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Abstract: We propose and develop a novel rigorous technique that enables one to obtain the
explicit numerical values of parameters at which several lowest-order harmonics of the scattered
field are suppressed. This provides partial cloaking of the object, a perfectly conducting cylinder
of circular cross section covered by two layers of dielectric separated by an infinitely thin
impedance layer, a two-layer impedance Goubau line (GL). The developed approach is a rigorous
method that enables one to obtain in the closed form (and without numerical calculations)
the values of parameters providing the cloaking effect, achieved particularly in terms of the
suppression of several scattered field harmonics and variation of the sheet impedance. This
issue constitutes the novelty of the accomplished study. The elaborated technique could be
applied to validate the results obtained by commercial solvers with virtually no limitations on the
parameter ranges, i.e., use it as a benchmark. The determination of the cloaking parameters is
straightforward and does not require computations. We perform comprehensive visualization
and analysis of the achieved partial cloaking. The developed parameter-continuation technique
enables one to increase the number of the suppressed scattered-field harmonics by appropriate
choice of the impedance. The method can be extended to any dielectric-layered impedance
structures possessing circular or planar symmetry.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Field manipulation has been a hot topic in the research panorama of the last decades. One of the
most challenging applications is represented by the possibility to hide objects to the interrogating
incident field, being this electrical, acoustic, thermal, or other. Cloaking has always been seen as
”magic”, and so understanding it has fascinated the research community. Different explanations
have been provided, and during the years theories as plasmonic cloaking [1], transformation
optics [2,3] or scattering cancellation theory further enriched by mantle cloaking [4], have been
proposed. Security and sensitivity enhancement are just two of the many applications that could
efficiently exploit such phenomenon. However, design and analysis of the right coating has
encountered significant problems, and closed-form solutions are not always available. Analytical
expressions are given for canonical geometries, and for relatively simple coating structures, such
as a single-layer coverage [5–7].
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The possibility to design devices with reduced scattering has intrigued and keep intriguing
the optical community for decades, with several applications, like imaging, [8], high-Q optical
resonators [9], perfect lens [10], and other challenging applications on terahertz regime [11].

Depending on the nature of the materials involved for the core object with desired reduced
scattering (metals or dielectrics), the electromagnetic energy can be re-routed around an obstacle
by means of inhomogeneous and anisotropic cloaking shells as in Transformation Optics [2,3] or
let the waves pass through the object-cloak pair without any distortion as in scattering cancellation
approaches [1]. As an important result taken from the literature of imaging problems [12], the
visibility of a generic object depends on the number M of degrees of freedom of the scattered
fields and, in order to reduce its scattering, there is the need to deal with the suppression of the
same number M of independent harmonics radiating in the background scenario.

In quasi-static regime, where the object is very small compared to the incoming wavelength,
it has been sufficient to consider M = 1 to take the overall control on scattered fields and to
enforce a single-dominant harmonic cancellation with a single volumetric metamaterial coating
[1] or a single thin impedance metasurface, namely mantle cloaking [4]. When the scattering is
dominated by one harmonic wave (M = 1), a single harmonic wave cancellation is sufficient for
effective scattering reduction: this happens in quasi-static regime for the lowest order harmonic
wave, even if single-dominant scattering approximations can hold in other frequency regimes
as well. However, when the scattering is dominated by two or more harmonic waves (M>2),
single-harmonic suppression is no more enough and advanced multi-harmonics mantle cloaks
are needed for controlling the desired scattering reduction.

In this paper, we propose a general methodology for cloaking by enforcing only given set M of
independent harmonics for scattering suppression: in addition, this will be performed in a more
general framework considering metallic cylinders.

Simplified models however cannot be sufficient when description of the field propagation in
a more realistic media is of interest; bandwidth issues and availability of accurate materials
and associated technical solutions, including technology to be used to realize the necessary
coatings are other aspects that limit the applications of the available solutions described in
scientific literature. Extension to multilayer coatings for example is only spuriously presented.
The present work aims to answer to some of the open problems related to the study of multilayer
configurations, targeting cloaking of cylindrical symmetry; an implanted bio-metallic cylinder
used for hip implant is a possible example. The use of such a medical device is mandatory
in case of severe damage of bones following injury. Elderly people are also sensitive to this
problem. When people with implants are travelling, for example, their airport checking is more
time consuming, and the use of screening is also subject to special procedure. The presence of
other implants, e.g., metallic dental ones, also requires special attention for MRI investigation, or
others.

In particular, in the present investigation an analytical solution for a multilayer configuration is
proposed aiming to cancel different higher-order harmonics of the scattered field. The rigorous
approach is proposed for the first time and paves the way for future extensions on the same
line. In particular, the cancellation of one harmonic obtained using a single-layer coating is
extended, offering a general framework to cancel three, four, or even a larger amount of harmonics.
Such complex appearances happen when specific conditions are fulfilled. These conditions are
developed, and the analytic solutions are supported by plots of the 2D scattered field distributions
around the metallic cylinder. Machine-precision numerical results are reported, demonstrating
the correctness of the method.

During recent years, the authors of the present work have already proposed various solutions
for the problem related to the present topic: analytical solution based on one of the Devaney-Wolf
theorems [13], tunable cloaking, [14], analytical formulation based on the contrast formulation
[15] or put in evidence the presence of anapole modes [16] in association with the presence of
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cloaking. A theoretical approach has been elaborated [5] that enables one obtain in the closed
form the expression for the parameters at which several lowest-order scattered-field harmonics
are eliminated. This paper is a continuation of these studies.

To outline basic features of the developed research technique, consider scattering of a plane
wave by a perfectly conducting cylinder (PEC) of circular cross section with a radius a covered
by two layers of dielectric separated by an infinitely thin impedance layer (placed between the
dielectric layers on a circle r = a1 as shown in Fig. 1). This structure may be conditionally called
a two-layer impedance Goubau line (GL).

Fig. 1. A two-layer impedance Goubau line.

A goal of this study is, proceeding from the above scattering problem, to rigorously determine
the values of parameters at which several (three, five, or more) lowest harmonics of the scattered
field are cancelled; the research technique is a substantial extension of the method developed
in [5]. The question is to obtain the explicit numerical values of parameters at which the
coefficients multiplying several first lowest-order harmonics vanish. The goal is achieved by
investigating functional properties of coefficients considering them as vector-functions (maps) of
several real and complex variables and proving that the corresponding system is solvable. This
requires application of fine mathematical analysis and calculations that cannot be performed
using commercial solvers. In addition, the difficulty is in the complicated form of the expression
for the coefficients (similar to eq. (5) from [17] or formula (10) below).

Cylindrical scatterers having circular cross-sectional symmetry can be characterized by finitely
many parameters. For the basic structures like a PEC, a dielectric rod (DR), and a PEC of
circular cross section covered by a concentric circular layer of homogeneous dielectric, a GL, the
problem of partial cloaking and invisibility has been efficiently solved [5–7]. Using the theory of
generalized cylindrical polynomials (GCPs) [18,19] the parameter sets have been determined
when partial cloaking or partial invisibility is observed due to the suppression of several (up
to five) principal scattered-field harmonics. In fact, for single- and multilayer DRs and GLs
(and other obstacles with circular symmetry), the scattered-field expansion coefficients have a
definite structure involving GCPs. This fact made it possible to prove the existence, determine
the localization and efficiently calculate zeros and singularities of the expansion coefficients
verifying and studying thus partial cloaking and invisibility.

The method characterized above in its background is close to that in [5]; however, the technical
and mathematical difficulties connected with the analysis of this impedance structure are so
significant that it requires a separate study.

A two-layer impedance GL can be fully characterized by a set of five dimensionless parameters
(radii of cylinders and permittivities of the dielectrics filling the layers). Inserting an infinitely
thin impedance layer on the boundary between two dielectric layers adds one more such parameter
and enables one to achieve and control multiple suppression of harmonics. In fact, we have shown
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that for the three GL parameters being fixed (and determined according to explicit formulas in (29)
below) and every value of the relative PEC radius κ taken from a certain interval (determined
explicitly) and permittivity ϵ1>1 of the internal dielectric layer, (a) there is exactly one value
of surface impedance that provides the triple suppression of the three lowest-order (principal)
scattered-field harmonics, and (b) for every real surface impedance value, there is a κ such that
the three lowest-order scattered-field harmonics are suppressed for any value of the permittivity
of the internal dielectric layer ϵ1>1.

Moreover, the coefficients specifying the scattered field in the external domain are, up to a
factor, real-valued quantities and linear functions with respect to the surface impedance which
enables one to explicitly determine the (real) impedance values that yield multiple suppression.

All the parameter values that provide multiple suppression of the lowest-order scattered-field
harmonics can be calculated explicitly using closed-form expressions.

Further increase of the number of suppressed harmonics can be achieved directly by simulta-
neous analysis of the dependence of the surface impedance on parameters for different indices
of harmonics (given by formula (31) below). A two-layer impedance GL may be considered
therefore as a cloaking device where the impedance layer governs cloaking or invisibility for
wider parameter sets and in broader spatial domains.

Another important conclusion is that the obtained explicit numerical values at which the
lowest-order scattered-field harmonics are eliminated may be considered as absolute constants
inherent to the specific scatterer (e.g. a two-layer impedance GL) similar to cut-off frequencies
or normal-wave propagation constants of a circular waveguide or DR.

2. Series solution

For a two-layer impedance GL where the dielectric layers are filled with the media having relative
permittivities ϵ1 and ϵ2 (respectively, the internal and external layers, as shown in Fig. 1), the
solution to the problem of the plane electromagnetic wave diffraction is sought, for the single
nonzero electric field component u (r, φ) where (r, φ) are the polar coordinates of the observation
point, in the form [7]

u (r, φ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑︁∞

n=−∞ Anun1 (k1r) einϕ , a<r<a1,∑︁∞
n=−∞ [BnJn (k2r) + CnYn (k2r) ]einϕ , a1<r<a2,∑︁∞
n=−∞ DnH(1)

n (k0r) einϕ , r>a2;

(1)

here κ = k0a and κ1,2 = k0a1,2 are dimensionless parameters, k0 = ω/c is the free-space
wavenumber (c is the speed of light in vacuum), and

un1 (k1r) = Jn (k1r) − αn1Yn (k1r) , αn1 =
Jn(κζ1)

Yn(κζ1)
=

Jn(z)
Yn(z)

, k1,2 = k0ζ1,2, ζ1,2 =
√
ϵ1,2, (2)

where z = κζ1, so that un1 (k1r) satisfies the boundary condition un1 (k1a) = 0 on the PEC surface.
Using formulas (43) from Appendix and setting w = κ1ζ1, we obtain a quantity

un1 (k1a1) = Jn (k1a1) − αn1Yn (k1a1) = Jn (κ1ζ1) − αn1Yn (κ1ζ1) =

=
1

Yn(z)
[Jn (w)Yn(z) − Jn(z)Yn (w)] =

pn(w, z)
Yn(z)

(3)

which will be used below in the formulas for the expansion coefficients.
Note that in actual calculations using (1) we take only several leading series terms, e.g.

u (r, φ) ≈ ũ (r, φ) =
N∑︂

n=−N
DnH(1)

n (k0r) einϕ , r>a2, (4)

where N ∼ 10 because the series term rapidly decays.
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Next, if the L = 2l + 1 ≥ 1 lowest-order scattered-field harmonics are eliminated (suppressed),
e.g. three with the indices n = −1, 0, 1 when L = 3 and l = 1, then the ’suppressed’ part involving
the eliminated harmonics (series terms) vanishes, ũ(L) (r, φ) = 0, where

ũ (r, φ) = ũ(L) (r, φ) + ũ(M) (r, φ) ,

ũ(L) (r, φ) =
l∑︂

n=−l
DnH(1)

n (k0r) einϕ ,

ũ(M) (r, φ) =
−(l+1)∑︂
n=−M

DnH(1)
n (k0r) einϕ +

M∑︂
n=l+1

DnH(1)
n (k0r) einϕ (r>a2).

(5)

According to Parseval’s equality which gives the squared L2-norm of the function u (r, φ)
given for r>a2 by the third line in (1)

∥u (r, φ)∥2
2 =

∫ 2π

0
|u(r, φ)|2 dφ = 2π

∞∑︂
n=−∞

|︁|︁|︁DnH(1)
n (k0r)

|︁|︁|︁2 , r>a2, (6)

the quantity

U(r) =
N∑︂

n=−N

|︁|︁|︁DnH(1)
n (k0r)

|︁|︁|︁2 , r>a2, (7)

may serve as a correct measure of the radial distribution of the intensity of the electromagnetic
scattered-field component, demonstrating a sharp fall when several lowest-order harmonics are
suppressed.

Application of the transmission conditions on the circles r = a1 and r = a2

u (r = a1 − 0, φ) = u (r = a2 + 0, φ) ,

Z
(︃
∂u
∂r

(r = a1 + 0, φ) −
∂u
∂r

(r = a1 − 0, φ)
)︃
= u (r = a1 − 0, φ) ,

u (r = a2 − 0, φ) − u (r = a2 + 0, φ) = u0 (a2, φ) ,
∂u
∂r

(r = a2 − 0, φ) −
∂u
∂r

(r = a2 + 0, φ) =
∂u0
∂r

(a2, φ) ,

where u0 (r, φ) =
∑︁∞

n=−∞ i−nJn (k0r) einϕ , yields a linear equation system

AX = F

for the determination of unknown coefficients An, Bn, Cn, Dn; a 4 × 4 system matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

un1(k1a1) −Jn(κ1ζ2) −Yn(κ1ζ2) 0

vn1(k1a1) −Zk2J ′n(κ1ζ2) −Zk2Y ′
n(κ1ζ2) 0

0 Jn(κ2ζ2) Yn(κ2ζ2) −H(1)
n (κ2)

0 ζ2J ′n(κ2ζ2) ζ2Y ′
n(κ2ζ2) −

(︂
H(1)

n (κ2)
)︂ ′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(8)

where, according to (3),

vn1(k1a1) = un1(k1a1) + Zk1u′
n1(k1a1) =

= Jn (κ1ζ1) + Zk1J ′n (κ1ζ1) − αn1
(︁
Yn (κ1ζ1) + Zk1Y ′

n (κ1ζ1)
)︁
=

= Z̃nJn (κ1ζ1) − Zk1Jn+1 (κ1ζ1) − αn1
[︁
Z̃nYn (κ1ζ1) − Zk1Yn+1 (κ1ζ1)

]︁
=

= Z̃nun1(k1a1) − Zk1un+1,1(κ1ζ1),

(9)
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Z̃n = 1 + Ẑ
n
κ1

, Ẑ = k0Z, un+1,1(κ1ζ1) = Jn+1 (κ1ζ1) − αn1Yn+1 (κ1ζ1), and the vectors of
unknowns and the right-hand side

X = [An, Bn, Cn, Dn]
T , F = [0, 0, i−nJn (κ2) , i−nJ ′n (κ2)]

T .

Coefficients An, Bn, Cn, Dn can be determined using the Cramer rule; for Dn we have

det A · Dn = D(1)
n = i−n

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
un1(k1a1) −Jn(κ1ζ2) −Yn(κ1ζ2) 0

vn1(k1a1) −Zk2J ′n(κ1ζ2) −Zk2Y ′
n(κ1ζ2) 0

0 Jn(κ2ζ2) Yn(κ2ζ2) Jn (κ2)

0 ζ2J ′n(κ2ζ2) ζ2Y ′
n(κ2ζ2) J ′n (κ2)

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
=

= i−n [−Zk2un1(k1a1)dn1 + vn1(k1a1)dn2] ,

(10)

where the determinants

dn1 =

|︁|︁|︁|︁|︁|︁|︁|︁|︁
J ′n(κ1ζ2) Y ′

n(κ1ζ2) 0

Jn(κ2ζ2) Yn(κ2ζ2) Jn(κ2)

ζ2J ′n(κ2ζ2) ζ2Y ′
n(κ2ζ2) J ′n(κ2)

|︁|︁|︁|︁|︁|︁|︁|︁|︁ = −ζ2Jn(κ2)sn(x, y) + J ′n(κ2)rn(x, y),

dn2 =

|︁|︁|︁|︁|︁|︁|︁|︁|︁
Jn(κ1ζ2) Yn(κ1ζ2) 0

Jn(κ2ζ2) Yn(κ2ζ2) Jn(κ2)

ζ2J ′n(κ2ζ2) ζ2Y ′
n(κ2ζ2) J ′n(κ2)

|︁|︁|︁|︁|︁|︁|︁|︁|︁ = −ζ2Jn(κ2)qn(x, y) + J ′n(κ2)pn(x, y)

are represented using standard notations (39–42) for cross-products and the variables x = κ1ζ2
and y = κ2ζ2.

Thus, the coefficient

Dn =
D(1)

n

D(2)
n

, D(2)
n = det A, (11)

where, up to a factor i−n, D(1)
n is a real-valued quantity having the form of a weighted sum of

products of cross-products of cylindrical functions [18]. Such sums are referred to as generalized
cylindrical polynomials (GCPs) and their theory is developed in [19].

3. Multiple suppression of harmonics: functional approach

3.1. General setting

Fourier coefficients An, Bn, Cn, and Dn specifying, as in (1), the solution to the problem of the
plane electromagnetic wave diffraction for a two-layer impedance GL (or any other cylindrical
structure possessing circular symmetry) are functions of the problem parameters.

One can state a problem to determine the parameter sets such that several coefficients of
the same group (An, Bn, Cn, or Dn) corresponding to the particular spatial region vanish
simultaneously. In particular, Dn specify the scattered-field harmonics in the domain outsied the
scatterer.

To this end, let us introduce the parameter vectors w and v comprising all the parameters
of a particular structure. For a PEC of circular cross section with (internal) radius a covered
by two layers of dielectric separated by an infinitely thin impedance layer (placed between
the dielectric layers on a circle r = a1) and external radius a2, we have the parameter vectors
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w =
{︁
wj
}︁6

j=1 = (Z, κ, κ1, κ2, ζ1, ζ2) and v =
{︁
vj
}︁7

j=1 = (Z,ω, a, a1, a2, ζ1, ζ2) of, respectively,
dimensionless (except for impedance Z) and dimensional quantities. Next, one can consider the
numerators of coefficients Dn, D(1)

n = D(1)
n (w) or D(1)

n = D(1)
n (v) as functions of several variables,

real or complex. If w = w∗ or v = v∗ solves the system of m + 1 equations

D(1)
n (w) = 0 or D(1)

n (v) = 0, n = 0, 1, 2, . . .m, m = 0, 1, 2, . . . , (12)

then the corresponding 2m + 1 scattered-field harmonics are eliminated (suppressed).

The set of coefficients involved in system (12) form in its turn a vector D(1)
m =

{︂
D(1)

n

}︂m+1

n=1
and

may be considered as a map D(1)
m (w) : RNw → Rm+1 or D(1)

m (v) : RNv → Rm+1 (m+1-dimensional
vector-functions of Nw,v real or complex variables). For a two-layer impedance GL, Nw = 6 and
Nv = 7.

3.2. Explicit determination of parameters providing multiple suppression for a two-layer
impedance GL

Parameter sets that give explicit (reference) solutions to a particular equation of system (12)
with a fixed index n may be called, respectively, reference couples (RCs) and reference triples
(RTs). RCs w∗ =

(︂
κ
(n)
(m)

, (ζ (n)
(l,m)

)2
)︂

for DR and RTs w∗ =
(︂
κ
(n)
(m)

, κ(n)1,(m,p,s), (ζ
(n)
(m,s))

2
)︂

for GL have been
determined in [5]; they are given below in formulas (37) and (38).

Make use of the methods developed in [5,19] and determine explicitly the parameter sets
providing multiple suppression for a two-layer impedance GL.

In view of the relations [18], 9.1.5, that couple the Bessel and Neumann functions with the
’opposite’ orders J−n(x) = (−1)nJn(x) and Y−n(x) = (−1)nYn(x), D(1)

−n coincides, up to a factor
(−1)m for a certain integer m, with D(1)

n (n = 1, 2, . . . ).
One can rewrite the expression for D(1)

n in the form

D̃(1)
n = inD(1)

n

= −Zk2un1(κ1ζ1)
[︁
−ζ2Jn(κ2)sn + J ′n(κ2)rn

]︁
+ vn1(κ1ζ1)

[︁
−ζ2Jn(κ2)qn + J ′n(κ2)pn

]︁
= ζ2Jn(κ2) [Zk2un1(κ1ζ1)sn − vn1(κ1ζ1)qn] + J ′n(κ2) [−Zk2un1(κ1ζ1)rn + vn1(κ1ζ1)pn] .

(13)

In particular, for n = 0, 1, using formulas (43) and (3) and setting z = κζ1 and w = κ1ζ1, we
obtain

u01 =
1

Y0(z)
[J0 (w)Y0(z) − J0(z)Y0 (w)] =

p0(w, z)
Y0(z)

, (14)

u11 =
1

Y1(z)
[J1 (w)Y1(z) − J1(z)Y1 (w)] =

p1(w, z)
Y1(z)

, (15)

v01 = u01 − Zk1u1,1 =
1

Y0(z)
[︁
p0(w, z) − Zk1I1,0(w, z)

]︁
, (16)

u1,1 = J1 (w) − α01Y1 (w) =
1

Y0(z)
[J1 (w)Y0(z) − J0(z)Y1 (w)] =

I1,0(w, z)
Y0(z)

(17)

D̃(1)
0 = ζ2J0(κ2) [Zk2u01p1 − v01q0] − J1(κ2) [−Zk2u01r0 + v01p0] , (18)

D̃(1)
1 = ζ2J1(κ2) [Zk2u11s1 − v11q1] + J ′1(κ2) [−Zk2u11r1 + v11p1] . (19)

Thus , if J1(κ2) = 0, i.e. κ2 = ν1m, m = 1, 2, . . . , and p1(x, y) = 0, we have

D̃(1)
0 = −ζ2J0(ν

1
m)v01q0, D̃(1)

1 = −Zk2J ′1(ν
1
m)u11r1. (20)
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We have D̃(1)
0 = 0 if v01 = 0 or q0(x, y) = 0; the former condition holds at

Z =
p0(w, z)

k1I1,0(w, z)
=

1
k1

J0 (w)Y0(z) − J0(z)Y0 (w)
J1 (w)Y0(z) − J0(z)Y1 (w)

, (21)

Note that the conditions⎧⎪⎪⎨⎪⎪⎩
p0(w, z) = J0 (w)Y0(z) − J0(z)Y0 (w) = 0,

I1,0(w, z) = J1 (w)Y0(z) − J0(z)Y1 (w) = 0,
(22)

which may yield v01 = 0 are not valid: homogeneous system (22) is not solvable with respect
to J0 (z) , Y0(z) because its determinant, a Wronskian I1,0(w, w) = J1 (w)Y0(w) − J0(w)Y1 (w) =
2
πw
≠ 0.

The condition q0(x, y) = 0 holds if

J1 (y)Y0(x) − J0(x)Y1 (y) = 0. (23)

Next, D̃(1)
1 = 0 if u11 = 0 or r1 = 0 which holds at

p1(w, z) = J1 (w)Y1(z) − J1(z)Y1 (w) = 0 (24)

or at
r1(x, y) = J ′1 (x)Y1(y) − J1(y)Y ′

1 (x) =
1
x

p1(x, y) + I1,2(y, x) = I1,2(y, x) = 0. (25)

Thus D̃(1)
0 = D̃(1)

1 = 0 if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ2 = ν
1
m, m = 1, 2, . . . ,

J1 (x)Y1(ν
1
mζ2) − J1(ν

1
mζ2)Y1 (x) = 0,

J1 (w)Y1(z) − J1(z)Y1 (w) = 0,

Z =
1
k1

J0 (w)Y0(z) − J0(z)Y0 (w)
J1 (w)Y0(z) − J0(z)Y1 (w)

=
πz
2k1

Y1(z)
Y1(w)

[J0 (w)Y0(z) − J0(z)Y0 (w)] ,

(26)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ2 = ν
1
m, m = 1, 2, . . . ,

J1 (x)Y1(ν
1
mζ2) − J1(ν

1
mζ2)Y1 (x) = 0,

J1
(︁
ν1mζ2

)︁
Y2(x) − J1(x)Y2

(︁
ν1mζ2

)︁
= 0,

Z =
1
k1

J0 (w)Y0(z) − J0(z)Y0 (w)
J1 (w)Y0(z) − J0(z)Y1 (w)

,

(27)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ2 = ν
1
m, m = 1, 2, . . . ,

J1 (x)Y1(ν
1
mζ2) − J1(ν

1
mζ2)Y1 (x) = 0,

J1
(︁
ν1mζ2

)︁
Y2(x) − J1(x)Y2

(︁
ν1mζ2

)︁
= 0,

J1
(︁
ν1mζ2

)︁
Y0(x) − J0(x)Y1

(︁
ν1mζ2

)︁
= 0,

(28)

where x = κ1ζ2, z = κζ1, and w = κ1ζ1. The three latter equations of the latter system comprise
six independent quantities J0(x), J1(y), Y0,1(x), Y1,2(y) and therefore the system is solvable; the
solvability condition is Y0(x)Y1(x)J1(y)Y2(y) − J0(x)Y2(x)Y2

1 (y) = 0, y = ν1mζ2.
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Consider conditions (system) (27). The second and third equations are satisfied if J1(x) = 0
and J1(ν

1
mζ2) = 0, i.e. at κ1ζ2 = ν1l and ν1mζ2 = ν1s which yield

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κ2 = ν

1
m, κ1 =

ν1l ν
1
m

ν1s
, ζ2 =

ν1s

ν1m
, s = m + 1, m + 2, . . . l = 1, 2, . . . s − 1, m = 1, 2, . . . ,

Z = Z01 =
1
k1

J0 (w)Y0(z) − J0(z)Y0 (w)
J1 (w)Y0(z) − J0(z)Y1 (w)

, w = βlmsζ1, βlms =
ν1l ν

1
m

ν1s
z = κζ1, κ<κ1.

(29)
Note that (29) provide the fulfillment of physically grounded relations κ1<κ2 and ζ2>1 (for

standard lossless dielectric medium filling the external ring of an impedance GL) between
parameters κ1, κ2, and ζ2.

If relations (29) for κ1, κ2, ζ2 hold, then the triple suppression of three scattered-field harmonics
with the indices n = 0,±1 takes place at arbitrary values of two parameters κ and ζ1 and the
impedance given by the equality in (29). Here, 0<κ<κ1, ζ1>1, and ζ2>1 for a ’standard’ lossless
media. However, generally, ζ1 or ζ2 may be complex quantities.

3.3. Multiple suppression in wider parameter ranges

The availability of closed-form solutions is essential for solving system (12) in wider parameter
ranges.

For a two-layer impedance GL, D(1)
n is a linear function of impedance Z according to (10)

which yields

D(1)
n = 0 at Z =

vn1(k1a1)dn2
k2un1(k1a1)dn1

=

=
1
k2

(︃
1 + Ẑ

[︃
n
κ1

− ζ1
In+1,n (w, z)

pn(w, z)

]︃ )︃
ζ2Jn(κ2)qn(x, y) − J ′n(κ2)pn(x, y)
ζ2Jn(κ2)sn(x, y) − J ′n(κ2)rn(x, y)

, n = 0, 1, 2 . . . .

(30)
The relation for impedance Z in (30) is a linear equation with respect to Z having the form

Z = (1 + AZ)B with certain A and B and can be solved to give an explicit expression

Ẑ = Zn =

[︃
ζ2
ζ2Jn(κ2)sn(x, y) − J ′n(κ2)rn(x, y)
ζ2Jn(κ2)qn(x, y) − J ′n(κ2)pn(x, y)

+ ζ1
In+1,n (w, z)

pn(w, z)
−

n
κ1

]︃−1
,

n = 0, 1, 2 . . . , x = κ1ζ2, y = κ2ζ2, w = κ1ζ1, z = κζ1.
(31)

This means that at arbitrary values of five parameters forming a vector u = (κ, κ1, κ2, ζ1, ζ2)
(where κ2>κ1>κ>0), that specify a two-layer impedance GL, the double suppression of two
scattered-field harmonics with indices ±n takes place if equality (30) for the impedance holds.
Note that for a ’standard’ lossless media, ζ1>1 and ζ2>1. However, generally, ζ1 or ζ2 may be
complex quantities.

The set of impedance values involved in (31) form a vector Z =
{︁
Znj

}︁m
j=1 and may be considered

as a map Z(u) : R5 → Rm (so that Z is an m-dimensional vector-function of 5 real or complex
variables). If, at certain values of parameters, Zj = Zl for different nonzero indices j ≠ l then
four scattered-field harmonics with indices ±j and ±l are suppressed. Generally, if the parameter
vector u = u∗ solves the system of m equations Zn1 = Zn2 = · · · = Znm for different indices nj,
j = 1, 2 . . . , m, then 2m scattered-field harmonics with indices ±nj, j = 1, 2 . . . , m, are suppressed
simultaneously.

A particularly important case is the suppression of 2m + 1 lowest-order (principal) harmonics
with indices 0,±1,±2, . . . ,±m (m = 1, 2 . . . ). To determine the conditions of mutiple suppression
of 2m+ 1 lowest-order harmonics it is necessary to solve the system Z0(u) = Z1(u) = · · · = Zm(u)
of m + 1 equations.
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Specific conditions of mutiple suppression can be determined by considering Zn = Zn(κ) with
respect to one parameter, e.g. κ and other, κ1, κ2, ζ1, ζ2, being fixed for several indices n. The
points of intersection of Zn′ and Zn′′ with different indices will indicate multiple suppression of
four harmonics.

This task may be simplified by finding, as in Section 3.2, parameter sets that give explicit
(reference) particular solutions to this system (RCs or RTs).

To this end, consider conditions (29). The relation for impedance Z in (29) means that at the
values of parameters κ1, κ2, and ζ2 given in (29),

κ2 = κ
(01)
2,(m)
= ν1m, ζ2 = ζ

(01)
2,(s,m)

=
ν1s

ν1m
(s>m), κ1 = κ(01)

1,(l,m,s) =
ν1l ν

1
m

ν1s
(l<s) (32)

for m = 1, 2, . . . , the triple suppression of the three lowest order scattered-field harmonics with
the indices n = 0,±1 takes place at arbitrary κ (with κ2>κ1>κ>0) and ζ1 if the equality in (29)
for the impedance holds. This result is concretized below in Statement 3.3.

The impedance Z = Z01(κ, ζ1) in (29) may be considered as a function of two independent
variables, both real, or real (κ) and complex (ζ1). If Z = Z01(κ, ζ1) given by (29) coincide, at
certain κ and ζ1, with Z = Zn(κ, ζ1) given by (31) and calculated at κ2 = κ(01)

2,(m)
, ζ2 = ζ (01)

2,(s,m)
, and

κ1 = κ
(01)
1,(l,m,s) given by (32) (the values of κ2, ζ2, and κ1 are determined according to (29) then

five first lowest-order scattered-field harmonics of a two-layer impedance GL with the indices
n = 0,±1,±2 are suppressed (eliminated).

Note that in the real domain 0<κ<κ1, ζ1>1 the impedance Z = Z01(κ, ζ1) in (29) may go to
infinity when its denominator, a cross-product

q0(w, z) = J1 (w)Y0(z) − J0(z)Y1 (w) = 0, (33)

or vanish when its numerator, a cross-product

p0(w, z) = J0 (w)Y0(z) − J0(z)Y0 (w) = 0, w =
ν1l ν

1
m

ν1s
ζ1, z = κζ1, κ<κ1. (34)

(see (39) and (43) in Appendix).
Let p0

t = p0
t (w) and q0

t = q0
t (w), t = 1, 2, . . . , denote (real alternating) zeros of cross-products

p0 = p0(z) and q0 = q0(z) considered as functions of z and given by (33) and (34). For
a fixed ζ1>1 and indices l, m, s in (29), if z = p (q)0m = p (q)0m(wlms), wlms = βlmsζ1, then
κ = κ

p (q),lms
t = p (q)0t (wlms)/ζ1 is a zero of p0 = p0(κ) or q0 = q0(κ) considered as functions of κ.

If κq,lms
t′ <κ1<κ

q,lms
t′+1 for a certain t′ = 2, 3, . . . , then, considering Z01(κ) = p0(κ)q−1

0 (κ) for κ<κ1
with a given (fixed) κ1 we see that Z01(κ) takes (as a continuous and monotonic function of κ)
all real values on the intervals (κq,lms

j , κq,lms
j+1 ) between its neighboring singularities for j ≤ t′ (i.e.

j = 1, 2 . . . t′) that fall into the interval (0, κ1). Note in addition that Z01(κ) is one-to-one function
on this interval. Therefore, the following holds:

Statement 1.
(i) For every κ ∈ (κ

q,lms
j , κq,lms

j+1 ) and ζ1>1, there is exactly one value of impedance Z = Z01(κ)
in (29) that provide (for κ1, κ2, and ζ2 given by (29)) the triple suppression of the three lowest-order
(principal) scattered-field harmonics with the indices n = 0,±1.

(ii) For every real impedance value Z, there is a κ ∈ (κ
q,lms
j , κq,lms

j+1 ) such that the three
lowest-order scattered-field harmonics are suppressed for any ζ1>1 (with κ1, κ2, and ζ2 given
by (29)).

Taking into account the properties of cross-products summarized in Appendix, it is easy to
determine zeros κp,lms

t and κq,lms
t of p0(κ) and q0(κ). In fact, they form virtually periodic sequences
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with a period close to π/ζ1, as described in Section 6, so that it is sufficient to determine the first
zeros with t = 1 and then apply a period shift using formula (44) from Section 6.

In particular, the first four (minimal) zeros of the numerator p0(κ) (34) of Z01(κ) at κ1 =
1.5340, κ2 = 5.52, ζ1 = 3, and ζ2 = 1.5678 (corresponding to l = 1, m = 2, s = 3 in (32) are
κ

p,123
1 (w∗) = 0.5023, κp,123

2 (w∗) = κ1 = 1.5340, κp,123
3 (w∗) = 2.5778, and κp,123

4 (w∗) = 3.6235, and
of the denominator q0(κ) (33), κq,123

1 (w∗) = 0.07, κq,123
2 (w∗) = 1.0497, κq,123

3 (w∗) = 2.0909, and
κ

q,123
4 (w∗) = 3.1360, where w∗ = w123 = β123ζ1 and β123 = κ1. Note that the distances between

the neighboring zeros are κp,123
2 −κ

p,123
1 = 1.0317, κp,123

3 −κ
p,123
2 = 1.0438, κp,123

4 −κ
p,123
3 = 1.0457,

κ
q,123
3 − κ

q,123
2 = 1.0412, and κq,123

4 − κ
q,123
3 = 1.0451, which is virtually a constant very close

(approach as the zero index increases) to the virtual period π/ζ1 = π/3 = 1.0472 of the zero
sequences

{︂
κ

p,123
m (w∗)

}︂
and

{︂
κ

q,123
m (w∗)

}︂
.

We have already noted that, according to Section 6 in Appendix, zeros of the numerator and
denominator of Z01(κ), which are cross-products, perfectly alternate; consequently, Z01(κ) is a
one-to-one monotonic function similar to tangent and takes all real values on the interval between
its singularities, namely, every neighboring zeros of its denominator. Functions Zn(κ) given
by (31) have (isolated) singularities and zeros differing from those of Z01(κ); therefore, the fact
that Z01(κ) takes all real values for κ between neighboring zeros of its denominator yields the
existence of at least one value of κ such that Zn(κ) = Z01(κ) on this interval.

3.3.1. Numerical values of parameters of multiple suppression

In view of physical limitations on the parameters of a two-layer impedance GL, of special interest
is to consider the intervals between the first two or three minimal zeros q0

t , t = 1, 2, 3.
Taking into account the physical restrictions imposed on permittivity (refraction index ζ) and

the decay of coefficients with respect to n, we conclude that the minimal positive values of the
CP components make most sufficient contribution to partial invisibility.

Using the values of the first three (positive) zeros of the Bessel function J1

ν11 = 3.832, ν12 = 7.016, ν13 = 10.173,

we obtain, according to (29) and in order of their increase, the first three values of parameters κ1,
κ2, and ζ2 of a two-layer impedance GL

κ2 = κ
(01)
2,(m)
= ν1m, m = 1, 2, 3,

ζ2 = ζ
(01)
2,(s,m)

=
ν1s

ν1m
, m = 1, s = 2, 3, m = 2, s = 3,

κ1 = κ
(01)
1,(l,m,s) =

ν1l ν
1
m

ν1s
, l = 1, m = 2, s = 3,

(35)

given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
κ2 : κ(01)

2,(1) = 3.832, κ(01)
2,(2) = 7.016, κ(01)

2,(3) = 10.173,

ζ2 : ζ (01)
2,(3,2) =

10.173
7.016 = 1.450, ζ (01)

2,(2,1) =
7.016
3.832 = 1.8309, ζ (01)

2,(3,1) =
10.173
3.832 = 2.6547,

κ1 : κ(01)
1,(1,2,3) =

3.832·7.016
10.173 = 2.6428,

(36)

that provide multiple suppression of the three first lowest-order scattered-field harmonics of a
two-layer impedance GL with the indices n = 0,±1, the impedance given by (29), and arbitrary
values κ<κ1 and ζ1>1.

Note that (36) provide the fulfillment of physically grounded relations κ1<κ2 and ζ2>1.
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3.3.2. Comparison of parameters providing multiple suppression for DR, GL, and impedance GL

For a PEC when w = κ consists of one parameter and D(1)
n (κ) = Jn(κ) the simultaneous

suppression of (only) two harmonics with the indices ±n is possible when J(1)n (νnm) = J(1)−n (ν
n
m) = 0,

i.e. at κ = νnm, where νnm, m = 1, 2, . . . , denote zeros of the nth-order Bessel function Jn (x),
n = 0, 1, 2, . . . .

For a bare (single one-layer) dielectric cylinder, a dielectric rod (DR, when the dimensionless
parameter vector w = (κ, ζ1) comprises two parameters) and GL, vector solutions w∗ to system (12)
have been obtained (both in explicit form and numerically) and analyzed in [5]. For a DR it is
shown [5] that five scattered-field harmonics with the indices n = 0,±1,±2 can be eliminated
simultaneously, so that D(1)

n (κ, ζ1) = 0, n = 0, 1, 2, if J1 (ζ κ) = J1 (κ) = 0, i.e. at⎧⎪⎪⎨⎪⎪⎩
ζ = ζ

(1)
(l,m)
=

ν1
l

ν1
m

,

κ = κ
(1)
(m)
= ν1m,

, l = m + 1, m + 2, . . . , m = 1, 2, . . . , (37)

where ζ = √
ε1.

For a ’bare’ (standard one-layer) GL (the dimensionless parameter vector w = (κ, κ1, ζ1),
κ = k0a<κ1 = k0a1), the suppression of two harmonics with the indices ±n when D(1)

−n = D(1)
n = 0

(n = 0, 1, 2, . . . ) takes place [5] at

κ1 = κ
(n)
(m)
= νnm (n, m = 1, 2, . . . ) ,

ζ = ζ
(n)
(m,s) =

νns
νnm

(n, m, s = 1, 2, . . . , s>m),

κ = κ
(n)
1,(m,p,s) =

νnpν
n
m

νns
(n, m, s, p = 1, 2, . . . , p<s, m<s) .

(38)

One can see that conditions (38) of the GL two-harmonic suppression perfectly match such
conditions (35) for a two-layer impedance GL with n = 1 if one sets κ2 = κGL

1 , ζ2 = ζGL, and
κ = κGL

1 , so that a two-layer impedance GL with the removed internal dielectric layer (κ = κ1)
behaves like a standard GL.

4. Numerical results and discussion

In the following, numerical examples are presented for two distinct cases: (i) when the first three
harmonics are cancelled, and (ii) presentation of similar set of graphs, aiming to put in evidence
the non cancellation of the first three harmonics.

The geometry of the configuration under investigation is reported in Fig. 1. The yellow circle
(left) and cylinder (right) correspond to the surface impedance, that is located at the interface
between the two dielectric layers.

Equations above have been implemented in a MatlabTM script and different parametric analyses
have been performed. All simulations have been carried out at f = 10 GHz. However, different
radii values are reported normalized to the free space wavelengths. In particular, field plots
for Einc = 1ẑ (V/m) incident field propagating in the + x̂ direction are generated for different
number of harmonics n. These later are coded as follows: M corresponds to 2M + 1 harmonics,
i.e., n = −M,−(M − 1), . . . ,−1, 0, 1, . . . , (M − 1), M. Field has been calculated on a grid of
11λ0 × 10λ0 with a step of 0.05 λ0 in both directions, i.e., for a total of 221 × 121 points. For
a better monitoring, in the x direction the observation domain starts from −5λ0 and extend till
6λ0, while it is symmetric in the orthogonal y direction. The symmetry axis of the cylinder is
identical with the ẑ axis, i.e., the central point of the cylinder projection of the (x, y) plane is in
the (0,0) point. Considering the observable, value of the scattered field, that is suppose to be low,
only amplitude of it has been reported.



Research Article Vol. 31, No. 5 / 27 Feb 2023 / Optics Express 7875

4.1. Case 1: cancellation of three harmonics

The first case refers to the situation when the first three harmonics are cancelled. According to the
theoretical values given in (36), it happens for the triplet parameters κ1 = 2.64233, κ2 = 3.83171,
and ζ2 = 2.65508. As a particular value, ζ1 = 1.55 has been considered.

Number of harmonics has been increased by pair, i.e., M = >M + 1 determines an increase
of the number of harmonics from n = 2M + 1 to n = 2(M + 1) + 1. In Fig. 2 the amplitude of
the scattered field for M = 0 (one single harmonic) and M = 1 (three harmonics) are reported.
Referring to the expression of ũ(L)(r, φ) in (5), these corresponds to l = 0 and l = 1, respectively.
In these and following plots, white dashed-line circle represents the metallic cylinder, while the
red dashed line indicates the location of the surface impedance Z, positioned at the interface
between the two dielectric layers.

Fig. 2. Scattered electric field amplitude for different number of harmonics: ũ(L)(r, φ) for
l = 0 (left) and l = 1 (right). Note the different scales (values are in dB). The full cancellation
of the first harmonic is clear (field level around −300 dB). As for the effect of the addition
of the n = −1 and n = 1 harmonics, the field level of around −200 dB is due to numerical
determination of the root of p±1(w, z).

In the following, a value of M = 10 has been set in formulas (5). The amplitudes of the
different harmonics are presented in Fig. 3 (left), while Fig. 3 (right) reports the corresponding
scattered field.

Fig. 3. Case 2: Amplitude Dn of the harmonic indexes for n =

−10,−9, . . . ,−1, 0, 1, . . . , 9, 10, corresponding to M = 10 (left). Scattered electric field
amplitude in dB ũ(r, φ) (right).
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Fig. 4. Scattered electric field amplitude in dB ũ(L)(r, φ) (left) and ũ(M)(r, φ) (right) for
different number of harmonics: M = 10 and various value of l = 0 ÷ 3. Note the different
scales (values are in dB).
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Fig. 5. Scattered electric field amplitude in dB ũ(L)(r, φ) (left) and ũ(M)(r, φ) (right) for
different number of harmonics: M = 10 and various value of l = 4 ÷ 6. Note the different
scales (values are in dB).

Figures 4–6 demonstrate the effect of the single pair of harmonics on the overall scattered field
presenting ũ(L)(r, φ) (left) and ũ(M)(r, φ) (right) calculated by (5) for l ∈ (0, 9). (Separation in
three figures is only motivated to give a better rendering and easier referencing.)

Analysing the figures, one can further note, that

- the amplitude of the scattered field presents a "jump" when the first non-evanescent harmonics
is considered (l = 2 with respect to l = 1) as demonstrated in Fig. 4, 2nd row (left) and 3rd

row (left)

- for all the representations, the field distribution is symmetric with respect to the x̂ axis;
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Fig. 6. Scattered electric field amplitude in dB ũ(L)(r, φ) (left) and ũ(M)(r, φ) (right) for
different number of harmonics: M = 10 and various value of l = 7 ÷ 9. Note the different
scales (values are in dB).

- referring to the field amplitude, one can identify that increasing the number of harmonics above
ℓ = 3 (corresponding field plot in Fig. 4, last row, left), does not significantly increase the
level of the scattered field in Figs. 5 (left) and 6 (left), but rather concentrates it toward the
source (increase of the backscattering) and reduces the field intensity behind the structure.
Appearance of the shadow region is visible starting Fig. 4 (last row, left) and it becomes
more evident from Fig. 5 (first row, left) onward. The backward radiation is going to be low
and more uniform with the increase of the number of harmonics (left columns in Figs. 5
and 6), since local minima of the different terms in the expression of ũ(r, φ) happens at
different angles. The field components associated to the harmonic n can be written as:
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Fig. 7. Case 2: Amplitude Dn of the harmonic indexes for n =

−10,−9, . . . ,−1, 0, 1, . . . , 9, 10, corresponding to M = 10 (left). Scattered electric field
amplitude in dB ũ(r, φ) (right).

|Dn |
√︁

J2
n(k0r) + Y2

n (k0r) exp [ ȷ(nφ + arctan
(︃
Yn(k0r)
Jn(k0r)

)︃
+ arg (Dn))]. Since the amplitude of

Dn shows a decreasing behaviour (see Fig. 3, left), such a conclusion has been expected;

- the main contribution comes from the first two non cancelled harmonics, even if the structure
is large in terms of wavelength. Such phenomena was not present in [17], where with the
increase of the size of the cylinder, the number of harmonics contributing to the scattering
increases and the main contribution comes from higher-order terms.

4.2. Case 2: No cancellation of harmonics

To have a better insight of the effect of the simultaneous cancellation of the first three harmonics
discussed above, a second configuration has been considered when there is no cancellation of
harmonics. The parameters used for this case are κ1 = 1.5, κ2 = 3.5, and ζ2 = 2.1.

Actually, this corresponds to the change of the radii of the dielectric layers and the value of the
refractive index of the external layer (with respect to the values reported at the beginning of Sec.
4.1). The value of ζ1 has been maintained the same.

Comparing the spectral composition of the scattered field in Figs. 3 and 7, one can observe a
clear difference regarding the amplitude of the n = −1, 01 harmonics. In the first case, Fig. 3
(right), they have zero amplitude, while in the second case, Fig. 7 (right), they are almost unitary.
The same plots as above have been generated, and presented in Figs. 8, 9 and 10.

Analysing the figures, one can note, that

- the field distribution associated to the firs harmonic is constant in any radial directions (first
row Fig. 8, left). This is due to the vanishing argument of the exponential for n = 0, hence
only the Hankel function is present with a given weight D0. No one of these factors depend
on φ;

- when the number of harmonics increases, minima of the scattered field are for given azimuthal
directions, so the directions φ of the minima are due to the exponential term(s). This
phenomenon is evincing in all field distributions in Figs. 4–6 and Figs. 8–10, but in the
case corresponding to the configuration mentioned at the previous item and when the
cancellation of the scattered field has been obtained (first two rows in Fig. 4, left);

- for l = 5 one can notice a higher value of the field in the +x̂ direction (second last row Fig. 9,
left). This is because the amplitude of the 5th harmonics is higher than that of the 4th (Fig. 7
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Fig. 8. Scattered electric field amplitude in dB ũ(L)(r, φ) (left) and ũ(M)(r, φ) (right) for
different number of harmonics: M = 10 and various value of l = 0 ÷ 3. Note the different
scales (values are in dB).
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Fig. 9. Scattered electric field amplitude in dB ũ(L)(r, φ) (left) and ũ(M)(r, φ) (right) for
different number of harmonics: M = 10 and various value of l = 4 ÷ 6. Note the different
scales (values are in dB).

right), so when summing it to the other contributions it will be more visible. However
this ordering deepens on the selection of the conditions reported at the beginning of this
section;

- the increase of the ũ(L)(r, φ) field level for the l = 5 terms (discussed above) corresponds
a strong decay of the ũ(M)(r, φ): from ≈ −10 dB (first row Fig. 9 (right)) to ≈ −50 dB
(second row Fig. 9 (right));

- the contributions of the n = ±6,±7,±8,±9 harmonic index terms is negligible (this follows
from the amplitude of Dn for the considered configuration in Fig. 7 (left)).



Research Article Vol. 31, No. 5 / 27 Feb 2023 / Optics Express 7882

Fig. 10. Scattered electric field amplitude in dB ũ(L)(r, φ) (left) and ũ(M)(r, φ) (right) for
different number of harmonics: M = 10 and various value of l = 7 ÷ 9. Note the different
scales (values are in dB).

5. Concluions

A novel rigorous approach has been elaborated that enables one to determine, for a two-layer
impedance GL, explicit numerical values of parameters at which several lowest-order harmonics
of the scattered field are cancelled. A detailed visualization and analysis of the partial cloaking
achieved as a result of this cancellation have been performed. A characteristic feature of the
method is that it provides immediate results for the geometrical and material parameters that
yield partial cloaking or invisibility.

Another important feature of the developed technique is that it enables one to increase the
number of the suppressed scattered-field harmonics using the impedance as a control parameter.



Research Article Vol. 31, No. 5 / 27 Feb 2023 / Optics Express 7883

A two-layer impedance GL may serve thus as a promising cloaking device with the impedance
layer that governs cloaking or invisibility for wider parameter sets and in broader spatial domains.

In particular, the proposed approach and computational tools can be immediately applied to
the analysis of the structure comprising a PEC cylinder with the radius much larger than the
wavelength because there are no limitations on the range of parameters in the formulas (e.g., (32))
that give the characteristics of suppression.

Note the role of impedance in our analysis: the explicit formulas (30) and (31) have been
obtained that couple the impedance with the parameters of the structure (layer permittivities
and radii), as well as the inverse relations that couple the parameter values with the impedance,
where the range of the varying parameters may be taken arbitrary (as it is mentioned in Sec.
3.3). This result enables one to control the total level of suppression and that of any harmonic
by varying either the impedance or the structure parameters. One can state that the obtained
explicit formulas for impedance Z of the infinitely thin impedance layer clearly ’summarizes’ the
suppression (scattering) properties into a single framework providing in this manner a way to
understand and verify the main final result of the modeling.

We note that an objective of the present work is to show the possibility of cancelling the given
harmonics of the covered cylinder rather than comparing it with the bare cylinder case (hence not
only the reduction of the RCS, but the exact mechanism why this happens). The results presented
in the figures demonstrate several different aspects of the achieved suppression.

The method, including its theoretical approach and computational tools, can be extended to
any dielectric-layered impedance structures possessing circular or planar symmetry.

The developed approach is a rigorous method that enables one to obtain explicit values of
parameters (without numerical calculations) that provide the cloaking effect, particularly in terms
of the suppression of the scattered field harmonics and variation of the sheet impedance. This
issue constitutes the novelty of the performed study and the reported findings. In this respect, the
elaborated technique can be used to validate the results obtained by commercial solvers as well
as to study more complicated multi-layer mantle cloaks with ot without impedance sheets and
with no limitations on the range of parameters.

6. Appendix: Cross-products of cylindrical functions

According to the definition [18], 9.1.33 (and preserving the original notations), the expressions

pn = pn (x, y) = Jn (x)Yn (y) − Jn (y)Yn (x) =

|︁|︁|︁|︁|︁|︁ Jn (x) Yn (x)

Jn (y) Yn (y)

|︁|︁|︁|︁|︁|︁ , (39)

qn = qn (x, y) = Jn (x)Y ′
n (y) − J ′n (y)Yn (x) =

|︁|︁|︁|︁|︁|︁ Jn (x) Yn (x)

J ′n (y) Y ′
n (y)

|︁|︁|︁|︁|︁|︁ , (40)

rn = rn (x, y) = J ′n (x)Yn (y) − Jn (y)Y ′
n (x) =

|︁|︁|︁|︁|︁|︁ J ′n (x) Y ′
n (x)

Jn (y) Yn (y)

|︁|︁|︁|︁|︁|︁ , (41)

sn = sn (x, y) = J ′n (x)Y ′
n (y) − J ′n (y)Y ′

n (x) =

|︁|︁|︁|︁|︁|︁ J ′n (x) Y ′
n (x)

J ′n (y) Y ′
n (y)

|︁|︁|︁|︁|︁|︁ , (42)
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are called cross-products of the nth-order Bessel and Neumann functions Jn(x) and Yn(x) and
their derivatives J ′n(x) and Y ′

n(x), n = 0, 1, 2, . . . . In particular,

q0 = I1,0(y, x) = J1 (y)Y0 (x) − J0 (x)Y1 (y) ,
r0 = I0,1(y, x) = −I1,0(x, y) = J0 (y)Y1 (x) − J1 (x)Y0 (y) ,
s0 = p1 = J1 (x)Y1 (y) − J1 (y)Y1 (x) ,

(43)

Cross-products have been a subject of intense studies [19–23], particularly, using the technique
[20] which enables highly accurate calculation of zeros. Note that the recently developed approach
[19] facilitates the analysis of weighted cylindrical polynomials considered as a genaralization of
cross-products.

Present the essential information concerning the occurrence of (real) zeros of cross-products
pn = pn(y) given by (39) considered as functions of y:

• For every x>0 functions pn(y), n = 0, 1, 2, . . . , has each infinitely many positive zeros
pn

m = pn
m(x), n = 0, 1, 2, . . . , m = 1, 2, . . . , alternating with zeros of Jn(y) and Yn(y) (see

Figs. 11).

• Any root pn
m(x) is a continuous increasing function of x>0.

• pn(y = x) = 0, i.e. all pn(y), n = 0, 1, 2, . . . , have the same zero pn,∗
0 = x and for every x>0,{︁

pn
m(x)

}︁∞
m=1 is virtually a periodic sequence with the same period π as the zeros of Jn and

Fig. 11. Plots of J0(y) (*), Y0(y) (o), and p0(y) (-) at x = 1.5 (left) and x = 4.5 (right).

Fig. 12. Left: plots of t0(y) =
J0(y)
Y0(y)

and the lines t0(x) =
J0(x)
Y0(x)

, x = 1, 2, 3 (upper, middle,

and lower lines). Right: p2(y) and 0.4 sin(y − x − 1.35) at x = 1.
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Fig. 13. Plots of p0(y) (left) and p1(y) (right) at x = 1 (o), x = 2 (-), and x = 3 (*).

Yn have, so that, highly accurate,

pn
m+1 = pn

1 + x + mπ, m = 1, 2, . . . , n = 0, 1, 2, . . . (44)

(see Fig. 12 and Fig. 13).
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