
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Art of Creating Code-Based Artworks / Verano Merino, Mauricio; Saenz, Juan Pablo. - STAMPA. - (2023), pp. 1-7.
(Intervento presentato al convegno ACM CHI Conference on Human Factors in Computing Systems 2023 tenutosi a
Hamburg, Germany nel April 23-28) [10.1145/3544549.3585743].

Original

The Art of Creating Code-Based Artworks

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/3544549.3585743

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2976495 since: 2023-05-03T15:24:22Z

ACM

The Art of Creating Code-Based Artworks
Mauricio Verano Merino∗
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

m.verano.merino@vu.nl

Juan Pablo Sáenz∗
Politecnico di Torino

Turin, Italy
juan.saenz@polito.it

ABSTRACT
Programming has become an artistic medium for artists; it provides
expression possibilities built on top of the computer’s interactivity
and multimedia features. However, implementing code-based art-
works encloses defining characteristics that differ from traditional
programming. This paper reports on an in-depth interview with
5 code artists with diverse backgrounds, levels of experience, and
working on different code-based artistic expressions. Through their
experience, we identified characteristics and commonalities in their
development process, the tools they use, their sources of inspiration,
and their expectations. Accordingly, we reflect on the particularities
of Creative Coding, indicate commonalities with other domains,
and suggest opportunities and challenges for HCI researchers and
practitioners in proposing tools to support it better.

CCS CONCEPTS
•Human-centered computing→ User studies; • Applied com-
puting →Media arts; • Software and its engineering;

KEYWORDS
creative coding, code-based artworks, code artists, interviews
ACM Reference Format:
Mauricio Verano Merino and Juan Pablo Sáenz. 2023. The Art of Creating
Code-Based Artworks. In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI EA ’23), April 23–28, 2023,
Hamburg, Germany. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3544549.3585743

1 INTRODUCTION
New technologies enable different forms of communication and ex-
pression. Computers were created as tools for fast calculations and
automatization, and they have evolved into a medium for human ex-
pression [30]. Accordingly, software has become an artistic medium
that enable artists to produce dynamic forms, process gestures, sim-
ulate natural systems, and integrate various media including sound,
image, and text [33]. While computer programming used to be an
esoteric skill for engineers and scientists not so long ago, in re-
cent years, people from diverse backgrounds (e.g., designers, artists,
poets, and musicians), are also creating software [15]. Nowadays,

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9422-2/23/04.
https://doi.org/10.1145/3544549.3585743

programming is also an artistic medium [19], and several program-
ming languages and tools for code artists have been developed [15]
(e.g., Processing [30], p5.js [21], openFrameworks [28], Cinder [17],
TouchDesigner [14], Sonic Pi [29], Max/MSP [20], vvvv [38], Pure
Data [12], Nannou [24], and OPENRDR [27]).

Programming with artistic purposes has been portrayed under
the umbrella term Creative Coding: a discovery-based process con-
sisting of exploration, iteration, and reflection, where code is used
as the primary medium to create a wide range of media artifacts
designed for an artistic context [22]. With respect to traditional
programming, Creative Coding has a different development pro-
cess and poses distinctive challenges, technically and conceptually.
On the one hand, it emphasizes the expressivity of computer pro-
gramming beyond something pragmatic and functional [18], and
its primary goal is to build artwork in line with the artist’s ex-
pressive intentions. On the other hand, while becoming proficient
with coding is already challenging for Science, Technology, En-
gineering, and Mathematics (STEM) students, programming with
expressive purposes requires artists to overcome a steep learning
curve. Technically speaking, they must become proficient in several
topics, such as image processing, events, network communication,
object-oriented programming, control structures, functions, and
graphics transformations. Additionally, from the conceptual point
of view, code-based artworks commonly embrace topics as diverse
as Newtonian physics, cellular growth, and evolution to emulate
physical world occurrences [33]. Therefore, code artists must get
familiar with vectors, forces, oscillation, particle systems, fractals,
genetic algorithms, and neural networks.

In this scenario, a challenge for human-computer interaction
researchers and user interface designers is to design and build tech-
nologies that support creativity [34] and expanding programming
beyond the confines of computer science or software engineer-
ing [35]. However, to achieve such goals is compulsory to gather,
directly from the code artists’ perspective, an accurate understand-
ing of their development process, the tools they use, their inspira-
tion and documentation sources, and their expectations. Previous
works provide valuable insights into how visual artists [16], musi-
cians [4], DJs and VJs [36] approach and appropriate software in
their artistic practice. Nevertheless, to the best of our knowledge,
there is no research focused on identifying fundamental charac-
teristics and commonalities among the development process of
code artists with diverse backgrounds, levels of experience, and
fields of interest, in creating code-based artworks.

This paper reports a user study consisting of an in-depth inter-
view with 5 code artists with diverse backgrounds, years of expe-
rience, and working on different code-based artistic expressions.
Findings show that all the participants experience Creative Cod-
ing as highly iterative, exploratory, and open-ended. Furthermore,
code artists commonly integrate their professional backgrounds

https://orcid.org/0000-0003-2278-1365
https://orcid.org/0000-0003-0928-3089
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1145/3544549.3585743

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Verano and Sáenz

into their artworks. Additionally, we identified a lack of support for
some Creative Coding characteristics in existing tools and indicated
possible research directions to support the development process
better. Accordingly, more research is required to further validate
our results with a larger population.

2 INTERVIEWS
The interviews were structured around six aspects referred to the
code artists’ experience: (i) how do they design the code-based
artwork they are about to program; (ii) which strategies do they
adopt when starting to create a new artwork; (iii) where do they
tend to take inspiration; (iv) where do they find documentation to
get technically or conceptually proficient; (v) what are the most
challenging aspects regarding the programming language they com-
monly use; and (vi) which aspects do the artists like the most and
least about the development environment they use. The precise set
of questions can be found in Appendix A.

2.1 Participants
The selection criteria concerned code artists that, independently
from their formal education background, create artworks that di-
rectly result from executing their text-based code. They were re-
cruited through personal contacts and from exhibitions and work-
shops attended the authors. Four participants self-identified as
male, and one self-identified as female, and the average age of
participants was 33.4 years (min = 28, max = 40, SD = 4.5). The par-
ticipants are based in the Netherlands (2), Denmark (1), Germany
(1), and the United Kingdom (1). Before conducting the interviews,
the participants were given a brief online questionnaire (using
LimeSurvey) to gather demographic data, information regarding
their background and experience in Creative Coding projects, and
the technical resources they use. Table 1 lists the participants, in-
cluding their names, years of experience (Yrs), background, and
fields of interest. When asked about the programming languages
that they use, JavaScript and Processing were the most popular
(5), followed by Java (3), Python (3), C++ (1), and SuperCollider
(1). Each participant could indicate more than one programming
language or add one if it was not on the list of suggested ones.

Furthermore, in the pre-interview questionnaire, the participants
were asked to rate their confidence level on a Likert scale with
the most prominent Creative Coding development environments
ranging from “not confident at all” to “completely confident.” Each
participant could indicate more than one tool, and a “not applicable”
option was available for each environment. Additionally, partic-
ipants could add other development environments not included
in the list. The tools in which the participants indicated having a
good level of confidence (from “slightly confident” to “completely
confident”) were: Processing (5), p5.js (5), openFrameworks (2), Pro-
cessing Python (2), Pure Data (2), TouchDesigner (2), OPENRDR
(1), and Processing Android (1).

2.2 Procedure
Due to geographic reasons, all the interviews were conducted on-
line via Zoom in the fall and winter of 2022. On average, each
session lasted 57 m (min = 49 m, max = 1 h 07 m, SD = 7 m), and all

the interviews were in English. They were semi-structured inter-
views in which, upon the participants’ responses, we asked them to
deepen their answers. Specifically, they were encouraged to provide
qualitative justifications and specific anecdotes. Additionally, we
prompted them to reflect on their development process in as much
detail as possible, specifying all the tasks they completed.

The interviews were audio recorded (with the prior consent of
the participants), transcribed with the Microsoft Word transcript
functionality, and subject to qualitative thematic analysis, using an
inductive approach [3, 11], for commonly recurring themes. Then,
each of the authors reviewed all the transcripts and generated our
initial codes (independently and without sharing them to avoid
influencing the other author’s coding criteria). Finally, we shared
this initial subset of codes, discussed the commonalities and the
divergences among them, graphically mapped them, identified the
most revealing data extracts, and derived a set of four themes.

3 RESULTS
This section presents the four main themes that we derived from
the thematic analysis, namely: (i) artists sources of inspiration (You
Code as You Live), (ii) Creative Coding defining characteristics
(Destination Unknown), (iii) development tools (Development En-
vironment Agnostic Approach), and (iv) artists’ mechanisms to
technically deal with the Creative Coding versioning (Creative
Versioning).

3.1 You Code as You Live
We delved into participants’ sources of inspiration to better un-
derstand the Creative Coding development process. As a result,
we could determine that most of the participants considered that
looking for inspiration in other code-based artworks might inter-
fere with the originality of their work (in Tim’s words, “I think if
you want to develop a very individual style, you should not orient
yourself too much on others’ code or tutorials.”). Besides, under-
standing someone else’s code might be painful and time-consuming.
For instance, Sumeet stated, “understanding someone else’s code
is really painful. I can waste one hour looking at someone else’s
code. Instead, I would prefer to write my own code.” So, instead,
participants integrate concepts from diverse disciplines into their
coding practices rather than constantly exploring other code-based
artworks.

In this sense, Joana’s development process: “starts in choreogra-
phy and then goes into the programming languages.” Specifically,
she explains:

I usually look into choreographic concepts. If there is
something within choreography that I am interested in
exploring, then I try to see how I can apply that within
a web interface. For example, how will that movement
take shape? Or how will we experience that same con-
cept in this digital environment? (...) I also name func-
tions after choreographic concepts.

Sumeet’s development process integrates into his code-based
artworks concepts from his background in physics and optics. Be-
sides satisfying the pursuit of his artistic purpose, it gives them
a sense of uniqueness. In his words, “it is just no fun replicating
other people’s work. You can take elements but take something

The Art of Creating Code-Based Artworks CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Interviewed code artists

Name Yrs. Background Fields of Interest

Felipe Ignacio Noriega [25] 20 Music Composition Live Coding, Sound Sculpture
Joana Chicau [5] 9 Communication Design, Choreography, and Perfor-

mance
Live Coding, Experimental Interfaces Design

Michael Kreß [13] 2 Graphic Design, Editorial Design, and Typography Interactive Font Generation Installation, Generative Ty-
pography

Sumeet Rohilla [32] 2 Mathematical Physics and Applied Optical Sciences Abstract Data Visualizations, Real-Time Light and Audio-
Reactive Installations

Tim Rodenbröker [31] 8 Arts and Graphic Design Graphic Design & Creative Coding Teaching

and make it your own and add a layer on top.” In his experience as
an artist, he noticed that “people use random numbers a lot, but
can I use the randomness in Biology to create art? So I knew that
the gene sequences exist in .txt files.” Additionally, in his real-time
interactive light installations, he is constantly “going back to all my
master’s courses, exploring what I learned from them, and seeing
if I can use that idea creatively.” Similarly, Michael often sees that
“inspiration comes from mathematics because I find that a lot of
times mathematics are closely connected to design or arts.” There-
fore, he might find inspiration in a “YouTube video where someone
is talking about mathematics phenomenon, and I try to research
and see how to interpret that idea in my way.”

Felipe summarizes his development process as “I use code as
my instrument instead of writing for the string quartet or playing
piano or stuff like that.” He uses the next analogy to illustrate how
close his music background can be to Creative Coding:

The traditional way of writing music would be organiz-
ing sound events in the time by writing them on paper
using a music notation, which is a form of code. Then
musicians, who can read the scores, interpret them, they
are human interpreters. It is just like code or algorithms
that special programs or domain-specific languages can
interpret to produce sounds.”

3.2 Destination Unknown
While Creative Coding has been widely adopted as the most promi-
nent term to describe the practice of coding with artistic purposes,
the adjective creative is vague. Joana claimed that “coding is cre-
ative regardless of its application, so I find that naming a little bit
troublesome.” Therefore, at the beginning of the interviews, we
asked the participants to share their meaning of Creative Coding
trying to identify how its defining characteristics are present in
their artistic practice.

In their experience, the artists provided consensus answers around
three aspects: firstly, the absence of requirements or a problem to
solve, secondly the uncertainty of the directions that the artwork
might take; and thirdly, interestingly, the fact that the code assumes
an active, visible role in the artwork rather than a purely utilitarian
function. Regarding the absence of requirements, Felipe describes it
very accurately by stating: “in traditional software writing you have
very specific requirements (...); sometimes with creative coding you
don’t even know what it’s going to do.” Likewise, Joana enjoys that

she is “just trying things out, and it removes the pressure of you
arriving at any potential conclusion.”

The absence of a predefined arrival point sets the tone for a trial-
error process with many iterations in which real-time feedback is
highly appreciated, and the final artwork is reached by continuously
adapting, integrating, or rejecting the code. In Felipe’s case, whose
artistical expression concerns sound sculptures, he finds that:

You sort of start and then see where it’s taking you by
trial and error and keep a real-time feedback loop. So
you’re creating an algorithm that’s producing certain
results. If you like those results, you continue exploring
them. If maybe you don’t like something, you change
the algorithm and do continuous iterations in real time
until you produce a sound sculpture.

In the same vein, Michael states that Creative Coding is about
embracing uncertainty, “it’s really about learning to handle the
techniques, the coding ideas, and then seeing where it takes me”.
Tim, for his part, reinforces this idea by talking about a creative
dialog. In his words, “it is a creative dialog like a painter on a canvas
but with code (...) and it is, first of all, completely free of a predefined
motive.”

Concerning the visible role that the code might have in Cre-
ative Coding artworks, Joana commented: “In some performances,
I print parts of the code because then the audience can sort of read,
and I think there’s something quite nice about the legibility of it.
I think it helps give a different understanding of what’s happen-
ing.” Furthermore, in one of Felipe’s performances, a pianist uses
CodeKlavier [26] to generate source code by playing the piano. In
this scenario, the code is not merely a means to reach a working
artwork, but the code itself is the artwork: “Instead of creating soft-
ware to make music, we’re trying to use music to create software,
so we’re turning things around. So we must make it clear to the
audience that the piano is generating the code.”

3.3 Development Environment Agnostic
Approach

Rather than sophisticated functionalities, Joana, Michael, and Tim
appreciate that p5.js and Processing are well-documented. In Tim’s
words, Processing “is not the software to do everything but to
learn about the limitations; it teaches you a lot. It has amazing
documentation, and people have been working on it for 20 years.”
Joana said: “I think p5.js has a really good learning curve. It is super

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Verano and Sáenz

well documented.” In Sumeet’s development process, when more
sophisticated functionalities are required, he relies on software that
might integrate seamlessly with the devices he wants to use in his
interactive installations. He explains “if I want to learn an algorithm,
I will go back to Processing because I can understand and visualize
it. But once I have a sketch, I will mimic it in TouchDesigner because
it has a faster, better API in which you can control a lot of stuff. I
can integrate audio and bring in sensor data.”

Furthermore, contrary to our expectations, participants were not
particularly tied to a specific development environment. Indeed,
in Joana’s case, we found an unconventional use of development
tools: she used the browser inspector to create visuals in a live
performance by changing the values of the HTML elements on
a website. Finally, Tim summarizes his environment-agnostic ap-
proach by stating:

For me, Processing and Creative Coding is more like a
school of thought. It’s not about teaching people to use
high-definition technology but to teach them how to
think. Learning how the computer works, how program-
ming languages work, and how to speak to a computer.
Later, you can pick any technology and learn it much
more quickly when you master these basic concepts.

As artists become proficient with the basics concepts, they would
appreciate additional guidance and support from their tools to
understand the programming language better and increase their
coding speed. For instance, Joana and Michael mentioned: “I know
that if you type in something on Visual Code, it understands you are
trying to write a function, it builds everything for you, and then you
change it up. I have seen other coding environments with a glossary
like not always having to go necessarily online to figure out how
to do things.” In this sense, Michael finds that “in Processing, in a
way, you have to do everything manually. It can be a nice learning
process. But I am starting to work faster, and when I know what I
am doing, it would be nice to have some functionality to help me
out. I am really missing a good runtime debugger or autocomplete
function.”

Similarly, in his teaching experience, Tim has identified that his
students “mostly feel overwhelmed by this blank window. Process-
ing does not tell you anything about how to use it.” However, in his
opinion, even if “it looks like a flood of things you have to know in
the beginning, that is not really true. It is all about practicing.”

3.4 Creative Versioning
As depicted in Section 3.2, all participants agreed on the exploratory
nature of Creative Coding. From a technical point of view, such
nature implies that artists constantly create source code files to
implement and experiment with a particular idea or concept. If they
like the result, that file can become: (i) the starting point for new
artwork, (ii) something that can be integrated into a more extensive
artwork, or (iii) a proof of concept theymight use in future artworks.
As Tim states, it is about having “many different ideas that you can
later use as a foundation for a specific project”. In any of these three
cases, artists have to deal with several versions of their source code
files. They have to find mechanisms to categorize and arrange the
files, so they iterate, return to a previous state, and reuse them in
the future.

Based on the interviews, we could determine, on the one hand,
that available tooling is not designed to support the exploratory
nature. Consequently, each participant has developed their own
strategies. On the other hand, we identified that the Version Control
Systems (VCS) (e.g., Git or Subversion) are not employed by the
participants due to the steep learning curve to get proficient in
using them and the fact that iterations on the files are happening
remarkably fast.

Regarding the strategies adopted by the artists to deal with ver-
sioning, Tim categorizes his work by topics (“So when there is a
specific topic I am dealing with, I create, let us say, a parent folder
where I put all the sketches”). Additionally, having a visual repre-
sentation of the code execution is fundamental for him to locate
the sketches quickly. In his words: “If I am writing a sketch and
like the result, I save it with another name. Then, I always run a
video record function from the video export library, which creates a
thumbnail of my sketch exactly in the folder where all my sketches
are.” Similarly, for Michael, having a visual representation is funda-
mental. His strategy, however, is to publish his work on Instagram.
In this way, when he wants to find a sketch, he compares the post’s
publication date to the file creation date. “If it’s like a small sketch,
I have a folder of daily sketches, and I post them on Instagram and
when I have a new idea, I probably go back to the sketch and maybe
change some variables and then save a new image.”

Sumeet, for his part, categorizes its files by creation date. When
he is working on a project, he creates a new folder each week and
dumps the files from the previous week that he intended to use.
Moreover, he uses an external file to document his learning and
development progress:

I keep a document (OneNote notebook) every weekwhere
I put keywords and some learnings from that week. Ad-
ditionally, I have another notebook for each project, and
if I find something more general will just put that in
that main document. So there are multiple levels of
documentation going on, and if I am aware, I will just
update those documents.

Regarding the reasons that prevent code artists from relying on
traditional VCSs, participants expressed a steep learning curve, and
using these systems requires some expertise to deal with version
conflicts. As Joana stated: “I am not a software developer, and
sometimes there are problems I am unsure how to solve. Especially
when it comes to merging files, you know? And then, obviously, I
can feel a bit anxious about what to do.” The second reason artists
refrain from using VCS is that their development process is highly
iterative. It commonly consists of changing tiny portions of code or
experimenting with several parameter values. Therefore, iterations
are happening fast, and manually performing commits on every
change is not practical or useful. As Michael commented: “I always
wanted to use GitHub more appropriately, but I found it does not
suit my work style. For the changes that I do on these sketches,
it’s just not really worth it.” Referring to the commits, Sumeet said:
“sometimes it is a very small piece of code. It is like: ’why do I
care about Git controlling this piece of code in a scheme of big
things,’ right?”. In this context, Felipe finds desirable “Somehow to
find a better way (to commit changes), like having some automatic
commits every five seconds.”

The Art of Creating Code-Based Artworks CHI EA ’23, April 23–28, 2023, Hamburg, Germany

4 DISCUSSION
The interviews enabled us to ascertain howCreative Coding char-
acteristics materialize in practice, notwithstanding artists’ back-
ground, experience, tooling, or fields of interest. In line with the
Creative Coding definitions available in the literature, we verified
through the participants’ descriptions and anecdotes that the goal
is open-ended, and they discover the ultimate direction that the
artwork will take through the process of programming [2, 23]. More
interestingly, we found that despite the steep learning curve, the
participants did not rely on copy-pasting others’ code; they instead
relied on the language’s documentation. Furthermore, while their
reasoning was not about reaching a predefined final solution, it
was about integrating their background knowledge into the code
they were writing.

Similarly, we could establish, based on Joana’s and Felipe’s work,
that, contrary to traditional software development, where the code
is a means to build a functional application, in the Creative Coding
domain, the source code becomes a piece of art in itself. In
their work, they make explicit the dialogue between the code, the
choreography (in Joana’s case), or themusic composition (in Felipe’s
case). Consequently, the source code is not behind the scenes: it
is always visible to the public as an essential component of their
live performances. This observation is consistent with the Creative
Coding domain of computer poetry [1, 7], in which code is not
simply a practical artifact that produces an artwork but is a critical-
aesthetic object in itself [35].

However, among the Creative Coding characteristics, we also
found various commonalities with other domains, particularly
with Data Science, whose tasks are highly iterative and exploratory.
Data science activities often require heavy data exploration with
different ways to manipulate the data [9]. Indeed, experts in this
field struggle to keep track of their exploratory sessions, leading
to lost work, reproducibility issues, and difficulties in effectively
ideating [6]. Additionally, people working in Data Science (e.g., biol-
ogists, physicists, journalists, or financial analysts) may have theo-
ries and equations embodied in their source code that could benefit
from additional explanations, such as formatted equations or im-
ages [41]. Similar to the code artists for each version of code-based
artwork, for every useful model feature or insightful visualization
data scientists create, there may be many less-successful features,
plots, or analyses they have tried [10]. This scenario raises the
question of whether Data Science methodologies and tools could
be adopted to improve Creative Coding.

More concretely, since the literate programming approach (that
interleaves prose with executable code and interactive and static
output) has been widely adopted in Data Science and Computer
Science education, we wonder if this approach might suit the ex-
ploratory nature of Creative Coding. We envision that with a tool
inspired by literate programming, we might have in the same de-
velopment workflow: (i) self-explanations on what the code does
and the learned lessons (as Sumeet commented in Section 3.4); (ii)
the successive versions of the code can be saved or discarded (as
Felipe explained in Section 3.2), and (iii) the code’s visual output
(as Tim explained in Section 3.2). In this regard, the recent work by
Horn et al. [8] elucidates how to borrow ideas from computational

notebooks to support creative musical expression, including live
performances.

Finally, the dialogue concerningCreativeCoding tooling showed
us that, rather than looking to increase their coding productivity
or prevent them from writing code, participants’ tool choice is in-
fluenced by the simplicity of the interface and the intuitiveness of
their features. Code artists care more about the usability and user-
friendliness of the tools. In fact, for this reason, all the participants
were comfortable and positive with Processing.

Among their comments, we recognized two possible improve-
ments in their current tooling. On the one hand, they would like
more guidance to author programs and help them with the pro-
gramming language features within their IDE. Autocompletion and
syntax highlighting were commonly mentioned among Processing
and p5.js users. However, apart from these features, it would be
interesting to explore whether offering alternative notations like
hybrid editors (e.g., textual and graphical) could benefit and enrich
the experience of Creative Coding users, not by hiding the code
but by providing alternative visualizations [39, 40].

On the other hand, we confirmed that managing versions of code-
based projects and searching and navigating previous versions are
still not supported by existing tools. Consequently, each participant
had to find a way to manage versions of their work. Additionally,
in Creative Coding, changes in the code are so frequent and small
that existing version control systems do not suit the artists’ needs
and present a steep learning curve for them. Therefore, this obser-
vation raises opportunities and challenges for HCI researchers and
practitioners in proposing tools to support version management in
a more automated way without requiring a complex setup process.
Indeed, Sterman et al. [37] have recently explored how creative
practitioners use version histories in their domains and provide
insight into future designs and uses of version control systems to
support the creative process in general.

5 CONCLUSIONS AND FUTUREWORK
This paper presents an interview with 5 participants to understand
the Creative Coding development process and its characteristics.
Our results show that Creative Coding is a highly iterative, ex-
ploratory, and open-ended activity. Similarly, we identified that
artists often integrate their professional backgrounds into their
code-based artworks. Also, based on the participants’ answers, we
noticed that existing Creative Coding tools are powerful and ap-
preciated by the community. However, they do not support some
of the key characteristics of Creative Coding (e.g., exploratory and
version management). In future work, we plan to recruit more
code artists to determine whether the initial results remain true or
they change. Finally, we aim to integrate our findings into some
computer-supported creative tools.

ACKNOWLEDGMENTS
We want to thank the code artists—Felipe Ignacio Noriega, Joana
Chicau, Michael Kreß, Sumeet Rohilla, and Tim Rodenbröker—who
generously shared their time and insights with us.

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Verano and Sáenz

REFERENCES
[1] Ishac Bertran. 2012. code {poems}. Impremta Badia, Barcelona, Spain.
[2] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.

In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 25–29. https://doi.org/10.1109/VLHCC.2017.8103446

[3] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa

[4] Gregory Burlet and Abram Hindle. 2015. An Empirical Study of End-User Pro-
grammers in the Computer Music Community. In Proceedings of the 12th Working
Conference on Mining Software Repositories (Florence, Italy) (MSR ’15). IEEE Press,
292–302.

[5] Joana Chicau. 2022. Choreo—Graphic-Design. https://joanachicau.com/. Ac-
cessed: 19-01-2023.

[6] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016.
Trials and tribulations of developers of intelligent systems: A field study. In 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
162–170. https://doi.org/10.1109/VLHCC.2016.7739680

[7] Daniel Holden and Chris Kerr. 2016. ./code –poetry. CreateSpace Independent
Publishing Platform.

[8] Mike Horn, Amartya Banerjee, and Matthew Brucker. 2022. TunePad Playbooks:
Designing Computational Notebooks for Creative Music Coding. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA,
Article 230, 12 pages. https://doi.org/10.1145/3491102.3502021

[9] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[10] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association
for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/
3173574.3173748

[11] Michelle E. Kiger and Lara Varpio. 2020. Thematic analysis of qualitative data:
AMEE Guide No. 131. Medical Teacher 42, 8 (2020), 846–854. https://doi.org/10.
1080/0142159X.2020.1755030

[12] Johannes Kreidler. 2009. Loadbang: Programming Electronic Music in Pd. Wolke.
[13] Michael Kreß. 2022. Michael Kreß | Graphic Design and Creative Coding. https:

//www.kressmichael.de/. Accessed: 19-01-2023.
[14] Patrik Lechner. 2014. Multimedia Programming Using Max/MSP and TouchDe-

signer. Packt Publishing Limited.
[15] Golan Levin and Tega Brain. 2021. Code as Creative Medium: A Handbook for

Computational Art and Design. MIT Press.
[16] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From

Visual Artists About Software Development. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 314, 14 pages.
https://doi.org/10.1145/3411764.3445682

[17] Rui Madeira and Dawid Gorny. 2013. Cinder Creative Coding Cookbook. Packt
Publishing.

[18] John Maeda. 2004. Creative Code: Aesthetics + Computation. Thames & Hudson,
New York, NY, USA.

[19] JohnMaeda and Paola Antonelli. 2001. Design by Numbers. MIT Press, Cambridge,
MA, USA.

[20] V.J. Manzo. 2016. Max/MSP/Jitter for Music: A Practical Guide to Developing
Interactive Music Systems for Education and More. Oxford University Press.

[21] Lauren McCarthy, Casey Reas, and Ben Fry. 2015. Getting Started with p5.js:
Making Interactive Graphics in JavaScript and Processing. Make Community,
LLC.

[22] Mark C. Mitchell and Oliver Bown. 2013. Towards a Creativity Support Tool
in Processing: Understanding the Needs of Creative Coders. In Proceedings
of the 25th Australian Computer-Human Interaction Conference: Augmentation,
Application, Innovation, Collaboration (Adelaide, Australia) (OzCHI ’13). As-
sociation for Computing Machinery, New York, NY, USA, 143–146. https:
//doi.org/10.1145/2541016.2541096

[23] Nick Montfort. 2021. Exploratory programming for the arts and humanities. MIT
Press.

[24] Nannou. 2021. Home | Nannou. https://nannou.cc/. Accessed: 19-01-2023.
[25] Felipe Ignacio Noriega. 2022. Felipe Ignacio Noriega | Portfolio 2011-2019. https:

//felipeignacio.info/. Accessed: 19-01-2023.
[26] Felipe Ignacio Noriega and Anne Veinberg. 2022. The CodeKlavier: Appropriating

the piano as a live coding instrument. Rethinking the Musical Instrument (2022).
[27] OPENRDR. 2022. OPENRDR. https://openrndr.org/. Accessed: 19-01-2023.

[28] Denis Perevalov. 2013. Mastering openFrameworks: Creative Coding Demystified.
Packt Publishing.

[29] Christopher Petrie. 2022. Programming music with Sonic Pi promotes positive
attitudes for beginners. Computers & Education 179 (2022), 104409. https:
//doi.org/10.1016/j.compedu.2021.104409

[30] Casey Reas and Ben Fry. 2006. Processing: programming for the media arts. AI &
SOCIETY 20, 4 (01 Sep 2006), 526–538. https://doi.org/10.1007/s00146-006-0050-9

[31] Tim Rodenbröker. 2022. Start tim rodenbröker creative coding. https://
timrodenbroeker.de/. Accessed: 19-01-2023.

[32] Sumeet Rohilla. 2022. Studio Sumeet Rohilla. https://www.sumeetrohilla.com/.
Accessed: 19-01-2023.

[33] Daniel Shiffman. 2012. The Nature of Code. Daniel Shiffman.
[34] Ben Shneiderman. 2000. Creating Creativity: User Interfaces for Supporting

Innovation. ACM Trans. Comput.-Hum. Interact. 7, 1 (mar 2000), 114–138. https:
//doi.org/10.1145/344949.345077

[35] Winnie Soon andGeoffCox. 2020. Aesthetic Programming: AHandbook of Software
Studies. Open Humanities Press.

[36] Anna Spagnolli, Diletta Mora, Matteo Fanchin, Valeria Orso, and Luciano Gam-
berini. 2020. Automation and Creativity: A Case Study of DJs’ and VJs’ Am-
bivalent Positions on Automated Visual Software. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–11.
https://doi.org/10.1145/3313831.3376463

[37] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. Towards Creative
Version Control. Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 336 (nov
2022), 25 pages. https://doi.org/10.1145/3555756

[38] vvvv. 2022. vvvv - a multipurpose toolkit | vvvv. https://vvvv.org/. Accessed:
19-01-2023.

[39] David Weintrop and Uri Wilensky. 2017. Between a Block and a Typeface:
Designing and Evaluating Hybrid Programming Environments. In Proceedings
of the 2017 Conference on Interaction Design and Children (Stanford, California,
USA) (IDC ’17). ACM, 183–192. https://doi.org/10.1145/3078072.3079715

[40] DavidWeintrop and UriWilensky. 2018. How block-based, text-based, and hybrid
block/text modalities shape novice programming practices. International Journal
of Child-Computer Interaction 17 (2018), 83–92. https://doi.org/10.1016/j.ijcci.
2018.04.005

[41] Yihui Xie. 2014. knitr: A Comprehensive Tool for Reproducible Research in R.
Chapman and Hall/CRC, 29.

A INTERVIEW SET OF QUESTIONS
At the beginning of the interview, all the participants were told
exactly: “we will ask you some open questions to get a sense of your
creative process and the pros and cons of the technical resources you
commonly use. Specific anecdotes and examples are very welcome!.”
Below we report the initial set of questions along with optional
follow-up questions that we asked when deemed appropriate.

(1) Once you have a concept, how do you design the code-based
artwork?

(2) When you are about to create a new code-based artwork,
how do you begin?

(3) Do you usually take inspiration and work on code-based
artworks available online?

(a) What is the most challenging part of appropriating them?
(b) Which strategies do you adopt?

(4) What opinion do you have about the development environ-
ment(s) you use?

(a) What do you like the most about it/them?
(b) Why did you choose it/them?

(5) Where do you find technical documentation (documentation
concerning the programming language or the development
platform)? Where do you find conceptual documentation?

(a) Where do you search for resources to overcome the learn-
ing barriers you find while developing your code-based
artworks?

(6) What are the elements that you find more challenging to
understand from programming languages?

https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://joanachicau.com/
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1145/3491102.3502021
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1080/0142159X.2020.1755030
https://doi.org/10.1080/0142159X.2020.1755030
https://www.kressmichael.de/
https://www.kressmichael.de/
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1145/2541016.2541096
https://doi.org/10.1145/2541016.2541096
https://nannou.cc/
https://felipeignacio.info/
https://felipeignacio.info/
https://openrndr.org/
https://doi.org/10.1016/j.compedu.2021.104409
https://doi.org/10.1016/j.compedu.2021.104409
https://doi.org/10.1007/s00146-006-0050-9
https://timrodenbroeker.de/
https://timrodenbroeker.de/
https://www.sumeetrohilla.com/
https://doi.org/10.1145/344949.345077
https://doi.org/10.1145/344949.345077
https://doi.org/10.1145/3313831.3376463
https://doi.org/10.1145/3555756
https://vvvv.org/
https://doi.org/10.1145/3078072.3079715
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1016/j.ijcci.2018.04.005

The Art of Creating Code-Based Artworks CHI EA ’23, April 23–28, 2023, Hamburg, Germany

(a) Which language constructs (variables, functions, loops,
objects) do you find more difficult to implement?

(7) Which tasks do you find inefficient, annoying, or complicated
to perform in the development environment(s) you use?

(8) Do you use any library in your development environment?
Which? What for?

(9) Do you use any version control system? If yes, which and
why?

(10) Do you use any external devices to create your code-based
artworks? If yes, which?

	Abstract
	1 Introduction
	2 Interviews
	2.1 Participants
	2.2 Procedure

	3 Results
	3.1 You Code as You Live
	3.2 Destination Unknown
	3.3 Development Environment Agnostic Approach
	3.4 Creative Versioning

	4 Discussion
	5 Conclusions and future work
	Acknowledgments
	References
	A Interview set of questions

