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Abstract 
 

The diffusion of battery electric vehicles (BEVs) requires a proper charging infrastructure to supply users 
the chance to charge their vehicles according to energy, time, and space needs. Thus, city planners and 
stakeholders need decision support tools to estimate the impacts of potential charging activities and 
compare alternative scenarios. The paper proposes a modelling approach to represent parking activities in 
urban areas and obtain key indicators of the electric energy required. The agent-based model reproduces 
the dynamics of user parking and assesses the impacts on the electricity grid during the day. Since the focus 
is on parking activities, no detailed data on vehicle trips are required to apply the standard demand 
modelling approach, which would require Origin-Destination matrices to simulate traffic flows on the road 
network. 

Preliminary results concerning the city of Turin are presented for simulated scenarios to identify zones 
where charging demand can be critical and peak events in electric power over the day. The model is 
designed to be scalable for all European cities because, as the case study shows, it uses available data. The 
results obtained can be used for the design of charging infrastructure (power and type) by zones. 
 
Keywords: Electric vehicles; Charging demand; Parking-based model; Charging infrastructure; Decision 
support tools. 
 

 

1. Introduction 

The European Union, with the Green Deal (COM (2019) 640 final), aims to reduce 
greenhouse gas emissions from transport by 90% by 2050 compared to 1990. The 
decarbonization of the private transport sector can contribute to reach this goal by paving 
the way for the diffusion of electric vehicles (EV) and charging infrastructure. In 2020, 
there were approximately 285800 public charging stations for electric cars in Europe 
compared to just over 67000 in 2015 (Statista Research Department). Currently, Europe 
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has 374000 public chargers, but two-thirds are concentrated in just five countries: the 
Netherlands, France, Italy, Germany, and the United Kingdom (Carey, 2022). Numbers 
are expected to increase in correlation with the forecasted increase in sales of electric 
vehicles; a Eurelectric-EY study predicts 130 million electric cars in the EU by 2035 from 
3.3 million today (Colle et al., 2022). Thus, city planners and stakeholders require 
decision support tools to estimate the impacts of these changes and needs in the urban 
context.  

Classically, EV charging demand can be evaluated through driving patterns or traffic 
flows analysis (Feng et al., 2020). These approaches include the use of the Origin-
Destination (OD) matrix to study how EV flows and the driving paths are distributed 
around a city (ElBanhawy et al., 2014), considering the charging behaviour of the users 
(Fu et al., 2020; Chen et al., 2020) and different range anxiety (Lazzeroni et al., 2021). 
The latter use Floating Car Data to identify mobility habits, particularly parking patterns, 
to estimate energy demand for EVs. The parking-based approach is in common with this 
paper, which aims to use more quickly and commonly available mobility data. Another 
analytic framework considers charging demand determined by travel behavior (Yang et 
al., 2020). In this last case, the daily charging demand of EVs is based on the analysis of 
the daily travel frequencies and the charging rule on each EV activity chain. Detailed trip 
chains can study the demand distribution for electric recharging and its dynamism with 
an agent-based trip chain model (Lin et al., 2019;Lin et al., 2018). The latter ones do not 
include GIS information on the land-use type, used instead in our model, which can help 
in planning recharging infrastructures. However, in general, data for identifying OD 
matrices are costly and typically with limited availability, so replicability is possible but 
only in limited contexts.  

Hence, other different approaches have been exploited to overcome these limitations. 
For instance, the energy demand estimation due to EV charging is extrapolated by a 
statistical analysis of an available charging sessions dataset in van den Berg et al. (2021). 
Similarly, Xia et al. (2019) avoid the requirement of real-world traffic data, such as road 
topology and route length, with a statistics-based model. Machine learning and artificial 
neural network techniques trained using the available dataset of charging demand are 
adopted by Kim and Kim (2021). In their approach, data privacy issue needs to be 
carefully handled and the replicability is limited to data availability. Moreover, drivers’ 
behaviour is not modelled. mobility data are instead considered in a spatial model, using 
the Markov chain, proposed and tested with data from electric charging stations by 
Shepero and Munkhammer (2017). Their results show that their model can better 
reproduce the behaviour of the most frequently used charging stations. Yi et al. (2021) 
present a time series prediction of the monthly charging demand of commercial electric 
vehicles using a deep learning-Sequence to Sequence approach, chosen for its better 
performance than other models, including long short-term memory. Within the 
framework of forecasting models, real-world traffic distribution data and weather 
conditions are used by Arias and Bae (2016) to predict the electric vehicle charging 
demand. Alternatively, an estimation of the number of cars owned by households is used 
by Thingvad et al. (2021) to define EV charging demand, assuming an average distance 
travelled by vehicles and an average parking time of EVs.  

This paper aims to propose a method for estimating the expected energy demand in the 
city based on variables linked to the mobility behaviour of electric vehicle users. With 
the final purpose of producing a Decision Support System (DSS) for city planners and 
stakeholders, the proposed methodology uses widely and commonly available input data 
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for cities. From a survey of implemented cases of electric charging infrastructures in cities 
(Campisi et al., 2021), it has been observed that planning urban charging opportunities 
for users could also be an integrated process taking into account the needs of other electric 
mobility services (e.g. sharing and public transport), since positive synergies can be 
activated. 

The current work is developed within the European project INCIT-EV, in which a 
model capable of formalizing the city system and its characterization functions has been 
implemented to foster the development of electric mobility across Europe. 

2. Methodology 

The Decision Support System (DSS) developed within the INCIT-EV project is a tool 
that aims to support municipalities, authorities, agencies, and other stakeholders in 
planning the optimal charging stations framework in the city and estimating the impact 
of already planned scenarios. INCIT-EV DSS and, more generally, the whole INCIT-EV 
project focus on following a user-centric approach to make electric vehicles a universal 
technology. The tool has been developed mainly to facilitate the harmonious growth of 
electric mobility throughout Europe, especially in supporting cities without powerful 
tools, data, or competencies. For this reason, just open and Europe-wide datasets have 
been considered for the module implementations. These principal design objectives and 
strategies have been considered to build the model: 

 Applicability in all EU cities (even if no specific mobility data are available): 
based mainly on official and publicly available data; 

 Support the strategical Charging Points (CPs) location at the zone level: the 
output of the DSS should be based on user-defined zones to support operative 
decisions without the purpose of giving precise information (e.g., new CP 
geographical coordinates) on phenomena that may require access to detailed 
local data and interactions with local stakeholders/users; 

 Robustness and reliability: simple, easy to calibrate and validate, without 
needing complex and data-demanding approaches that require lots of inputs 
from users; 

 User-friendly and customizable by the users: the users can upload their data 
(e.g., city shapefile) and modify the configuration of the analyses; 

 Fast computing: it should provide the results in a reasonable and possibly short 
amount of time. 

The DSS comprises four modules: User Behavior, Mobility, Charging Infrastructure, 
and Power. The last two modules deal with aspects related to the supply of charging and 
the impacts on the energy system. Instead, User Behavior & Mobility Module (UB&M), 
covered in this paper, aim to outline and describe users’ mobility habits and behavior 
given the input data provided by DSS users and/or coming from specific surveys in cities. 
Besides, these modules can support the decision-making of DSS users by offering insights 
related to the impact of user behavior in terms of mobility and charging habits. 

The main components of UB&M modules are shown in Figure 1. Starting from the right 
side, there are the user input variables (car trips, zoning and city data) and the external 
datasets used as input to get the distribution of both the EVs number, and the User 
Behaviour and Mobility thanks to the Car Parked Estimation (section 2.2) and Charging 
Behaviour models (section 2.1). Their outputs converge in the Electric Mobility 
Simulation model (section 2.3), which returns the outcomes useful for power analysis. 
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Figure 1: Schematic overview of the User Behaviour & Mobility Modules. 
 
In the following, according to the selected approach, it is considered that the vehicle 

recharges when it is parked, excluding recharging along the trip. In addition, this first 
modeling considers only one type of battery electric vehicle (BEV) with the 
characteristics described below (Table 1), initially excluding other models and other types 
of vehicle electrification (e.g. plug-in). 
 

2.1 User Charging Behaviour Data Model 
 
This model provides charging preferences for electric vehicle users regarding charging 

location (private/public at home, private/public at work, in other places). The model also 
needs to formalize EV drivers’ habits and actions by using typical statistical distributions 
such as: 

 Daily km traveled distribution (urban, incoming/outgoing; weekday/Sat/Sun or 
total, from DSS user). Since the model performs an urban analysis, incoming 
trips are included only if their charging preference is at work or other, while 
outgoing trips if the charging preference is at home. 

 Charging daily profile (per hour) (from specific city surveys or EU 
studies/statistics). 

 Starting state of charge (SoC) distribution (from specific city surveys or EU 
studies/statistics). 

 Final state of charge (SoC) distribution (from specific city surveys or EU 
studies/statistics). 

 Parking time distribution at home, work, and other locations (from specific city 
surveys or EU studies/statistics). 

The model comes from the calibration of a discrete choice experiment (DCM) designed 
ad hoc in other activities in the INCIT-EV project to evaluate where users usually 
recharge their electric vehicles (Gamba et al., 2022). The model is based on a logit model 
in which the likelihood of charging at the generic location option is a linear combination 
of attributes related to the charging infrastructures (typology, availability, price, charging 
time, reservation, ancillary services, renewable energy, type of connection). If the DSS 
user does not have this information, default percentages can be used. On the other hand, 
if the user does have city-specific data, it is possible to use the available data directly. 
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2.2 Car Parked Estimation 
 

In this parking-based approach, the population data (ENACT-POP) from a JRC study 
(Batista e Silva et al., 2020; Schiavina et al., 2020) and the land use data obtained by the 
Corine project (CORINE Land Cover) were taken as a reference to estimate the number 
of cars parked in the city zones during the day (work or other) and night (home) (Car 
Parked Module, Figure 1). 

The ENACT-POP dataset is used to estimate the relative weights to re-proportion the 
stops of vehicles circulating in the city. It is a raster dataset that calculates the present 
people in daytime and night-time per month with a granularity of 1km2, considering the 
presence of residents, workers, students, and tourists. These grids were produced for all 
EU-28 countries by combining official statistical data at the regional level with geospatial 
data from conventional and non-conventional data sources for the reference year of 2011 
(the most recent round of censuses). The CORINE Land Cover (CLC) data are used to 
adapt the estimated data on regular grids to the city zoning; the DSS user chooses that for 
the analysis. This project was set up at the European level to detect and monitor land 
cover and land use characteristics. It provides land cover/use for most areas of Europe, 
according to 44 different classes, with a raster granularity of 100m2. 

These data, available for the major EU city, were used for calculating relative weights 
to assign the stops of the total daily vehicles traveling in the town and disaggregated as 
urban, incoming, and outgoing (data asked as input to DSS users). The estimation is done 
concerning the city’s zoning. In this way, the number of vehicles parked per zones during 
the day and at night is obtained. To achieve the demand for charging, it is necessary to 
know how many of these parked vehicles are electric. 

The percentage of electric vehicles by vehicle type can be estimated by applying a 
model based on the calibration of the discrete choice experiment to assess interest in 
electric cars. It requires, as input, the attributes related to the ownership of EVs (e.g., car 
price, autonomy with a full battery, operating cost, electric charge infrastructure diffusion, 
incentives). This section will be developed in future research activities, following the 
approach described in (Gamba et al., 2022). In case of missing data, default percentages 
can be used based on current values of the market penetration rate.  
 

2.3 Electric Mobility Simulation Model 
 

The Electric Mobility Simulation Model represents the core part of the methodology 
implemented within the tool. It consists of an agent-based model capable of simulating 
the activities of each car in the city, considering both behavioral and population 
distributions resulting from the calculations made by the previous models. Implementing 
an agent-based model was driven by the necessity of flexibility in defining the 
characteristics of every single vehicle and the rules that make them interact with the 
surrounding environment. Therefore, it is an emergence, a process that aims to model 
higher-level system properties of complex phenomena from the interactions of lower-
level subsystems where agents follow simple directives. In the case of this work, the 
outcomes coming from numerous iterations on different experiments on a pre-selected 
number of days lay the foundation for a Monte Carlo simulation to calculate energy, 
power, and parking pressure indicators in each zone of interest for each hour of a reference 
day. 
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The model takes as input a set of distributions resulting from the analysis carried out in 
the User Charging Behavior Model (2.1) and the Car Parked Estimation Model (2.2). 
Given this group of variables, the tool can generate the set of agents that will interact with 
the simulation. 

Table 1: BEV Characteristics. 

Property Name Description 

Battery Size [kWh] Hardcoded to 52 kWh taking Renault Zoe as a template model 
Average Consumption 
[kWh/km] 

Hardcoded to 0.177 kWh/km, taking Renault Zoe as template model. 

State of Charge (SoC) 
[%] 

Current SoC to keep track of the BEV status. They are initialized randomly at 
the start of each epoch. 

Starting SoC [%] SoC threshold for starting recharging. Sampled from related distribution. 

Final SoC [%] 
The State of Charge until the car will charge. Sampled from related 
distribution. 

Daily km traveled [km] 
The number of km the car will travel each simulation day. Sampled from 
related distribution. 

Parking Time [h] 
The number of hours in which the car stays parked. Sampled from related 
distribution. 

Day Zone ID Identifier of the assigned daily zone. Sampled from related distribution. 

Night Zone ID Identifier of the assigned night zone. Sampled from related distribution. 

Charging Place 
Charging place preferred (home/work/other, public/semi-public/private). 
Sampled from related distribution. 

Charging Period Charging preference (day/night). Sampled from related distribution. 

 
Each BEV is characterized by a collection of properties presented in Figure 1. 

Furthermore, each agent (i.e., BEV) possesses two functions to formalize the travel 
process and the charge one. The former considers the average consumption and the daily 
km traveled by the vehicle to calculate and update the SoC when the car will decide to 
park. At the same time, the latter compares the current SoC with the Starting SoC, 
considers the amount of km that the vehicle will cover in the coming day, and decides 
whether the agent will charge the vehicle. Then, it is calculated and returned for each car 
(i.e. each agent) and each day of the simulation.  

In addition to the amount of energy demanded by the BEV to arrive at the final SoC, 
the algorithm gets information about the charging preference of the agent to attribute the 
charging process to the right zone and the number of hours the car is expected to stay 
parked. All information contributes to calculate the energy impact and the minimum 
charging power required to reach the final SoC within the provided amount of parking 
hours. The vehicle choices will contribute to populating one of the three matrixes used to 
disaggregate short (<3h), medium (3≤ and ≥8h), and long parking (>8h). 

The estimation of these values for each vehicle and each simulation day generates a set 
of matrixes meant to be the result of a single epoch of the simulation. By iterating on 
numerous epochs, it is possible to proceed with calculating the running mean and the 
standard deviation of these variables. This allows estimating confidence intervals that can 
be used to determine the reliability of the measurement but also as a threshold to stop the 
simulation. The confidence level selected for the calculation was 95%. 
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3. Preliminary application and results  

3.1 Case study description 
 

The methodology proposed and described in the previous section was tested with a 
preliminary application on a case study in the city of Turin in northern Italy to verify the 
model. 

Turin has a population of around 870,000 inhabitants on an area of 130.2 km². At the 
end of 2021, there were 196 public recharging points in the city, which rose to 387 if 
private points with public access were also included. The total number of registered 
electric vehicles in Italy in 2021 was 136754, with an increase of +128% compared to the 
year 2020. Thirty percent of these (both fully electric and plug-in hybrids) are 
concentrated in north-western Italy (Motus-E, 2021).  

The simulations presented in the following have been carried out on a PC with a CPU 
Intel(R) Core (TM) i7-8565U CPU @ 1.80GHz (8 cores) and 32GB RAM. The running 
time ranges from about 5 minutes for 1000 iterations to 30 minutes depending on the 
scenarios. 

Following the procedure reported in Figure 1, the input values related to the proposed 
case study include: a city zoning composed of 183 zones; the ENACT-POP raster dataset, 
and the CORINE Land Cover raster dataset for the Turin city; the total cars estimated 
from daily trips available in (Agenzia della Mobilità Piemontese, 2016) (89243 urban, 
50515 incoming and 28423 outgoing for weekdays) and the distribution of kilometres 
travelled (the most common trips are those between 10 and 50 km).  

In Table 2, the distribution used for the parking time at home, work, and other locations in the case of the current 
situation in Turin as observed in (Brancaccio and Deflorio, 2021) are shown. In Table 3 there is a realistic distribution 
representing a current situation of parking duration according to the main types of activities, especially by 
differentiating work and other. Finally,   
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Table 4 reports the distributions used for the start time of the stop in the three types of 
activities identified (home, work, and other). It is assumed that 65% of users recharge at 
home, 30% at work, and the remaining 5% in other places (e.g. supermarkets, gyms). The 
charging infrastructure at home and work can be either public or private.  

Table 2: Current parking time distribution at home, work, and other locations 

Parking time [h] 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 

Home        2%  11% 19% 23% 17% 11% 9% 7% 1% 

Work 43% 21% 13% 7% 6% 3% 3% 2% 1%         

Other 43% 21% 13% 7% 6% 3% 3% 2% 1%                 

Table 3: Parking time distribution at home, work, and other locations. 

Parking time [h] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Home         5% 10% 20% 30% 20% 10% 5% 

Work    10% 5% 10% 5% 15% 40% 15%      

Other 40% 30% 20% 10%                       
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Table 4: Time to start charging at home, work, and other locations (extracted and revised 
from Corchero et al., 2015) 

Start of parking [%] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Home 3 2 4 0 0 0 1 2 4 4 4 4 4 4 5 4 6 7 10 10 9 6 5 4 

Work 0 0 0 0 0 1 2 7 14 8 6 6 7 7 11 9 7 3 2 1 1 8 0 0 

Other 1 1 0 0 0 1 2 5 9 8 7 6 6 8 7 7 6 5 5 5 5 3 2 2 

 
 
3.2 Scenarios 

 
To stress the model, different scenarios are built investigating some challenging 

situations. In the first results reported in this paper, the daily traveled km distribution was 
related to a typical weekday. Then, different market penetration rates were assumed to 
change the number of parked vehicles per zone (output of the car parked estimation 
module). With the highest percentage used for future scenarios, 8409 BEVs are simulated, 
while in the current scenarios they are 1682. Secondly, the SoC threshold for starting 
recharging was modified on two levels to simulate two different user behaviors, assuming 
that all arrive at full charge. Finally, two additional parking time distributions have been 
considered (section 3.1). Table 5 shows the combination of these input variables to 
compose the different scenarios investigated. 

Table 5: Input values for the different scenarios investigated. 

Scenarios 
Daily km traveled 

distributions 
Market rate 
penetration 

Initial SoC 
(Final SoC 

100%) 

Parking time 
distribution 

Weekday 1% 5% 40% 20% Table 2 Table 3 

S0 Current observed x x  x  x  

S1 Current x x  x   x 

S2 Future x  x  x  x 

S3 Future + anxiety recharging x  x x   x 

 
3.3 Results 

 
According to section 2.3, one output of the model is the total number of BEVs 

occupying the parking space in each zone (n_cars), i.e. the occupation of the parking 
space during the day. Then the average required power assuming two different charging 
times are obtained. Firstly, one hour of charging time per zone (impact) is considered. 
Secondly, a less stressed condition (power) is depicted since the energy demand of the 
vehicle is spread over the entire duration of the parking period, in a “smart charging” 
perspective. Figure 2 shows the trend of this last variable during the day, aggregated for 
the city, in the different scenarios examined. The trend in the current scenario observed 
(S0) is interesting as there is a peak at 8 a.m. that is not found in the other scenarios. this 
is probably due to the fact that the distribution of dwell times is different (see Table 2 and 
Table 3): short stops begin at that time and therefore require energy distributed over a 
shorter time. On the other hand, it can be seen that in the late afternoon the trend is 
decreasing, almost constant, due to the start of night stops with very high durations, even 
over 20 hours.  
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The daily energy required for all city changes in the different scenarios is almost similar 
in the two current scenarios (S0 and S1) but increases by 360% in the future scenario (S2) 
and by 400% in the one that considers a user charging already with SoC at 40%. 

 

 
Figure 2: Average minimum required power to satisfy the agent’s needs for Turin city 

in different scenarios. 
 
Considering the peak at 8 am, the disaggregated value of BEVs occupying the parking 

space in each city zone is shown in Figure 3 for the two extreme scenarios (S0 and S3). 
As expected, the number of vehicles increases in the future scenario due to the rise of the 
market penetration rate, and the most heavily loaded zone remains the “Environment 
Park.” This densely populated district of the city is also enriched by the presence of 
offices and shopping areas, making 8 a.m. a peak hour. In the current scenario, the 
difference between the zones is less pronounced, while in the S3, the variability is more 
significant.  

The graph in Figure 4, reported for the future scenario, shows the two opposed charging 
conditions: the green line (power) could represent a charging that uses the whole vehicle 
parking time, while the orange line (impact) could be the case where the charge is 
completed in the first hour of parking. This could be helpful information for the energy 
supplier and the stakeholders involved to know their range of action (grey bars) which 
can vary throughout the day. The night and day trends are reversed since fewer users start 
charging at night than during the day. The model is able to provide this information also 
disaggregated by zones of the city. 
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a 

b 

Figure 3: (a) Number of cars parked in scenario S0 and (b) in scenario S3 for each zone 
at 8.00 a.m. 
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Figure 4: Trend of impact and power variables in the future scenario (S2) to simulate 

two charging strategies. 

4. Conclusions 

The presented modelling approach estimates the electric energy required for charging 
operations in urban areas simulating parking activities of battery electric vehicles (BEVs) 
and their energy needs. An agent-based model is used to simulate the dynamics of parking 
and assesses the electricity demand during the day. The model is designed to be scalable 
for all European cities, therefore using readily available data or open datasets, moving 
away from the classical mobility data to follow a parking-based approach. Indeed, the 
population data (ENACT-POP) and the land use data obtained by the Corine project, 
available for the major EU city, were taken as a reference to estimate the number of cars 
parked in the city zones during the day (work or other) and night (home). 

Other pieces of information, such as the daily km traveled, the percentage of EVs or 
the charging daily profile can be obtained from specific city surveys or EU studies and 
statistics. The amount of energy demanded by the BEVs is affected by the charging 
preference of the agents selected for the various zone and their parking time duration.  

The outputs of the model, applied in different scenarios of the case study, could provide 
an estimation of the energy demands of electric vehicles during the day in different city 
zones as well as the range of applicability of different charging strategies. The type of 
recharging offered and the recharging infrastructure supply resulting from energy 
demand, although developed in the INCIT-EV project, are not in the scope of the paper. 
As a possible future development, Electric Road Systems (ERS) concepts and related 
methodologies will be considered and formalized within the model to improve the 
estimation of the charging demand for future scenarios. 
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