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Abstract: The current study presents a multi-task end-to-end deep learning model for real-time 
blood accumulation detection and tools semantic segmentation from a laparoscopic surgery video. 
Intraoperative bleeding is one of the most problematic aspects of laparoscopic surgery. It is chal-
lenging to control and limits the visibility of the surgical site. Consequently, prompt treatment is 
required to avoid undesirable outcomes. This system exploits a shared backbone based on the en-
coder of the U-Net architecture and two separate branches to classify the blood accumulation event 
and output the segmentation map, respectively. Our main contribution is an efficient multi-task 
approach that achieved satisfactory results during the test on surgical videos, although trained with 
only RGB images and no other additional information. The proposed multi-tasking convolutional 
neural network did not employ any pre- or postprocessing step. It achieved a Dice Score equal to 
81.89% for the semantic segmentation task and an accuracy of 90.63% for the event detection task. 
The results demonstrated that the concurrent tasks were properly combined since the common 
backbone extracted features proved beneficial for tool segmentation and event detection. Indeed, 
active bleeding usually happens when one of the instruments closes or interacts with anatomical 
tissues, and it decreases when the aspirator begins to remove the accumulated blood. Even if differ-
ent aspects of the presented methodology could be improved, this work represents a preliminary 
attempt toward an end-to-end multi-task deep learning model for real-time video understanding. 

Keywords: multi-task convolutional neural network; CNN; semantic segmentation; bleeding  
detection; laparoscopic surgery 
 

1. Introduction 
Laparoscopy, widely known as minimally invasive surgery, is a surgical procedure 

that allows a surgeon to see within the abdomen and pelvis, without creating significant 
cuts [1], by having trocars with attached instruments controlled from consoles by the main 
operating surgeon and the assistant operator [2]. With the advancement of this technol-
ogy, robotic-assisted laparoscopy has grown in popularity during the last few decades, 
and it is now extensively and thoroughly used in surgical procedures, replacing most 
open surgeries. The advantages of performing robotic-assisted laparoscopy include a 
smaller incision [3], faster recovery [4,5] and, consequently, shorter postoperative hospital 
stay [6,7], better aesthetic outcomes [6], less discomfort [8,9], a decreased risk of infection 
[2], and no oncological drawbacks in cancer patients [10]. Furthermore, the laparoscope's 
enlarged vision allows surgeons to observe anatomical structures in detail and accurately 
dissect, suture, and repair them [11].  

On the other hand, several drawbacks linked to this methodology have to be consid-
ered. The workspace during laparoscopic surgery is narrower [12] than for open surgery 
and the field of view is more limited [10]; the difficulty in maintaining hemostasis rises 
[13]; the extra personnel is costly [14,15]; more work is delegated to humans; and the 
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primary operator and the assistant operator may have communication blunders as they 
are not staring at the same console [2].  

Dealing with intraoperative bleeding is one of the most difficult aspects of laparo-
scopic surgery [16] accounting for 23% of all adverse events [17]. Some efforts have been 
undertaken in recent years to speed up bleeding identification in endoscopic procedures. 
In particular, most of the methods detected bleeding by utilizing the RGB space parame-
ters [18] or categorizing pixels into “blood” or “non-blood” using color features. These 
techniques can process and classify information [19–21] using a machine learning ap-
proach, such as the Support Vector Machine (SVM) [22], that tries to maximize the dis-
tance between elements belonging to different classes, or using deep learning [23] which 
aims at tackling challenging issues by breaking complex concepts down into smaller ones 
and portraying them as a nested hierarchy of tasks with various levels of abstraction. 

Within the deep learning scenario, convolutional neural networks (CNNs) proved to 
be the most suitable option to automatically extract features and detect adverse events 
[24], segment bleeding sources and display them to the surgeon [16], classify the images 
into bleeding and non-bleeding [25], or for real-time bleeding point location, recognition, 
and tracking [13,26]. CNNs have a unique design that allows them to interact with images 
while also leveraging their spatial patterns and being quick to train. This efficiency ena-
bles us to train deep and multi-layer networks. As a result, these networks achieve excep-
tional picture categorization and identification outcomes [27]. When compared to other 
image classification methods, CNNs require very minimal pre-processing. This implies 
that, in contrast to traditional methods, the network learns to improve the filters (or ker-
nels) through automatic learning. This freedom from past information and human inter-
ference in feature extraction is a significant benefit [28]. However, most of the mentioned 
research has limited use in real-time videos, or cannot be considered end-to-end, since 
they require time-consuming additional steps to obtain the final result. In other words, 
end-to-end CNN architecture allows us to retrieve a solution without implementing fur-
ther steps, such as stabilizers to minimize jitter and smooth camera path, expensive multi-
stage temporal CNNs, or Optical Flow input data so that features may be gathered over 
numerous frames while leveraging temporal information. 

CNN approaches have been employed in minimally invasive surgery for software 
and hardware-based solutions since enhanced computing power and recent break-
throughs in this field enable a standard computer to comprehend the content of an image 
or video stream in real time. Among the possible neural network approaches, multi-task 
learning (MTL) is a strategy that may efficiently solve multiple learning tasks in a CNN 
unified model. MTL more closely matches the learning process of humans than single-
task learning since integrating information across domains is a core principle of human 
intelligence [29]. MTL is an area of machine learning that adopts a training paradigm in 
which a shared model learns many tasks at the same time [30]. This strategy increases data 
efficiency, decreases overfitting by exploiting shared features from multiple tasks, and 
could improve learning speed by leveraging contextual information [31], hence alleviating 
deep learning's renowned drawbacks, i.e., high data availability and computation power 
[32,33]. On the other hand, learning concepts for numerous tasks introduce problems that 
are not present in single-task learning. Choosing which tasks to study together is difficult 
since various tasks may have competing requirements. In this situation, improving a mod-
el's performance on one job could damage performance on another with distinct require-
ments.  

This study proposes an end-to-end encoder–decoder multi-tasking CNN for joint 
blood accumulation detection and tool segmentation in laparoscopic surgery to maintain 
the operating room as clean as possible and, consequently, improve the physicians’ visi-
bility. For this purpose, we employed a shared backbone based on the encoder of the U-
Net architecture [34], the gold standard for semantic segmentation in medical images. 
Two separate branches were instead implemented to classify the blood accumulation 
event and output the segmentation map. Our main contribution is the introduction of an 
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efficient multi-tasking approach for real-time surgical videos, trained with only RGB im-
ages and no other additional information, commonly unavailable in real applications. 

The paper is organized as follows: Section 2 describes the system’s architecture (Sec-
tion 2.1), the dataset (Section 2.2), and the training process and metrics (Section 2.3); Sec-
tion 3 illustrates and discusses the results obtained; finally, Section 4 summarizes and con-
cludes the study. 

2. Materials and Methods 
The challenge of detecting bleeding in laparoscopic recordings is particularly com-

plex because it requires distinguishing between the presence of blood residual (Figure 1a), 
which is not an index of bleeding, and when the blood is actively flowing (active bleeding) 
as shown in Figure 1b, which is the event of interest since it requires surgeon’s prompt 
intervention. Detecting adverse occurrences during laparoscopic surgeries could be de-
fined as an issue of action detection and localization. Action recognition and object seg-
mentation interactions can be mutually advantageous and increase total video under-
standing. For example, precise positional identification of the key actor participating in 
action may boost the robustness of action recognition, and vice versa [31]. 

 
Figure 1. Examples of blood residue on tissues (a) and active bleeding (b). 

The current investigation introduced a multi-task CNN, an architecture able to sim-
ultaneously learn multiple tasks. Particularly, in the examined case study, the model 
could jointly perform semantic segmentation and event detection, namely bleeding iden-
tification, in real-time during laparoscopic surgery. To this aim, a new architecture was 
implemented, fed with a properly manually labeled dataset. A shared trunk architecture 
was utilized for this purpose, which included a global feature extractor composed of con-
volutional layers shared by all tasks, followed by a different output branch for each out-
put, performing the same computation for each input of the same task [29]. The weights 
for multiple tasks were pooled, such that each weight is trained to minimize several loss 
functions simultaneously. The CNN architecture, the dataset, and the training process are 
described in the following sections.  

2.1. Neural Network Architecture 
Figure 2 illustrates the network architecture. The backbone is a slightly modified ver-

sion of the U-Net architecture [34].  
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Figure 2. Multi-tasking CNN architecture (example for 160 × 240 input image). Each box represents 
a multi-channel feature map. The number of channels is provided on top of the box, while the x-y 
size is shown at the lower left edge. Blue boxes belong to the backbone, green boxes refer to the first 
branch for semantic segmentation, gray boxes denote copied feature maps (skip connections), and 
purple boxes represent the second branch for event detection. The arrows refer to the different op-
erations. 

Because of how it is designed, medical data can be analyzed in great detail, making 
the U-Net a model that is often used in the literature. To deal with RGB images, the num-
ber of input channels has been increased in comparison to the original architecture. The 
contracting path (left side) represents a global feature extraction, and it is shared by all 
tasks. It comprises a four-time repetition of the same sequence, meaning: two 3 × 3 convo-
lutions (padded convolutions) to double the number of feature channels, each followed 
by a rectified linear unit (ReLU) and a down-sampling step, made of a 2 × 2 max pooling 
operation with stride 2, to halve the x-y image size. The last max pooling operation is 
followed by two 3 × 3 convolutions, which generate the bottleneck of the network. Differ-
ently from the original architecture of U-Net, two separate output branches derive from 
this bottleneck, each addressing a distinct task. The first branch (right-top side) is adapted 
from the expansive path of U-Net. Here, every step is symmetrical to the related contract-
ing part. It includes an upsampling of the feature map, a 2 × 2 convolution (“up-convolu-
tion”) to halve the number of feature channels, a concatenation with the symmetrical fea-
ture map of the contracting path (skip connection), and two 3 × 3 convolutions that double 
the x-y image size, each followed by a ReLU. The final layer of this branch applies a 1 × 1 
convolution to map each 64-component feature vector to the desired number of classes in 
the output segmentation map. Unlike U-Net, padded convolutions were employed so that 
the output segmentation map and the input RGB image had the same size.  

The second branch is connected to the encoder output, which is the U-Net architec-
ture's bottleneck. As a result, it uses the U-Net encoder as the backbone for feature extrac-
tion and, from a flattened version of the bottleneck as input, it tackles event detection as 
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a classification problem. This branch is based on a sequence of fully connected layers: two 
Linear layers with 1024 features, each followed by a ReLU and a Dropout Layer, and a 
final Linear layer that maps each 1024-component feature vector to the desired number of 
classes. In this instance, two classes could appear in the output: 0 for “no blood accumula-
tion” and 1 for “blood accumulation”. 

2.2. Dataset 
The images were acquired from 26 endoscopic videos recording Robotic Assisted 

Radical Prostatectomy (RARP), a laparoscopic procedure conducted to remove the pros-
tate gland and tissues surrounding it in case of prostate cancer. These data were provided 
by the “Division of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano 
(Turin), Italy”. The length of the procedures’ videos ranged from a few seconds to 15 min. 
The recordings were initially edited, omitting sections when the endoscope was not 
within the abdominal cavity and the operational phases where there was no bleeding. This 
preliminary skimming produced 104 fragments with a length of less than one minute in 
70% of cases or a few minutes in the remaining instances. Then, frames were extracted 
from these surgical pieces, considering a rate of around one frame per second. Finally, 
samples that may affect CNN training due to poor resolution, or the absence of surgical 
equipment were removed. As a result, only high-quality frames were included in the final 
dataset, which comprised 318 images. The dataset was then divided into train, validation, 
and test sets which contained 200, 32, and 86 images, respectively. Among them, four vid-
eos were kept apart for subsequently testing the network in real time. 

The training and validation samples were labeled under the supervision of special-
ized medical personnel, and the results were assessed in the same manner. 

The images were tagged using two different labels according to the specific task, 
namely, semantic segmentation and event detection, as shown in Figure 3.  

 
Figure 3. Dataset samples. The first column displays the input image, the second shows the segmen-
tation mask for the semantic segmentation branch, and the third represents the class for the event 
detection branch. 
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The semantic segmentation consists in identifying the pixels of the image belonging 
to the surgical tool, labeling the region of interest (ROI) as “tool” and the other pixels as 
“background”. On the other hand, the event detection task aims at classifying if the blood 
is accumulating and an intervention by the surgeon is required, or if the surgical field of 
view is not affected by a too copious accumulation of blood. To this aim, two possible 
classes were considered, 0 for “no blood accumulation” and 1 for “blood accumulation”. 

Data augmentation was added during the network training, to improve the numer-
osity and transformation invariance of the medical image dataset. Particularly, train sam-
ples were rotated by a random factor in the range (−35, 35), and randomly flipped, includ-
ing vertically, horizontally, or both flips. 

2.3. Training and Metrics 
The multi-tasking architecture was trained for 30 epochs using a batch size of 32, and 

an Adam optimizer with a learning rate of 0.0001. A multi-task loss was chosen for pa-
rameter optimization: 𝑙𝑜𝑠𝑠 = 𝑠𝑒𝑔 + 𝑐𝑙𝑠 , (1)

where 𝑠𝑒𝑔  is a Binary Cross Entropy Loss function followed by a Sigmoid activation 
function, and 𝑐𝑙𝑠  is a Cross Entropy Loss function followed by a Softmax activation 
function. The model ran on an NVIDIA Quadro P4000 GPU, adopting the open-source 
PyTorch machine learning framework, written in Python, and based on the Torch library. 
The semantic segmentation branch accuracy was assessed by the Dice Coefficient (F1 
Score) metric, a diffuse metric for semantic segmentation, defined as: 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  ×    , (2)

where the overlap area represents the intersection between the pixels belonging to the 
predicted segmentation masks and those belonging to the ground truth one, and the total 
pixels parameter represents the total number of pixels in both images. The Dice Coefficient 
ranges from 0 to 1, where the edge values mean completely wrong and perfectly correct 
predictions, respectively. 

The event detection branch accuracy was calculated as follows: 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  # _# . (3)

This value was monitored both to examine the accuracy of the entire branch, and the 
accuracy of each class separately. 

3. Results and Discussion 
The implemented multi-task CNN was tested both on images and videos. For each 

epoch the training loss (Figure 4a) and the validation metrics, namely Dice Score (Figure 
4b) and event detection accuracy (Figure 4c), were plotted to show their trend. Following 
that, epoch 30 was picked for the final model since it was deemed the optimal tradeoff 
between the two branches of the network according to the experimental tests on images 
and videos. 
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Figure 4. Training and validation metrics trends. Multi-task Training Loss (a), Validation Dice Score 
for semantic segmentation branch (b), and Validation accuracy for event detection branch (c). 

Concerning the tests on images, the multi-task CNN achieved a Dice Score equal to 81.89% for the semantic segmentation task, and an accuracy equal to 90.63% for the 
event detection task without any pre- or postprocessing step. Furthermore, the accuracy 
for each class was detailed, obtaining an accuracy of 86.67% and 94.12% for classes “no 
blood accumulation” and “blood accumulation”, respectively.  

Afterward, the network was also tested on videos to assess its real-time performance. 
Starting from test videos with a resolution of 1280 × 720 and a frame rate of 30 frames-per-
second, the model output a processed video stream with 15 frames-per-second, when the 
prediction was performed for each frame. Comparative real-time and accuracy tests were 
carried on, and the network output was experimentally observed at different prediction 
frequencies, namely, the number of frames between one prediction and the next one. A 
test input video stream with a frame rate of 30 frames per second was employed to ac-
complish this test. For the real-time comparison tests, ten distinct values were investi-
gated, as given in Table 1, with each indicating the prediction frequency.  

Table 1. Comparison between prediction rate and frame rate during video tests. 

Prediction Frequency Frames-per-Second 
1 15 
2 21 
3 22 
4 22 
5 23 

10 26 
15 28 
20 29 
25 29 
30 30 

The condition under which the prediction is made on all frames of the video stream 
was chosen as the minimal value, which is one frame. Instead, 30 frames were determined 
as the largest possible value, assuming one prediction each second. Higher values were 
not examined because, as previously stated, active bleeding necessitates immediate ac-
tion; hence, an update rate of one second was deemed a limiting number. As seen in the 
table, just one prediction per second is required for the processed video stream to have 
the same frame rate as the input stream. However, it has been observed experimentally 
that the accuracy reduces considerably, particularly for segmentation masks, due to the 
rapid movement of the surgical instruments. In contrast, when the prediction frequency 
is lowered, there is a wider tolerance in terms of the percentage of blood accumulation 
predicted. The experimental findings show that lowering the forecasts by 50% and making 
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a prediction every two frames delivers an increase in frame rate without impacting pre-
diction accuracy; hence, it was regarded as the ideal threshold, as shown in Figure 5.  

 
Figure 5. Frame rate trend versus prediction refresh rate calculated on a test video stream. The value 
2 was experimentally chosen as the optimal tradeoff between real-time and accuracy. 

As a result, the 21-frames-per-second limitation was assessed by the medical equip-
ment to be the upper limit as the trade-off between real-time and accuracy. In other words, 
further increasing the frame rate at the expense of accuracy was considered unacceptable.  

Figure 6 shows some examples of output frames, containing the output segmentation 
map overlapped on the real counterpart, and the predicted percentage of the “blood accu-
mulation” class, if it is greater than 50%. As can be seen from the figure, both branches 
provided satisfactory results. The CNN succeeded, although with some marginal imper-
fections, in correctly recognizing the surgical tools and overlaying the mask. In addition, 
the event related to blood accumulation was also properly detected, as the percentage 
goes above 50% when bleeding is effectively visible.  

 
Figure 6. Multi-tasking CNN architecture (example for 160 × 240 input image). Each box represents 
a multi-channel feature map. Tools detected are blue-colored, while the blood accumulation per-
centage is indicated in the top-left corner of the image. The first row contains samples for which the 
percentage of blood accumulation is not displayed because the model predicted a value of less than 
50%. The second row, in contrast, displays samples with a blood accumulation percentage greater 
than 50%. 

Furthermore, it is noteworthy that during the test on the videos, the network ade-
quately recognized the reduction in accumulated blood in the operating scene as the per-
centage decreased when the laparoscopic aspirator was removing the accumulated blood 
(Figure 7). 



J. Pers. Med. 2023, 13, 413 9 of 12 
 

 

 
Figure 7. Example of frames at about 3 s distance in which the predicted percentage of blood accu-
mulation decreases as the aspirator removes excess blood. 

It can be inferred that tasks to be solved simultaneously were chosen properly since 
the features extracted from the shared backbone for tool segmentation also proved worth-
while for event detection since the two tasks are related. In fact, in most cases, active bleed-
ing occurs at the time when one of the tools closes or interacts with anatomical structures 
such as the prostate. On the other hand, there is a reduction in accumulated bleeding when 
the aspirator starts to extract the blood from the surgical field. However, it was noted that 
this mutual benefit was lost when the number of epochs increased. In this situation, there 
was an improvement in accuracy relative to semantic segmentation, but the event detec-
tion task degenerated. This situation according to which the accuracy related to one task 
increases at the expense of the accuracy-related to the other task is not uncommon and, as 
already mentioned, is a known issue in the literature. 

It was also possible to make assumptions about the reasons for the network's flaws 
because frames taken from recordings of actual interventions were investigated. Particu-
larly when the light is changing, it could be challenging to distinguish between surgical 
instruments. In those circumstances, active bleeding might be misinterpreted with passive 
bleeding on the walls or on other anatomical parts within the surgical field.  

The achieved results fulfilled the aim of using the same CNN architecture to simul-
taneously identify surgical tools in the field of view and detect the bleeding in real time. 
Future work is going to be planned to proceed in four different directions: 
1. Neural Network Architecture. The architecture of the network should be extended 

to consider temporal information extracted from sequential images. This improve-
ment will likely enhance the branch related to event detection in terms of accuracy 
and reliability. In this research context, for example, it may be easier to distinguish 
passive bleeding, namely, blood residue on tissues, and active bleeding, which is the 
surgeons’ object of interest. Moreover, the semantic segmentation task should distin-
guish tools with different labels to improve the prediction, while the detection task 
should be extended by adding the localization of the origin of bleeding, which may 
provide remarkable clinical advantages when the human eye cannot instantly catch 
it [35]. 

2. Dataset. An improved dataset in terms of numerosity and variance could be benefi-
cial to increase the accuracy of prediction. Furthermore, the sequences of images that 
do not contain any structure of interest (for instance, the external view of the operat-
ing room, and the images inside the trocar) in a limited-size dataset might improve 
the knowledge of the network about the studied environment [35]. Alternatively, 
from an algorithmic perspective, it could be advantageous to provide depth infor-
mation as well as RGB information, to improve the tools' tracking accuracy. To ac-
complish this advancement, 3D acquisition cameras should be integrated with the 
RGB cameras employed during surgical interventions. 

3. Testing. The model should be evaluated in the operating room to determine its prac-
tical limitations in the setting of a real-time application and then enhanced accord-
ingly by adding new features. 
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4. Research field. Extending the algorithm into different domains would be of interest, 
to perform further analysis both in terms of actor segmentation and tracking and 
from the point of view of event detection and classification. 

4. Conclusions 
This study implemented an end-to-end encoder-decoder multi-tasking CNN for joint 

blood accumulation detection and tool segmentation in laparoscopic surgery. One of the 
most problematic aspects of laparoscopic surgery is dealing with intraoperative bleeding. 
Since the operation area is constantly limited and blood rapidly fills the bleeding site, it is 
difficult to control bleeding during laparoscopic procedures, indeed any sort of surgical 
manipulation, including suction, grabbing, retraction, cutting, and dissection might result 
in rapid bleeding and immediate treatment is required to avoid significant consequences. 

To the best of our knowledge, there are no other systems that address simultaneously 
both the surgical tools identification and the event detection, namely the bleeding detec-
tion, in an end-to-end fashion and with only RGB images as input. The current study's 
results suggested that multi-task learning may be a remarkable strategy for improving 
efficiency and performance by employing shared features from multiple tasks. In this 
sense, maintaining a high level of accuracy and preserving the real-time is of utmost im-
portance to make the methodology suitable to be used in the surgical room and support 
surgeons during the interventions. 

The obtained findings allow us to deal with real-time data performing more tasks at 
the same time and achieving a noteworthy trade-off between accuracy and performance. 
Future research is indeed aimed at enhancing the system in the following aspects: tem-
poral information of sequential pictures could be taken into consideration to improve the 
accuracy (a new architecture adaptation will be needed), the dataset could be expanded 
to increase the variability of the data and improve the neural network generalization, and 
the test should be performed on live surgeries to tune the CNN parameters, although con-
siderable changes are not expected since the current work has already used data provided 
by real interventions. Moreover, it would be desirable to involve other domains to pro-
duce a generalizable real-time framework helpful for applications in several disciplines. 
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