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Abstract: This study examines a new approach to facilitate the convergence of upcoming user-
subroutines UMAT when the secant material matrix is applied rather than the conventional tangent
(also known as Jacobian) material matrix. This algorithm makes use of the viscous regularization
technique to stabilize the numerical solution of softening material models. The Newton–Raphson
algorithm predictor-corrector of ABAQUS then applies this type of viscous regularization to a UMAT
using only the secant matrix. When the time step is smaller than the viscosity parameter, this type
of regularization may be unsuitable for a predictor-corrector with the secant matrix because its
implicit convergence is incorrect, transforming the algorithm into an undesirable explicit version
that may cause convergence problems. A novel 3D orthotropic damage model with residual stresses
is proposed for this study, and it is analyzed using a new algorithm. The method’s convergence is
tested using the proposed implicit-to-explicit secant matrix as well as the traditional implicit and
explicit secant matrices. Furthermore, all numerical models are compared to experimental data. It
was concluded that both the new 3D orthotropic damage model and the new proposed time step
algorithm were stable and robust.

Keywords: user subroutine UMAT; implicit to explicit; orthotropic damage; 3D Hashin failure;
composite GFRP

1. Introduction

The need for new 3D orthotropic damage models is primarily due to their use in
simulating 3D connections in composite structures [1–3]. To predict the behavior of exterior
profiles in hybrid beams and novel carbon-reinforced fiber aluminum laminates, a number
of 2D orthotropic damage models have occasionally been used in conjunction with shell
elements [4,5]. Other authors, however, discovered limitations in the accuracy of numeri-
cally simulating 3D GFRP connections using the classical 2D formulation with continuum
shell elements [6], related to either pilling, shear-out, or bearing due to the incorrect stress
distribution in the thickness in shell formulation for non-linear analysis.

Since the start of the 2000s [7], a more comprehensive 3D orthotropic damage formula-
tion has been sought after due to the engineering industry’s rapid adoption of composite
structures. The need for structural design has also grown among structural engineers in
the field of composites [8]. In all circumstances, the problem must be described in 3D, and
the accuracy of the computed stress level relies on whether the problem is being examined
at the micro, meso, or macro scale [9].

For the structural designer, applying a complete 3D orthotropic damage model still
poses significant issues such as (i) full 3D formulation with explicit material parameters and
(ii) simple and clear guidelines for direct application. The scientific community mostly uses
these damage orthotropic damage models to confirm experimental campaigns and adopted
material properties, therefore these two factors are crucial for the structural designer [10].
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Unfortunately, academic researchers are not using composite orthotropic damage models
without a current experimental campaign to arrive at better design solutions, despite the
fact that this is a fundamental requirement for engineering in the composites industry given
the absence of structural codes for these materials.

There are two main goals for this project. The first is to analyze a novel 3D orthotropic
damage model’s numerical effectiveness using the Hashin failure criterion, using classical
MTL damage progression [11] with energy regularization [12]. Experimental data are
compared and used to validate this orthotropic damage model. The second study looks at the
new ITE-UMAT algorithm, which speeds up the convergence of the UMAT subroutine when
the secant matrix rather than the traditional tangent matrix is employed in the predictor-
corrector. The algorithm is compared with fully implicit and explicit numerical results.

According to the authors’ best knowledge, the use of a 3D orthotropic damage model
with residual stresses using viscous regularization and the secant matrix for the predictor-
corrector algorithm has not been fully studied and validated. This work plans to fill this
gap in knowledge.

2. Recent Advances in 3D Orthotropic Damage Models

Since the 2000s, several 3D orthotropic damage models have been proposed, which
is primarily due to the scientific community’s availability of commercial finite element
software used for implementing new material constitutive relations [13,14].

Due to the composite material’s ply-by-ply behavior and the formulation’s simplifica-
tion, basic 2D orthotropic damage models were employed for shell elements prior to the
widespread adoption of 3D orthotropic damage models [15]. These 2D orthotropic dam-
age models were sufficient to simulate beams [4], columns [16], and composite sandwich
panels [17], however, with significant constraints when modelling 3D beam-to-column
connections [6].

The difficulty in evolving from a 2D to a 3D failure model is primarily related to the
first being assembled and tested using only plane analysis [18], as this leads to different
results when a formulation is then extended into the third dimension [19]. In addition, the
3D failure criterion and damage evolution may be significantly influenced by the kind of
orthotropic composite material being researched. The use of the 3D Hashin failure criterion
is not novel and has been suggested for shell elements [20] and solid elements [21,22],
in any case, without any application for the interlaminar failure. An established 3D
method based on the combination of several elliptic surfaces for the adoption of separated
failure criteria [23] presented encouraging results in simulating the connection of three bolt
joints for T300/5228A composite material, with discontinuous damage evolution. For the
stochastic analysis of peek laminates, a few different iterations of these elliptic surfaces were
used [24]. For composite fiber metals, the fiber and matrix 3D failure criteria are based on a
square root sum of the total strain [25], but with a cohesive interlaminar failure criterion. A
variation of this last method was applied in FRP composites [26,27], but with restrictions
on the failure criterion for material orientation. One of the first successful applications
for a full 3D analysis with Larc05 was presented in the early work of [28], with variation
proposed by [29]. Due to its simplicity of implementation, some 3D failure criteria with
simple degradation models [30] in terms of elastic parameters have also been successful
and continue to be popular among structural engineers. One of the best examples of a fully
3D Hashin failure criterion using simplified degradation models was suggested by [31] for
bolted connections. Recently, the Hou criteria were successfully used to simulate drilling
damage, based on an improved 3D elliptic failure surface [32]. The NU failure criterion was
proposed and implemented in a three-point bending load to improve the matrix damage
evolution due to increased shear [33]. Recently, using an invariant-based concept to study
the bearing in composite connections showed excellent findings [34,35].
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3. 3D Orthotropic Stiffness Formulation

The orthotropic formulation is described using ABAQUS standard notation for both
stress and strain tensors [36]. The compliance and stiffness matrices are used to calculate
the elastic constitutive relation for stress and strain (1).

εi = Hijσj [Hd]
−1 = [Cd] σi = Cijε j (1)

with:
σ1 = σ11; σ2 = σ22; σ3 = σ33; σ4 = τ12; σ5 = τ13; σ6 = τ23
ε1 = ε11; ε2 = ε22; ε3 = ε33; ε4 = γ12; ε5 = γ13; ε6 = γ23

(2)

To present a 3D orthotropic stiffness that is both coherent and thermodynamically
acceptable, it is necessary to assemble the damage compliance matrix Hd exclusively using
the diagonal term (8) to account for the damage behavior [29,37]. It is then possible to
assemble the damaged stiffness matrix Cd, by inverting the previous compliance matrix (10).
It is important to state the relevance of Γd (13), because this term ensures that no transversal
stress occurs when subjected to uniform longitudinal stress. Just as in the previous 2D
Hashin formulation [15], the tension and compression damage (dt, dc) are activated using
the corresponding effective stress space (3). For this work, damage variables are associated
with the fiber d f , the matrix dm, and the interlaminar di.

σ̂i =
σi

(1− di)
(3)

where:
d1 = d f ; d2 = dm; d3 = di; d4 = ds12; d5 = ds13; d6 = ds23

d f =

{
d f t i f σ̂1 ≥ 0
d f c i f σ̂1 < 0

(4)

dm =

{
dmt i f σ̂2 + σ̂3 ≥ 0
dmc i f σ̂2 + σ̂3 < 0

(5)

di =

{
dit i f σ̂3 ≥ 0
dic i f σ̂3 < 0

(6)
ds12 = 1−

(
1− d f t

)(
1− d f c

)
(1− dmt)(1− dmc)

ds13 = 1−
(

1− d f t

)(
1− d f c

)
(1− dit)(1− dic)

ds23 = 1− (1− dmt)(1− dmc)(1− dit)(1− dic)

(7)

The main advantage is that, by design, this matrix verifies thermodynamic admissibil-
ity principles when using Gibbs free energy (14) [38,39].

[Hd] =



H11
1−d f

H12 H13 0 0 0

H21
H22

1−dm
H23 0 0 0

H31 H32
H33

1−di
0 0 0

0 0 0 H44
1−ds12

0 0
0 0 0 0 H55

1−ds13
0

0 0 0 0 0 H66
1−ds23


(8)


H11 = 1

E1

H22 = 1
E2

H33 = 1
E3


H12 = H21 = − ν12

E1
H13 = H31 = − ν13

E1
H23 = H32 = − ν23

E2


H44 = G12
H55 = G13
H66 = G23

(9)
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[Cd] = Γd



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (10)

with: 

C11 =
(

1− d f

)
E1[1− (1− dm)(1− di)ν23ν32]

C22 = (1− dm)E2

[
1−

(
1− d f

)
(1− di)ν13ν31

]
C33 = (1− di)E3

[
1−

(
1− d f

)
(1− dm)ν12ν21

]
C12 = C21 =

(
1− d f

)
(1− dm)E1[ν21 + (1− di)ν31ν23]

C13 = C31 = (1− di)(1− dm)E1[ν31 + (1− dm)ν21ν32]

C23 = C32 = (1− dm)(1− di)E2

[
ν32 +

(
1− d f

)
ν31ν12

]
(11)


C44 = (1− ds12)G12/Γd
C55 = (1− ds13)G13/Γd
C66 = (1− ds23)G23/Γd

(12)



Γd =
(

1− Γf mν12ν21 − Γmiν23ν32 − Γf iν13ν31 − 2× Γf miν12ν23ν31
)−1

Γf m =
(

1− d f

)
(1− dm)

Γmi = (1− dm)(1− di)

Γf i =
(

1− d f

)
(1− di)

Γf mi =
(

1− d f

)
(1− dm)(1− di)

(13)

Ψ(σ, d, z) =
1
2
{σ}t[Cd]{σ} (14)

with:

Ψ(σ, d, z) =
1
2

 6

∑
i=1

Hiiσ
2
i

1− di
+

3y1

∑
i,j=1y2

2× Hijσiσj

 (15)

where:
σ1 = σ11; σ2 = σ22; σ3 = σ33; σ4 = τ12; σ5 = τ13; σ6 = τ23
d1 = d f ; d2 = dm; d3 = di; d4 = ds12; d5 = ds13; d6 = ds23

When calculating thermodynamic forces with this orthotropic damaged stiffness,
these are always positive (16), validating the second principle of thermodynamics (17) and
demonstrating the damage model is thermodynamically admissible.

Yi =
∂Ψ

∂di
=

1
2

Hiiσ
2
i

(1− di)
2 ≥ 0 (16)

⇒∑
i

Yiδdi ≥ 0 (17)

4. Adopted 3D Hashin-Based Damage Model

It is important to note that there is no scientific consensus regarding the true formu-
lation of the 3D Hashin failure criterion. This is because the true cross-failure criterion
between intralaminar and interlaminar is still heavily debated in the scientific commu-
nity [24,31]. When the damage evolution laws are studied [29,40], this uncertainty becomes
even more pronounced, and several assumptions must be admitted to fully verify the
thermodynamic admissibility criteria.
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Contrary to popular belief, the Hashin failure criterion began as a 3D failure criterion
for shell elements and was later simplified for 2D plane elements, though it lacked an
interlaminar failure criterion. Another limitation of this failure model is that it was designed
for unidirectional composites, but many authors continue to apply it to general lamina
composites [41,42].

4.1. Hashin 3D Failure Criterion

The Hashin 3D failure criterion in this work is based on the fusion of formulations
published by several academics [21,30,43]. These continue to acknowledge a primary plane
behavior that is consistent with the material’s primary resistance stress [6], in which its
failure criteria are assembled.

Since it is challenging to accurately describe the real behavior of composites in the 3D
space, the original failure criteria make various material and tensor field simplifications. In
this work, to extend to a fully 3D Hashin damage model, these simplifications will also be
applied and explained throughout the manuscript.

The first simplification admits that all unidirectional fibers are transversely isotropic,
in which the failure criterion depends on effective stresses (18), with the plane 2-3 rotating
around axis 1 [43]. Consequently, the failure criteria for fiber breaking are established Ff in
axis-1 and matrix cracking Fm for plane 2-3, using their respective tensorial plane stresses
(18). For this work, all the tensors are expressed in terms of effective stresses because these
failure criteria are later employed in damage models.

Ff (σ̂1, τ̂12, τ̂13) = 1.0
Fm(σ̂2, σ̂3, τ̂21, τ̂31, τ̂23) = 1.0

(18)

Despite the fact that the Hashin criterion is always positioned in the material principal
directions, it is preferable to rewrite the failure criterion functions in terms of stress invari-
ants using the envelope quadratic Equation (19), in order to support a more reliable failure
formulation similar to Von-Mises.

Ff (I1, I4) = A f I1 + B f I2
1 + D f I4 = 1.0

Fm(I2, I3, I4) = Am I2 + Bm I2
2 + Cm I3 + Dm I4 = 1.0

(19)

with: 
I1 = σ̂1
I2 = σ̂2 + σ̂3
I3 = τ̂2

23 − σ̂2σ̂3
I4 = τ̂2

12 + τ̂2
13

(20)

It is possible to simplify in the case of pure shear stress
(

τij, τjl = 0, σ = 0
)

, for each of
the respective shear directions, and compute the values of D f , Cm, and Dm (21), for which
SL and ST are the longitudinal and shear stress, respectively. Cm = 1

S2
T

D f = Dm = 1
S2

L

(21)

The second simplification is that the tensile and compressive failure criteria may
present different failure modes for both the fiber and the matrix, resulting in different
failure surface functions.

For the third simplification, it concedes that for the fiber buckling in compression (22),
there is no influence of shear stresses. Other authors have used the fiber kinking mode
to contest this last fiber simplification for 3D model compression [28]. Previous studies
have observed the deterioration of matrix shear modulus in fiber cycle compression [44,45],
but with small influence and still some uncertainties. For this reason, simplification is still
applied in this work.
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For the third simplification, only quadratic terms are admitted in the fiber failure
criterion to preserve the envelope ecliptic surface

(
A f t = 0; B f t = 1/X2

t

)
. In any case, the

possibility of a fully closed surface is eliminated by the simplification of the compressive fiber
failure criterion. (23). Xt and Xc are the fiber tensile and compressive strength, respectively.

A f t = 0; B f t =
1

X2
t
; D f t = D f =

1
S2

L

A f c = 0; B f t =
1

X2
c
; D f t = 0

(22)

Ff t =
(

σ̂1
Xt

)2
+

τ̂2
12+τ̂2

13
S2

L
≤ 1.0 i f σ̂1 ≥ 0

Ff c =
(

σ̂1
Xc

)2
≤ 1.0 i f σ̂1 < 0

(23)

The fourth simplification is acknowledging that the tensile matrix failure criterion only
depends on quadratic terms (19), which is in accordance with some cohesive models [46],
and promotes a closed failure surface function (24), (25). Yt and Yc are the matrix tensile
and compressive strength, respectively.

Amt = 0; Bmt =
1

Y2
t

; Cmt =
1

S2
T

; Dmt = Dm = 1
S2

L
(24)

Fmt =
(

σ̂2+σ̂3
Yt

)2
+

τ̂2
23−σ̂2σ̂3

S2
T

+
τ̂2

21+τ̂2
31

S2
L
≤ 1.0 i f σ̂2 + σ̂3 ≥ 0 (25)

The fifth simplification pertains to the matrix’s resistance to compression, in which
the collapse during biaxial behavior is linked to crushing when σ2 = σ3 = −σ � Yc.
However, it must verify the collapse during uniform compression when σ2 = −Yc. In
these conditions, if the shear stress components are null, and we are on the onset of matrix
compressive failure, the following systems of Equation (26) are assembled.{

Amc(σ̂2 + σ̂3) + Bmc(σ̂2 + σ̂3)
2 − σ̂2σ̂3

S2
T

= 1.0

Amc(σ̂2) + Bmc(σ̂2)
2 = 1.0

⇔
{
−2σ̂Amc + 4σ̂2Bmc − σ̂2

S2
T
= 1.0

−Yc Amc + Y2
c Bmc = 1.0

(26)
Since the system of equations has three unknowns and only two equations, these

cannot be solved directly but rather by using the assumption that in biaxial compression
σ2 = σ3 = −σ� Yc, the following limit (27) can be admitted. It is possible to determine the
remaining unknown matrix compressive parameters for a closed-envelope surface using
this limit, as long as Yc > 2ST . As a result, the compressive matrix failure criterion can be
put together (28).

lim
σ→∞

⇒ Bmc =
1

4S2
T
⇔ Amc =

Y2
c

4S2
T
− 1

Yc
(27)

Fmc =

[(
Yc

2ST

)2
− 1
](

σ̂2+σ̂3
Yc

)
+
(

σ̂2+σ̂3
2ST

)2
+

τ̂2
23−σ̂2σ̂3

S2
T

+
τ̂2

21+τ̂2
31

S2
L
≤ 1.0 i f σ̂2 + σ̂3 < 0 (28)

The condition of matrix tensile and compressive behavior is demonstrated in the work
of [43], and it uses proof by contradiction, in which it is the only condition that does not
violate the principal of σ̂2 ≥ 0; σ̂3 ≥ 0 in al quadrants of the space σ̂2− σ̂3.

In the case of the interlaminar failure criterion, a cohesive model (29) is used for
the tensile interlaminar failure criterion with the influence of the shear stresses in the
interlaminar plane (30), which is based on the initial work of [21]. For the interlaminar
compressive failure, the influence of the shear is minor, therefore, in this case, only the
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pressure stresses are not taken into account for the failure criterion (30). Zt and Zc are the
out-of-plane damage tensile and compressive thresholds, respectively.(

σnn
σt

)2
+
(

τnt
sT

)2
+
(

τnl
sL

)2
≤ 1.0 (29)

Fit =
(

σ̂3
Zt

)2
+
(

τ31
SL

)2
+
(

τ32
ST

)2
+ ≤ 1.0 i f σ̂3 ≥ 0

Fic =
(

σ̂3
Zc

)2
≤ 1.0 i f σ̂3 < 0

(30)

4.2. Damage Evolution

For this work, the same formulation of equivalent strains and stresses used in previous
2D Hashin damage models is used [15]. Then, using the same MLT principles [11], the
equivalent stresses and strains are assembled for the 3D space, with different equivalent
stresses and strains for the fiber, matrix, and interlaminar in tensile and compressive
damage evolution [47].

The equivalent strain is calculated using equivalent principal virtual work [48], written in
the form of (31). For the particular cases of the fiber and matrix directions, these equations are
rewritten into (32) and (33). The adopted stresses and strains used to compute the equivalent
ones are associated with the effective stresses present in the respective failure criterion.

σeqεeq = ∑ σijεij and εeq =
√

∑ ε2
ij (31)



εeq, f t =
√
〈ε1〉2 + γ2

12 + γ2
13

εeq, f c = 〈−ε1〉
εeq,mt =

√
〈ε2〉2 + γ2

21 + γ2
23 + γ2

31

εeq,mc =
√
〈−ε2〉2 + γ2

21 + γ2
21 + γ2

23 + γ2
31

εeq,it =
√
〈ε3〉2 + γ2

31 + γ2
32

εeq,ic = 〈−ε3〉

(32)



σeq, f t =
〈σ1〉〈ε1〉+τ12γ12+τ13γ13√

〈ε1〉2+γ2
12+γ2

13

σeq, f c = 〈−σ1〉

σeq,mt =
〈σ2〉〈ε2〉+τ21γ21+τ23γ23+τ31γ31√

〈ε2〉2+γ2
21+γ2

23+γ2
31

σeq,mc =
〈−σ2〉〈−ε2〉+τ21γ21+τ23γ23+τ31γ31√

〈−ε2〉2+γ2
21+γ2

23+γ2
31

σeq,it =
〈σ3〉〈ε3〉+τ31γ31+τ32γ32√

〈ε3〉2+γ2
31+γ2

32

σeq,ic = 〈−σ1〉

(33)

A characteristic length Lc is added to the formulation to represent the constitutive law
as a stress-equivalent displacement relation, which reduces the mesh dependency that may
result from material softening [12]. The characteristic length is calculated in this study as
the square root of the numerically calculated surface area. The definitions of equivalent
displacement (34) are identical to those first discovered in the study of [49], which are
independent of the direction of the fracture. This last point is crucial in orthotropic damage
models since the damage progression will always be influenced by either the behavior
of the fibers or the matrix. It has been demonstrated in various publications that some
element dependency/sensitivity is predictable as a result of FEM with softening if the mesh
is irregular and the stress field distribution is non-uniform [12,50].
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The evolution law is then revised, finally taking the form embodied in Figure 1, in
which the area ˆABC⇒

(
εeq(d = 0)

)
under the curve is linked to the fracture energy G f ,m.

At the moment, new experimental methodologies are emerging to calculate fracture en-
ergy [51], but for orthotropic materials, the classical Compact Tension test is still suggested.
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The initial values σ0
eq and δ0

eq are calculated in the onset of damage, by analytically solv-
ing Equations (23), (25), (28), and (30). To verify the Kuhn–Tucker equations, at the begin-
ning of each incremental process, the evolution law is updated to curve ˆADC⇒

(
εeq(d)

)
.

In [11], it was shown that the tensile and compressive damage variables are estimated
using Equation (35) for a linear softening evolution depending on the fiber or matrix evolution.

δ
eq
ij = Lcε

eq
ij and δu

eq = 2G f /σeq (34)

d =
δu

eq,

(
δeq − δ0

eq

)
δeq

(
δu

eq − δ0
eq

) i f δ0
eq ≤ δeq ≤ δu

eq (35)

In this work, the possibility of the equivalent stresses presenting residual stress is also
adopted, which is important primarily when compression is high and very present in the
structural response. In addition, to promote some numerical stability, it is recommended
to use tensile residual stress that may vary from 1% to 10% of its initial peak value. The
adopted residual equivalent stress formulation is presented in Figure 2. A new damage
function is assembled during the residual equivalent stress segment after point D (37).
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σr

eq = (1− dD)keqδD
eq = (1− dD)

δD
eq

δ0
eq

σ0
eq = %σ0

eq

(1− dD) =
δ0

eq(δu
eq−δD

eq)
δD

eq(δu
eq−δ0

eq)

⇒ δD
eq = δu

eq −%
(

δu
eq − δ0

eq

)
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σeq = (1− dr)keqδeq = σr
eq = %σ0

eq

⇔ (1− dr)
σ0

eq

δ0
eq

δeq = %σ0
eq

⇔ dr = 1−%
δ0

eq
δeq

(37)

4.3. Viscous Regularization

Even when only the energy regularization described in the previous section is used,
some issues may arise: (i) Loss of positive definiteness of the tangent stiffness; (ii) some
damage localization; and (iii) some numerical convergence issues. To overcome these
issues, a simple/efficient procedure is to implement viscous regularization.

Damage localizes in a narrow band when the tangent stiffness tensor is not positive
definite, and the numerical solution depends on the numerical discretization (decreasing
the element size in the localized zone decreases the computed energy dissipated). Therefore,
the structural response is not objective because it does not converge to a single solution
with mesh refinement. Standard Newton–Rapshon approaches also have convergence
issues when the tangent stiffness is not positively definite [52].

As mentioned above, the viscous regularization approach can help to solve some of
these convergence problems. This algorithm is built on an artificial Duvaut–Lions viscosity
model [53]. More details on the theoretical background of this method can be found in the
initial published work of [54]. This algorithm improves convergence by making the tangent
stiffness matrix of the softening material positive definite for small enough time increments.
In this regularization procedure, the incremental Equation (38) provides a definition for the
viscous damage variable.

δdv =
1
η
(d− dv)× δt (38)

where d is the damage variable determined as previously explained, dv is the regularized
viscous damage variable, and η is the viscosity stabilization factor. The viscous and non-
viscous stresses are written as (39) and (40), respectively.

{σv} = [Cv
d ]{ε} (39)

{σ} = [Cd]{ε} (40)

The damaged elastic matrix, Cv
d , is computed using the viscous damage variables for

each failure mode. The rate of convergence of the model in the softening regime is typically
improved by using viscous regularization with a small value for the viscosity parameter
(small compared to the characteristic time increment), without degrading the quality of the
numerical solution. The fundamental notion is that the viscous system’s solution relaxes
to that of the inviscid case as η→ 0 , where t represents time. For the time integration of
the internal variables, an algorithm must be implemented. The internal variables can be
updated using a backward-Euler approach [55], resulting in the viscous damage variable
(41), by merging it with the preceding expression (38).

dt+∆t
v = dt

v + ∆dt
v ⇒ dt+∆t

v = dt
v +

1
η

(
dt+∆t − dt+∆t

v

)
× ∆t (41)
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Now, it is possible to calculate the viscous damage while keeping the implicit time integra-
tion (42), utilizing data from the past viscous damage and the current non-viscous damage.

dt+∆t
v =

η

η + ∆t
dt

v +
∆t

η + ∆t
dt+∆t (42)

It is important to guarantee that the level of viscosity is not that high, which is
performed indirectly by comparing the level of elastic damaged energy (43) and the viscous
energy dissipation (44), in which the first must always override the second. If the time step
∆t if very small, it is possible that the first term of the sum in (44) dominates the second,
providing an increase in viscous energy dissipation, which might compromise the accuracy
of the results.

Et+∆t
d = Et

d +
1
2

[
∑n

i=1

(
σt+∆t

v,i + σt
v,i

)
∆εi

]
(43)

Et+∆t
v = Et

v +
1
2

[
∑n

i=1

(
σt+∆t

v,i + σt
v,i − σt+∆t

i − σt
i

)
∆εi

]
(44)

5. Proposed Predictor-Corrector Implicit to Explicit

Many authors have used UMAT user-subroutines to implement new materials in
ABAQUS without resourcing a fully Jacobi stiffness matrix (aka tangent matrix), using only
a secant matrix for the ABAQUS predictor-corrector, with viscous regularization.

As referenced before, viscous regularization has only been demonstrated to be a fully
implicit method when a tangent matrix is applied to the predictor-corrector algorithm [54,56].
The use of a secant matrix with viscous regularization lacks the theoretical background to
prove its implicit convergence. It can be depicted in expression (42) that the if the time step
is larger than the viscosity parameter ∆t� η, then the level of regularization is low enough,
and the implicit standard convergence can be admitted since the viscous damage is always
related to the current time step as the non-viscous damage. However, if the time step is
lower than the viscosity parameter ∆t� η, then the viscous damage will always be related
to the previous time step, therefore prompting an explicit time step integration.

Conflicts may arise in this last scenario because the strain increment corresponds to a
full implicit integration strategy (45). These inconsistencies happen when damage follows
an explicit time step update dt+∆t

v ' dt
v, and the strain increment follows a full implicit

integration scheme. This can cause some convergence problems, especially if the time step
is very small ∆t � η. Furthermore, when the time step is very small since the viscous
damage solution overrides the non-viscous damage solution, the viscous damage energy
tends to grow (44), indirectly providing extra energy that is not real.

εt+∆t = εt + ∆εt+∆t (45)

To solve this problem, a new implicit-to-explicit algorithm is proposed. The funda-
mental basis guarantees that when the time step is large, the damage evolution follows
an implicit time step integration, but when the time step is smaller than the viscosity
parameter, the damage evolution switches to an explicit time step integration. This is an
optimization of the predictor-corrector of ABAQUS, which states that when the time step
is large a full implicit formulation is used, but when the predictor-corrector algorithm of
ABAQUS presents complications in converging or reducing the time step, then an explicit
formulation is used to suppress the converging difficulty. The basis of this formulation
is using the increment correction parameter v linked to the portion of the non-viscous
damage variable dt+∆t in expression (46).

εt+∆t = εt + v× ∆εt+∆t (46)

in which:
v =

∆t
∆t + η

(47)
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It is important to point out that when v = 1.0 the material stiffness and stress update
during the time integration in the UMAT follows a full implicit formulation; in contrast, when
v = 0.0, it follows a full explicit time integration for the material stiffness and stress update.

Using this algorithm, it is guaranteed that when performing the viscous regularization,
if the predictor-corrector uses large time steps, then both the viscous and non-viscous
solution portion of expression (42) will contribute to the implicit time step integration.
However, when the time step is small enough, then the increment correction parameter
tends to be small, close to an explicit integration, and the influence of the non-viscous
solution overrides the viscous solution, therefore using only the previous damage variable.
This way there is no mixed implicit time step integration, with previous step damage
variables, as suggested before, perhaps compromising the convergence and accuracy of the
numerical solution.

To better understand the variation of v with ∆t for a fixed η = 10−5, it is depicted in
Figure 3a, in which it is possible to see that even for small times steps from ∆t = 10−3 to
∆t = 10−5, the value of v > 50%, therefore garanting some influence of the ∆εt+∆t in the
final strain increment εt+∆t. This is close to an implicit behavior but does not guarantee it.
As depicted in Figure 3b using the logarithmic scale, only when ∆t < 10−6 is the value of
v < 10%, being close to an explicit form, but still with some influence of ∆εt+∆t in the final
strain increment εt+∆t.
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In conclusion, the algorithm tends to be more implicit when ∆t > η, and on the other
hand, more explicit when ∆t < η. In any case, this last situation is non-problematic, since for
very small time steps ∆t� 10−6, an explicit solution may still provide good and accurate
numerical results. It is important to state that this algorithm admits the damage variable
from the current time step dt+∆t is always saved for the next time step, otherwise viscous
damage and non-viscous damage would never be updated during the incremental processes.

It is important to point out that expression (46) is only used to update the damage
variables; however, for the stress update, expression (45) is permanently used even for
explicit integration (if not, the internal forces would not be in equilibrium).

6. Numerical Investigation and Validation

In this section, the results from the experimental campaign of [57–59] with GFRP
specimens, beams, and connections are tested and compared with the proposed damage
model and the stabilization algorithm. Since most material parameters, including fracture
energy, are included in these experimental results, it is essential to validate numerical
models in order to accurately simulate the post-peak behavior in materials with softening.
Most of these experimental campaigns have also been verified with previous numerical
tests in the works of [60,61].
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For numerical tests, a total time analysis of 1.0 s was admitted, due to the non-linear
analysis being static, and a maximum time step increment of 0.001 s, which is 100 times
larger than the chosen viscosity parameter.

6.1. Compact Tension Test

The compact tension test is a traditional test to assess fracture energy, usually in
isotropic materials [62], and was recently extended to also estimate the fracture energy in
orthotropic GFRP specimens [58]. The full details of the experimental campaign for the
tensile compact test can be found in [58], including the test setup and description of the
imposed displacement.

The specimen geometry, test setup, and supporting conditions are all depicted in
Figure 4. For the adopted mesh, to reduce the computational cost, the zone outside the
notch was simulated with linear orthotropic GFRP behavior that already existed in the
ABAQUS material library. The extra part of the notch was simulated with the proposed
UMAT, in which the fracture will take place. These two used different meshes, since the
zone in the notch needs an extra refinement, and later were connected using tie constraints.
The circular supports were modelled with linear isotropic steel also presented in the
ABAQUS material library (ES = 195 GPa, ν = 0.3). The interaction between the supports
and the GFRP specimen was simulated with hard contact formulation, and with a friction
coefficient of 0.2.
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Figure 4. Geometry and test setup for the classical compact tension test (CT) [58]. (a) Geometry [mm];
(b) experimental layout; (c) laboratory conditions.

To even further reduce the computational cost, only half of the thickness was simulated,
therefore transversal symmetry conditions were implemented in Figure 5. When the mesh
was generated, it imposed near-cubic shapes for all solid finite elements, and several meshes
were tested to prevent any mesh dependency.

A full 3D non-linear analysis was performed using the ABAQUS standard with C3D8
solid finite elements using full integration. As a result of the structural response presenting
softening during the last experimental campaign, displacement control was used when
applying a vertical load. All the material properties in plane 1-2 of the GFRP are in Tables 1
and 2, and these were obtained in the experimental campaign of [58]. For the interlaminar
material properties, it was admitted these were the same as the matrix properties, due to
some isotropic behavior in the transverse direction.

Three different tests were performed to evaluate the numerical accuracy of the new
proposed algorithm: The first test consists of a full implicit material integration with
correction parameter v = 1.0; the second test consists of a full explicit material integration
considering v = 0.0; the third test uses ITE with the correction parameter of expression
(47). It is important to point out that the UMAT was used for the GFRP using the ABAQUS
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standard, so the governing system was solved using the implicit predictor-correct algorithm
for the three tests.
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Table 1. Material properties for the pultruded GFRP material used in the CT tests.

E1 [MPa] E2 [MPa] E3 [MPa] G12 [MPa] G13 [MPa] G23 [MPa]

29,600 11,900 11,900 2900 3000 3000

ν12 [−] ν13 [−] ν23 [−] Xt [MPa] Xc [MPa] Yt [MPa]

0.27 0.27 0.30 323 426 71

Yc [MPa] Zt [MPa] Zc [MPa] SL [MPa] ST [MPa] η [−]

121 71 121 64 67 10−5

Table 2. Fracture energy for the pultruded GFRP material used in the CT tests.

Gft [MPa.mm] Gfc [MPa.mm] Gmt [MPa.mm] Gmc [MPa.mm] Git [MPa.mm] Gic [MPa.mm]

100 100 20 20 20 20

By observing Figure 6, it is important to realize that all three tests provided the
same structural response, even during the softening branch. The stiffness is the same in
all three tests, but the maximum force is slightly higher in the second test (explicit) as
expected. All numerical models present a higher maximum force than the experimental
campaign, but this was also observed by other authors [63]. Interlaminar properties
are supposed to be the same as the matrix properties, and this assumption can create
slight gaps between numerical and experimental results. Moreover, boundary conditions of
simulations may contain minor discrepancies compared to the experimental test, generating
small differences in the structural response. The final matrix damage field distribution
for all three numerical tests is also presented in Figure 7a, in which it is not possible to
determine the differences between each of the material time integration methods. Figure 7b
also shows the vertical stress distribution and matrix damage for a specific vertical strain.
Finally, Figure 8 compares the final matrix damage field distribution using full implicit
material integration, explicit and the ITE algorithm. For the matrix damage evolution, all
three tests present the same evolution with the vertical strain, but for the vertical stress
evolution during the peak, there is a clear difference between the implicit and explicit
material integration (first and third tests, respectively). However, for the evolution of
the vertical stress and vertical strain, there is almost no visible difference between the
implicit and ITE material integration, concluding that the ITE promotes the same accuracy
as the full implicit formulation. Nevertheless, explicit integration generates noticeable
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discrepancies in the vertical load distribution and stress behavior compared to implicit and
ITE analyses. Consequently, the ITE algorithm is the most cost-effective while maintaining
great numerical accuracy.
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Figure 6. Vertical force vs. displacement in the load supports for the CT test.
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Figure 7. Tensile matrix damage vs. vertical strain (a) and vertical stress vs. vertical strain (b) for the
CT test.
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Figure 8. Final matrix damage field distribution for (a) implicit, (b) explicit, and (c) ITE for the CT
test, (d) matrix damage scale.

6.2. Three-Point Bending Beam

The three-point bending beam is an experimental study commonly used to extract
fracture properties from materials. The experimental setup details are presented in [59], in
which a bilinear softening relation describes the mechanical behavior of damaged pultruded
glass fiber-reinforced polymer (GFRP) composites. Based on the work of [61], the material
properties adopted for the numerical test are listed in Table 3. Table 4 contains the fracture
energies adopted in this framework. For the sake of clarity, tensile and compressive values
of fracture energies for the fiber are estimated, while an average value of bilinear behavior is
taken into consideration for the matrix. Moreover, interlaminar fracture energy is assumed
to be the same as the matrix property.
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Table 3. Material properties for the pultruded GFRP material used in the three-point bending beam.

E1 [MPa] E2 [MPa] E3 [MPa] G12 [MPa] G13 [MPa] G23 [MPa]

30,000 10,800 10,800 2000 2000 2000

ν12 [−] ν13 [−] ν23 [−] Xt [MPa] Xc [MPa] Yt [MPa]

0.24 0.24 0.4 323 423 37

Yc [MPa] Zt [MPa] Zc [MPa] SL [MPa] ST [MPa] η [−]

80 37 80 33 33 10−5

Table 4. Fracture energy for the pultruded GFRP material used in the three-point bending beam.

Gft [MPa.mm] Gfc [MPa.mm] Gmt [MPa.mm] Gmc [MPa.mm] Git [MPa.mm] Gic [MPa.mm]

130 130 3.84 3.84 3.84 3.84

The computational cost is reduced by considering only one-quarter of the beam, thus
requiring symmetry conditions, as illustrated in Figure 9. Regarding the boundary conditions,
the beam is simply supported, and the vertical displacement is applied through isotropic
steel support (Es = 210 GPa, ν = 0.3), according to [61]. The part of the beam far from the
notch proposes a coarse discretization, and it is modelled with linear orthotropic behavior, in
contrast to the region of the notch where the damage occurs, which is modelled using almost
cubic C3D8R solid finite elements with reduced integration and hourglass control, as shown
in Figure 10. Tie constraints allow the connection between all parts of the beam.
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A full 3D non-linear analysis was performed using the ABAQUS standard, without
considering residual stress and with the same time step restrictions as the previous numeri-
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cal model. This framework proposes a full implicit material integration as the first analysis,
followed by an ITE test with the correction parameters defined in (47) as the second test.

The response of the structure in terms of the reaction force vs. CMOD (crack mouth
opening displacement) is compared with the experimental data included in [59], as illus-
trated in Figure 11. By considering both full implicit and ITE tests, Figure 12b exhibits the
evolution of principal stress over two different integration points, identified in Figure 12a,
in the band where the damage propagates. A detailed view of damage propagation is
provided in Figure 13; specifically, the matrix is shown in Figure 13a, the fiber in Figure 13c,
and tensile damages can be recognized, while Figure 13b shows shear 1-2 damage progres-
sion. Finally, Figure 14 compares the final distribution of tensile matrix damage using full
implicit material integration and the ITE algorithm. The numerical assessment correctly
simulates the experimental campaign, even though some differences in the softening region
can be detected. In particular, the numerical model contains an average value of matrix
fracture energy in contrast to the bilinear behavior. Furthermore, the reduced integra-
tion results in a smaller characteristic length. In addition, small inconsistencies between
experimental and numerical boundary conditions could induce some variabilities. The
principal stress and strain obtained from the full implicit case and ITE are coincident, as
shown in Figure 12b. Therefore, the ITE algorithm simulates the mechanical response of the
beam with the same accuracy as the full implicit analysis, with the advantage of requiring
significantly less computation time. The matrix damage over integration point 2 evolves
more rapidly than point 1. However, by looking at Figure 13c, there is an increase in fiber
damage that causes the shear damage at point 1 to exceed that at point 2 from the cross
point, as highlighted in Figure 13b.
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Figure 12. Identification of integration points 1 and 2 (a) and distribution of principal stress vs.
principal strain (b) for the three-point bending beam.
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Figure 13. Tensile matrix damage vs. principal strain (a), shear damage vs. principal strain (b), and
tensile fiber damage (c) vs. principal strain over integration points 1 and 2 with ITE algorithm for the
three-point bending beam.
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6.3. Double-Lap Test

The double-lap test is a standard experiment used to assess the bolt connection between
structural elements. The full details of the experimental campaign and test setup are fully
described in the work of [57], in which it is possible to determine the applied load using
impose displacements. Some of the material properties adopted for the numerical test are
shown in Table 5, and these were obtained in the previously referenced work while others
were estimated. Due to some findings’ fluctuations, the fracture energy was calculated
using the same values as in the earlier example in Table 2. For this numerical test, the bolt
edge distances (cover) of 15 mm and 70 mm were simulated since these clearly show a
difference between a shear-out and bearing collapse, respectively, as shown in Figure 15.

Table 5. Material properties for the pultruded GFRP material used in the double-lap tests.

E1 [MPa] E2 [MPa] E3 [MPa] G12 [MPa] G13 [MPa] G23 [MPa]

21,300 2900 2900 3000 2500 2500

ν12 [−] ν13 [−] ν23 [−] Xt [MPa] Xc [MPa] Yt [MPa]

0.28 0.28 0.30 334.0 316.0 29.0

Yc [MPa] Zt [MPa] Zc [MPa] SL [MPa] ST [MPa] η [−]

51.9 29.0 51.9 52.4 33.8 10−5
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Figure 15. Test setup for the loading conditions and impose displacement for the double-lap test, and
used bolt edge distance (cover) for the circular opening [57].

A full 3D non-linear analysis was performed using the ABAQUS standard with C3D8
and C3D8R solid finite elements using full and reduced integration and hourglass control
to evaluate any mesh sensitivity due to the high variability of the stress field. The time step
restrictions are the same as the previous numerical models.

For the GFRP plate, in order to reduce the computational cost, part of the plate near the
opening was modelled with the UMAT, but for the other part, an elastic orthotropic material
from the ABAQUS library was used. For the steel bolt, an isotropic elastoplastic material
from the ABAQUS library was used (Es = 195 GPa, ν = 0.3, fy = 300 MPa, fu = 691 MPa).
Again, to reduce the computational cost, only one-quarter of the structure was simulated,
which represents one-half of the GFRP plate and one steel plate, as shown in Figure 16, in
which the imposed vertical displacement is inserted into the bottom of the steel plate. Only
the ITE algorithm was employed in this example, with the primary goal of numerically
evaluating the simulation of the bearing collapse in the contact between the steel bolt and
the GFRP plate.
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To correctly simulate the bearing, the residual compressive stress after the maximum
peak must also be simulated. Two values of compressive residual stress were considered,
namely, 15%, as estimated from the work of [60], and 80%, which is approximately the relation
between the bearing resistance and compressive resistance according to [64], when using the
experimental values form [57]. In addition, to improve convergence, the tensile residual stress
was 1% and 10%, respectively. A sensitivity test showed that residual tensile stress below 15%
had no influence on the maximum numerical resistance and its softening branch.

The structural response of the numerical models and its comparison with the experi-
mental campaign is exhibited in Figure 17 for both 15 mm and 70 mm cover, with 15% and
80% residual compressive strength, for both reduced (RED) and full (FULL) integration.
The vertical force was measured in the steel plate, and the vertical displacement is the
relative movement between the steel plate and the GFRP plate (AB distance Figure 15). As
expected, due to the extra flexibility of the experimental test setup, the numerical model
is less flexible than the experimental one. This is a common problem when comparing
numerical vs. experimental structural responses [65]. The magnitude of the stiffness in the
numerical model was dependent on the adopted final geometry and support conditions,
therefore due to its unknown variability, it is not expected to reach the same value as the one
obtained in the experimental campaign. For the 15 mm cover, there is a clear overestimation
of the maximum reaction for both reduced and full integration, which is associated with
the tensile matrix resistance and longitudinal 1-2 shear resistance being overestimated.
Furthermore, the adopted value of the fracture energy was estimated, not measured, in an
experimental campaign. However, for the 70 mm cover, the maximum reaction is near the
average experimental one, since the bearing is in the collapse mode, and this is associated
with the compressive resistance, which was not estimated. It is observed that for the 15 mm
cover, there is no clear difference between adopting a residual stress of 15% or 80% since
the collapse mode is shear-out. However, for the 70 mm cover, clearly, the 80% residual
compressive stress produces better results when compared with the post-peak values of
the experimental campaign.

The final shear 1-2 damage field for all numerical models with reduced and full
integration is portrayed in Figure 18, in which it is possible to perceive that for the 15 mm
cover, it is clearly a full shear-out collapse, but for the 70 mm cover, there is a bearing
collapse followed by a partial shear-out mode that is not finalized. This is in accordance
with the findings from the experimental campaign up to a 5 mm relative displacement.
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duced/full integration (RED/FULL) with 15% and 80% residual compressive stress.

Furthermore, only for the 70 mm cover can it be seen in Figure 18 that some differences
exist in the final shear damage field distribution for 15% and 80% residual compressive
stress. Similar to the structural response in Figure 19, there are some differences in the
final shear damage field distribution for reduced and full integration with 80% residual
compressive stresses.

In Figure 20a, the shear stress and shear damage evolution are presented in the Gauss
point nearest the circular opening perimeter at 30◦ of the symmetry axis in the GFRP plate.
The findings are shown for both 15 mm and 70 mm covers, with residual compressive stress
levels of 15% and 80%. These findings are significant because they show that increasing the
residual compressive stress has almost no effect on the residual shear stress and that this is
more related to the level of cover, which influences the stress field indirectly. This is also
the case for the shear damage evolution displayed in Figure 20b.

Finally, to better understand that the proposed ITE algorithm does not overestimate
the viscous energy and consequently the viscous damage, the elastic damaged energy
(ESE) and the viscous dissipation energy (VSE) are exhibited in Figure 21. As expected for
the RED_15%_15, there is a big reduction of force after 0.4 s, as shown in Figure 17, and
as expected in this case, both the value of ESE and VSE increase, but after a given time
step, VSE stabilizes and ESE increases, demonstrating that the VSE does not dominate the
structural response. For RED_80%_70, this does not occur due to the small force reduction
during the structural response, in which VSE is always very small.
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Figure 20. Values in the bolt opening at 30◦ for 15 mm and 70 mm of cover with reduced integration:
(a) Shear stress vs. shear strain; (b) shear damage vs. shear strain cover for the double-lap test.
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Figure 21. Total elastic and viscous damage energy for (a) reduced integration for 15 mm cover
with 15% residual compressive stress; (b) reduced integration for 70 mm cover with 80% residual
compressive stress cover for the double-lap test.

7. Conclusions

The primary goal of this study was to present a new 3D Hashin-based damage model
with residual stresses and the proposal of an implicit-to-explicit (ITE) material time integra-
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tion algorithm to be used in this and future damage models. This study was applied to a
published experimental campaign with specimens and beams made of GFRP composites.

(1) The proposed damage model was able to correctly simulate the structural response
of the CT test. The results are consistent with the experiments up to the peak, while
small discrepancies can be detected in the softening behavior.

(2) The ITE algorithm was also used to simulate the three-point bending test. Slight
differences with experimental results in the post-peak region can be detected due
to the estimation of some material properties and the imperfect correspondence of
boundary conditions.

(3) The use of residual stress in the orthotropic Hashin-based damage model allowed the
correct simulation of the bearing collapse in GFRP connections. However, the effect of
residual stresses on compressive behavior has a small influence on residual shear stress.

(4) The use of the ITE algorithm was robust, and in initial tests, present the same accuracy
as a fully implicit material time integration method when using the secant method in
ABAQUS standard predictor-corrector algorithm.

Further Developments

In future research, it is expected to develop the orthotropic damage model based on
the Hashin failure criterion using residual shear stresses that are important for simulating
shear-out collapse in composite connections. In addition, residual shear stress is also
important for the correct numerical behavior of the 3D beam-to-column connection for
cycle loads and dynamic analysis [57]. Moreover, a variation of the 2D Tsai-Wu-based
damage model [61] is proposed for a 3D analysis, using a similar criterion as was used in
this work. It is expected to use these orthotropic damage models in the future design of
GFRP structures.
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