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Abstract: Maintenance scheduling is a fundamental element in industry, where excessive downtime
can lead to considerable economic losses. Active monitoring systems of various components are
ever more used, and rolling bearings can be identified as one of the primary causes of failure on
production lines. Vibration signals extracted from bearings are affected by noise, which can make
their nature unclear and the extraction and classification of features difficult. In recent years, the
use of the discrete wavelet transform for denoising has been increasing, but studies in the literature
that optimise all the parameters used in this process are lacking. In the current article, the authors
present an algorithm to optimise the parameters required for denoising based on the discrete wavelet
transform and thresholding. One-hundred sixty different configurations of the mother wavelet,
threshold evaluation method, and threshold function are compared on the Case Western Reserve
University database to obtain the best combination for bearing damage identification with an iterative
method and are evaluated with tradeoff and kurtosis. The analysis results show that the best
combination of parameters for denoising is dmey, rigrSURE, and the hard threshold. The signals were
then distributed in a 2D plane for classification through an algorithm based on principal component
analysis, which uses a preselection of features extracted in the time domain.

Keywords: bearing fault diagnosis; discrete wavelet transform; thresholding; denoising; intelligent
fault diagnosis; Case Western Reserve University

1. Introduction

The development of new technologies has promoted the application of some new
smart techniques for machine control, enabling the transition driven by the Industry 4.0
strategic initiative. Bearings comprise one of the main components of rotating machinery,
and their failure is often critical for system safety [1,2]. Detecting the presence of defects
on a rolling bearing and predicting its residual life ensures an effective maintenance. This
strategy is defined as Condition-Based Maintenance (CBM). The regular monitoring of
system operation allows predicting more precisely the nucleation of defects in time and
limiting the consequences of their occurrence, reducing the cases of catastrophic events and
economic losses induced by machine stops.

Machine monitoring is often based on the analysis of vibrational signals extracted
by sensors placed on or near the bearings. All extracted signals are subjected to a noise
component, which inhibits the reading of useful monitoring information. The denoising
process is often required and looks critical to ensure a proper extraction of data. The Wavelet
Transform (WT) is one of the most-used techniques for denoising of signals [3,4]. The WT
enables an analysis in the time–frequency domain, where the signal is compared with a
family of functions called mother wavelets, which include parameters allowing the dilation
or contraction of the frequency considered and a time window extension dependent on
the frequency considered: low-frequency mother wavelets present a dilated time window,
while high-frequency ones involve a smaller time window. Considering low-frequency
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mother wavelet are dilated with a large time steps, on the other hand, high frequencies
involve smaller time steps and contracted mother wavelets. Numerous types of WTs are
used in the literature for denoising processes such as the Continuous Wavelet Transform
(CWT), Discrete Wavelet Transform (DWT), and Empirical Wavelet Transform (EWT).
The goal of this paper is to design an algorithm for the screening of the denoising process,
based on the DWT and applied to rotor bearing monitoring. The DWT is more used than
the CWT because it gives enough information and a significant reduction in computational
time [5]. Applying the DWT on a signal, two coefficient vectors are obtained, with two
different frequency ranges, which describe the signal: the coefficient vector with a range
in the higher frequencies is called the detail coefficient cD, while the one corresponding
to lower frequencies is called the approximation coefficient cA. To further decompose the
signal, the DWT is applied to the approximation coefficient cA just calculated.

In the literature, one of the most-common denoising methods that uses the DWT
is based on thresholding the detail and approximation coefficients acquired by wavelet
decomposition [2]. The concept behind this method is that the obtained coefficients contain
information regarding a certain frequency band about the machines under observation.
Wavelet coefficients contain both the target component of the signal and a noise component,
which in many cases prevents the correct identification of the defect. The causes of noise
are various, but when selective elimination is not possible, resorting to thresholding is
suggested. In the literature, many authors use the WT for signal denoising for the extraction
of fault features.

Many authors have studied the optimisation of parameters for denoising through the
DWT usually focusing on a limited number of those. Some studies were performed to
define the optimal decomposition level, as done by Sreejith et al. [6], who used the Morlet
wavelet filters for the noise reduction of the vibrational signals from rolling bearings. Two
algorithms were used for parameter optimisation before the denoising process. The algo-
rithm that guaranteed the least computational time for process optimisation was based
on using the Shannon entropy and kurtosis to optimise the decomposition level, which
is therefore preferred for denoising the vibrational signals from rolling bearings. Some-
times, the optimisation of the decomposition level is followed by the selection of the best
mother wavelet. Djebala et al. [7] focused on the analysis of the optimal level of wavelet
decomposition. Then, using kurtosis as an optimisation parameter and considering only
the Debauchies wavelet, they evaluated the most suitable mother wavelets as a function of
the sampling frequency. In other cases, the decomposition level and mother wavelet are
optimised together, as done by Sun et al. [8], who presented a new alternating current field
measurement system and a wavelet-based noise reduction algorithm. They used a new
evaluation parameter named Tradeoff (TO), presented in [9], and demonstrated that it was
the best evaluation parameter compared to the others used.

The mother wavelet choice is one of the most important parts of the optimisation of
the wavelet denoising, so there are some authors that considered only this as a variable
parameter, as done by Rafiee et al. [10], who proposed an automatic feature extraction
system for gear and rolling bearing diagnostics. They compared 324 wavelet families, eval-
uating the similarity of each of them with the analysed signals through a new evaluation
algorithm. Secondly, they proposed a classification algorithm that compares the ranges of
four statistical features using different mother wavelets. The results showed that the mother
wavelet choice based on the signal was different from the one depending on the following
process, such as denoising and classification. Another method to choose the optimal mother
wavelet was presented by Kankar et al. [11], who carried out a study on feature extraction
systems from rolling bearing signals by comparing seven mother wavelets. Shannon’s
minimum entropy criterion was applied to all the signals, which were decomposed by
the CWT with the seven different mother wavelets. The entropy was calculated for each
wavelet coefficient and averaged over the whole signal. The wavelet family with the lowest
sum of the averaged entropies was chosen. In wavelet denoising, a better optimisation
is possible if the major parameterare considered. For example, Sadooghi and Khaidm [9]
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evaluated 84 combinations of 12 mother wavelets and seven threshold evaluation meth-
ods to optimise the noise reduction process using thresholding. They proposed a new
evaluation parameter (Tradeoff (TO)) for identifying the best pair. Another approach to
thresholding was presented by Li et al. [12], who discussed the different methods of signal
segmentation for the application of the EWT, defining the adaptive one as the most-suitable
method. The modes obtained from the EWT process were evaluated according to their
energy content. In particular, the highest energy mode was subjected to the hard threshold,
while all others were subjected to the implemented function, shown in the paper. The
reliability of the EWT algorithm was guaranteed with a comparison with the Complete
Ensemble Empirical Mode Decomposition (CEEMD), which demonstrated that the EWT
process allows obtaining the best denoising of the signals. An example of the flexibility of
the wavelet was presented by Wang et al. [13], who eliminated the noise component from
the signals with a wavelet threshold denoising method. Therefore, the entropy value was
extracted from the IMFs (Intrinsic Mode Functions), which were previously obtained from
the EWT decomposition of the denoised signals.

The thresholding process is the most used in wavelet denoising, but there are different
methods. Kedadouche et al. [14] introduced a new index to evaluate the wavelet coefficient
based on the kurtosis. They calculated the kurtosis of every coefficient related to a faulty
bearing with the same related to a healthy bearing and normalised it with respect to the
difference of the kurtosis of the two signals considered. They evaluated that denoising
using coefficients with a kurtosis index greater than one was better than using only the
coefficient with the highest kurtosis index. In their work, a comparison between Empirical
Mode Decomposition (EMD), ENSEMBLE Empirical Mode Decomposition (EEMD), and
the EWT on the simulated signals was illustrated, and the results showed that the EWT
denoising process was the best among the methods considered. Another approach to
denoising was presented by Chegini et al. [2] based on the EWT, kurtosis, and envelope
spectrum. The algorithm calculates, for each mode detected by the EWT, the so-called
Pearson correlation coefficient and compares this value to that retrieved from experiments.
Only when the value calculated is lower than the experimental one, the mode is discarded;
otherwise, it is exploited to identify the occurring defect, through the thresholding process.
Another denoising method using wavelets was analysed by Ge et al. [15], in which the
IMFs were extracted from the signals by ensemble empirical mode decomposition, then
the Pearson correlation coefficient was used to select the high-frequency IMFs; the high-
frequency parts of the signals were denoised through the wavelet semi-soft threshold before
reconstructing the signals, and the status of the rolling bearings was evaluated with the
application of the multi-scale entropy method and support vector machine.

The WT is used for fault detection through the extraction of features from the wavelet
coefficient, as done by Toma and Kim [16], who presented a rolling bearing failure clas-
sification scheme for induction motors using the motor electricity signal. The signal was
subjected to the DWT for feature extraction; in particular, three wavelet families (Haar, db4,
and sym4) were compared by decomposing each signal to the eleventh level. The matrix
obtained was used as the input for machine learning ensemble classifiers. The aim of the
paper was to achieve high classification accuracy by reducing the computational power
required. Another approach was presented by Ziani et al. [17], who proposed an approach
of fault detection based on three steps: feature extraction, selection of sensitive features,
and classification. Feature extraction took place after the signal was decomposed through
Wavelet Packet Decomposition (WPD). Both the time and frequency domain character-
istics of the signal were picked out to optimise the classification. The selection method
consisted of scoring, according to three different criteria, each of the features considered,
then, after sorting the features in descending order of score, the values of the first features
were added together to reach 80% of the total score, and these features were the ones
used in the classification method. In the literature, a multitude of different techniques are
presented for classifying signals such as the one reported by Li et al. [18], who, in order
to study the complexity of ship-radiated noise, introduced the use of the Slope Entropy
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(SloE) in underwater acoustic signal processing. They suggested a Variational Mode De-
composition (VMD) and SloE-based feature extraction technique for ship-radiated noise.
They came to the conclusion that the method utilising the SloE had the highest recognition
rate while considering one characteristic or more, with the same amount of features taken
into account, after comparing this method with other techniques used. Another approach
to denoising was developed by Zhou et al. [19], which combines the fuzzy entropy dis-
criminant as the threshold with Empirical Ensemble Mode Decomposition (EEMD) and
Independent Component Analysis (ICA). In order to achieve end-to-end fault diagnosis,
they also created an improved Convolutional Neural Network (CNN) model. The experi-
mental findings showed the high accuracy and excellent anti-interference capacity, but with
limitations such as the designed model’s real-time performance.

Many publications are present in the literature focusing on denoising optimisation
with the DWT, but there are no papers where all parameters are optimised. In some cases,
only the optimal mother wavelet is evaluated, basing the choice on the similarity of the
wavelet to the signal [10]. In others, very few mother wavelets and just some levels of
decomposition are compared to evaluate which is the best pair [8]. Studies are also available
in the literature where the best pair between the mother wavelet and threshold technique
is assessed [9], or only the best function for applying the calculated threshold value is
evaluated [2].

Although research on the use of machine learning (ML) techniques for rotating systems’
monitoring has been expanding in recent years, the industry sector still remains interested
in employing monitoring techniques based on known algorithms that can provide a more
extensive level of knowledge insight. In this context, denoising algorithms based on the
DWT still receive high interest, due to their good behaviour, as verified in the literature.
However, there still remain some research gaps regarding the screening of the complete set
of parameters involved in this technique. Comparative studies considering all parameters
that may vary in the DWT, specifically the mother wavelet, threshold evaluation, and
threshold function, are not available. The main goal of the present paper is to select
the best combination of the decomposition level, mother wavelet, thresholding rule, and
thresholding function for the denoising of the vibration signal of rolling bearings, which
cannot be found in the literature. A fundamental assumption of this approach is that
the most-effective denoising optimisation is reached when the highest number of system
parameters is simultaneously considered. Thus, the decomposition level is calculated
considering the type of signal and the rolling bearing under study, while the mother
wavelet, threshold value, and threshold function are chosen through iterations of the
algorithm. For this research work, 10 vibration signals related to the Case Western Reserve
University (CWRU) database were denoised with 160 different groups of parameters.
Every case was evaluated from two different features, i.e., kurtosis and Tradeoff (TO).
At the end, two groups of parameters were extracted that optimised the kurtosis and TO.
Comparing the results of these two groups, it is possible to define the best parameters
for the signals analysed. After that, 108 signals from the CWRU database were denoised
using the parameters just found, and with the denoised signal, the classification algorithm
was trained. The aim of the algorithm is to determine the nature of the vibrational signal
derived from the rolling bearing using only features extracted from the time domain.

The screening activity of the DWT parameters performed in the present paper will be
extended in future works by including signals from different test benches to achieve the
optimal parameters for more generalised sets of bearing signals; in particular, the proposed
algorithm will be applied to signals extracted from an innovative test rig for industrial
bearing monitoring presented in [20].

2. Materials and Methods

In this paper, a screening algorithm is proposed to obtain the best wavelet parameters
for wavelet denoising. The proposed algorithm, presented in Figure 1, uses the signal of the
CWRU database of healthy and faulty rolling bearings to find the best combination of the
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decomposition level, mother wavelet, threshold value, and threshold function. A thorough
explanation of each step in the screening algorithm is presented in the following.

Figure 1. Algorithm flow chart for the parameter screening of the proposed DWT denoising.

In Figure 1, the various steps of the parameter screening algorithm applied to each
analysed signal are reported. The first step is to calculate the level of decomposition known
from the signal information and the type of rolling bearings studied. Then, through an
iterative process, the 160 denoising methods, related to the combination of 10 mother
wavelets, five threshold rules, and three threshold functions and using the index kurtosis
technique [14] with all the mother wavelet were compared. Each combination was eval-
uated using two criteria. This system has to be applied to several signals from the same
database to identify the best combination.

The next step is the training of a signal classification system that consists of three steps:
the evaluation of the features by the Fisher score [21], the selection of relevant features
according to the Pareto principle [22], and finally, if necessary, the extraction of the principal
components using Principal Component Analysis (PCA) [23].

2.1. Calculation of the Decomposition Level

Typically, in the literature [2,7,24], the characteristic frequency and its harmonics are
used to detect the presence of defects on rolling bearings. According to Djebala et al. [7],
at least three harmonics have to be highlighted to facilitate defect identification. This means
that the last frequency band relative to the approximation coefficient must contain at least
three harmonics of the characteristic frequency of the signal.

The algorithm for the evaluation of the detail and approximation coefficients as a
function of the decomposition level is shown in Figure 2, where S is the signal, cDn is the
detail coefficient, cAn is the approximation coefficient, and Fmax is the maximum frequency
of S.



Sensors 2023, 23, 8 6 of 29

Figure 2. Identification of frequency bands related to the various coefficients as a function of the
decomposition level. G indicates the high-pass filter and the following down sampling, while H
indicates the low pass filter and the following down sampling.

To acquire the detail and approximation coefficients of the first decomposition level,
the signal is processed through a high-pass and low-pass filter, followed by down sampling.
When Fmax is the signal maximum frequency, the approximation coefficient frequency
band is 0 to Fmax/2, while the detail coefficient frequency band is Fmax/2 to Fmax. For de-
composition levels after the first, the same procedure is applied on the approximation
coefficient just calculated, to obtain the detail and approximation coefficients of the next
level. The frequency bands of the new coefficients are half of the approximations’ coeffi-
cient band. Considering a decomposition level n, at the end of the decomposition process,
the last approximation coefficient and the n detail coefficients calculated are considered
for the post-processing operations. Therefore, the maximum frequency of the last level
approximation coefficient can be calculated as:

Fmax(cAn) =
Fmax(S)

2n (1)

where S is the signal, cAn is the approximation coefficient, Fmax() indicates the maximum
frequency of the input, and n is the decomposition level.

Considering as the upper limit the maximum frequency of the last level approximation
coefficient halfway between the third and fourth harmonics, the decomposition level can
therefore be calculated inverting (1) as:

n = 1.44 · log10

(
Fmax(S)
3.5 · Fc

)
(2)

where Fc is the characteristic frequency related to the bearing defect.
The bearing characteristic frequencies result from the rolling elements impacting

a localised defect on the raceways or cage of the bearing itself or from the interaction
between a defect on one or more rolling elements and another rolling bearing component.
The contact generates an acceleration impulse in the sensor signals, which becomes also
visible in the frequency spectrum of the signal. The characteristic frequencies of rolling
bearings are:

• Ball Pass Frequency Outer raceway (BPFO), i.e., the frequency of the passage of a
rolling element at the same point on the outer raceway;

• Ball Pass Frequency Inner raceway (BPFI), i.e., the frequency of the passage of a rolling
element at the same point on the inner raceway;

• Ball Spin Frequency (BSF), i.e., the frequency of rotation of the rolling elements around
their axis, since statistically, the defect on the rolling element impacts a rotation both
on the inner and outer raceway, in the frequency spectrum, and there will be peaks in
2× BSF and its harmonics;
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• Fundamental Train Frequency (FTF), i.e., fundamental frequency of rotation that
corresponds to the frequency of rotation of the cage.

If the nature of the defect is known, the decomposition level for calculatingthe character-
istic frequency considered will be the corresponding one. Otherwise, the maximum among
the characteristic frequencies of the considered rolling bearings is taken as the reference.

2.2. Choice of Wavelet Family

Although literature studies are present that link the choice of the wavelet family
only to the analysed signal [16,25], it has become clear in the latest studies that the choice
should also depend on the thresholding method applied to the wavelet coefficients and
the evaluation parameter used to define the best denoising method [10]. The most-used
wavelet families were selected from the literature, from which it is possible to derive mother
wavelets by means of coefficients that modify their structure. Table 1 lists the mother
wavelets used in this paper and the literature sources from which they were derived.

Table 1. Mother wavelet used in the screening algorithm.

Mother Wavelet Abbreviation Literary Sources

Daubechies 4 db4 [10,16]

Daubechies 44 db44 [10,11,17]

Daubechies 45 db45 [10,11]

Discrete Meyer dmey [9,10]

Biorthogonal 3.1 bior3.1 [10,11]

Biorthogonal 6.8 bior6.8 [9,10]

Reverse biorthogonal 1.1 rbior1.1 [9,10]

Coiflet 5 coif5 [9,10]

Symlet 4 sym4 [10,16]

Haar haar [10,16]

2.3. Identification of Thresholding Rule

In this section, the five thresholding rules used as the parameters of the denois-
ing screening algorithm are described. The thresholding process was first presented by
Donoho and Johnstone [26] in 1994. The idea is to compare each element of the vectors
of detail and approximation coefficients obtained from the DWT with a threshold value.
Different thresholding methods have been presented in the literature, and five types of
threshold value techniques were used in the present study to define the best one for the
denoising of rolling bearing signals: universal threshold, rigorous Stein’s Unbiased Risk
Estimate (rigrSURE), heuristic SURE (heuresure), minimax, and penalised method.

The universal threshold evaluates only one threshold value for every DWT coeffi-
cient [27], based on the length of the signal analysed. This method saves computational
time, but does not consider the real noise distribution in each coefficient.

rigrSURE is an adaptive thresholding method based on Stein’s unbiased likelihood
estimation principle, which was introduced by Donoho and Jonstone [28]. The expression
and demonstration of such a method are shown in [28] and consist of a likelihood estima-
tion using a given threshold th, then minimising the non-similarity with th to obtain the
threshold value. Indeed, in large dimensions, the vector will be set to a sort of statistical
regularity, while will ensure the close proximity between SURE and the true risk, and
that thrigrSURE will be nearly the best threshold. According to [28], this method has a
computational cost a little bit greater than others.

The heuresure threshold is a combination of rigrSURE and the universal threshold
method [9,29]. The SURE method would be unreliable if the Signal-to-Noise Ratio (SNR) is
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very small, while the universal threshold gives a better threshold assessment. If the SNR is
higher, the rigrSURE threshold method is used instead.

The minimax method uses the minimax principle to find a threshold for every coeffi-
cient, thus the denoising of signals can be seen similar to the estimation of an unknown
regression function. minimax allows the evaluation of the function that minimises the
maximum value of the Mean-Squared Error (MSE) among the proposed functions [9].

The penalised method, also referred to as the Birgé–Massart method, is the best-known
technique for calculating the threshold value among the parametric methods. In this thresh-
old method, the detail and approximation coefficients are sorted in descending order
of their absolute value, after which the threshold value is calculated [9,30]. The expres-
sion is regulated by a penalised parameter (αp), which gives the ability to identify three
different intervals [9]:

• Penalised high, 2.5 < αp < 10;
• Penalised medium, 1.5 < αp < 2.5;
• Penalised low, 1 < αp < 2.

Threshold determination is an important question in the denoising process. A small
threshold may yield a result that may be noisy, and a large threshold can cut a significant
part of the signal, thus losing the important details of the signal [31]. Figure 3 allows seeing
the threshold values calculated by the different methods described for a signal relating to a
rolling bearing (SKF 6205-2RS JEM) with a defect on the inner raceway with a diameter of
0.007 in. The universal threshold and minimax provide a unique threshold value for each
level; this is true for the heuresure method also, which in this case provides a threshold
value equal to the universal threshold method, as the analysed signal presents a small
SNR value.

Figure 3. Example of threshold application on wavelet coefficients of signals from rolling bearings.

2.4. Thresholding Function

Various methodologies can be used to apply the evaluated threshold value, the most
common of which are the hard threshold and soft threshold; there are, however, many
functions that allow having a middle way between these two types. The hard threshold
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function generates a vector of the same dimension of the input, in which the absolute value
of each element is compared with the threshold value th. If the absolute value results in
being lower than the threshold, it would be set equal to zero in the output vector; otherwise,
it can be considered equal to the value of the original signal. Due to the discontinuities that
are created, this method causes fluctuations in the signal after reconstruction, even though
the local properties of the raw signal are preserved. Thus, the equation for the general k-th
wavelet coefficient c(i, k) at the decomposition level i is [2,9,12]:

cth
i,k =

{
ci,k

∣∣ci,k
∣∣ ≥ thi

0
∣∣ci,k

∣∣ < thi
(3)

The soft threshold function differs from the previous one because the retained values
are centred on the threshold. After thresholding, a high-frequency part of the coefficients
is lost, and they are still consistent. In this case, the equation for evaluating the wavelet
coefficient of the output vector becomes [2,9,12]:

cth
i,k =

{
sgn(ci,k)

(∣∣ci,k
∣∣− th

) ∣∣ci,k
∣∣ ≥ thi

0
∣∣ci,k

∣∣ < thi
(4)

Li et al. [12] implemented a new function that allows overcoming the disadvantages
of the two previous method, as follows:

cth
i,k =

{
(1− µ)ci,k + µ · sgn(ci,k)

(∣∣ci,k
∣∣− thi

) ∣∣ci,k
∣∣ ≥ thi

0
∣∣ci,k

∣∣ < thi
(5)

with:
µ = α(|ci,k|−thi)

2
with 0 ≤ α ≤ 1⇒ 0 ≤ µ ≤ 1 (6)

The choice of the alpha coefficient allows the selection of different functions within
the extremes of the hard and soft thresholds, in particular for:

• α = 0, the hard threshold function is obtained;
• α = 1, the soft threshold function is obtained;
• 0 < α < 1, continuous threshold functions are obtained, which for a value near th are

similar to the soft threshold and for a value far from th are similar to the hard threshold.

Figure 4 describes the improved threshold applied to a coefficient characterised by the
function y = x. As can be observed, an increase in the α coefficient implies a reduction of
the coefficients also outside of the threshold region, resulting in a lower amplitude of the
denoised signal compared to the raw one. In order to limit this effect, a low value of α may
be preferable, and in the current study, a value of α = 0.05 was chosen for the improved
threshold function [12].

The hard threshold and improved threshold were selected as the first two threshold
functions to be compared in the screening algorithm presented. The third threshold function
used, denoted as the mixed threshold, is a combination of the hard threshold and improved
threshold function. In particular, the coefficient with the maximum energy was analysed
with the hard threshold, whereas all other coefficients were analysed with the improved
threshold function, as shown in [12].
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Figure 4. Development of different threshold functions, with a threshold value of th = 0.5.

Changing the approach, instead of selecting each element of the coefficients individ-
ually, the coefficients with the most general information can be selected. This method
is based on the fact that some coefficients are closely correlated with bearing faults,
while others contain information that is unnecessary for such diagnostics, including noise.
Kedadouche et al. [14] presented a new method for identifying the coefficients most closely
related to the presence or absence of a defect based on the kurtosis. This is possible because
healthy bearings present a kurtosis close to 3, while in the case of damage, the kurtosis
tends to assume higher values. The method considers the difference between the kurtosis
of coefficients corresponding to the same frequency range for a damaged and a healthy
bearing for all wavelet coefficients. This value is normalised to the difference between the
kurtosis of the raw signal under test and a healthy bearing signal. The frequency ranges of
the wavelet coefficients are the same for both the signal under test and the healthy bearing
signal if they are taken from bearings of the same model and with the same sampling
frequency. The equation of this new method is:

kurtosis_indexi =
kurtosis(ci)damaged − kurtosis(ci)healty

kurtosis(x)damaged − kurtosis(x)healthy
(7)

where ci denotes the wavelet coefficient of the i-th decomposition level and x denotes the
raw signal in the defective or healthy case.

All coefficients with a kurtosis index greater than or equal to one are used to reconstruct
the signal for indirect signal denoising. This approach can only be applied if there is a
history of signals related to the rolling bearings under consideration or signals related to
the same bearings when these signals can be defined as healthy. Therefore, it cannot be
applied as a control system for existing and already operating configurations.

2.5. Performance Evaluation

In the present paper, each signal was subjected to 160 different combinations of
denoising, so the choice of the evaluation parameters is crucial. The two parameters chosen
for performance evaluation were the kurtosis (k1) and Tradeoff (TO).

The first allows identifying the presence or absence of a defect in the rolling bearings.
The kurtosis corresponds to the fourth centred moment, normalised by dividing it by
the fourth power of the standard deviation, and represents a statistical measure used to
describe the distribution of observed data around the mean. The kurtosis presents a value
of 3 if the distribution is normal (Gaussian); if it is larger than 3, it corresponds to a more
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spiky distribution, whereas if the kurtosis value is less than 3, there is a flatter distribution.
In this paper, the kurtosis was calculated according to the formulation:

k1 =
1
n ∑n

j=1
(

xj − x̄
)4[

1
n ∑n

j=1
(

xj − x̄
)2
]2 (8)

where n is the number of elements of the signal, xj is the j-th element of the signal, and x̄ is
the mean.

Studying signals from rolling bearings, the kurtosis takes on values of 3 in the case of
a healthy bearing. On the other hand, the kurtosis for damaged bearings assumes values
greater than 3. In addition, screening of this parameter provides indirect screening of
the denoising of the signal. Other parameters that are used in the literature to highlight
the presence or not of defects, and become more effective when the size of the defect
is considerable, are the Peak Value (PV) or the Root Mean Square (RMS) and all the
characteristics derived from them.

The second parameter is a mix of features that directly assess the denoising of the
signal by comparing the post-processed signal with the raw signal or the extracted noise.
This was presented by Sadooghi and Khadem [9]. The formulation used is [32]:

TO =
SNR · xcorr

PrmsD
(9)

where SNR is the Signal-to-Noise Ratio, xcorr is the cross-correlation factor, for which large
values are preferred, and PrmsD is the Percentage root-mean-squared Difference for which
small values are desirable.

Sun et al. [8] demonstrated the effectiveness of TO by comparing the denoising results
obtained from the combinations that maximise the TO parameter with those that achieve
the maximum SNR value, the maximum xcorr value, and the minimum PrmsD value.
They showed that the denoising obtained by the combination that maximises TO is better
than the others and that the denoising obtained by the maximum value of xcorr is close to
the best.

2.6. Classification Algorithm

Classification is a fundamental step in machine diagnostics. This paper is focused
on identifying the nature of the defect by pre-selecting features and applying Principal
Component Analysis (PCA) to obtain a graphical distribution of the signals.

The features’ pre-selection is based on the scheme presented in [17], with the evaluation
carried out by means of the Fisher score. The idea behind the method is that the distance
between points of different classes is the maximum possible, while the distance between
points of the same class is the minimum possible.

The features’ evaluation permits defining a ranking that will allow the application
of the Pareto method for selection. This is a technique for decision-making based on the
Pareto principle, also known as the 80/20 rule [22]. The analysis is based on the idea that
80% of the benefit can be achieved by doing 20% of the work [17]. The objective of this
paper was to create a subset of features to be provided as the input to the PCA in order
to obtain the classification of the analysed signals. Thus, the selected features are those
that allow obtaining 80% of the evaluation metric used. The features’ pre-selection permits
improving the results obtained from the application of the PCA.

PCA is a technique that uses singular-value decomposition to obtain a hierarchical
coordinate system for representing data. Principal Components (PCs) represent the new
coordinate system that maximises the correlation with measurements. This technique can
be seen as an eigenvalue problem.

The eigenvalues indicate the variance of the principal component of the data, thus
indicating the importance of a component. This technique allows condensing a considerable
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amount of information about the same signal into fewer components, allowing identifying
the state of each signal and distinguishing them from the others.

The aim of this algorithm is to show a first approach to the classification of the signals
under investigation.

3. Evaluation of Denoising Screening Results

Applying the screening algorithm to signals from the CWRU database [33,34] reveals
the best technique for denoising using the DWT. In this section, the combinations that
optimise the evaluation parameters is discussed and compared with each other. In Table A1
in the Appendix A, the variables corresponding to each index are shown.

The signals of the CWRU database were obtained from a test stand composed of a 2
hp Reliance Electric motor and two bearing localised near to and far from the motor. The
vibration data were collected using accelerometers, which were attached to the bearing
housing. The signals were extracted from SKF rolling bearings 6205-2RS JEM with a single-
point fault for bearings with diameters of 0.007 in, 0.014 in, and 0.021 in. The vibration
signals were collected with a sampling frequency of 12 kHz for each cases and 48 kHz for
the drive end bearing faults. The faulty bearings on the outer raceway were assembled
with the damage at 3 o’clock (orthogonal to the load zone), at 6 o’clock (in the load zone),
and at 12 o’clock (in opposition to the load zone).

The first evaluation focused on the denoising efficiency for signals from faulty bearings
with a size of 0.007 in and a rotation speed of 1797 rpm, considering the three defect
positions between the main elements of a rolling bearing. Figure 5 is a bar graph, where
the y-axis shows the indices used for the identification of the denoising technique under
investigation; the TO value is on the x-axis. Each column is the sum of the TO values
obtained after denoising from bearings with defects localised on the inner raceway (IR,
in blue), on the rolling element (B, in red), and on the outer raceway (OR, in yellow),
with the same diameter.

Figure 5. Comparison of TO values for defects of size 0.007 in.

Figure 5 shows that Index 49 has the highest sum of TO values (TO = 1189) followed
by Indices 109 and 19 with a TO value of 996 and 889, respectively. These indices have
the same technique for threshold evaluation and the same threshold function, respectively,
rigrSURE and hard threshold, but with three different mother wavelets: dmey, coif5,
and db44.

Another observation is that the index intervals 91 ÷ 105, 136 ÷ 150 present very
low TO values, a sign that the corresponding mother wavelets, respectively rbior1.1 and
haar, are not suitable for the use of these techniques. Moreover, it can be noted that the
denoising carried out by the application of the kurtosis indicator, corresponding to the
indices 151 ÷ 160, is not very effective, as they produce lower TO values. Furthermore, it
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can be seen that the highest TO value in each individual column is given by the OR signals
followed by IR and, finally, by B.

Turning to the case of a defect with a diameter of 0.014 in, Figure 6 shows the TO trend,
as in Figure 5. The indices that guarantee the highest TO values are, in order, 49 and 19,
respectively, with a TO value of 425 and 424. The values obtained are about 1/3 of those
obtained in the previous case. As in the previous case, there are mother wavelets with
very low TO values, namely Indices 91 ÷ 105, which correspond to rbior1.1, and Indices
136 ÷ 150, which correspond to haar. Moreover, also in this case, the indices related to the
kurtosis indicator method are not optimised for TO.

In this case also, the group of variables with index 49 is the best for tradeoff, but from
Table 2, it can be noted that the maximum for each type of defect is obtained by Indices 19
(for IR and B signals) and 58 (for OR signals).

Figure 6. Comparison of TO values for defects of size 0.014 in.

Table 2. Parameters required to maximise the TO value for rolling bearings’ signals with localised
defects with varying locations, but the same diameter, equal to 0.014 in.

Defect Location Index Mother Wavelet Threshold Rule Threshold
Function

IR 19 db44 rigrSURE Hard threshold

B 19 db44 rigrSURE Hard threshold

OR 58 dmey Penalised
method Hard threshold

Finally, analysing the signals for the rolling elements’ bearings with a defect diameter
of 0.021 in, Figure 7 shows the TO values. In this case, it can be seen that the order of
magnitude of the maximum values again stabilised at values comparable with the case
of a defect with a diameter of 0.007 in, although the TO values for the IR signals are
comparable with those obtained for the OR signals. The maximum TO value is 1236, and it
was obtained for Index 49, followed, in order, by Indices 109, 79, and 19, with values of 1053,
940, and 939, respectively. These four indices stand out among the others. Thresholding
was applied through rigrSURE and the hard threshold, while the mother wavelets changed
and corresponded, respectively, to dmey, coif5, bior6.8, and db44.

Furthermore, in this case, the mother wavelets rbior1.1 and haar and the kurtosis
indicator were unsuitable if TO was used as a denoising metric, making these mother
wavelets not suitable for denoising the analysed signals.

Table 3 summarises the results shown in Figures 5–7, listing the denoising parameters
that maximise the sum of the TO values at varying defect diameters. It was confirmed
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that Index 49 clearly indicates the best group of parameters that maximise the sum of the
TO values.

Figure 7. Comparison of TO values for defects of size 0.021 in.

Table 3. Parameters required to maximise the sum of TO values for every defect location at varying
defect diameters.

Diameter (in) Index Mother Wavelet Threshold Rule Threshold
Function

0.007 49 dmey rigrSURE Hard threshold

0.014 49 dmey rigrSURE Hard threshold

0.021 49 dmey rigrSURE Hard threshold

The evaluation of the denoising obtained by the signal from a healthy bearing (indi-
cated as N) allows estimating all the main case histories in the use of a rolling element
bearing in industry. Figure 8 shows such a trend and highlights peaks corresponding to
rigrSURE and the hard threshold as the methods for noise reduction. The wavelet fam-
ilies that guarantee higher TO values are, in order: db45, db44, and dmey. In this case,
Index 49 provides the third-highest value of TO, with values very close to the first, Index
34, with a difference of only 0.45 points. Finally, the graph shows that, for signals from
healthy bearings, the implemented threshold function and the mixed one guarantee almost
identical values.

Figure 8. Comparison of TO values for healthy bearings.
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The evaluation of the best group of parameters that gives the maximum TO allowed
deriving the results shown in Table 4. dmey and rigrSURE are, respectively, the mother
wavelet and threshold rule that optimise most signals, while the hard threshold is the best
technique among those considered for all the signals analysed. Thus, Index 49 identifies the
best group of parameters for wavelet denoising for the signals under consideration.

Sadooghi and Khaidm [9], using signals from a cargo plane jet engine, tried to define
the best combination of the mother wavelet and threshold evaluation method using TO
as the evaluation parameter. The results showed in [9] highlight dmey and rigrSURE as
the best parameters for the denoising process, in accord with the results illustrated in this
work; furthermore, also in their case, rigrSURE allowed obtaining the first three highest
TO values. In their study, the mother wavelets with the second and third TO value were,
in order, sym8 and bior6.8, with a 25 percent decrease in the TO value for each; in the
present study, the second and third mother wavelets that maximise TO are, in order, coif5
and db44, with a TO value reduction of 12 and 18 percent, respectively; this difference
in the second and third mother wavelets can be associated with the different nature of
the signal used, which consequently resulted in signals more similar to particular mother
wavelets than others. In the current research, using signals from rolling bearings with
localised defects, the sym family did not result in a high TO value, while the bior6.8 mother
wavelet (considering Index 79 with the rigrSURE threshold evaluation method and hard
threshold function) was one of the parameter sets with a higher TO value, up to the fourth
highest in the case of defects with sizes of 0.007 in and 0.021 in.

Table 4. Summary of denoising parameters that maximise TO for different defect locations
and diameters.

Defect Diameter Index Mother Wavelet Threshold Rule Threshold
Location (in) Function

N – 34 db45 rigrSURE Hard threshold

IR 0.007 49 dmey rigrSURE Hard threshold

IR 0.014 19 db44 rigrSURE Hard threshold

IR 0.021 49 dmey rigrSURE Hard threshold

B 0.007 49 dmey rigrSURE Hard threshold

B 0.014 19 db44 rigrSURE Hard threshold

B 0.021 19 db44 rigrSURE Hard threshold

OR 0.007 49 dmey rigrSURE Hard threshold

OR 0.014 58 dmey Penalised
method Hard threshold

OR 0.021 49 dmey rigrSURE Hard threshold

Observing the trend of the kurtosis values obtained from the various analyses, the in-
dices that made it possible to assess the presence or absence of a defect on the rolling
bearings as best as possible were obtained. For signals from faulty bearings, the goal is to
maximise the kurtosis value to highlight the presence of a defect.

Figure 9 shows the values obtained by analysing the signal from bearings with defects
on the inner ring with a diameter of 0.007 in (a), 0.014 in (b), and 0.021 in (c). In Figure 9a,
Index 92 has the highest kurtosis value, Index 159, corresponding to sym4 as the mother
wavelet and the kurtosis index as the denoising method, is the first in the group using
the kurtosis index (Indices 151–160) and presents the fifth-highest kurtosis value, with a
difference of 0.8% compared to Index 92. Figure 9b shows that Index 151 (mother wavelet
db4 and kurtosis index) has the highest kurtosis value, while Index 92 is in fifth place with
a difference of 12.7% with respect to the first one. For Figure 9c, between the indices that
used the kurtosis index as the denoising method, the maximum kurtosis value was reached
by Index 154 (dmey as the mother wavelet), while considering all parameter sets that used
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the threshold method (Indices 1–150), Index 92 gave the highest kurtosis value, with a
difference of 19.7% with respect to Index 154.

Figure 10 shows the kurtosis index trends for signals related to rolling bearings
with defects on the roller element with a diameter of 0.007 in (a), 0.014 in (b), and 0.021
in (c). Figure 10a,b shows that Index 92 maximised the kurtosis value, while the first index
that used the kurtosis index as the denoising method, which gave the maximum value,
was 156 corresponding to the bior6.8 mother wavelet, respectively, in fifth place with a
difference of 9.3% and in seventeenth place with a difference of 32.6% with respect to the
related first one. On the other hand, Figure 10c shows that, for the highest dimension
of defect on the rolling element, the first two indices that maximised the kurtosis value
were 157 and 160, corresponding to the mother wavelets rbior1.1 and haar, respectively.
In this case, the index with the highest value that uses the threshold method was 92, with a
difference of 7.3% with respect to Index 157.

(a) (b)

(c)
Figure 9. Comparison of kurtosis values for a bearing with a defect on the inner ring (IR) of diameter:
(a) 0.007 in, (b) 0.014 in, and (c) 0.021 in.
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(a) (b)

(c)
Figure 10. Comparison of kurtosis values for a bearing with a defect on the rolling element (B) of
diameter: (a) 0.007 in, (b) 0.014 in, and (c) 0.021 in.

Figure 11 shows the values obtained by analysing the signal from bearings with a
localised defect on the outer ring with a diameter of 0.007 in (a), 0.014 in (b), and 0.021
in (c). In Figure 11a, Indices 154 (dmey) and 153 (db45) have the first two highest kurtosis
values, while Index 92, which is the index with the highest value that used the threshold as
the denoising method, presents a difference of 42.5% with respect to Index 154. Figure 11b
shows that Index 92 has the highest kurtosis value, while Index 155 presents the highest
value between the sets that employed the kurtosis index method and a difference of 24.6%
with respect to the first one. For Figure 11c, Index 159 (sym4) maximises the kurtosis value,
while Index 92, with a difference of 31.9% with respect to Index 159, presents the highest
kurtosis value in the group of parameter sets that employed the threshold method.
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(a) (b)

(c)
Figure 11. Comparison of kurtosis values for a bearing with a defect on the outer ring (OR) of
diameter: (a) 0.007 in, (b) 0.014 in, and (c) 0.021 in.

Figure 12 shows the kurtosis index trends for a signal relative to a healthy bearing.
In this case, the screening of the kurtosis parameter corresponds to looking for the method
that shows a value as close to 3 as possible, as signals from healthy bearings do not contain
any impulsive content due to the interaction between rolling elements and localised defects
and, therefore, should present a kurtosis value equal to 3 [2], typical of Gaussian signals.
Firstly, the two indices that had peaks close to a kurtosis value of 4 were excluded as they
presented a value too large for the analysed case of the healthy bearing signal. Furthermore,
it can be noted that there is no regularity among the triads that optimised the parameter in
this case. Thus, it was not possible to establish a mother wavelet or thresholding technique
that optimises the kurtosis a priori. In the analysed case, the index that minimised the
difference between the denoised signal kurtosis value and the searched value equal to 3
was Index 77, which corresponds to the mother wavelet bior6.8, universal as the method
of calculating the threshold value, and the improved threshold function. Globally, the
difference obtained from the reference value was very low, oscillating between a value of
0.39% up to 8.73%, excluding the two peak values.
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Figures 9–12 and Table 5 show that the best thresholding techniques for kurtosis
screening were the universal threshold and improved threshold function: with these
parameters, kurtosis screening was guaranteed except in sporadic cases.

Figure 12. Comparison of the kurtosis values for a healthy bearing. The dashed orange line indicates
the wanted kurtosis value in the case of healthy bearings equal to 3.

Table 5 shows the optimal parameter groups for each signal analysed. Indices greater
than 150 are related to the use of the kurtosis index. In these cases, the group with the
thresholding technique that optimised the kurtosis was Index 92.

Table 5. Summary of denoising parameters that optimise kurtosis for different defect locations
and diameters.

Defect Diameter Index Mother Wavelet Threshold Rule Threshold
Location (in) Function

N – 77 bior6.8 Universal Improved
threshold

IR 0.007 92 rbior1.1 Universal Improved
threshold

IR 0.014 151 db4 – –

IR 0.021 154 dmey – –

B 0.007 92 rbior1.1 Universal Improved
threshold

B 0.014 92 rbior1.1 Universal Improved
threshold

B 0.021 157 rbior1.1 – –

OR 0.007 154 dmey – –

OR 0.014 92 rbior1.1 Universal Improved
threshold

OR 0.021 159 sym4 – –

Figure 13 presents a comparison between the group of parameters 49 and 92 that
optimised the TO and kurtosis parameters, respectively. First of all, it can be seen that
the triad 92 did not provide comparable TO values with the maximising 49. On the other
hand, for the kurtosis, comparable values were obtained for each signal. Thus, the wavelet
parameters with Index 49 was the best for denoising the signals.
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Figure 13. Comparison of TO (top) and kurtosis (bottom) between Indices 49 and 92 for different
defect locations and diameters. On the top-right, zoom of TO graph to highlight values for Index
92. On the y-scale, the letters indicate the position of the defect and the numbers indicate the defect
diameter size in thousandths of an inch.

In conclusion, Index 49’s parameters should be used if the goal is to further process
the signal after denoising. Otherwise, Index 92’s parameters should be used to highlight
the presence of a defect, without post-processing the signal.

Kumar et al. [35] tested a denoising method based on the wavelet and modified
kurtosis hybrid thresholding rule using the CWRU database, using two different wavelet
families, namely Daubechies (Db) and discrete Meyer (dmey). They reported that the
mother wavelet Db44 showed the best denoising performance, but with relatively similar
results for all other members of both families studied. In the present study, we found that
the mother wavelet that resulted in highest kurtosis values for all studied defect locations
and sizes was rbior1.1 (if we exclude the analysis based on the kurtosis index technique,
Indices 151-160). However, the mother wavelet Db4, a member of the Daubechies family
and the first mother wavelet employed in both studies, was the fourth mother wavelet that
maximised the kurtosis value, between the 10 analysed in the present study. Moreover,
studies in the literature [10] demonstrated how the mother wavelets that result in better
performances depend not only on the signals, but also on the evaluation parameter.

Comparison of Evaluation Parameters on Shaft Speed

A comparison can be made by considering the effects of shaft speed on the evaluation
parameters of the denoising process. According to Djebala et al. [7], the highest sampling
rate associated with the smallest shock frequency gives a significant kurtosis value of the
reconstructed signal. Thus, it is optimal to take the rotation speed as low as possible, and in
case that is not possible, the maximal sampling rate is then recommended [7].

Figure 14 illustrates the comparison between the two different shaft speeds.
Indeed, Figure 14a shows that, for most signals, there is an optimisation of the kurto-
sis parameter for lower rotational speeds, in red. In particular, the signal for a healthy
bearing has a kurtosis value less than 3 in the case of lower speed, while higher speed
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results in a kurtosis value greater than 3. For a healthy bearing, the optimisation of this
parameter occurs for values closer to 3, which in this case was obtained for the lower speed.

The only cases in which the higher speed ensures an optimised kurtosis value were
the cases of the smallest defect located on the rolling elements and the largest defect located
on the inner raceway. Thus, the defect within the signal was more evident.

Lower shaft speed favours the denoising of the signal, which can be seen in Figure 14b,
where the TO value increases in the case with a lower shaft speed, for most signals. For the
analysed signals, an increase in the TO value can be seen, indicating an improvement in
the denoising of the signal. This is not respected for signals relating to defective bearings
on the outer ring (OR), for which there was a better TO value for higher shaft speed.

In conclusion, the decrease in speed led indicatively to an increase in the evaluation
parameters, keeping the trends constant.

(a) (b)

Figure 14. Comparison of kurtosis (a) and TO (b) between different shaft speeds for different defect
locations and diameters. On the y-scale, the letters indicate the position of the defect and the numbers
indicate the defect diameter size in thousandths of an inch.

4. Classification of Processed Signals

Classification gives an understanding of the origin and, in some cases, the extent of
the defect, so that maintenance can be planned in the best possible way.

Table 6 presents the set of extracted features in the time domain that were provided as
the input to the classification algorithm. As a first step, the features were selected through
the Fisher score and the Pareto rule, as explained in [17]. The second step was PCA, which
provides a hierarchical coordinate system for data representation. The geometry of the
resulting coordinate system is determined by the PCs that have the highest correlation with
the measurements.

Signals from healthy and defective bearings on the inner raceway, outer raceway, and
rolling elements were considered for a total of 113 signals. Another analysis was carried
out only on the defect classes, excluding signals from healthy bearings, for a total of 105
signals analysed. In the first case, the Fisher–Pareto method extracted six features, whereas
in the second one, five. Although, in both cases, the features with the highest Fisher score
were the crest factor, impulse factor, and clearance factor, which are directly proportional to
the peak value. Therefore, these features are closely related to each other. Figure 15 shows
the results obtained by the classification algorithm on the signals processed through the
denoising process with the parameters related to Index 49, considering all defect classes,
on the left, and all the ones excluding the signals from healthy rolling bearings. The axes
correspond to the first two PCs extracted by the algorithm. The graph shows the zones of
interest for each defect class, where the state class of a bearing can be established with a
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probability, depending on the location of the signal on this plane. In particular, Figure 15
shows different areas, as:

• I PC < −20: in this area, signals from a healthy rolling bearing can be found;
• −20 < I PC < 0: the area with a higher probability of signals from a rolling bearing

with a defect on the inner or outer raceway;
• I PC > 0: the area with a higher probability of signals from a rolling bearing with a

defect on the rolling elements.

Table 6. List of time domain features extracted from the signals for the input matrix of the classifica-
tion algorithm.

No. Feature

1 Mean

2 Peak to peak value

3 Peak value

4 Standard deviation

5 Skewness

6 Kurtosis

7 Root mean square

8 Crest factor

9 Shape factor

10 Impulse factor

11 Clearance factor

Figure 15. Distribution in the I PC–II PC plane of the analysed signals with respect to the charac-
teristics selected by the Pareto method out of 11, calculated for 4 defect classes after denoising with
Group 49.

In these cases, the PCA process provided a distribution of signals that cannot be
obtained only considering the features extracted in the time domain. Indeed, the signal
distribution on a plain formed by the first two features with the higher Fisher score does
not allow defining an area of interest for any defect class.

To facilitate the classification, a comparison between signals from healthy bearings
and from rolling bearings with localised defects is shown in Figure 16. In this case, the best
distributions were obtained considering the planes formed by the first three features with
the highest Fisher score, in order, the shape factor (F9), mean (F1), and impulse factor (F10).
In particular, observing the two planes in Figure 16, distinct zones generated by healthy
and damaged bearing signals can be observed:
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• F9 ' 1.25 ∩ 0.01 < F1 < 0.04: the area with a higher probability of a healthy
rolling bearing;

• F9 > 1.3 ∩ F10 > 6.5: the area with a higher probability of signals from a rolling
bearing with a localised defect.

(a) (b)

Figure 16. Distribution of signals with respect to the time domain features selected by the Fisher–
Pareto algorithm: (a) plane formed by the first (shape factor) and second (mean) selected features;
(b) plane formed by the first (shape factor) and third (impulse factor) selected features.

Moreover, other analyses were carried out to define the distribution of the signals
considering the subgroups of the defect classes. Signals from rolling bearings with a defect
on the rolling element were compared with the defect class IR, then with OR, and finally,
with signals from both IR and OR classes. For all the comparisons, the feature with the
highest Fisher score was the crest factor. In particular, a higher value of the crest factor
indicates signals from the B class; conversely, lower values are for signals from the IR and
OR classes. Figure 17 shows the distribution of the signals in the various cases. The graph
in (c) can be considered similar to the sum of the (a) and (b) ones. In particular, in Figure 17c,
some interesting area for the defect classes can be evidenced, as:

• I PC < 0∩−2.5 < II PC < 2.5: the area with a higher probability to find signals of a
rolling bearing with a defect on the inner or outer raceway;

• I PC > 0∩ F8 > 10: the area with a higher probability of signals from a rolling bearing
with a defect on the rolling elements.

(a) (b) (c)

Figure 17. Distribution in the I PC–II PC plane of the analysed signals with respect to the charac-
teristics selected by the Pareto method out of 11 after denoising with Group 49: (a) comparison
between B and IR classes; (b) comparison between B and OR classes; (c) comparison between B and
IR+OR classes.



Sensors 2023, 23, 8 24 of 29

These analyses allow distinguishing signals of the B class from the IR+OR classes,
but with this subgroup of classes it is not possible to define the difference of IR from OR.
Therefore, the next analysis considered was focused on the comparison between signals
from rolling bearings with defects on the inner raceway to those with defects on the outer
one. From the pre-selection process, five features were extracted; in particular, the first
two with the highest fisher score were, in order, the clearance factor and impulse factor.
Figure 18 shows the distribution after the PCA process. In particular, in Figure 18, some
interesting areas for the defect classes can be evidenced:

• I PC < 0 ∩ II PC > 0: the area with a higher probability of signals from a rolling
bearing with a defect on the inner raceway;

• II PC < 0: the area with a higher probability of signals from a rolling bearing with a
defect on the outer raceway.

Figure 18. Distribution in the I PC–II PC plane of the analysed signals, from a rolling bearing with a
defect on the inner raceway (IR) and on the outer one (OR), with respect to the characteristics selected
by the Pareto method out of 11 after denoising with Group 49.

The last analysis was the application of the classification algorithm to all defect classes
for defects of the same dimension, which is shown in Figure 19. From the graphs in (a) to
(c), with the increasing of the dimension of the defect, the areas of interest of each defect
class are more distinct. Therefore, a better classification can be obtained if the defect has a
larger size.

(a) (b) (c)

Figure 19. Distribution in the I PC–II PC plane of the analysed signals with respect to the characteris-
tics selected by the Pareto method out of 11 after denoising with Group 49; (a) comparison of a defect
dimension of 0.007 in; (b) comparison of a defect dimension of 0.014 in; (c) comparison of a defect
dimension of 0.021 in.
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5. Conclusions

In this paper, a method for selecting the optimal parameters for denoising signals
using the DWT was presented, considering in particular the mother wavelet, threshold
rule, and threshold function.

The analysis carried out on the CWRU database revealed that the set of variables
formed by the dmey, rigrSURE threshold, and hard threshold function (related to Index 49)
provided the best denoising evaluated through the TO parameter.

On the other hand, using the kurtosis as an evaluation parameter, it was obtained that
the rbior1.1, universal threshold, and improved threshold function (related to Index 92)
were the best DWT parameters. The work presented resulted in:

• The identification of the parameter set that maximised the tradeoff value considering
all the localised defect typologies: the highlighted parameter set was identified by
Index 49 and presented the mother wavelet Dmey, rigrSURE threshold evaluation
method, and hard threshold function;

• The identification of the parameter set that maximised the kurtosis value of the
denoised signals considering all the localised defect typologies: the identified set was
Index 92, which employed the mother wavelet rbior1.1, universal threshold evaluation
method, and improved threshold function;

• The selection of Index 49’s parameter set as the best parameter combination that
resulted in more effective denoising between 49 and 92;

• The classification of the denoised signals using Index 49’s parameter set with the
industry sector algorithm based on the Fisher–Pareto method and PCA.

A possible application of this method can be to identify the parameters that optimise
the two evaluation methods and to use the one obtained from the kurtosis to identify the
presence or absence of the defect, after which denoising with the group obtained by TO can
be carried out, then using the signal and its components in the following analyses.

In addition, using the analysed signals and the described dataset, initial training of
the classification algorithm was possible to extract the bearing condition from the signal. It
should be noted that the results obtained in the present work were related to signals from
the CWRU database; the results will be extended in future works to achieve the optimal
parameters for more generalised sets of bearing signals, by including signals from different
test benches.
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Appendix A

See Table A1.

Table A1. Correspondence between indices and groups of DWT parameters: mother wavelet,
threshold rule, and threshold function.

Index Mother Wavelet Threshold Rule Threshold Function

1 db4 Universal Hard threshold
2 db4 Universal Improved threshold
3 db4 Universal Mixed threshold
4 db4 rigrSURE Hard threshold
5 db4 rigrSURE Improved threshold
6 db4 rigrSURE Mixed threshold
7 db4 heuresure Hard threshold
8 db4 heuresure Improved threshold
9 db4 heuresure Mixed threshold
10 db4 minimax Hard threshold
11 db4 minimax Improved threshold
12 db4 minimax Mixed threshold
13 db4 Penalised method Hard threshold
14 db4 Penalised method Improved threshold
15 db4 Penalised method Mixed threshold
16 db44 Universal Hard threshold
17 db44 Universal Improved threshold
18 db44 Universal Mixed threshold
19 db44 rigrSURE Hard threshold
20 db44 rigrSURE Improved threshold
21 db44 rigrSURE Mixed threshold
22 db44 heuresure Hard threshold
23 db44 heuresure Improved threshold
24 db44 heuresure Mixed threshold
25 db44 minimax Hard threshold
26 db44 minimax Improved threshold
27 db44 minimax Mixed threshold
28 db44 Penalised method Hard threshold
29 db44 Penalised method Improved threshold
30 db44 Penalised method Mixed threshold
31 db45 Universal Hard threshold
32 db45 Universal Improved threshold
33 db45 Universal Mixed threshold
34 db45 rigrSURE Hard threshold
35 db45 rigrSURE Improved threshold
36 db45 rigrSURE Mixed threshold
37 db45 heuresure Hard threshold
38 db45 heuresure Improved threshold
39 db45 heuresure Mixed threshold
40 db45 minimax Hard threshold
41 db45 minimax Improved threshold
42 db45 minimax Mixed threshold
43 db45 Penalised method Hard threshold
44 db45 Penalised method Improved threshold
45 db45 Penalised method Mixed threshold
46 dmey Universal Hard threshold
47 dmey Universal Improved threshold
48 dmey Universal Mixed threshold
49 dmey rigrSURE Hard threshold
50 dmey rigrSURE Improved threshold
51 dmey rigrSURE Mixed threshold
52 dmey heuresure Hard threshold
53 dmey heuresure Improved threshold
54 dmey heuresure Mixed threshold
55 dmey minimax Hard threshold
56 dmey minimax Improved threshold
57 dmey minimax Mixed threshold
58 dmey Penalised method Hard threshold
59 dmey Penalised method Improved threshold
60 dmey Penalised method Mixed threshold
61 bior3.1 Universal Hard threshold
62 bior3.1 Universal Improved threshold
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Table A1. Cont.

Index Mother Wavelet Threshold Rule Threshold Function

63 bior3.1 Universal Mixed threshold
64 bior3.1 rigrSURE Hard threshold
65 bior3.1 rigrSURE Improved threshold
66 bior3.1 rigrSURE Mixed threshold
67 bior3.1 heuresure Hard threshold
68 bior3.1 heuresure Improved threshold
69 bior3.1 heuresure Mixed threshold
70 bior3.1 minimax Hard threshold
71 bior3.1 minimax Improved threshold
72 bior3.1 minimax Mixed threshold
73 bior3.1 Penalised method Hard threshold
74 bior3.1 Penalised method Improved threshold
75 bior3.1 Penalised method Mixed threshold
76 bior6.8 Universal Hard threshold
77 bior6.8 Universal Improved threshold
78 bior6.8 Universal Mixed threshold
79 bior6.8 rigrSURE Hard threshold
80 bior6.8 rigrSURE Improved threshold
81 bior6.8 rigrSURE Mixed threshold
82 bior6.8 heuresure Hard threshold
83 bior6.8 heuresure Improved threshold
84 bior6.8 heuresure Mixed threshold
85 bior6.8 minimax Hard threshold
86 bior6.8 minimax Improved threshold
87 bior6.8 minimax Mixed threshold
88 bior6.8 Penalised method Hard threshold
89 bior6.8 Penalised method Improved threshold
90 bior6.8 Penalised method Mixed threshold
91 rbio1.1 Universal Hard threshold
92 rbio1.1 Universal Improved threshold
93 rbio1.1 Universal Mixed threshold
94 rbio1.1 rigrSURE Hard threshold
95 rbio1.1 rigrSURE Improved threshold
96 rbio1.1 rigrSURE Mixed threshold
97 rbio1.1 heuresure Hard threshold
98 rbio1.1 heuresure Improved threshold
99 rbio1.1 heuresure Mixed threshold

100 rbio1.1 minimax Hard threshold
101 rbio1.1 minimax Improved threshold
102 rbio1.1 minimax Mixed threshold
103 rbio1.1 Penalised method Hard threshold
104 rbio1.1 Penalised method Improved threshold
105 rbio1.1 Penalised method Mixed threshold
106 coif5 Universal Hard threshold
107 coif5 Universal Improved threshold
108 coif5 Universal Mixed threshold
109 coif5 rigrSURE Hard threshold
110 coif5 rigrSURE Improved threshold
111 coif5 rigrSURE Mixed threshold
112 coif5 heuresure Hard threshold
113 coif5 heuresure Improved threshold
114 coif5 heuresure Mixed threshold
115 coif5 minimax Hard threshold
116 coif5 minimax Improved threshold
117 coif5 minimax Mixed threshold
118 coif5 Penalised method Hard threshold
119 coif5 Penalised method Improved threshold
120 coif5 Penalised method Mixed threshold
121 sym4 Universal Hard threshold
122 sym4 Universal Improved threshold
123 sym4 Universal Mixed threshold
124 sym4 rigrSURE Hard threshold
125 sym4 rigrSURE Improved threshold
126 sym4 rigrSURE Mixed threshold
127 sym4 heuresure Hard threshold
128 sym4 heuresure Improved threshold
129 sym4 heuresure Mixed threshold
130 sym4 minimax Hard threshold
131 sym4 minimax Improved threshold
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Table A1. Cont.

Index Mother Wavelet Threshold Rule Threshold Function

132 sym4 minimax Mixed threshold
133 sym4 Penalised method Hard threshold
134 sym4 Penalised method Improved threshold
135 sym4 Penalised method Mixed threshold
136 haar Universal Hard threshold
137 haar Universal Improved threshold
138 haar Universal Mixed threshold
139 haar rigrSURE Hard threshold
140 haar rigrSURE Improved threshold
141 haar rigrSURE Mixed threshold
142 haar heuresure Hard threshold
143 haar heuresure Improved threshold
144 haar heuresure Mixed threshold
145 haar minimax Hard threshold
146 haar minimax Improved threshold
147 haar minimax Mixed threshold
148 haar Penalised method Hard threshold
149 haar Penalised method Improved threshold
150 haar Penalised method Mixed threshold
151 db4 – kurtosis_index
152 db44 – kurtosis_index
153 db45 – kurtosis_index
154 dmey – kurtosis_index
155 bior3.1 – kurtosis_index
156 bior6.8 – kurtosis_index
157 rbio1.1 – kurtosis_index
158 coif5 – kurtosis_index
159 sym4 – kurtosis_index
160 haar – kurtosis_index
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25. Erişti, H.; Uçar, A.; Demir, Y. Wavelet-Based Feature Extraction and Selection for Classification of Power System Disturbances

Using Support Vector Machines. Electr. Power Syst. Res. 2010, 80, 743–752. [CrossRef]
26. Donoho, D.; Johnstone, I. Threshold Selection for Wavelet Shrinkage of Noisy Data. In Proceedings of the 16th IEEE Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, MD, USA, 3–6 November 1994; pp.
A24–A25. [CrossRef]

27. Donoho, D. De-Noising by Soft-Thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [CrossRef]
28. Donoho, D.L.; Johnstone, I.M. Adapting to Unknown Smoothness via Wavelet Shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224.

[CrossRef]
29. Karthikeyan, P.; Murugappan, M.; Yaacob, S.; School of Mechatronics Engineering Universiti Malaysia Perlis, Malaysia. ECG

Signal Denoising Using Wavelet Thresholding Techniques in Human Stress Assessment. Int. J. Electr. Eng. Inform. 2012, 4, 306–319.
[CrossRef]

30. Birgé, L.; Massart, P. Gaussian Model Selection. J. Eur. Math. Soc. 2001, 3, 203–268. [CrossRef]
31. Verma, N.; Verma, A.K. Performance Analysis of Wavelet Thresholding Methods in Denoising of Audio Signals of Some Indian

Musical Instruments. Int. J. Eng. Sci. Technol. 2012, 4, 6.
32. Sadooghi, M.S.; Esmaeilzadeh Khadem, S. Improving One Class Support Vector Machine Novelty Detection Scheme Using

Nonlinear Features. Pattern Recognit. 2018, 83, 14–33. [CrossRef]
33. Case Western Reserve University Bearing Data Center|Case School of Engineering. 2022. Available online: https://engineering.

case.edu/bearingdatacenter (accessed on 6 November 2022).
34. Smith, W.A.; Randall, R.B. Rolling Element Bearing Diagnostics Using the Case Western Reserve University Data: A Benchmark

Study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [CrossRef]
35. Kumar, H.; Pai, P.S.; S, S.N. Classification of Rolling Element Bearing Fault Using Singular Value. J. Qual. Maint. Eng. 2019,

26, 181–197. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e22030290
http://dx.doi.org/10.3390/app10155251
http://dx.doi.org/10.1007/978-3-319-96181-1_1
http://dx.doi.org/10.1016/j.apacoust.2022.108899
http://dx.doi.org/10.1080/00207543.2022.2122621
http://dx.doi.org/10.3390/machines10010054
http://dx.doi.org/10.1016/j.jsurg.2016.04.010
http://dx.doi.org/10.1017/9781108380690
http://dx.doi.org/10.1016/j.ymssp.2010.07.017
http://dx.doi.org/10.1016/j.epsr.2009.09.021
http://dx.doi.org/10.1109/IEMBS.1994.412133
http://dx.doi.org/10.1109/18.382009
http://dx.doi.org/10.1080/01621459.1995.10476626
http://dx.doi.org/10.15676/ijeei.2012.4.2.9
http://dx.doi.org/10.1007/s100970100031
http://dx.doi.org/10.1016/j.patcog.2018.05.002
https://engineering.case.edu/bearingdatacenter
https://engineering.case.edu/bearingdatacenter
http://dx.doi.org/10.1016/j.ymssp.2015.04.021
http://dx.doi.org/10.1108/JQME-12-2016-0083

	Introduction
	Materials and Methods
	Calculation of the Decomposition Level
	Choice of Wavelet Family
	Identification of Thresholding Rule
	Thresholding Function
	Performance Evaluation
	Classification Algorithm

	Evaluation of Denoising Screening Results
	Classification of Processed Signals
	Conclusions
	Appendix A
	References

