρ) for the same β and α values. All plots are bi- 
logarithmic ones in order to highlight the structural behavior over a 
wide range of scales and the power laws ruling the size effects. 

For what concerns the size effect on the failure stress, Fig. 7 shows 
that the FFM approach predicts a transition from convexity to concavity 
for the size effect curve when passing from un-notched to notched ge
ometries, similarly to what predicted by the universal size-effect law 
proposed by Bažant and Li [29]. The large size asymptote is in fact slant 
for notched specimens, corresponding to the LEFM solution (hence with 
a slope equal to − 0.5), and horizontal for un-notched specimen, corre
sponding to the material tensile strength. On the other hand, for small 
sizes all curves present the same slope − 0.25. This latter result can be 
proven in a way similar to the one we provided in Section 3 and, thus, we 
skip here analytical details for the sake of simplicity. 

For what concerns the size effect on the finite crack advance, Fig. 8a 
shows that all the curves tend to unity as the size tends to zero, meaning 
that in the small size limit the crack advance tends always to cover the 
whole ligament. On the other hand, the large size asymptote is a 

decreasing straight line with slope − 1, meaning that the finite crack 
increment tends to a constant value. The value of such a constant is 
made clear in Fig. 8b, where one can see that the flat large size as
ymptotes correspond to Δ = (2/π) lch for cracked specimens and to 
Δ = [2/(π c2)] lch, with c = 1.1215, for un-cracked geometries. 

Before moving to the comparison with experimental results, it is 
worth noting that size effects can be achieved also by different models. 
The most popular and closest to FFM is probably the CCM [4] which is 
based on similar assumptions and the same material parameters. This 
model is widely adopted in FEAs aimed at studying the failure mecha
nisms of reinforced concrete and steel–concrete hybrid beams (among 
others, see Ballarini et al. [30–31]), where the laboratory test execution 
is difficult at the structural element scale for high size beams (Colajanni 
et al.[32]). Quite often FFM and CCM provide close results [33]; how
ever, a detailed comparison with CCM is out of the scope of the present 
work. Here we want to stress that CCM provides for TPB tests always a 
flat small size asymptote (see e.g., Carpinteri [34]), differently from 
FFM, which provides a slant one. The other important aspect to be 
stressed is that CCM is much more burdensome, requiring a numerical 
non-linear analysis of crack propagation along with a fine discretization 
of the process zone. Actually, if one is interested just on the maximum 
(failure) load, some simplifications are possible, as outlined by Li and 
Bažant [35], where the Authors fixed the process zone size at the 
maximum load and then determined the corresponding structural size 
by solving a proper eigenvalue problem. By the way, this strategy is 
somewhat similar to the one followed here, where, instead of solving Eq. 
(22), we fix the finite crack increment and determined the correspond
ing size and failure load by Eq. (23). However, as far as the main goal is 
the maximum load, it is clear that FFM estimates are by far easier to 
achieve than the CCM ones. In the following section we will show that 
they nicely capture the experimental values too. 

4.2. Comparison with experimental data 

The proposed model is compared with size effect data on concrete 
flexural strength available in the literature in order to check its sound
ness and applicability. Particularly, we consider four datasets (Karihaloo 
et al. [19], Grégoire et al. [36], Hoover et al. [37], Çağlar and Şener 
[38]). In Table 1 we list all the experimental datasets considered, along 
with kind of tests, materials and material properties (tested or 
estimated). 

Before entering into details of each experimental dataset, it is worth 
noting that we model the notched specimens as if they are cracked. Of 
course, the notch widths w are not null, spanning from 0.6 mm for the 
specimens evaluated by Hoover et al. [37] to 4 mm for the ones tested by 
Çağlar and Şener [38], see Table 1. However, previous studies (e.g., 
Carpinteri et al. [39]) showed that the effect of the radius of curvature 
(about one half of the notch width) at the notch tip becomes negligible 

Fig. 7. Size effect for TPB specimens with slenderness β = 2.5 and different 
relative crack depths (α = 0, 0.2, 0.5): bi-logarithmic plot. 

Fig. 8. Finite crack advance normalized with respect to the ligament length vs structural size (a). Finite crack advance normalized with respect to the characteristic 
length vs structural size (b) β = 2.5. 
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as the radius is smaller than 10% of Irwin’s length lch. Since some ma
terial properties are estimated by a best fit procedure, we are able to 
check the requirement on the notch width only at the end of theoret
ical–experimental comparison. Actually, it is fulfilled by all the datasets 
(see again Table 1, last column), thus post-proving the validity of crack 
modelling assumption. 

Finally, note that, since none of the investigated experimental 
datasets reported the concrete fracture toughness KIc, all the toughness 
values (summarized in Table 1) have been obtained by best fit. However, 
a large number of studies on KIc (along with its dependence on water-to- 
cement ratio, compressive strength and aggregate size) were conducted 
in earlier years and can be found collected in the comprehensive paper 
by Bažant and Becq-Giraudon [40]. Typical fracture toughness values 
fall within the 0.55–1.55 MPa√m range, possibly increasing up to 2.50 
MPa√m in case of high strength concrete. Such values agree pretty well 
with those here obtained by best fit (see Table 1, fifth column). 

4.2.1. Data by Karihaloo et al. [19] 
The first experimental dataset we are considering is by Karihaloo et al. 

[19]. They tested High Strength Concrete (HSC) specimens. All tested 
specimens had a slenderness β equal to 4 and a thickness equal to 10 cm. 
Different relative crack depth α were considered: namely, 0%, 5%, 10% 
and 30%. The smallest height was 50 mm for a plain specimen and the 
largest 400 mm for plain and cracked specimens (except for α = 30%). The 
overall number of geometries tested was 15. Except for some un-cracked 
specimens, three specimens were evaluated per geometry. However, just 
the average values were reported in the paper. 

Moreover, some standard tests were performed in order to charac
terize the material. Particularly, the Authors evaluated the tensile 
strength by cylindrical splitting tests, yielding a value equal to 7.40 MPa. 
In order to compare FFM theoretical predictions and experimental data, 
the material tensile strength and fracture toughness are needed. In this 
case, we assume the splitting strength as the reference value for the 
material tensile strength, i.e., σc = 7.40 MPa. The latter is obtained by a 
least squares best fit procedure, yielding a fracture toughness value 
KIc = 1.55 MPa√m. 

According to these values, the comparison is provided in Fig. 9 as a 
dimensionless plot: the excellent agreement between theory and ex
periments is evident, FFM  being able to catch properly the trend both 
for cracked and un-cracked specimens. Alternatively, one can use the 
experimental data to determine both tensile strength and fracture 
toughness, since the number of geometries and sizes is large. Proceeding 
in this way we get a minimization problem in two variables with a 
clearly defined minimum at σc = 7.20 MPa and KIc = 1.60 MPa√m, 
yielding a slightly better fit of experimental data. The almost coinci
dence of the two pairs of values (for one-parameter and two-parameter 
fittings) proves once more the soundness of the present approach. 

4.2.2. Data by Grégoire et al. [36] 
The second experimental dataset we are considering is by Grégoire 

et al. [36]. They tested concrete specimens (ready-mix concrete mixture 
obtained from Unibéton for paving slab applications). All specimens had 

a slenderness β equal to 2.5 and a thickness equal to 50 mm. Four 
different sizes were selected so that one size is twice the previous one, 
yielding a size-scale range 1:8. The smallest and largest specimen 
heights were 50 to 400 mm. Three different relative crack depth α were 
chosen, respectively equal to 0%, 20% and 50%, yielding 12 different 
geometries tested. Three specimens were tested for (almost) each ge
ometry, the total number of tested specimens being 34. From the same 
batch the Authors obtained cylindrical specimens that were used to 
characterize the material: particularly, a splitting strength equal to 
3.9 MPa was found. 

As for the former, in order to perform the comparison between FFM 
and experimental data, we take, as material tensile strength, the one 
given by the splitting test, i.e., σc = 3.9 MPa, and performe a least square 
minimization to achieve the material fracture toughness, finding 
KIc = 1.1 MPa√m. According to these values the comparison is shown in 
Fig. 10: the agreement is more than satisfactory, FFM predictions 
somewhat overestimating the size effect for cracked configurations. 

A slightly better matching can be achieved by determining both tensile 
strength and fracture toughness by least squares method (i.e., by a two- 
parameter fitting), leading to the following pair of values: σc = 4.3 MPa, 
KIc = 1.0 MPa√m. However, also in this case difference between the 
values achieved by one- or two-parameter best fitting is rather small. 

4.2.3. Data by Hoover et al. [37] and by Çağlar & Şener [38] 
The third and fourth experimental datasets we consider were per

formed by Hoover et al. [37] and Çağlar & Şener [38]. Although the data 
refer to two completely independent experimental campaigns, geometry 
and sizes tested were exactly the same. Both the researcher teams tested 
concrete (ready-mix concrete mixture) TPB specimens with several 
different relative notch depth α (0%, 2.5%, 7.5%, 15% and 30%). Heights 

Table 1 
Material parameters for the different experimental datasets considered.  

Test and material properties 

Reference Material Test σc [MPa] KIc [MPa√m] lch [mm] w [mm] (w/2)/lch [–] 

[19] HSC TPB 7.40a 1.55b 43.9  –  – 
[36] Concrete TPB 3.9a 1.1b 79  2.0  1.3 % 
[37] Concrete TPB 4.75b 1.11b 54.8  1.5  1.4 % 
[38] Concrete TPB 4.50b 1.07b 56.0  4.0  3.6 % 
[41] Marble SCB 11.4 a 1.54b 18.2  1.6  4.4 % 
[41] Granite SCB 9.50 a 1.27b 17.9  1.8  5.0 % 
[41] Limestone SCB 5.40 a 1.04b 36.7  1.9  2.6 %  

a by split test; 
b by best fit. 

Fig. 9. Flexural strength vs specimen size for various relative crack depths: 
comparison with experimental data on HSC specimens obtained by Karihaloo 
et al. [19]. Lines refer to FFM predictions, markers to the average values of 
experimental data. 
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H were 40, 93, 215 and 500 mm, thus covering more than one order of 
magnitude between smallest and largest size (size range 1:12.5). For all 
the beams, thickness was 40 mm, and the span-to-depth ratio β was 2.176. 
Thus, the total number of tested geometries is 20. A total of 128 specimens 
(6 per type, plus some extra specimens for smaller sizes in which scatter is 
greater) were tested by Hoover et al. [37], after 400 days of curing, under 

wet burlap, in a curing room of 100% humidity and temperature about 25 
◦C. Regarding Çağlar & Şener [38], tested specimens were 80 (4 per ge
ometry type), cured for 200 days under wet burlap at room temperature 
and humidity. 

In both the experimental campaigns, the Authors did not perform tensile 
split tests. Actually, Hoover et al. [38] evaluated the flexural strength ac
cording to standards. However, flexural strength is usually rather larger 
than split tensile strength; thus, we opt for a two-parameter least squares 
fitting procedure, here even more justified by the vast number of geometries 
tested . The following pairs of material parameters are clearly identified: 
σc =4.75 MPa, KIc = 1.11 MPa√m for Hoover’s data; σc = 4.50 MPa, 
KIc = 1.07 MPa√m for Çağlar & Şener’s results (see Table 1). Results are 
plotted in Fig. 11 in a bi-logarithmic form, where we split the data according 
to the relative crack depth given the large number of considered geometries. 
Note that, since the graphics are in normalized form, both datasets can be 
reported on the same plots. The excellent matching between theory and 
experiments is evident for both datasets. Just some theoretical 
predictions for plain (α = 0%, Fig. 11e) and shallow (α = 2.5%, Fig. 11d) 
notches by Çağlar & Şener [38] differ significantly from experimental data. 
The non-monotonic trend with the size (Fig. 11d), however, highlights 
some peculiarity requiring extra information to be modelled. 

5. Semi-Circular bending test 

In this section FFM is applied to the flexural strength predictions of 
SCB tests. Actually, among several standardized tests for the 

Fig. 10. Nominal failure stress vs specimen size for various relative crack 
depths (bi-logarithmic plot): comparison with experimental data on concrete 
specimens obtained by Grégoire et al. [36]. Lines refer to FFM predictions, 
markers to experimental data. 

Fig. 11. Bi-logarithmic plots nominal failure stress vs specimen size for various relative crack depths: α = 30% (a), α = 15% (b), α = 7.5% (c), α = 2.5% (d), α = 0% 
(e). Lines refer to FFM predictions, markers to experimental values by Hoover et al. [37] (triangles) and by Çağlar & Şener [38] (circles). 
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measurement of rock fracture toughness, the SCB test is quite popular 
and favorable, thanks to its simple sample preparation and testing pro
cedure as well as the small amount of material required per specimen. 
Herein we briefly sketch the FFM solution, analogous to that presented 
in Section 4 for the TPB, and then skip to comparison with experimental 
data on rock specimens by Ghouli et al. [41]. 

5.1. Stress Intensity Factor 

Fig. 12 shows a SCB specimen: B is the thickness, S the half span 
between supports, R the radius of the semicircular specimen and P the 
load applied at the specimen top. As already done for the TPB geometry, 
we introduce a slenderness index β defined as the ratio of half-span to 
radius (i.e., β = S/R) and the relative notch depth, here defined as the 
ratio of the crack length to radius α = a/R (0< α< 1). The origin of the 
reference system is placed at the crack tip. 

Coherently with the notation used for TPB (Eq. (17)), we will write 
the SIF as: 

KI = σN
̅̅̅
R

√
fk(α, β) (24)  

where fk is the shape function (of course different from the one holding 
for TPB – Eq. (18)) and: 

σN =
P

2RB
(25)  

Note that in this case, differently from the TPB geometry, the nominal 
stress has no physical meaning, being just a reference stress value suit
able for normalization purposes. 

Although not as many as for the TPB geometry, some approximate 
analytical expressions for the shape function holding for the SCB ge
ometry are available in the literature (Lim and Johnston [42], Kuruppu 
et al. [43], Ayatollahi et al. [44]). However, most of them hold only for a 
certain range of α values. This could lead to errors in the evaluation of 
the size effect by the FFM model, especially when looking at the small 
size asymptote, where the upper bound of the integral of the shape 
function tends to unity. To overcome this problem, we decide to 
numerically obtain the SIFs. We consider just the slender ratio β = 0.6, 
since it is the one of interest for comparison with experimental data. SIF 
values are determined by FEAs using a stress/displacement extrapola
tion technique, for α ranging from 0.1 to 0.9, increasing α by 0.05 at each 
step. Then we build the shape function fk by interpolating the discrete 
values. 

The shape function is plotted in Fig. 13 along with the analytical 
expressions by Ayatollahi et al. [44], which holds for 0.2< α< 0.8 and 
0.2< β< 0.8. The agreement is satisfactory, the difference being less 
than 6% for the relative notch depth analyzed in the present paper (i.e., 
for α = 0.5). Nevertheless, in order to get more accurate and valid also in 
the small size limit results, we opt to exploit our numerically determined 
shape function, whose use is obviously restricted to the β = 0.6 case. 

Finally note that the shape function diverges (and the SIF does too) as 
the crack tends to cover the whole ligament. 

5.2. Finite Fracture Mechanics 

Provided that one replaces H with R (i.e., ξ = x/R, ρ = R/lch, δ = Δ/R), 
the FFM solution formally coincides exactly with the one holding for the 
TPB geometry, Eq.(23). What differ are just the shape functions fσ and fk. 
As before, the function fσ is determined numerically (just one FEA was 
needed, since we considered only the half-notched geometry, α = 0.5). 

Provided that for the SCB test the nominal stress defined by Eq. (25) 
has no clear physical meaning and that we are considering the size effect 
just on cracked specimens, it is more interesting to highlight the size 
effect the nominal (or fictitious) fracture toughness is subjected to. This 
is readily achieved by substituting the latter equation of the system Eq. 
(23) into Eq. (24). Simple analytical manipulations yield the size effect 
on nominal fracture toughness in parametric form as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(δ) =

[

fk(α)
̅̅̅̅̅̅̅̅̅̅
2δ/π

√
+

∫ δ

0
fσ(α, ξ) dξ

]2

δ
∫ α+δ

α
f 2
k (α′)dα′

KIN,f

KIc
(δ) =

fk(α)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
δ

∫ α+δ

α
f 2

k(α′)dα′

√

(26)  

Note that the nominal fracture toughness can be seen as the (size- 
dependent) toughness value one should use in order LEFM to work at 
any scale. Furthermore, as the structural size grows, the finite crack 
increment Δ tends to be a material constant and, hence, δ = Δ/R → 0; 
accordingly, the right-hand side of the second equation in Eq. (26) tends 
to unity and the nominal fracture toughness tends to the material one, as 
expected. 

The two parametric size effect curves, Eq. (23) and Eq. (26), are 
plotted for the case α = 0.5 geometry in Fig. 14a and Fig. 14b, respec
tively. Fig. 14a shows that the slopes of the small and large size as
ymptotes are the same as for TPB. On the other hand, Fig. 14b shows that 
the nominal fracture toughness is expected to increase with the size of 
the specimens by a (positive) slope +1/4 at small scales and then 
reaching a plateau for large scales, when the nominal fracture toughness 
tends to the material one (that is, KIc). It is clear that, wishing to 
determine the material fracture toughness by a single half-notched SCB 
test, it is required a radius of the specimen higher than 18 lch: beyond 
such a size, the expected difference between nominal and material 
fracture toughness is actually less than 5%. 

Fig. 12. SCB test set-up.  

Fig. 13. Shape functions fk(α, β) vs relative crack depth for β = 0.6.  
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5.3. Comparison with experimental data by Ghouli et al [41] 

To check the reliability of our FFM approach to SCB modelling, we 
compare it with experimental data obtained by Ghouli et al. [41]. 

The research campaign by Ghouli et al. [41] consist in a total number 
of 93 SCB specimens, made of three different natural rocks: limestone, 
granite, and marble. The radii of the tested specimens were 25, 50, 75, 
100, 150, 200 and 300 mm, thus covering a relevant size scale range, 
larger than one order of magnitude (1:12). The specimens were all half 
notched, i.e., a/R = 0.5, and with a thickness B = 20 mm, except the 300 
mm radius specimen, for which a thickness of 30 mm was chosen in 
order to avoid buckling. The half span to radius ratio S/R was kept 
constant for all specimens and equal to 0.6. Finally, the Authors 
machined also cylindrical specimens and tested them to determine the 
splitting strength of the three different rocks. Note that tests were per
formed under vertical displacement control, which does not allow to 
monitor the post-peak behavior of the specimens, but the determination 
of the peak load was enough for our analysis. 

In order to get FFM failure estimates, both KIc and σc are needed. 
When we apply the two-parameter least squares minimization proced
ure, we are not able to get a clearly defined minimum. Actually, we get a 
set of pairs of toughness and strength values minimizing the squares. 
From a physical point of view, it means that size effect data on just one 
(cracked) geometry is a too poor experimental dataset to get reasonable 
estimate for the two material parameters. Anyway, Ghouli et al. [41] 
also provided the splitting strengths, which we use as material tensile 
strength values. Once the σc values are fixed, for all the materials we 
applied the (one-parameter) least squares procedure yielding a well- 
defined minimum in correspondence of a particular KIc value, which 
we assume as the rock fracture toughness. Such values are reported in 
Table 1. 

Fig. 15 shows the comparison between FFM predictions and exper
iments. It is worth observing that, since the plot is normalized, we are 
able to plot data, for the three rock types, on the same plot, the theo
retical curve being unique. From Fig. 15, it is clear that FFM is able to 
catch satisfactorily the size effect on fracture toughness for all the three 
kinds of rocks. The matching is slightly worse for limestone, which show 
a less brittle behavior (lch is about twice the values for the other two 
rocks), and almost excellent for marble and granite. Note that for marble 
and granite the largest tested size have a radius close to 18 lch and thus, 
for that size, we expect a nominal fracture toughness close to the ma
terial one: actually, KIN,f is 1.53 MPa√m for marble and 1.28 MPa√m 
for granite, while the estimated KIc were 1.54 MPa√m and 1.27 MPa√m 
respectively. 

6. Conclusions 

Since its introduction, FFM has been applied to a variety of materials, 
geometries, loadings, and scales. However, one of its best performances 

is achieved in size effect investigation. In the present paper we applied 
FFM to investigate the size effect on the flexural strength of plain and 
notched specimens under bending loads. Particularly, TPB and SCB test 
geometries were analyzed and compared with several data from the 
literature on concrete and rock specimens. 

Main conclusions are as follows:  

• With respect to CCM, which requires an ad hoc simulation for each 
structural shape and size, FFM needs just one FEA per geometrical 
shape, providing the stress shape function, plus the SIF shape func
tion providing the SIF for any crack length along the ligament. That 
is, two shape functions are enough to determine the scaling of the 
flexural strength over the whole range of scales.  

• For plain specimens under pure bending, we obtained analytically 
the small and large size asymptotes. We also provided a master 
curve, that we hope to be useful in engineering practice to easily 
extract the material tensile strength from testing four-point bending 
specimens of different sizes.  

• With respect to previous works on TPB and SCB test geometries, we 
highlighted that FFM size effect curve can be plotted without solving 
any transcendental equation, but just plotting it as a parametric 
curve where the parameter is the finite crack increment. This pro
cedure largely simplified the problem and makes FFM approach even 
more attractive. 

• Comparison with a relevant number of experimental size effect in
vestigations on TPB concrete samples and SCB rock specimens was 
provided. The excellent agreement proved the soundness of the 
present approach. 

Fig. 14. Half-notched SCB tests: bi-logarithmic plots of size effect for on nominal strength (a) and fracture toughness (b).  

Fig. 15. Size effect on nominal fracture toughness for half notched SCB spec
imens. Comparison between FFM solution (solid line) and experimental data on 
rock specimens by Ghouli et al. [41]. 
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Appendix A 

Here we provide the flexural strength size effect for plain specimens choosing the original FFM approach [5], i.e. Eq. (3). Upon substitution of Eq. 
(6) into (3) we get: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σN

σc
=

1
1 − 2δ

(
σN

σc

)2

=
δ

ρ
∫ δ

0
f 2
k∞(α) dα

(A1)  

Note that the second equation in system (A1) coincides with the corresponding one in Eq. (10), since the discrete energy balance remains unchanged. 
Starting from Eq. (A1) the size effect curve σN,f/σc vs ρ = H/lch can be given as a parametric curve where the dimensionless size and failure stress are 
expressed as a function of the parameter δ as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ(δ) = δ
(1 − 2δ)2

∫ δ

0
f 2
k∞(α) dα

σN,f

σc
(δ) =

1
1 − 2δ

(A2)  

Differently from Eq. (12), where the parameter δ can vary only within the range (0, 1), in Eq. (A2) the range is (0, 1/2). This is because now the stress 
condition requires the stress to exceed the tensile strength over the whole crack advance and, thus, the finite crack growth is confined within the 
tensile zone (i.e. the specimen bottom half). Actually, δ → 1/2 defines the small size limit. Proceeding as in Section 3, the small size asymptote is easily 
achieved as: 

σN,f =
KIc

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2H
∫ 1/2

0 f 2
k∞(α) dα

√ = 0.925
KIc
̅̅̅̅
H

√ , H→0 (A3)  

Differently from Eq. (15b), the small size asymptote given by (A3) does not depend on the tensile strength. Moreover, note that the size effect provided 
by Eqs. (A2) and (A3) perfectly agrees with that obtained numerically by Doitrand et al. [26]. 

In Fig. A1 the size effect on flexural strength according to Eq. (12) and Eq. (A2) are compared. While the large size asymptote is the same (i.e. the 
tensile strength), it is apparent that the two FFM versions provide different results, especially for small sizes, where the slope in the bi-logarithmic plot 
is − 1/4 for the average stress FFM approach and − 1/2 for the original FFM formulation. 

Fig. A1. Bi-logarithmic plot of size effect on flexural strength of plain specimens: a comparison between FFM results obtained by average stress FFM criterion 
(continuous line) and Leguillon’s FFM formulation (dot-dashed line). 

M. Baldassari et al.                                                                                                                                                                                                                             



Theoretical and Applied Fracture Mechanics 125 (2023) 103787

12

It can be easily shown that the aforementioned slopes remain unchanged also for TPB of notched/ unnotched specimens. In this sense, original FFM 
formulation provides a relatively strong size effect that does not fit properly the experimental data (on concrete) analyzed in the present paper. Of 
course, this observation does not imply that, for different materials or geometries, the original FFM could work properly. 
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