POLITECNICO DI TORINO
Repository ISTITUZIONALE

Semi-Supervised Deep Learning for Microcontroller Performance Screening

Original

Semi-Supervised Deep Learning for Microcontroller Performance Screening / Bellarmino, Nicolo; Cantoro, Riccardo;
Huch, Martin; Kilian, Tobias; Schlichtmann, Ulf; Squillero, Giovanni. - (2023), pp. 1-6. (Intervento presentato al
convegno 2023 IEEE European Test Symposium (ETS) tenutosi a Venezia (IT) nel 22-26 May 2023)
[10.1109/ETS56758.2023.10174083].

Availability:
This version is available at: 11583/2976248 since: 2023-02-21T15:44:06Z

Publisher:
IEEE

Published
DOI:10.1109/ETS56758.2023.10174083

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

27 April 2024

Semi-Supervised Deep Learning for
Microcontroller Performance Screening

Nicold Bellarmino*, Riccardo Cantoro*, Martin Huch', Tobias Kilian'¥,
UIf Schlichtmann? and Giovanni Squillero*

Abstract—In safety-critical applications, microcontrollers must
satisfy strict quality constraints and performances in terms of
Fmax (the maximum operating frequency). Data extracted from
on-chip ring oscillators (ROs) can model the Fy,.. of integrated
circuits using machine learning models. Those models are suitable
for the performance screening process. Acquiring data from the
ROs is a fast process that leads to many unlabeled data. Contrar-
ily, the labeling phase (i.e., acquiring F},.«) is a time-consuming
and costly task, that leads to a small set of labeled data. This
paper presents deep-learning-based methodologies to cope with
the low number of labeled data in microcontroller performance
screening. We propose a method that takes advantage of the
high number of unlabeled samples in a semi-supervised learning
fashion. We derive deep feature extractor models that project
data into higher dimensional spaces and use the data feature
embedding to face the performance prediction problem with
simple linear regression. Experiments showed that the proposed
models outperformed state-of-the-art methodologies in terms of
prediction error and permitted us to use a significantly smaller
number of devices to be characterized, thus reducing the time
needed to build ML models by a factor of six with respect to
baseline approaches.

Index Terms—Fmax, Speed Monitors, Ring Oscillators, Speed
Binning, Machine Learning, Device Testing, Manufacturing,
Semi-Supervised Learning, Deep Learning

I. INTRODUCTION

Automotive and aerospace industries require high depend-
ability in electronic devices, especially for microcontrollers
(MCUs) used in safety-critical components. MCU perfor-
mance screening aims to detect underperforming devices that
do not fully meet the characteristics described in the datasheet
in terms of maximum operating frequency Fi,ax. The Fiax
of a device is precisely determined in different worst-case
conditions. In the traditional speed-binning, critical functional
tests or benchmarks are executed on the devices at increasing
clock frequency exciting the critical paths until a failure
happens. These functional tests usually occupy a significant
portion of the tester memory. Also, this approach requires
an automatic test equipment (ATE) that can operate at the
targeted frequency, which is usually extremely expensive [1].
Both the long test time and the high requirement of ATEs
increase the cost of speed binning. A possible approach is to
use machine learning (ML) regression models trained on data
that can be correlated with the device’s Fi,ax. This technique
is not intended to replace structural testing, yet it is a much

* Politecnico di Torino (Turin, Italy). T Infineon Technologies AG (Munich,
Germany). + Technical University of Munich (Munich, Germany). Authors are
listed in alphabetical order.

more informative process compared to a simple speed binning,
where devices are merely sorted into categorical bins (e.g.,
“fast” and “slow”) [1]-[6]. The gain in using ML techniques
in speed-binning are enormous in terms of test-time saving
[5].

Previous works have proposed the usage of on-chip ring os-
cillators - the so-called Speed Monitors (SMONs)- as features
to predict Fi,,.x values derived from the execution of functional
patterns on single devices [3], [4], [7], [8]. The obtained ML
regression models will be able to relate the SMONs value
with the continuous-value maximum frequency (or speed) of
the devices.

The accuracy of supervised ML models depends on the
quality and the quantity of labeled data. In this context,
unlabeled data are relatively inexpensive to acquire. Instead,
the process of acquiring Fi.x is costly in terms of time
required, and thus the amount of available data is limited.
Obtaining a proper training set for ML models of the size of
thousand of samples could require several months.

In this paper, we focus on optimizing the training procedure
of ML models by reducing as much as possible the number
of labeled samples needed. We made use of deep learning
(DL) to extract relevant features from a set of unlabeled data
from production lines as a pre-training step for the successive
supervised learning algorithms, in semi-supervised learning
(SSL) fashion. The feature embedding created by DL models
is then used to train a simple Linear Regression model, with
Fiax as a target. Experiments showed that this approach can
lead to an acceptable prediction error (2% of normalized
root mean square error, nRMSE) even with a fraction of
labeled data (tens of samples). The resulting performances
are comparable to classical shallow-learning algorithms (Ridge
Regression with polynomial feature transformation) trained
with thousands of samples.

The rest of the paper is organized as follows: Section II
presents related works on the topic. Section III describes
theory and concept useful for understanding successive ex-
periments; in particular, Section III-A describes the data
collection process to obtain the dataset for ML algorithms,
while Section III-B introduces the concepts of DL and SSL.
In Section IV, the motivations for using deep learning models
over classical machine learning models are given. In Sec-
tion V, details on the proposed approach are given. Section VI
presents the experimental evaluation. Finally, Section VII
draws the conclusions.

II. RELATED WORK

Several approaches to performance prediction have been
proposed in the past [6]-[9]. The use of ML models to relate
structural and functional F, ., was first introduced in [3].

Using indirect measures to predict a circuit characteristic
is called ‘alternate test’ in literature, and has been widely
studied for analog circuits [10]-[13]. The core idea is to learn
a mapping between indirect measurements and some circuit
specifications, and to use only the indirect low-cost mea-
surements to predict device specifications during production
testing.

The authors of [5], [8], [14], [15] worked on deriving an ML
model for F},,, prediction for MCU performance screening. In
[8], they correlated the values of 27 speed monitors coming
from wafer sort to functional F,,,, measured on more than
4,000 packaged devices extracted from 26 corner-lot wafers.
In [14], authors moved a first step towards the reduction
of the training set size in ML performance screening, by
using three Active Learning (AL) metrics to select the most
informative samples from which derive an ML model. In [15],
they evaluated the effectiveness of several outlier detection
techniques in identifying anomalous, noisy data, and outliers;
as a result, they were able to increase the training set size by
recovering incomplete samples, thus reducing the number of
samples to be labeled for the training procedure.

Working with unlabeled data is a well-known topic in the
ML community. SSL, transfer learning, and meta-learning are
concepts that reached relevant importance in recent years [16].
The heuristic approach of self-training (also known as self-
learning or self-labeling) is historically the oldest approach
to SSL, with examples of applications starting in the 1960s
[17], [18]. Nowadays, deep neural networks play a dominant
role in many research areas. Classic SSL frameworks can
be adapted to support DL settings. The research community
proposed a considerable amount of Deep SSL methods [16].
There are many learning paradigms related to SSL that make
use of an extra data source to boost learning performance.
Transfer learning [19]-[21] aims to apply knowledge from one
or more source domains to a target domain in order to improve
performance on the target task. Meta-learning [22]-[24] aims
to learn new skills or adapt to new tasks rapidly with previous
knowledge and a few training examples.

III. BACKGROUND
A. Data Collection

ML training process requires the acquisition of a proper
dataset and, thus, the MCU characterization. In the ML con-
text, the SMONSs’ measurements are the features. The SMONs
are on-chip ring oscillators (ROs), and their frequencies are
measured during the production, when the dies are still on
the wafer, with high accuracy in a stable, fast, and easy
process. Hence, the obtained features (RO-frequencies) have
high quality. The SMON measurement is part of the regular
production test flow, as shown in Fig. 1. Thus, each produced
MCU is, by default, an unlabeled device -with only the SMON
measurements.

SMON SMON

readout readout
Manu- Wafer Packaging Final Shipbin
facturing Probe Test Burn —in Test pping

Label
Acqisition

Fig. 1. Data collection steps trough the manufacturing

In contrast, label acquisition is a separate process that is not
part of the usual production test flow. The labeling process
is a time-consuming procedure performed mostly manually,
in which each MCU is measured individually with functional
test patterns [8]. The labeling process is done by mechanically
mounting each MCU on a measurement board that mimics
the in-field applications. Then, the MCU starts executing a
certain functional pattern (e.g., a test program or a general
purpose routine) with a low frequency, and the frequency is
slowly stepped-up until observing a functional failure [25]
(e.g., a crash in the application, an erroneous response, etc.);
the last working frequency F},,x is then stored. The procedure
is typically repeated using various functional test patterns, thus
leading to a multi-label dataset. Therefore, due to the high
effort, the labeling process is performed on a small subset of
the manufactured devices. For each MCU, the F,,.x values
collected with the various patterns can have a considerable
spread. The most critical pattern is the one with the lowest
Fiax value, and this is not necessarily the same for all MCUs.
We call the critical pattern Py .

While the measurement of the features is highly accurate,
the measurement of the label is more inaccurate: it is per-
formed under worst-case voltage (Vi) and temperature (7¢.it)
conditions at the limits of the specified operating window.
Even minor deviations in individual parameters, mechanical
vibrations or statistical noise may change the result.

B. Deep and Semi-Supervised Learning

SSL has emerged as a new research direction in ML. In
classical SSL scenario, we dispose of two sets of data: the
(few) labeled samples with both features X; = (x1,...,2;)
and labels Y;, and a large number of unlabeled samples
Xu = (xp41,...,%144). SSL falls between unsupervised
learning (no labeled training data) and supervised learning
(only labeled training data). SSL is relevant in the context
in which it is expensive to produce labeled data, while the
amount of unlabeled data is huge [26].

Different approaches to SSL have been developed: the
simplest one is the pseudo-labeling, which consists of three
steps: first, training a learning algorithm on a small subset
of the labeled data; then, applying the just-trained model to
the unlabeled samples, obtaining an approximate label (or
prediction); finally, training the model with the whole labeled
dataset (with actual and pseudo-labeled data).

A more robust method is the Self-Training, one of the
earliest approaches in SSL [18], [26]. It is an iterative pseudo-
labeling algorithm. At every iteration, only the most promising

pseudo-labeled data X,,; (promising on the basis of the prob-
ability of being correct, or confidence intervals) are selected.
Then, it trains a new supervised classifier over X; U X,,; by
considering these pseudo-labeled data as additional labeled
points [27]. This procedure can only be used when the
underling model is able to compute a confidence interval
of the prediction (and thus, can be applied only for certain
classification models).

DL models can be eventually integrated into SSL frame-
work: Auto-encoders (AE) can be used in Semi-Supervised
contexts as blind (or task-unaware) feature extractors [28],
to learn potentially useful features for a subsequent super-
vised task. Over-complete AE project data into an higher
dimensional space. Deep AEs are mainly of two types: fully
connected or convolutional. Convolutional Neural Networks
(CNNs) are used in all the state-of-the-art deep models in
computer vision. Convolutional layers are effective in catching
the spatial structure of data and spatially correlated patterns
(such as among near pixels in images).

Convolutional kernels are feature extractors that exploit two
properties of the input images: local connectivity and spatial
locality [29]. The first means that each convolutional kernel is
applied to a small region of the input image when performing
the convolution. The spatial locality property means that the
pixels where the convolutional kernel is applied should be
highly correlated, and usually processing them jointly makes
it possible to extract a meaningful feature representations.
One convolutional kernel, for instance, can learn to extract
edges, textures, forms, gradients, and other relevant features.
Convolutional layers can be used also in the case of tabular
data [30]: in this case, we can convert tabular data into
images (and use straight-forward CNN) or use a 1-dimensional
convolution that act on the columns of the dataset (considering
each sample of C' dimension as an image of size (1,C)).

IV. DEEP LEARNING: REASON WHY

In the context of scarcity of data, AL [14] and Outlier
Detection [15] techniques are definitely useful to create an
informative training set in a fast and efficient manner, for
building robust ML models.

But these approaches, even if effective in halving the size of
the training set, may not be enough: in a context with a very
limited amount of samples, having a high-quality dataset helps
to create robust models, but the limitation in the number of
samples may lead to biased models, not able to well generalize
to unseen data.

In a context of scarce data, traditional shallow learning
models (SVM, Ridge Regression, ElasticNet etc.) tend to
outperform DL models, due to the increased complexity of
the latter which often leads to over-fitting. But DL models
arise a huge amount of interest thanks to their supremacy
in terms of accuracy when applied to big data. DL models
are flexible: it is possible to pre-train a model on a certain
training set (often composed of a huge number of samples)
and then fine-tune it on a related dataset, in which we want
to solve a similar task. DL models are able to learn how to

represent the data by hierarchical concepts in a nested way,
with each concept defined in relation to simpler concepts [29],
and more abstract representations computed in terms of less
abstract ones, moving from input to output layers. Moreover,
they are able to extract features in an autonomous way, rather
than relying on a-priori hand-crafted features (as in shallow
learning), and the architecture of the networks can be tuned
without any limit.

These characteristics enable a pre-trained DL model to be
employed as a feature extractor, by using only a portion of the
architecture (e.g., the first n layers) to extract a relevant feature
embedding, using the models as transformers or encoders [29]
(as in the auto-encoders). For all these reasons, one can natu-
rally think about switching to DL models, if the available data
permit this. And this may happen even with a small amount
of labeled data, if appropriate semi-supervised techniques are
used (and if we have a great number of unlabeled data).

V. DEEP LEARNING APPROACH

The approach followed in this work aims at extracting a
feature representation of the data by means of DL models,
used as transformers. The approach consists of four steps (see
Fig. 2):

1) We train the models to perform a certain (alternative)

task T} using the unlabeled data.

2) We fine-tune the models using the labeled data, to adapt
them to the actual labeled data distribution: starting from
the solution (i.e., the layers’ weights) obtained by the
training on the unlabeled data, we run again the training
optimization on the labeled data, in a warm-start fashion.

3) We drop the last layers of the models (i.e., the ones the
most specialized and able to solve the task chosen in step
1). Every model is now used as a data-transformer able
to project the data from the original space into a new one
in which (hopefully) solving the original performance
prediction task is easier.

4) We train a linear Ridge Regression model using the
features extracted in the previous step as inputs. Such
a model will combine them to solve the performance
prediction task by means of an L2 regularized loss (mean
squared error).

This approach is something similar to Transfer Learning and
Meta Learning: since the two domains are similar, we aim to
transfer the knowledge (i.e., a feature transformation) acquired
by the DL models fed with the unlabeled data to the labeled
ones. In step 1, we used different alternate tasks 75, described
in the following Subsections.

A. Pseudo-labeling

We first build a supervised ML model with the avail-
able labeled data. We then apply this model to the un-
labeled data, obtaining a pseudo-label for each unlabeled
sample. The goal is to create a training set X, =
{(@wys Tur)y @ugy Jus)y« -+ s (Ta,, , Ju,)} Each pseudo-label
Yu; May not be accurate, but it is directly linked to the
final task we aim to solve (i.e., performance prediction). A

Train the model

UoﬂalfabeQﬁ? _”Hﬁ: TWF W“J:r!ﬁ:——' | ,)

Encoder

Flne tunlng M

Labelled
Data (X)) ‘ ﬁlz ,_Hil\—“r
T
Drop the decoder V
24@48x48
8@128x128 24@16x1
— s@otsos
Labelled

Data (X))

I .
EL X G

Features
Extracted
(%))
Ridge
Label (y) Regression

Fig. 2. Example of the proposed approach using a convolutional AE.

supervised DL model is then trained on the training set X,,.The
model is then fine-tuned on the actual labeled training set.
Since the model is not “blind” to the problem we aim to solve,
we expect that the feature extracted will be relevant for the
performance prediction task.

B. Auto-Encoder

The task is based on trying to reconstruct the ini-
tial input. We define the training set as X, =
{(Tuy, Ty)y (Tugy Ty)y - -+ s (Xay,, , Tw,,) }» SO the input and the
output of the models are the same. The model can be divided
into two parts: an encoder (which projects the data into an
alternate space) and a decoder (which learns how to recover
the original data from the alternate space). This task is totally
unsupervised because we are using only the features x of the
unlabeled set. At the end of the process, we drop the decoder
and use only the encoder as features extractor. This task is
“blind” and not aware of the actual problem we aim to solve.

C. Denoising Auto-Encoder

Similar to the previous task, but here the inputs of the
model are a noisy version of the data (with a super-
imposed Gaussian noise). The training set is thus X, =
{(Zuys Tuy)y (Fugs Tug)y v oy (T, s oy,) }» In Which Z,,, is a
corrupted version of z,,. The model should learn how to
recover data from their noisy version.

Fig. 3. Example of 1D-CNN with soft-ordering and skip-connection that act
as features extractor. The original input space (of dimension 27) is mapped
to a higher dimensional output space (256)

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed methodology has been validated on a dataset
composed of 4,039 devices coming from 26 different wafers,
with 27 features (SMONSs values) and 10 labels (functional
test patterns), plus the final artificial target Py, (the minimum
among the 10 patterns, Section III-A). In order to deal with
outliers data and missing values, we applied an Outlier De-
tection procedure (/QR and z-score) and Imputation (Iterative
Imputer with Random Forest) as pre-processing step [15]. The
final training set is composed of 2,986 samples. The test set
used for the evaluation of all the models is composed of
602 samples. We used 1,496,248 unlabeled device samples
from 280 production lots (5,498 wafers). These samples were
divided into training and test sets (75%-25%) (the test set was
used for sanity check)

In the denoising task, each feature was corrupted with
Gaussian noise of standard deviation equal to % of the
original feature standard deviation. For the pseudo-labeling
task, we used a Polynomial Ridge Regression (Poly Ridge).
It uses a polynomial transformation of the input features. It is
considered the baseline method ([14], [15]).

At each step, the DL models are trained on 85% of the
training data set and validated on the remaining 15%. The
training procedure run for a maximum of 100 steps (epochs),
or until we are not able to increase the performance on
the validation set with respect to the last 10 epochs (early
stopping, [31]). We used a Stochastic Gradient Descent (SGD)
optimizer [31], [32] to tune the weights of each layer, with
learning rate Ir equal to 1 x 10~* and momentum equal to
0.7 [31]. The Ir decreases on loss plateau until 1 x 107°
Results are presented in terms of normalized Root Mean
Square Error (nRMSE), normalized Mean Absolute Error
(nMAE), Learning Curves and Guardband G. RMSE and MAE
are popular regression performance indexes [33], but in this
context we normalized them by the mean value of Fi . in the
test set, i.e. nRMSE = RMSE(Yirue, Ypred)/mean(Yirue)
and nMAE = MAE(Yirue, Ypred)/mean(Yirye), to obtain
a percentage of the error with respect to the mean frequency
of the samples. The learning curve plots correlate the training
set size with the generalization capabilities of a model. At
each point of the curve, on the x-axis we have the number of
samples used to train the model (we used a logarithmic scale)
and on the y-axis the prediction error made by the model on
the test set. The learning curves were created by extracting

(for each point x-y) a random sample of the training set of
increasing size. These subsets were used to train the Poly
Ridge, fine-tune the deep models, and train the final linear
Ridge Regression. Then, the nRMSE, nMAE and G were
computed on the test set (defined above). Since we deal with
statistical prediction, they may be subject to error. For this
reason, we need the adoption of a risk-based guardband that
surrounds the specification limit, derived from the uncertainty
in the predictions. G [34] is defined as how much increase
the number of minimum product specifications to ensure that,
even with prediction error, the product will meet the minimum
specifications. In other words, the guardband is the amount
of Hz by which the actual performance screening threshold
frequency must be increased to ensure that no more than a
specific ppm (part per million) of false-positive results occur
in production. Therefore, the performance screening threshold
frequency is the addition of the calculated guardband and the
operating frequency specified in the data sheet. Supposing
that the screening frequency is fscreen, the effect of G is to
increase the threshold for the pass/fail screening from fqcreen
t0 fscreen + G- The goal to achieve is to have G as small as
possible, as it affects the production yield. We can compute
G on a test set with true frequencies y, predicted frequencies
¢ and errors e = y — ¢ as:

G = pe + ko, (D

e and o, are the mean and the standard deviation of the
error distribution and k is a parameter that permits to choose
the defects’ level in ppm. kK = 5.2 is an approximation for
0.1 ppm. All experiments were performed in Python using
PyTorch tools for the DL models. Experiments run on a server
equipped with an Intel® Core™ 19-9900K CPU @ 3.60GHz
x 16, 32GB of RAM, and an Nvidia® 2080 TI GPU.

B. Deep-Learning Models

We implemented the following DL models:

1) A Soft-Ordering 1D-CNN with skip connection (namely
CNN with Pseudo-Labeling, CNN-PL): CNN with a
fully connected layer as the first layer, with CELU
(Continuously Differentiable Exponential Linear Units)
activation function [35]. This first layer project the
features into a higher dimensional space by mean of non-
linear combinations (see Fig. 3). Since tabular dataset
are not spatially correlated (as happen in images), CNNs
would not be able to express their ability to catch local
interactions between features. But if we re-order the
tabular features by means of non-linear combinations,
we may extract some relevant interactions between the
original feature, and hopefully, a 1D-convolutional layer
could catch those. This is the reason why we used a
fully connected layer as the first layer. The output of the
first layer is then reshaped into image-like samples of
dimension (H,1,C) (height H, length 1, and channels
C). Each of these signals corresponds to a group of H
ordered features, and we have C groups with different
orderings. The output of the network is then flattened

again before going into the final supervised model. We
used batch normalization and dropout layers between the
convolutional layers.

2) Fully-connected AE (FC-AE): Fully connected layers
that perform feature space augmentation. It does not
present a bottleneck but projects the data into a higher
dimensional space.

3) Denoising fully-connected AE (DFC-AE): as above, but
trained on a corrupted version of the data.

4) Convolutional AE (CNN-AE): AE with soft-ordering,
1D convolutional encoder, and de-convolutional decoder.
The encoder performs feature space augmentation. The
output of the encoder is flattened before going into the
final supervised model (see Fig. 2).

5) Denoising Convolutional AE (DCNN-AE): as above, but
trained on a corrupted version of the data.

C. Results

Experiments showed that almost all the DL models can
extract relevant information from the unlabeled data, with
reached prediction errors aligned to baseline Polynomial
Ridge.

The CNN-PL seems to be the best model for two reasons:
the first reason is that the achieved nRMSE on the test set and
the computed guardband are significantly lower with respect
to the baseline approach (1.48% vs 1.57% nRMSE, 9.43%
vs 10.04% G, see Table I). Since the guardband affects the
production yield, it is necessary to maintain it as lower as
possible. The second reason is that with just a fraction of
the labeled data (89), the nRMSE drops and stably remains
under the 2% of error: the learning curve presents a plateau,
where the error decreases very slowly (see Fig. 4). This means
that the neural network has effectively found useful features
for the underline regression problem, and it is able to well
generalize on new unseen data even with a small training
set. With just 500 labeled samples, we were able to compete
with the performances of the baseline Polynomial Ridge model
(1.57% of nRMSE), obtained with the whole available training
set (2986 samples).

The reduction in the number of labeled data permits de-
creasing the effort during the MCU characterization phase and
data collection, thus reducing the time required for acquiring
a proper dataset for ML models. Labeling a sample requires
at least 30 min. To reach 1.57% nRMSE, with the baseline
Poly Ridge model we would require 30 min - 2986 samples =
89, 580 min ~ 63 days of continuous labeling. With CNN-PL,
the dataset creation requires less than % of the time (= 10
days) This holds even for the other DL models: we reached
the target prediction error with fewer samples, even if the
reduction in the training set size is not significant (Table I).
However, with all the DL models we are able to reach errors
below the 2% (dotted line in Fig. 4) with just tens of data
(89 for CNN-PL, FC-AE and DFC-AE, 119 for CNN-AE,
and 149 for DCNN-AE). The reason why the CNN-PL seems
to be the best approach may be due to the awareness of
the performance prediction task. Consequently, the features

Method

— Poly Ridge

—— CNN-AE

— CNN-PL

— DFC-AE
FC-AE
DCNN-AE

8.0%

6.0%

nRMSE

4.0%

2.0%enrsentnrrier T e D T P T T T T T PP PP e P PR P PP PP PP PP ePPPY

3 4 5 6 7 &9 2 3 4 5 6 7 809
100 1000

Training set size (log)

Fig. 4. Learning curves for different Deep Learning methods. The upper
dotted line is the 2% of nRMSE. The lower line is the Poly Ridge prediction
error (1.57% nRMSE). The z-axes is the number of training samples (log
scale) while the y-axes is the nRMSE in percentage computed on the test set.

TABLE I
RESULTS ON THE TEST SET WITH DIFFERENT DEEP LEARNING
ARCHITECTURES

Samples to
Model nRMSE nMAE G 1.57% nRMSE
Poly Ridge 1.57% 1.17% 10.04% 2,986
CNN-PL 148% 1.09% 9.43% 477
FC-AE 1.56% 1.15% 9.96% 1,702
CNN-AE 1.52% 1.13% 9.70% 1,971
DFC-AE 1.55% 1.14% 9.95% 1,702
DCNN-AE 1.54% 1.14% 9.85% 1,822

extracted using this method are directly finalized to solve
the actual problem, while the other methods perform a more
general feature manipulation.

VII. CONCLUSIONS

We presented an approach based on semi-supervised learn-
ing for optimizing the MCU performance screening with ML
techniques. SSL permitted us both to reduce the prediction
error of our models (reaching 1.48 % of nRMSE) and decrease
the number of labeled samples needed to build prediction
models by a factor of six.

Using the available unlabeled samples, we were able to
build deep neural networks that act as feature extractors, by
projecting data into a higher dimensional space, in which a
simple linear Ridge Regressor can predict the performances
of the devices.

The reduction in the prediction error permits reaching lower
guardband G (9.43%), thus increasing the process yield, since
the number of good devices incorrectly discarded would be
reduced.

The developed SSL framework is absolutely general and
can be deployed in almost every scenario with a huge amount
of unlabelled data, such as MCU performance screening or
alternate tests.

REFERENCES

[11 J. Zeng et al., “On correlating structural tests with functional tests
for speed binning of high performance design,” in 2004 International
Conferce on Test, 2004.

[2] B. D. Cory et al., “Speed binning with path delay test in 150-nm
technology,” IEEE Design Test of Computers, 2003.

[3]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]
[19]
[20]
(21]
[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]
[31]
(32]

(33]

(34]

(35]

J. Chen et al., “Data learning techniques and methodology for Fmax
prediction,” in 2009 ITC, 2009.

J. Chen et al., “Selecting the most relevant structural Fmax for system
Fmax correlation,” in 2010 VTS, 2010.

S. Mu et al., “Statistical Framework and Built-In Self-Speed-Binning
System for Speed Binning Using On-Chip Ring Oscillators,” IEEE
VLSI, 2016.

K. von Arnim et al., “An effective switching current methodology to
predict the performance of complex digital circuits,” in 2007 IEEE
International Electron Devices Meeting, 2007.

M. Sadi et al., “SoC Speed Binning Using Machine Learning and On-
Chip Slack Sensors,” IEEE TCAD, 2017.

R. Cantoro et al., “Machine Learning based Performance Prediction
of Microcontrollers using Speed Monitors,” in 2020 ITC, 2020.

G. Sannena et al., “Low overhead warning flip-flop based on charge
sharing for timing slack monitoring,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2018.

H. Ayari et al., “Making predictive analog/rf alternate test strategy
independent of training set size,” in 2012 IEEE International Test
Conference, 2012.

P. Variyam et al., “Prediction of analog performance parameters using
fast transient testing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2002.

H.-G. Stratigopoulos et al., “Error moderation in low-cost machine-
learning-based analog/rf testing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2008.

J. Brockman et al., “Predictive subset testing: Optimizing ic parametric
performance testing for quality, cost, and yield,” IEEE Transactions on
Semiconductor Manufacturing, 1989.

N. Bellarmino et al., “Exploiting active learning for microcontroller
performance prediction,” in 2021 IEEE European Test Symposium
(ETS), 2021.

N. Bellarmino et al., “Microcontroller Performance Screening: Opti-
mizing the Characterization in the Presence of Anomalous and Noisy
Data,” in [EEE International Symposium on On-Line Testing and
Robust System (IOLTS), 2022.

X. Yang et al., A survey on deep semi-supervised learning, 2021.

H. Scudder, “Probability of error of some adaptive pattern-recognition
machines,” IEEE Transactions on Information Theory, 1965.

S. Fralick, “Learning to recognize patterns without a teacher,” IEEE
Transactions on Information Theory, 1967.

S. J. Pan et al., “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, 2010.

C. Tan et al., A survey on deep transfer learning, 2018.

F. Zhuang et al., A comprehensive survey on transfer learning, 2019.
T. Hospedales et al., Meta-learning in neural networks: A survey, 2020.
J. Vanschoren, Meta-learning: A survey, 2018.

H. Peng, A comprehensive overview and survey of recent advances in
meta-learning, 2020.

R. McLaughlin et al., “Automated Debug of Speed Path Failures Using
Functional Tests,” in 2009 27th IEEE VLSI Test Symposium, 2009.
O. Chapelle et al., “Semi-supervised learning (chapelle, o. et al., eds.;
2006) [book reviews],” IEEE Transactions on Neural Networks, 2009.
M.-R. Amini et al., Self-training: A survey, 2022.

H. Almousli et al., “Semi supervised autoencoders: Better focusing
model capacity during feature extraction,” in Neural Information
Processing, M. Lee et al., Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013.

I. Goodfellow et al., Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

V. Borisov et al., Deep neural networks and tabular data: A survey,
2021.

L. Bottou et al., Optimization methods for large-scale machine learn-
ing, 2016.

S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

T. Chai et al., “Root mean square error (rmse) or mean absolute
error (mae)?— arguments against avoiding rmse in the literature,”
Geoscientific Model Development, Jun. 2014.

R. Williams et al., “The effect of guardbands on errors in production
testing,” in Proceedings ETC 93 Third European Test Conference,
1993.

J. T. Barron, Continuously differentiable exponential linear units, 2017.

