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Abstract This work is aimed at illustrating the strict relationship between a
general definition of concentration function appeared quite some time ago on this
journal and a widely used measure of the diagnostic strength of a family of binary
classifiers indexed by a threshold parameter, the so-called ROC curve.

The ROC curve is a common work tool in Statistics, Machine Learning and
Artificial Intelligence, appearing in many applications where a binary classification
(diagnosis) procedure is of interest. Hence, it is worth remarking that diagnostic
strength and concentration are two sides of the same coin: the higher the concentra-
tion of one probability measure with respect to another, the higher the diagnostic
strength of the likelihood ratio classification rule.
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1 Introduction

More than a hundred years ago Corrado Gini started his elaboration on the no-
tion of concentration, with particular application to transferable characteristics
such as wealth. The products of his work, e.g. the Gini mean difference, the Gini
concentration coefficient and the Lorenz-Gini concentration curve, are part of the
toolbox of any data analyst.

More recently, on this journal, Cifarelli and Regazzini ([1]) extended the notion
of concentration to become a relationship between two probability measures, rather
than a one-dimensional concept, giving at the same time solid measure-theoretical
justifications.
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Parallely, in a variety of literature scattered across many disciplines such as
Signal Processing, Medical Diagnosis and Artifical Intelligence, the ROC (Receiver
Operating Characteristic) curve was developed as a tool to measure the diagnostic
strength of a family of classification rules indexed by some threshold parameter.
The importance of the ROC curve in applied work can not be overstated, since it
commonly appears in all applications where a binary classification (or diagnosis)
procedure is of interest. See the recent textbooks by Krzanowski [6], Pepe [10] and
Zou [14]. It was soon realized in the earlier literature on ROC (see e.g. [3]), that, an
optimal decision rule for binary classification exists, as long as the two probability
measures compared are completely specified: such optimal rule is based on the
likelihood ratio (LR from now on), as proven by the Neyman-Pearson lemma,
another milestone in the development of Statistics in the last century.

Remarkably, the ROC curve of the LR classifier can also be viewed as an
application of the notion of concentration: the higher the concentration of one
probability measure with respect to another, the higher the diagnostic strength of
the optimal decision rule. The aim of this work is to illustrate this relationship,
clarifying the theoretical and interpretational advantages given by a model based
approach.

2 The ROC curve of the likelihood ratio based classification rule

From a mathematical point of view we can describe the binary classification prob-
lem as a competition between two populations, represented as probability mea-
sures. An object, on which one or more random variables are observed, is to be
assigned to one of the two populations, based on some classification rule. We focus
here on the situation where the two probability measures are completely known,
hence avoiding the statistical problems of estimation or, as they say in the Machine
Learning literature, learning.

Assume therefore the two alternative probability measures P+ and P− are ab-
solutely continuous with respect to one another and have densities f+ and f−,
respectively, with respect to a common dominating measure. Without loss of gen-
erality, f− can be taken to be positive, so that the Likelihood Ratio (LR)

L =
f+
f−

(1)

is a well defined non negative random variable and, as such, has distribution func-
tions under P− and P+, which are denoted by H− and H+ respectively. More
precisely, for each ` ∈ R:

H−(`) = P−(L ≤ `)

and

H+(`) = P+(L ≤ `).

Next, define the quantile function associated with H− in the usual way as follows:

qt = inf{y ∈ R : H−(y) ≥ t} 0 < t < 1 (2)

and recall that, for any real number `, qt ≤ ` if and only if H−(`) ≥ t. For
any given value t ∈ (0, 1), it may or may not happen that t = H−(qt), depending
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on whether t does not correspond or does correspond to a jump of H−. More
specifically, if t 6= H−(qt), then H−(q−t ) ≤ t < H−(qt), where the notation −

indicates left limits (nothing to do with P−), a particularly relevant occurrence
for the discussion below.
H− and H+ may have jumps, even though P− and P+ are absolutely continuous
laws on the real line. This happens, for example, if P+ and P− have piecewise
constant densities as provided by an example in Section 4.
In this paper we focus on the following definition of LR based classification rule:

Definition 1 (LR based classification rule) Given two alternative probability
laws P− or P+ mutually absolutely continuous with densities f− and f+ respec-
tively, define the likelihood ratio L = f+/f−, its respective distribution functions
H− and H+ and the following classification rule. For any given 0 < t < 1:

– if L > qt, declare positive;
– if L < qt, declare negative;
– if L = qt, then perform an auxiliary independent randomization and declare

positive with probability

r(t) =
H−(qt)− t

H−(qt)−H−(q−t )

and negative otherwise.

The LR based classification rule is optimal because it is nothing else than the
Neyman-Pearson lemma, enriched with the possibility of randomization (as in [8],
for example).

In the classification literature, it is generally recognized that the LR based clas-
sification rule is optimal, although for reasons related to the statistical estimation
of P− and P+ in the presence of data and the computational problems with highly
dimensional observations, other kinds of classification rules are often considered.
As mentioned above, we focus here on the no-data situation and assume P− and
P+ are known.

Whatever the classification rule, it is typically indexed by a real-valued thresh-
old parameter t ∈ R, like the LR based rule is. By varying t, the associated ROC
is generated: it is defined as the parametric two-dimensional locus

{(FPR(t),TPR(t)), t ∈ R},

where the false positive rate FPR is the probability the classification rule assigns
the object to population P+ given the object comes from population P− and the
true positive rate TPR is the probability the classification rule assigns the object
to population P+ given the object comes from population P+. A variety of other
names exist, in particular sensitivity for the TPR and specificity for 1-FPR.

Theorem 1 The ROC function of the classification rule of Definition 1 is

ROC(x) = 1−H+(q1−x) + q1−x(H−(q1−x)− (1− x)), 0 < x < 1. (3)

As usual, we can complete the result by setting ROC(0) = 0 and ROC(1) = 1.



4 Gasparini, Sacchetto

Proof First of all, the FPR and the TPR are computed separately.

FPR = P−(declare positive) = P−(L > qt) + P−(L = qt)r(t)

= 1−H−(qt) + (H−(qt)−H−(q−t ))r(t)

= 1−H−(qt) +H−(qt)− t = 1− t.

Notice that if t = H−(qt) then H−(q−t )−H−(qt) = 0; in other words the expression
simplifies for points which are not H−-atoms.

TPR = P+(declare positive) = P+(L > qt) + P+(L = qt)r(t)

= 1−H+(qt) + (H+(qt)−H+(q−t ))
H−(qt)− t

H−(qt)−H−(q−t )

= 1−H+(qt) + qt(H−(qt)− t)

since, P+ and P− being mutually absolutely continuous, they will both have or not
have an atom in qt and their LR in qt will be exactly (H+(qt)−H+(q−t ))/(H−(qt)−
H−(q−t )), i.e. qt itself. Next, set FPR = x, i.e. t = 1−x, to eliminate the parameter
t and obtain the explicit form of the ROC curve:

TPR = 1−H+(q1−x) + q1−x(H−(q1−x)− (1− x)).

Expression (3) may seem cumbersome when compared to simpler expressions
for special cases contained in popular textbooks, but one should consider that is
the ROC curve of the optimal LR based classification rule, covering discrete, con-
tinuous and mixed cases. Still greater generality could be achieved by considering
the case where P− and P+ are not absolutely continuous with respect to one an-
other, in which case we would have ROC curves starting at (0, y0), with y0 > 0,
or ending at (x0, 1), with x0 < 1, although that is usually of little interest.

3 Relationship with a general concentration function

Another important reason justifying the generality of expression (3) is that it is
strictly related to a definition of concentration function given on this journal by
Cifarelli and Regazzini [1]. Such definition was given with the aim of extending
the classical concepts of concentration developed by Gini at the beginning of the
XX-th century and was further expanded by Regazzini [11].

It is recalled here for the case in which P+ and P− are mutually absolutely
continuous (see the discussion at the end of last section):

Definition 2 (Concentration function by Regazzini and Cifarelli) Let P+

and P− be mutually absolutely continuous probability measures, let f+ and f− be
their respective derivatives with respect to a common dominating measure µ, let
their LR be defined as the real-valued random variable L = f+/f−, let H− be its
distribution function under P− and let qx be its quantile function. Then Cifarelli
and Regazzini [1] define the concentration function of P+ with respect to P− as
ϕ(0) = 0, ϕ(1) = 1 and

ϕ(x) = P+(L < qx) + qx(x−H−(q−x )).
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The easy connection between this definition and the ROC curve of the LR based
classification rule of the previous section is established in the next Theorem.

Theorem 2 Under the hypotheses described in Definition 1,

ROC(x) = 1− ϕ(1− x) ∀0 ≤ x ≤ 1.

where ϕ(·) is the concentration function of P+ with respect to P−.

Proof The equivalent relationship

1− ROC(1− x) = ϕ(x) ∀0 ≤ x ≤ 1.

can be verified directly for x = 0, 1 and as follows for 0 < x < 1:

1− ROC(1− x) = H+(qx)− qx(H−(qx)− x)

= H+(qx)±H+(q−x ) + qx(x−H−(qx)±H−(q−x ))

= H+(q−x ) + qx(x−H−(q−x ))+

(H+(qx)−H+(q−x ))− qx(H−(qx)−H−(q−x ))

= H+(q−x ) + qx(x−H−(q−x ))+

(H−(qx)−H−(q−x ))

(
H+(qx)−H+(q−x )

H−(qx)−H−(q−x )
− qx

)
= P+(L < qx) + qx(x−H−(q−x ))

= ϕ(x).

Corollary 1 Under the assumptions described in Definition 1, ROC(·) is a non-
decreasing, continuous and concave function on [0, 1]. In particular, ROC(·) is
proper.

Proof This is a consequence of Theorem 2.3 in Cifarelli [1]. In particular, ϕ(x) is
always convex over its domain, i.e. ∀x1, x2 and ν ∈ [0, 1], ϕ(νx1 + (1 − ν)x2) ≤
νϕ(x1) + (1− ν)ϕ(x2). By Theorem 2:

1−ROC(1− (νx1 + (1− ν)x2)) ≤ ν(1−ROC(1−x1)) + (1− ν)(1−ROC(1−x2)).

The left hand side of the previous equality becomes:

1− ROC(1− (νx1 + (1− ν)x2)) = 1− ROC(ν + (1− ν)− νx1 − (1− ν)x2)

= 1− ROC(ν(1− x1) + (1− ν)(1− x2)),

while the right hand side can be rewritten as:

ν(1− ROC(1− x1)) + (1− ν)(1− ROC(1− x2)) =

ν − νROC(1− x1) + 1− ν − (1− ν)ROC(1− x2) =

1− νROC(1− x1)− (1− ν)ROC(1− x2).

Therefore:

ROC(νt1 + (1− ν)t2) ≥ νROC(t1) + (1− ν)ROC(t2), ∀t1, t2, ν ∈ [0, 1]

where t1 = 1− x1, t2 = 1− x2.
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It is not the first time a relationship between ROC curves and Lorenz-Gini con-
centration curves is noticed (see for example [7] and [12]), but Definitions 1 and
2 allow for great generality and clarify many misunderstandings present in the
literature. In particular, we emphasize that, unless the classification rule is based
on the LR or on a monotone transformation of it, it can not sensibly be related to
a concentration curve.

Properness of ROC curves has been discussed since the early literature, since
there are cases where classification rules which are not based on the LR are used
and may give rise to non-concave ROC functions. The binormal heteroschedastic
case is a notable well-known example. Suboptimal rules are often used since the LR
rule may not be easily calculated or not even estimated, but the fact that the LR
based classification rule gives automatically a proper ROC curve is an important
foundational result.

At the same foundational level, it finally appears clear that the diagnostic
strength of the LR based classification rule is equivalent to the mutual concen-
tration of the two competing probability laws: the more P+ is concentrated with
respect to P− the higher the diagnostic strength of the LR based classification
rule, since one can tell the two probability laws better apart.

4 Examples

This section contains some examples. The first one is a well known case in which
both P+ and P− are discrete, since they are given by the empirical frequencies
of an ordinal diagnosis. The usual practice of connecting the dots obtained at the
thresholds in order to draw a concave ROC curve is fully justified by Definition 1.
The second example is instead based on an observable variable which is absolutely
continuous both under P+ and under P− and has nonetheless LR distributions with
discrete components, resulting in a mixed ROC curve (partially linear and partially
curvilinear). The third and fourth examples are multivariate and they are based
on the normality assumption, leading to a rediscovery of Fisher’s discriminant
functions.

4.1 Example 1: ordinal diagnosis

The following example is taken from the Encyclopedia of Biostatistics [2]. Suppose
109 patients have been classified as diseased (P+) or not diseased (P−), based on a
gold standard such as biopsy or autopsy. On the basis of radiological exams, they
have also been classified over five ordinal levels

−− = very mild

− = mild

+− = neutral

+ = serious

++ = very serious

Here are the results:
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– – – +– + ++ total

P− 33 6 6 11 2 58
P+ 3 2 2 11 33 51

In particular, P+ and P− are two empirical measures, relative to the diseased and
not diseased population respectively, derived from data. There are four possible
values for the LR:

L =


58
561 if −−
58
153 if − or +−
58
51 if +
319
17 if + +

which give rise to four empirical ROC points { (25/58, 48/51); (19/58, 46/51);
(13/58, 44/51); (2/58, 33/51)}, shown in Figure 1. Now, thanks to the randomiza-
tion device, it is possible to ... connect the dots! This is so since the distribution
functions of L under P− and P+ are

H−(`) =



0 if 0 ≤ ` < 58
561

33
58 if 58

561 ≤ ` <
58
153

45
58 if 58

153 ≤ ` <
58
51

56
58 if 58

51 ≤ ` <
319
17

1 if 319
17 ≤ `

and

H+(`) =



0 if 0 ≤ ` < 58
561

3
51 if 58

561 ≤ ` <
58
153

7
51 if 58

153 ≤ ` <
58
51

18
51 if 58

51 ≤ ` <
319
17

1 if 319
17 ≤ `.

Therefore, the ROC curve can be calculated using equation (3):

ROC(x) =


319
17 x if 0 ≤ x < 2

58
31
51 + 58

51x if 2
58 ≤ x <

13
58

7
9 + 58

153x if 13
58 ≤ x <

25
58

503
561 + 58

561x if 25
58 ≤ x < 1

The continuous ROC curve interpolates the empirical ROC points, as shown in
Figure 1.

4.2 Example 2: absolutely continuous measures with discrete/continuous LR

Let P− be uniform between 0 and 3 (an absolutely continuous probability measure
on the real line) and let P+ have density f+ defined as follows:

f+(s) =


2
9 + 2

3 (1− s)5 if 0 < s ≤ 1
2
9 if 1 < s ≤ 2
4
9 if 2 < s ≤ 3

0 otherwise.
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Fig. 1 Example 1: the ROC curve based on the LR interpolates the empirical ROC points.

Suppose S is a real random variable with density f− under P− and f+ under P+.
It is easy to see that the LR L = f+/f− has mixed components and it is not
monotone in S, being:

L =


2
3 + 2(1− s)5 if 0 < s ≤ 1
2
3 if 1 < s ≤ 2
4
3 if 2 < s ≤ 3.

A naive classification rule based solely on S gives rise to the ROC curve

ROCS(x) =


4
3x if 0 ≤ x < 1

3
2
9 + 2

3x if 1
3 ≤ x <

2
3

2
9 + 2

3x+ (3x−2)6

9 if 2
3 ≤ x < 1

which is not concave, shown as dashed line in Figure 2. Using instead the LR based
classification rule, the ROC curve is:

ROCLR(x) =


1
9 + 2

3x−
1
9 (1− 3x)6 if 0 ≤ x < x1

−1
9 + 4

3x+ 2
9 (1

3 )1/5 − 1
9 (1

3 )6/5 if x1 ≤ x < x2
1
3 + 2

3x−
1
9 (2− 3x)6 if x2 ≤ x < 2

3
1
3 + 2

3x if 2
3 ≤ x < 1

where x1 = 1
3−

1
3 (1

3 )1/5 and x2 = 2
3−

1
3 (1

3 )1/5. This curve is concave and dominates
the previous one as shown in Figure 2.
This example deals with absolutely continuous densities which, nonetheless, have
a likelihood ratio - often called score in classification - with mixed components
(partly discrete and partly continuous): it is an exquisitely theoretical exercise,
but it addresses a case particularly difficult for the usual approach to ROC curves
(which emphasizes a continuous score is necessary).
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Fig. 2 Example 2: LR base ROC curve (solid line) versus the improper ROC curve of a naive
test based on S alone (dashed line)

4.3 Example 3: two multivariate normal measures

Assume P− is multivariate normal with mean µ− and variance Σ− and P+ is
multivariate normal with mean µ+ and variance Σ+ and both densities exist. By
taking the logarithmic transformation of the LR, it can easily be seen that for the
normal case the LR based classification rule in Definition 1 declares positive if the
quadratic score

(X − µ−)TΣ−1
− (X − µ−)− (X − µ+)TΣ−1

+ (X − µ+) (4)

is large. This is the well known Fisher’s Quadratic Discriminant Analysis (QDA)
rule [4], which reduces to linear – hence the corresponding Linear Discriminant
Analysis (LDA) – in the case Σ− = Σ+ (homoschedasticity). The original work
by Fisher did not actually focus on the normality assumption, but QDA and LDA
are well established terminology in the literature. Being based on the LR, QDA
has a proper ROC curve: the score in equation (4) is a continuous random variable
and no randomization device is needed.

4.4 Example 4: Fisher versus best linear rules

In the multivariate normal case, insisting on a linear classifier leads to suboptimal
procedures in the case of heteroschedasticity. The classifier which is optimal within
the class of linear classifiers is considered in Su and Liu[13] and it declares positive
if

(µ+ − µ−)T(Σ− +Σ+)−1X (5)
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is large. If Σ− 6= Σ+ it gives an improper ROC curve, which has a “hook” and is
dominated by the ROC curve of the corresponding quadratic score in Expression
(4). It is worth considering a numerical example in this case, since the optimality
of the quadratic score in the normal case is being continuously rediscovered(see
e.g. [9] and [5]), but it actually boils down to Fisher [4].

Consider a bivariate normal vector (X,Y ) which in population P− has a bi-
variate standard normal distribution, whereas in population P+ has independent
components X distributed normally with mean µx > 0 and variance σ2

x and Y
distributed normally with mean µy > 0 and variance σ2

y 6= σ2
x. According to

equation (4), the QDA classifier declares positive if(
X − µx

σx

)2

+

(
Y − µy

σy

)2

−X2 − Y 2 < c

where c is an arbitrary threshold. By varying c and calculating the appropriate
probabilities under P− and P+, we can obtain the ROC curve, by simulation or,
if greater precision is needed, by using non-central chi-square distributions. The
ROC curve for the case µx = 1, µy = 2, σx = 2, σy = 4 is plotted as a solid line
in Figure 3.

The best linear classifier according to Expression (5) is instead

S =
µx

1 + σ2
x
X +

µy

1 + σ2
y
Y.

S has normal distributions under P− and P+ and by a well-known result its ROC
is

ROC(t) = φ(A+ φ−1(t)B) (6)

where φ(·) is the standard normal distribution function,

A =
µ2
x(1 + σ2

y) + µ2
y(1 + σ2

x)√
µ2
xσ2

x(1 + σ2
y)2 + µ2

yσ2
y(1 + σ2

x)2

and

B =

√
µ2
x(1 + σ2

y)2 + µ2
y(1 + σ2

x)2√
µ2
xσ2

x(1 + σ2
y)2 + µ2

yσ2
y(1 + σ2

x)2
.

This ROC curve for the case µx = 1, µy = 2, σx = 2, σy = 4 is plotted as a
dashed line in Figure 3. We can easily see that the QDA ROC curve is concave
and dominates the best linear ROC curve.

5 Conclusions

The brief historical overview given in the Introduction can be completed with a
look into the present and future times.

Nowadays the model based approach - namely the centrality of two competing
probability measures P+ and P− - is considered out fashioned by many researchers,
solely interested in algorithms for classification. The reason is a certain degree of
success obtained in the presence of high dimensional data by methods apparently
unrelated to probability: Support Vector Machines, Deep Learning and alike. Fo-
cus is on obtaining viable computational methods addressed to minimizing the
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Fig. 3 Example 4: QDA ROC curve (solid) and best linear ROC curve (dashed) for the
bi-bivariate normal case, assuming µx = 1, µy = 2, σx = 2, σy = 4.

empirical risk or prediction error; the resulting ROC curves are often not proper
and the distinction between population and sample estimates of many objects -
including ROC curves themselves - is often blurred or simply ignored.

Contrarily to this trend - which has undoubtedly many advantages, including
challenging statisticians with new computing intensive ideas - we have shown that
the diagnostic strength of the theoretically optimal LR based classification rule is
strictly related to how concentrated a certain probability measure is with respect
to another. We have also demonstrated how this relationship is deeply rooted in
a few fundamental concepts from classical Statistics.
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