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Simple Summary: Prostate cancer is the second most diagnosed cancer in men worldwide, with an
estimated 1,276,000 new cases and 359,000 deaths in 2018. It is graded using the Gleason system
into five grade groups of increasing tumor aggressiveness. However, diagnosis is hampered by a
relatively high rate of inter- and intra-observer variability. Currently, the reduction of the perceived
color variability is performed by physical quality controls, such as subjective assessment by visual
inspection and comparison between laboratories. However, slides from different laboratories and
even from different batches of the same laboratory may show significant color variations. The stain
normalization procedure helps to standardize the stain color appearance of a digital image with
respect to a reference image. In this study, we investigated the impact of the stain normalization
process on prostate cancer biopsies from the pathologist’s perspective.

Abstract: In clinical routine, the quality of whole-slide images plays a key role in the patholo-
gist’s diagnosis, and suboptimal staining may be a limiting factor. The stain normalization pro-
cess helps to solve this problem through the standardization of color appearance of a source im-
age with respect to a target image with optimal chromatic features. The analysis is focused on
the evaluation of the following parameters assessed by two experts on original and normalized
slides: (i) perceived color quality, (ii) diagnosis for the patient, (iii) diagnostic confidence and
(iv) time required for diagnosis. Results show a statistically significant increase in color qual-
ity in the normalized images for both experts (p < 0.0001). Regarding prostate cancer assess-
ment, the average times for diagnosis are significantly lower for normalized images than orig-
inal ones (first expert: 69.9 s vs. 77.9 s with p < 0.0001; second expert: 37.4 s vs. 52.7 s with
p < 0.0001), and at the same time, a statistically significant increase in diagnostic confidence is proven.
The improvement of poor-quality images and greater clarity of diagnostically important details in
normalized slides demonstrate the potential of stain normalization in the routine practice of prostate
cancer assessment.

Keywords: digital pathology; prostate cancer; stain normalization; color quality; Gleason score

1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men world-
wide, with an estimated 1,276,000 new cases and 359,000 deaths in 2018 [1]. The most recent
world health organization (WHO) classification of urinary and male genital tumors [2]
defines a five-tiered classification scheme [3] to better correlate the pre-existing Gleason
score [4] with accumulating data on prognosis. The five resulting Grade Groups (GG), as
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shown in Figure 1, range from 1 (corresponding to Gleason score 3 + 3 = 6) to 5 (correspond-
ing to Gleason scores 4 + 5, 5 + 4, and 5 + 5) and are related to different clinical outcomes
and treatment choices [5–10]. The usage of virtual microscopy and whole-slide images
(WSIs) to diagnose prostate cancer has been shown by multiple groups to be adequate and
non-inferior to conventional microscopic diagnosis [11–13]. However, PCa diagnosis is
hampered by a relatively high rate of inter-observer and intra-observer discordance, by
optical microscopy and virtual microscopy alike [14–16].
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Figure 1. Prostate cancer grade groups. Normal prostatic tissue is shown for reference. Grade Group
1 (GG1) is a low-grade tumor with well-formed individual glands. With increasing GG, glands
become fused, disorganized, solid, cribriform, or they are not formed at all (GG4, GG5).

Digital pathology is a rapidly growing field of pathology based on the adoption of new
technologies such as WSIs, digital workflow and computer-aided diagnosis (CAD) [17].
Artificial intelligence (AI)-based tools are being used to assist pathologists and clinicians at
large in the diagnosis, prognostication and treatment of patients [18,19]. The importance
for a standardization of both procedures and reagents in clinical practice is emphasized in
the study of Lyon [20]. However, current technology does not allow for complete standard-
ization due to stain fading over time and the variability of the manual sectioning process.
Currently, the reduction of perceived color variability and its impact on diagnosis is per-
formed by procedural and physical quality controls, such as subjective quality assessment
by visual inspection and comparison between laboratories. However, slides from different
laboratories and even from staining batches of the same laboratory may be subjected to
significant color variations [21,22]. These staining variations in tissue appearance make the
quantitative analysis of histological tissue a complex process [23].

The quality of the histological slide plays a key role in the pathologist’s diagnosis [24,25].
A staining that is too weak or too intense can hide important diagnostic details, reducing
confidence, increasing the time for analysis, and possibly causing misdiagnosis. In recent
years, the stain normalization procedure has been proposed to address this issue in digital
slides. The stain normalization procedure helps to standardize the stain color appearance
of a digital image (also denoted as source image) with respect to a reference image (also
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denoted as target image). The target image is a single image chosen by the pathologist with
the most optimal visual appearance and tissue staining. Stain normalization changes the
chromatic information of the source image so that the color appearance matches the target
image. In this way, the stain variability of histological images can be reduced. Several
algorithms for color normalization have been proposed [21,26], and different studies have
shown that normalized images enable improved performances of various algorithms for
digital pathology image analysis [27–30]. However, to the best of our knowledge, no
study has investigated the possible impact of the color normalization process on the PCa
diagnostic routine on biopsies or the qualitative improvement due to this process from the
pathologist’s perspective.

In this study, we assess the impact of the normalization process within the diagnostic
routine and specifically during the assessment of PCa. The analysis is focused on the
evaluation of several parameters, such as the perceived color quality, the diagnosis for the
patient, the confidence and the time for diagnosis, for both original and normalized WSIs.
This paper is organized as follows: in Section 2, the description of materials and methods
is provided, in Section 3, the experimental results are reported, and they are discussed in
Section 4. In Section 5, the conclusions are summarized.

2. Materials and Methods
2.1. Dataset

In this study, WSIs of prostate tissue, derived from formalin-fixed and paraffin-
embedded samples stained with hematoxylin and eosin (H&E) were selected from our
previous works [29,31]. The selection was carried out with the aim of simulating the
high stain variability of histopathological slides, ranging from lighter to darker stain color
images with some minors suboptimal staining such as reddish, greyish color and weak
staining. A total of 93 WSIs scanned from the same department of oncology and from
different patients were collected. Bad-quality glass slides and images for which pathologists
requested a second opinion with immunohistochemical markers were removed from the
analysis. WSIs were digitized with three digital slide scanners: 15 slides were acquired
with Aperio AT2 at 200× magnification (0.467 µm/pixel), 36 slides were scanned with
Aperio GT450 at 400× magnification (0.233 µm/pixel), and 42 slides were captured with
Hamamatsu NanoZoomer S210 at 200× magnification (0.467 µm/pixel).

2.2. Clinical Study Description

Stain normalization was performed for each WSI in our dataset, resulting in 2 subsets:
(i) the original dataset (i.e., the 93 scanned WSIs) and (ii) the normalized dataset (i.e.,
the corresponding 93 normalized WSIs). We performed the normalization process with
STAINS—STAndardIzation & Normalization of histological Slides—tool (AEQUIP S.r.l.,
Turin, Italy), an improved version of our previously published algorithm [26]. STAINS tool
is based on a fully automated approach of stain normalization of H&E histopathological
WSIs and consists of the following steps: (i) tissue detection to distinguish relevant infor-
mation from background regions; (ii) illuminant correction based on white balancing; (iii)
separation of hematoxylin and eosin color channels and (iv) normalization of both channels
to adapt chromatic profile of target image. This process preserves local structures and
enhances the contrast between histological tissue and background. The output of STAINS,
regardless of the input image format, is a 200× tiled pyramidal TIFF image with JPEG
lossy compression (quality factor = 80). For most tissue types and diagnostic tasks, optical
magnification of 200× is considered sufficient to identify relevant biological features. The
JPEG compression was used to save memory since the size of a single uncompressed WSI
is usually over 2.5 GB [32]. The normalization of a single WSI using the STAINS tool took
on average 4 min. An example of a prostate WSI, processed with the stain normalization
tool, is shown in Figure 2.



Cancers 2023, 15, 1503 4 of 12
Cancers 2023, 15, x FOR PEER REVIEW 4 of 12 
 

 

 

Figure 2. Stain normalization process for a prostate WSI. Original slide (a) and normalized slide (b) 

with zoomed-in views showing the effects at high magnification of color normalization with respect 

to target image (c). 

Two different pathologists denoted as Pathologist 1 (P1) and Pathologist 2 (P2) from 

two medical centers and with different years of experience in pathology (P1 with 12 years 

and P2 with 6 years of experience) were involved in this study. Both pathologists analyzed 

original and normalized images using QuPath open-source software [33]. Firstly, P1 ob-

served and evaluated the original dataset, and P2 observed and evaluated the normalized 

one. After 3 months, the process was repeated in the reverse direction, i.e., P1 was asked 

to evaluate the normalized images while P2 was asked to assess the original ones. The 

identification name of each WSI was randomly generated to prevent each pathologist 

from rechecking the case and the diagnosis previously performed. Each pathologist, for 

each slide, provided the following evaluations: 

• Assessment of perceived stain color quality: it is quantified with a numerical scale 

from 1 to 10, where 1 indicates a low-quality image and 10 a high-quality image. 

• Diagnosis of the given slide: if tumor is present, it is graded according to the Gleason 

Grade Groups [3,4] from 1 to 5. If no tumor is present on the given slide, a score of 0 

is assigned. 

• Confidence in the given diagnosis: rated subjectively from 1 to 10, where 1 indicates 

a low degree of reliability in diagnosis and 10 denotes a high degree of confidence. 

Operatively, a high-confidence diagnosis occurs when the pathologist thinks that the 

given slide is sufficient to perform a diagnosis, whereas low confidence indicates that 

the pathologist is not fully convinced by the appearance of the examined slide and 

would resort to recuts or immunohistochemical analysis. 

• Time required for diagnosis: it is expressed in seconds and indicates the time taken 

by the pathologist to examine the image in order to decide the diagnostic classifica-

tion. It was measured from the time when the image is opened (i.e., when the 

pathologist starts examining the image) to the time when the diagnosis is formulated; 

after that, the pathologist stops examining the image and writes down the diagnosis. 

The time required for image loading, thus, was not considered. 

The workflow followed in this study is summarized in Figure 3. 

Figure 2. Stain normalization process for a prostate WSI. Original slide (a) and normalized slide (b)
with zoomed-in views showing the effects at high magnification of color normalization with respect
to target image (c).

Two different pathologists denoted as Pathologist 1 (P1) and Pathologist 2 (P2) from
two medical centers and with different years of experience in pathology (P1 with 12 years
and P2 with 6 years of experience) were involved in this study. Both pathologists analyzed
original and normalized images using QuPath open-source software [33]. Firstly, P1
observed and evaluated the original dataset, and P2 observed and evaluated the normalized
one. After 3 months, the process was repeated in the reverse direction, i.e., P1 was asked
to evaluate the normalized images while P2 was asked to assess the original ones. The
identification name of each WSI was randomly generated to prevent each pathologist from
rechecking the case and the diagnosis previously performed. Each pathologist, for each
slide, provided the following evaluations:

• Assessment of perceived stain color quality: it is quantified with a numerical scale
from 1 to 10, where 1 indicates a low-quality image and 10 a high-quality image.

• Diagnosis of the given slide: if tumor is present, it is graded according to the Gleason
Grade Groups [3,4] from 1 to 5. If no tumor is present on the given slide, a score of 0 is
assigned.

• Confidence in the given diagnosis: rated subjectively from 1 to 10, where 1 indicates
a low degree of reliability in diagnosis and 10 denotes a high degree of confidence.
Operatively, a high-confidence diagnosis occurs when the pathologist thinks that the
given slide is sufficient to perform a diagnosis, whereas low confidence indicates that
the pathologist is not fully convinced by the appearance of the examined slide and
would resort to recuts or immunohistochemical analysis.

• Time required for diagnosis: it is expressed in seconds and indicates the time taken by
the pathologist to examine the image in order to decide the diagnostic classification.
It was measured from the time when the image is opened (i.e., when the pathologist
starts examining the image) to the time when the diagnosis is formulated; after that,
the pathologist stops examining the image and writes down the diagnosis. The time
required for image loading, thus, was not considered.

The workflow followed in this study is summarized in Figure 3.



Cancers 2023, 15, 1503 5 of 12
Cancers 2023, 15, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 3. Workflow adopted in this study: an example of original WSI (a) and the corresponding 

normalized slide (b) processed by STAINS tool. Both pathologists (P1 and P2) provided evaluations 

on stain color quality, diagnosis, confidence, and time for diagnosis, for both datasets, i.e., the orig-

inal images (an example of pathologist’s evaluation is reported in green) and the corresponding 

normalized ones (an example of pathologist’s evaluation is reported in blue). 

The results of this study are divided into two main sections: color quality analysis 

and PCa evaluation. In the former, the pathologists’ evaluation of color quality is ana-

lyzed, while in the latter, the evaluations of diagnosis, confidence and time for diagnosis 

are reported. In this way, we aim to assess the impact of the normalization process on the 

pathologist’s perceived quality and diagnosis process. For the assessment of stain color 

quality, confidence and time for diagnosis, the values of the original and normalized WSIs 

are compared for each pathologist using a paired t-test with a 5% significance level. In 

addition, we assessed the agreement between pathologists in the evaluation of diagnosis 

using the quadratic weighted Cohen’s kappa coefficient. 

3. Results 

3.1. Evaluation of the Color Quality 

In this section, we compare color quality data of the 93 original WSIs and the corre-

sponding normalized WSIs. Both pathologists, denoted as P1 and P2 in the following, 

evaluated the original and normalized dataset. We analyzed the distribution of color qual-

ity given by each pathologist. Figure 4 shows color quality values with boxplots for overall 

distributions. The median values for normalized image distributions (8/10 for P1 and 7/10 

for P2) are greater than the median values of the original image distributions (6/10 for P1 

and 5/10 for P2). In addition, for both overall distributions, 25th and 75th percentiles re-

lated to normalized images are higher than corresponding percentiles of original images. 

The increase in color quality in the normalized images is statistically significant (paired-

sample t test, p < 0.0001 for both P1 and P2). This result shows that the perceived stain 

color quality is higher in normalized images for both pathologists. 

Figure 3. Workflow adopted in this study: an example of original WSI (a) and the corresponding
normalized slide (b) processed by STAINS tool. Both pathologists (P1 and P2) provided evaluations
on stain color quality, diagnosis, confidence, and time for diagnosis, for both datasets, i.e., the
original images (an example of pathologist’s evaluation is reported in green) and the corresponding
normalized ones (an example of pathologist’s evaluation is reported in blue).

The results of this study are divided into two main sections: color quality analysis
and PCa evaluation. In the former, the pathologists’ evaluation of color quality is analyzed,
while in the latter, the evaluations of diagnosis, confidence and time for diagnosis are
reported. In this way, we aim to assess the impact of the normalization process on the
pathologist’s perceived quality and diagnosis process. For the assessment of stain color
quality, confidence and time for diagnosis, the values of the original and normalized WSIs
are compared for each pathologist using a paired t-test with a 5% significance level. In
addition, we assessed the agreement between pathologists in the evaluation of diagnosis
using the quadratic weighted Cohen’s kappa coefficient.

3. Results
3.1. Evaluation of the Color Quality

In this section, we compare color quality data of the 93 original WSIs and the cor-
responding normalized WSIs. Both pathologists, denoted as P1 and P2 in the following,
evaluated the original and normalized dataset. We analyzed the distribution of color quality
given by each pathologist. Figure 4 shows color quality values with boxplots for overall
distributions. The median values for normalized image distributions (8/10 for P1 and 7/10
for P2) are greater than the median values of the original image distributions (6/10 for
P1 and 5/10 for P2). In addition, for both overall distributions, 25th and 75th percentiles
related to normalized images are higher than corresponding percentiles of original images.
The increase in color quality in the normalized images is statistically significant (paired-
sample t test, p < 0.0001 for both P1 and P2). This result shows that the perceived stain
color quality is higher in normalized images for both pathologists.
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Figure 4. Boxplots of distributions of color quality values of original images (red) and normalized
images (blue). The evaluation of the first pathologist (P1) is shown on the left, and the evaluation of
the second pathologist (P2) is represented on the right. The plus symbol (+) indicates outliers in the
distribution, while the asterisk (*) denotes a statistically significant difference between original and
normalized images.

Examples of the normalization process performed on original images of suboptimal
quality (score < 4/10) are shown in Figure 5. In particular, the color normalization process
improves the quality of images showing reddish (Figure 5—sample #1) or grayish (Figure 5
—sample #2) staining or too weak staining with poor contrast between cellular structures
(Figure 5—sample #3). In addition to showing a better staining, normalized images have a
more repeatable and standardized color appearance.
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Figure 5. Visual performance of normalization process. In the first row, there are examples of tiles
with suboptimal staining: reddish (sample #1), greyish color (sample #2) and weak staining (sample
#3). The second row shows the corresponding normalized tiles.

3.2. Assessment of Prostate Cancer: Diagnosis, Time and Confidence

This section describes the results related to PCa evaluation: pathologists were asked to
provide the diagnosis expressed as Grade Group (GG), confidence and time for diagnosis
on the original 93 WSIs and the corresponding normalized ones.
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Firstly, we analyzed the agreement between pathologists’ diagnoses for both original
and normalized images. The two experts’ intra- and inter-rater agreements of GG values
were investigated through the quadratic weighted Cohen’s kappa coefficient. The intra-
rater agreement (Cohen’s kappa) for P1 (original vs. normalized) is 0.8908 and for P2
(original vs. normalized) is 0.8959. The inter-rater agreement (P1 vs. P2) is 0.8507 for
original images and 0.7946 for normalized ones. Furthermore, Figure 6 shows the confusion
matrices on GG scores to evaluate the consensus of both pathologists on original and
normalized images.
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Figure 6. Confusion matrices on Gleason Grade Group (GG). First row shows the intra-agreement of
P1 (a) and P2 (b) on the GG values of the original and normalized images. Second row shows the
inter-agreement (P1 vs. P2) on the original (c) and normalized (d) WSIs.

The clinical process is also evaluated in terms of time employed to formulate a di-
agnosis. In Figure 7, the overall distributions of time for diagnosis for original WSIs and
normalized ones are represented for both pathologists. Specifically, for P1, the median
values are 72.0 s (original) vs. 65.0 s (normalized), and for P2, the values are 39.6 s (original)
vs. 30.6 s (normalized). In addition, for P1, 33% of original images have a time for diagnosis
higher than 90.0 s, while only 11% of normalized images have a time for diagnosis higher
than 90.0 s. For P2, 14% of original images have a time for diagnosis higher than 90.0 s,
while only 2% of normalized images have a time for diagnosis higher than 90.0 s. The de-
crease in diagnosis time in the normalized images is statistically significant (paired-sample
t test, p = 0.00015 for P1 and p < 0.0001 for P2).
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diagnosis time values of original (red) and normalized images (blue) according to the evaluations of
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Finally, we compared the diagnostic confidence related to original and normalized
WSIs. We evaluated the overall distributions of the confidence data in Figure 8. Specifically,
for P1, median value, 25th and 75th percentiles related to normalized images are higher
than the ones related to original images, while for P2, median value and 75th percentile of
normalized images are equal to the ones of the original image, while the 25th percentile is
higher for normalized images. In addition, the minimum values of confidence related to
original images (i.e., 3/10 for P1 and 1/10 for P2) are lower than minimum values related
to normalized ones (i.e., 7/10 for P1 and 6/10 for P2). The increase in confidence in the
normalized images is statistically significant (paired-sample t test, p < 0.0001 for P1 and
p = 0.00028 for P2).

Cancers 2023, 15, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 7. Comparison between time for diagnosis of the original and normalized WSIs. Boxplot of 

diagnosis time values of original (red) and normalized images (blue) according to the evaluations 

of the first pathologist (P1) on the left and second one (P2) on the right. The plus symbol (+) indicates 

outliers in the distribution, while the asterisk (*) denotes a statistically significant difference between 

original and normalized images. 

Finally, we compared the diagnostic confidence related to original and normalized 

WSIs. We evaluated the overall distributions of the confidence data in Figure 8. Specifi-

cally, for P1, median value, 25th and 75th percentiles related to normalized images are 

higher than the ones related to original images, while for P2, median value and 75th per-

centile of normalized images are equal to the ones of the original image, while the 25th 

percentile is higher for normalized images. In addition, the minimum values of confidence 

related to original images (i.e., 3/10 for P1 and 1/10 for P2) are lower than minimum values 

related to normalized ones (i.e., 7/10 for P1 and 6/10 for P2). The increase in confidence in 

the normalized images is statistically significant (paired-sample t test, p < 0.0001 for P1 

and p = 0.00028 for P2). 

 

Figure 8. Boxplots of confidence values. Overall distribution of confidence values of original (red) 

and normalized images (blue) according to the evaluations of the first pathologist (P1) on the left 

and second one (P2) on the right. The plus symbol (+) indicates outliers in the distribution, while 

the asterisk (*) denotes a statistically significant difference between original and normalized images. 

A summary of data related to the assessment of PCa is presented. According to the 

first pathologist (P1), mean and standard deviation values of time for diagnosis are 77.9 ± 

26.6 and 69.9 ± 27.6 s for original and normalized images, respectively, while for the sec-

ond expert (P2) are 52.7 ± 32.2 and 37.4 ± 24.4 s, respectively. Regarding confidence score, 

the original images have shown 7.0 ± 1.8 and 6.2 ± 2.4 for P1 and P2, respectively, while 

the corresponding normalized ones reported a confidence value of 8.2 ± 1.2 and 7.2 ± 1.2, 

respectively. No relevant influence about two different input magnifications (i.e., 200× and 

Figure 8. Boxplots of confidence values. Overall distribution of confidence values of original (red)
and normalized images (blue) according to the evaluations of the first pathologist (P1) on the left
and second one (P2) on the right. The plus symbol (+) indicates outliers in the distribution, while the
asterisk (*) denotes a statistically significant difference between original and normalized images.

A summary of data related to the assessment of PCa is presented. According to
the first pathologist (P1), mean and standard deviation values of time for diagnosis are
77.9 ± 26.6 and 69.9 ± 27.6 s for original and normalized images, respectively, while for the
second expert (P2) are 52.7 ± 32.2 and 37.4 ± 24.4 s, respectively. Regarding confidence
score, the original images have shown 7.0 ± 1.8 and 6.2 ± 2.4 for P1 and P2, respectively,
while the corresponding normalized ones reported a confidence value of 8.2 ± 1.2 and
7.2 ± 1.2, respectively. No relevant influence about two different input magnifications
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(i.e., 200× and 400×) was observed on the evaluation parameters: color quality, time for
diagnosis and confidence in diagnosis.

4. Discussion

Staining variability is one of the problems affecting the quality of WSIs and can
negatively influence the diagnostic process. These problems can be solved by using a
stain-normalization procedure. This technique can change the color information of a
digital image so that its color appearance matches the color appearance of the reference
image chosen by the pathologist [21]. In our previous study, we proved the superiority of
normalized images with respect to the corresponding original ones in terms of perceived
image quality and absence of clinically significant artifacts in a multi-center and multi-tissue
context [25].

In this study, we analyzed the impact of the normalization process on the clinical
routine related to the diagnosis of PCa. For this purpose, we analyzed data collected from
two pathologists: one pathologist (denoted as P1) performed the evaluation on 93 original
scanned WSIs, while the second expert (denoted as P2) assessed Pca on the corresponding
normalized WSIs. After 3 months, the process was repeated in the reverse direction, i.e., P1
evaluated the normalized images, and P2 analyzed the original ones. The specialists were
asked to evaluate the images in terms of stain color quality, diagnosis, confidence, and time
for diagnosis. To the best of our knowledge, no study analyzed the normalization process
from a clinical perspective.

The experimental results are divided into two sections: perceived color quality and
PCa evaluation. Regarding the color quality analysis, Figure 4 shows that the quality of
normalized images is on average better than the quality of the corresponding original ones
for both pathologists (6/10 vs. 8/10 for P1 and 5/10 vs. 7/10 for P2). The normalization
process has a positive impact on the quality perceived by pathologists, and it is useful
when the quality of starting original images is not satisfactory. Color normalization is also
evaluated in terms of its impact on the PCa diagnostic process by analyzing tumor classi-
fication, confidence, and time for diagnosis. When comparing the diagnoses formulated
by each pathologist on the original vs. normalized images, most are completely concor-
dant or only slightly discordant (difference of a single class). This is shown in Figure 6
and is demonstrated by the weighted Cohen’s kappa test (0.8908 and 0.8959 for P1 and
P2, respectively). The inter-rater agreement is also very high (weighted Cohen’s kappa:
0.8507 for original images and 0.7946 for normalized ones). The diagnosis process is also
evaluated in terms of time. Results show that pathologists take longer to classify the tumor
on original images with respect to the normalized ones (77.9 s vs. 69.9 s for P1 and 52.7
s vs. 37.4 s for P2). From these data, we can state that the time for diagnosis is directly
related to the quality of the tissue slide, and the normalization process, by improving color
quality, enables faster diagnosis. Finally, pathologists were asked to assess their confidence
on diagnosis. For both pathologists, mean values of confidence increase for normalized
slides with respect to original ones (i.e., 8.2/10 vs. 7.0/10 for P1 and 7.2/10 vs. 6.2/10 for
P2). We can therefore assume that confidence in diagnosis is subjected to less variability
due to the stain normalization process and that confidence is strongly related to stain
quality. Paired analysis (original vs. normalized, for each pathologist) of the time required
for diagnosis and the confidence of diagnosis similarly reveal interesting data. The time
required for diagnosis is significantly shorter on normalized images compared to original
images, for both pathologists (p < 0.001). This can be explained by the greater clarity of
diagnostically important details in normalized images. Examination of low-quality original
images proved difficult for both pathologists, who reported difficulties in assessing details
such as presence and size of nucleoli, chromatin quality and cytoplasm shape and color.
In some cases, the architecture proved too difficult to examine, leading on one side to
overestimation of benign mimickers of cancer, and on the other side to underestimation
of minor foci of small/malformed Gleason pattern 4 glands, which were missed in the
original images but were correctly identified in normalized ones, as shown in Figure 6.
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For the same reasons, the confidence in diagnosis was found to be significantly higher in
normalized images compared to original images, for both pathologists (p < 0.001).

This study has different limitations related to the number of WSIs analyzed (n =
93) and pathologists involved (n = 2), which used a bioimage software (QuPath [33])
for research purposes, not for clinical use. Another limitation consists in the dataset
composition, which originated from the same medical center and was selected to cover the
high variability of color staining for the evaluation of the normalization process, instead of
reporting consecutive cases belonging to same batches to represent typical clinical practice.
In addition, the choice of target image for the normalization process can be investigated
in a future work. We plan to employ further efforts to collect a larger number of WSIs
and involve more experts with different years of experience in digital pathology with the
possibility to select a specific target image for each of them. The choice of target image
may depend on the pathologist’s opinion according to the clinical expertise and with
the objective of improving the diagnosis. We also intend to extend the study to more
tissues/pathologies (e.g., breast cancer; colon cancer; etc.) and expand the use of the
normalization process on different hematoxylin (e.g., Gill 1,2,3; Harris; Mayer; etc.) and
eosin (e.g., watery vs. alcoholic) solutions and other histological staining techniques, e.g.,
periodic acid Schiff (PAS) and trichrome staining.

5. Conclusions

In this study, we analyzed the impact of the stain normalization process to the diagno-
sis of prostate cancer from a clinical perspective. In summary, we have shown how a digital
color normalization procedure can support the physician during diagnosis formulation,
reducing analysis time and increasing the confidence of diagnosis.
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