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Abstract 

 

Residual Moisture (RM) in freeze-dried products is one of the most important critical quality 

attributes (CQAs) to monitor, since it affects the stability of the active pharmaceutical ingredient 

(API). The standard experimental method adopted for the measurements of RM is the Karl-Fischer 

(KF) titration, that is a destructive and time-consuming technique. Therefore, Near-Infrared (NIR) 

spectroscopy was widely investigated in the last decades as an alternative tool to quantify the RM. In 

the present paper, a novel method was developed based on NIR spectroscopy combined with machine 

learning tools for the prediction of RM in freeze-dried products. Two different types of models were 

used: a linear regression model and a neural network based one. The architecture of the neural 

network was chosen so as to optimize the prediction of the residual moisture, by minimizing the root 

mean square error with the dataset used in the learning step. Moreover, the parity plots and the 

absolute error plots were reported, allowing a visual evaluation of the results. Different factors were 

considered when developing the model, namely the range of wavelengths considered, the shape of 

the spectra and the type of model. The possibility of developing the model using a smaller dataset, 

obtained with just one product, that could be then applied to a wider range of products was 

investigated, as well as the performance of a model developed for a dataset encompassing several 

products. Different formulations were analyzed: the main part of the dataset was characterized by a 

different percentage of sucrose in solution (3%, 6% and 9% specifically); a smaller part was made up 

of sucrose-arginine mixtures at different percentages and only one formulation was characterized by 

another excipient, the trehalose. The product-specific model for the 6% sucrose mixture was found 

consistent for the prediction of RM in other sucrose containing mixtures and in the one containing 

trehalose, while failed for the dataset with higher percentage of arginine. Therefore, a global model 

was developed by including a certain percentage of all the available dataset in the calibration phase. 

Results presented and discussed in this paper demonstrate the higher accuracy and robustness of the 

machine learning based model with respect to the linear models.  
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List of abbreviations 

 

ANN  Artificial Neural Networks  

API  Active Pharmaceutical Ingredient 

CQA  Critical Quality Attribute 

CV  Cross Validation 

FDA  Food and Drug Administration 

KF  Karl Fischer 

LM  Levenberg-Marquardt 

LR  Linear Regression 

ML  Machine Learning 

MSE  Mean Squared Error 

MVA  Multivariate Analysis 

NIR  Near-Infrared 

PAT  Process Analytical Technologies 

PCA  Principal Component Analysis 

PLS  Partial Least Square 

QbD  Quality by Design 

RM  Residual Moisture 

RMSE  Root Mean Square Error 

RMSEC Root Mean Square Error of Calibration 

RMSECV Root Mean Square Error of Cross-Validation 

SNV  Standard Normal Variate 

SOP  Standard Operating Procedure 

SR  Small Range 

WR  Wide Range 

 

List of symbols 

 

J  number of wavelengths 

M  number of samples 

X  matrix of NIR spectra (M x J) 

Y  matrix of quality attributes (M x 1) 
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1 Introduction 

 

Freeze-drying is a crucial step in many drug manufacturing processes as it provides long-term 

stability to formulations containing an active pharmaceutical ingredient (API). The aim of the freeze-

drying process is to remove the water present in a product by sublimation, converting the ice into 

vapour, by operating at low pressure and temperature. The low operating temperatures make this 

process particularly suitable for heat-sensitive products, such as pharmaceuticals. [1] 

Pharmaceutical companies must meet standards imposed by regulatory agencies and pharmacopeia 

or selected by the manufacturer, so final products must meet certain Critical Quality Attributes 

(CQAs) [2,3]. Since water could generate biological and chemical degradation processes, the residual 

moisture (RM) is one of the main CQA to monitor in order to assess the quality of the product.  

Currently, CQAs are measured through laboratory testing of samples collected from a batch. The 

most used method to measure RM in freeze-dried products is the Karl Fisher (KF) titration, which 

has a lot of disadvantages, such as it is a destructive method, so the samples analyzed are wasted, 

turning out as an economic loss for the company income. It is time-consuming, since handling of the 

sample is required, and the instrument must be calibrated before each analytical session. Moreover, 

safety issues for operators are not negligible, since polluting reactants (formamide and methanol) are 

involved [4,5].  

For improving pharmaceutical developments and manufacturing, new technologies have been 

encouraged by the regulatory authorities in the last years. In particular, FDA published in 2002 the 

Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach, and in 2004 the PAT – A 

Framework for Innovative Pharmaceutical Development Manufacturing and Quality Assurance 

[6,7]. This new approach introduces the concept of Quality-by-Design (QbD) according to which the 

quality of the product has to be embedded in its production process and not just tested at the end of 

the manufacturing. In this framework, Near-Infrared Spectroscopy (NIR Spectroscopy) has been 

investigated a lot as one of the most powerful Process Analytical Technologies (PAT) tool in many 

fields, such as the agricultural, food and pharmaceutical industries. In fact, it is a rapid, non-invasive 

method that requires minimal sample pretreatments. Moreover, it allows to verify the RM on majority 

of the vials within a batch, instead of a fraction of it, for demonstration of batch homogeneity and 

uniformity. Due to the strong absorption of water around 5150 cm-1, NIR spectroscopy was widely 

used for the determination of RM [8,9,10,11,12]. The main challenging issue is finding a reliable 

model that allows to predict the RM value from the NIR spectra. This can be done through the 

chemometric analysis. 

Chemometrics is the method to extract chemical relevant information from the available data. Most 
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of the published applications for RM determination are focused on the application of Partial Least 

Squares (PLS) as regression method used in the model development step. It turned out to be a 

powerful tool, but it considers only the linear dependence between the spectra and the residual 

moisture content [13,14,15,16].  

To address this issue and to try to improve the accuracy of the models, machine learning tools could 

be a suitable alternative for dealing with complex data.  

Machine Learning techniques differ from traditional algorithms because they have also the ability to 

learn as well as to apply pre-programmed decisions. Traditional software receives input data and 

codes written by the user and generate an output. Machine Learning algorithms, on the other hand, 

are able to find the functional relationship that binds the input data with the desired output. Their 

formulation does not require a priori knowledge of the physics governing the system or the 

relationships that link input and output variables [17]. Therefore, the main advantages of machine 

learning tools are the capability of nonlinear modelling and to give very good results with little 

knowledge and little training data [18].  

Most of the published studies using machine learning tools refer to the food and agriculture field. For 

example, Parastar et al. demonstrated the possibility to discriminate fresh from thawed meat by using 

different machine learning algorithms based on NIR spectra [19]. Coronel-Reyes et al. determined 

the egg storage time at room temperature using an artificial neural network (ANN) [20]. Richter et al. 

used machine learning techniques to establish the geographical origin of white asparagus [21]. 

Martins et al. presented a deep learning architecture for the prediction of the soluble solids content of 

fruit. [22] However, very few studies have investigated the coupling between NIR spectroscopy and 

machine learning tools in the pharmaceutical industry. An attempt in this direction was made by Zhao 

et al. They developed prediction models, coupling machine learning approaches with NIR 

spectroscopy, for a rapid quantification of three active pharmaceutical ingredients (API). They also 

compared the performances with the traditional PLS algorithm [23]. Akbar et al. explained strategies 

toward machine learning-based mAb design and the computational and experimental steps required. 

However, the most challenging issue for the application of machine learning in biopharmaceutical 

manufacturing is to demonstrate the robustness of the models for GMP use [24].  

Here, a linear regression model and a neural network based model were developed to predict the RM 

values in freeze-dried products starting from NIR spectra. The performances of the two models were 

compared by calculating the RMSE value and plotting the parity diagrams. The aim of the present 

work is to demonstrate the feasibility of the application of neural networks for this purpose and their 

better performance with respect to the linear model. Moreover, the proof of the robustness and the 

ability of the neural network based model to predict RM values of products not involved in the 
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calibration step is another goal of this work. Lastly, the effect of reducing the size of the training step 

on the model performance was investigated.  

 

2 Materials and Methods 

 

 Machine Learning Techniques 

The interest in Machine Learning (ML) technique has been continuously growing in recent years. 

Machine learning algorithms use computational methods to “learn” information directly from data, 

without relying on predetermined equations, e.g. a first-principle based model [25,26,27,28].  

A typical workflow for the building of a machine learning model consists of the following steps [29]. 

Firstly, the starting dataset must contain several input properties, called feature, and the outputs, 

called labels or targets. In the present case study, the initial dataset is made up of the matrix X of the 

NIR spectra (input) and the vector Y of residual moisture values measured by KF titration of a specific 

formulation (output). The dimensions of the two variables are respectively M x J and M x 1. In the X 

matrix, each column represents a wavelength (J), so a variable, and each row is a measurement, so a 

spectrum (M). The latter parameter can also be interpreted as the number of samples analyzed. 

Machine learning algorithms are not smart enough to understand the difference between noise and 

structured information contained into the data. Therefore, the next step is the preprocessing of the 

dataset to identify potentially outlier and remove the noise of measurements. In this step a scaling or 

a normalization of the data could be necessary, as the Standard Normal Variate (SNV) method [25]. 

In this preliminary phase, the Principal Component Analysis conducted by Bobba et al. was exploited 

for the wavelength range selection, as deeply described in their work [30]. Briefly, by looking at the 

spectra of samples with different residual moisture it can be seen that the greatest variation occurs at 

about 5150 cm-1, which corresponds to the specific peak of water. Water is a component that all the 

datasets used have in common. Therefore, the range of wavelengths of interest should encompass this 

value and to obtain a robust model, mostly influenced by water content, it might be effective to focus 

on a narrow range of wavelengths that encompassed the water peak. In this way, specific peaks due 

to product specific characteristics were less considered. All these statements are in line with the 

findings of the previous works of Bobba et al. [30]. This step was a sort of feature selection, allowing 

the identification of the most relevant variables for building the model, in this case the range of 

wavelengths specific to water. Then, the dataset was split into two parts: 70% of the dataset was used 

as training set (Xtrain and Ytrain) and the remaining 30% as test set (Xtest and Ytest). These percentages 

were also varied during the study, decreasing the size of the dataset up to 40% for training purposes, 

aiming to identify the minimum size of the dataset needed for training. The training set was used in 
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the calibration phase of the model, where it processed the spectra with the values of RM obtained by 

KF to find out the model. In this phase the choice of the learning algorithm was really important. In 

the present work two different algorithms were compared: a linear regression model and a neural 

network. There is no best method or one size fits. Finding the right algorithm is partly just trial and 

error [18]. Then, the test set (Xtest), that the model has never seen before, was projected into the trained 

model to obtain the predicted values of residual moisture (Ypred). To assess the predictivity of the 

model, the Root Mean Squared Error (RMSE) value was calculated with Eq. 1 between the RM value 

measured by KF (𝑦𝑖) and the one predicted by the model (𝑦𝑝𝑟𝑒𝑑,𝑖): 

 

 𝑅𝑀𝑆𝐸 =  [
∑ (𝑦𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑀
𝑖=1

𝑀
]

0.5

 (1) 

   

The number of samples in the dataset analyzed was reported as M. The lower the RMSE value, the 

better the model performances. Also, the Root Mean Squared Error of Calibration (RMSEC) and of 

Cross-Validation (RMSECV) were calculated to assess the accuracy of the model. They were defined 

as the squared difference between the measured and the predicted values of residual moisture divided 

by the number of samples forming, respectively, the calibration set and the cross-validation one. If 

similar values between the two quantities are obtained, it means that the model is performing well.  

Moreover, the parity plots were reported, which correlate the RM values calculated by the model (y-

axis) with the RM values measured by KF (x-axis). Obviously, the best situation is that all points lie 

on the bisector, i.e. the line corresponding to y = x, meaning that the value of residual moisture 

measured through KF is equal to the calculated one from NIR spectra, while the farther the point is 

from the bisector, the worse the agreement of the ANN model. 

It has been also useful to report the diagrams that correlate the absolute error (%) with the RM values 

measured by KF. An arbitrary threshold for this absolute error (difference between residual moisture 

calculated and measured by KF) equal to 0.5% (indicated by a red line in the following graphs) was 

chosen. Ideally the value of absolute error should be zero, but this is (obviously) quite impossible. 

Therefore, a slightly little discrepancy between the two instruments (NIR and KF) had to be set, and 

the value of 0.5% was considered adequate in this study. In this framework it has to be considered 

that also KF titration is affected by an error, that may be considered equal to 0.3%. Therefore, when 

using NIRs for RM in line estimation we do not know if the error is due just to the ANN model or 

also to KF: we can take into account this occurrence by setting a lower target value of RM. 

 

 Linear Regression Model 
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Linear models make a prediction using a linear function of the input features. These models are simple 

to interpret and easy to fit, so usually they are used as a baseline for evaluating other, more complex, 

regression models [25]. 

In a linear model the output, the RM value in this case, is the weighted sum of the input features, so 

the matrix of NIR spectra, plus the bias term (that is the constant intercept term). For multivariate 

regression, the general prediction formula for a linear model is reported in Eq. 2: 

 

 𝑦𝑝𝑟𝑒𝑑,𝑖 = 𝜃0 ∙ 𝑥0
𝑖 + 𝜃1 ∙ 𝑥1

𝑖 + ⋯ + 𝜃𝑝 ∙ 𝑥𝑝
𝑖 + 𝑏 (2) 

   

The input variables are denoted with 𝑥0 to 𝑥𝑝 and i refers to the rows of the X matrix. 𝜃 and 𝑏 are 

parameters of the model that are learned and 𝑦𝑝𝑟𝑒𝑑,𝑖 is the prediction the model makes. Training the 

model means setting its parameters so that it best fits the training set. Therefore, the aim of the model 

is to find the parameters that minimize the cost function, that is the Mean Squared Error (MSE), 

defined as the sum of the squares of the residuals [27].  

Spyder (Python 3.9) was used to create the linear regression model by using machine learning 

exploiting the module Scikit-learn. This module includes a number of libraries that must be installed, 

such as NumPy, SciPy and matplotlib. NumPy is essential because any data will have to be converted 

to a NumPy array. SciPy provides advanced linear algebra routines, mathematical function 

optimization and statistical distribution. Matplotlib allows the visualization of the data, line charts, 

histograms or scatter plots. All these libraries were installed and imported in Spyder. The command 

train_test_split was used to split the dataset into the training and the test set [31].  

 

 Neural Network 

Neural networks, also known as artificial neural network (ANN), are used in machine learning field 

and are at the heart of deep learning [17]. The main limitation of the linear models is the resolution 

of nonlinear problems, so characterized by very different features as input. Neural networks can be a 

powerful tool to overcome this issue. Their structures are inspired by the human brain, mimicking the 

interaction of biological neurons with each other [28].  

A neural network consists of neurons connected between each other that relate the inputs to the 

desired outputs [32]. They are characterized by three main parts: the input layer, one or more hidden 

layers and the output layer. It can be seen as a generalization of linear models that performs multiple 

stages of processing to come to a decision. In fact, each layer is made up of a certain number of nodes 

or neurons that have an associated weight [25]. The input layer is characterized by a number of 

neurons equal to the number of inputs: so, in the presented case, the values of absorbances at specific 
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wavelengths. The number of neurons of the hidden layer were chosen by trials and errors, since there 

is no specific rule to follow. The best combination was found to be two hidden layers with respectively 

10 and 5 neurons, found by trials and errors. The output layer consists of one single neuron since it is 

a regression task and the aim was the determination of the residual moisture content in the final 

product. The values of the input layer are collected and sent to each neuron of the next hidden layer. 

Here, all inputs are multiplied by their respective weights and then summed up. These weights help 

the network to determine which variables contribute in a more significant way to the output. To make 

this model more powerful than a linear one, a nonlinear function is applied to the result, also known 

as activation function. Afterward, the result is used in the weighted sum that computes the output. 

This allows neural networks to learn much more complex functions than a linear model could. The 

main activation functions are the logistic regression, the rectified linear unit (ReLU) and the 

hyperbolic tangent. It has been found in literature that logistic regression is primarily used for 

classification tasks. Making several attempts it was evident that the hyperbolic tangent was the 

function that generates the best results. Neural networks models have a lot of coefficients (weights 

and bias) to learn with respect to the linear model: one between every input and every hidden layer 

and one between every neuron in the hidden layer and the output [25,27]. The output of each neuron 

in each hidden layer is given by Eq. 4: 

 

 𝑜𝑢𝑡𝑗
(𝑟)

= 𝑓 (𝑏𝑟−1 + ∑ 𝑤𝑖,𝑗
(𝑟−1)

𝑜𝑢𝑡𝑖
(𝑟−1)

𝑛𝑟−1

𝑖=1 

) (4) 

 

The first term, 𝑜𝑢𝑡𝑗
(𝑟)

, is the output of the 𝑗𝑡ℎ neuron in the 𝑟 layer and 𝑜𝑢𝑡𝑖
(𝑟−1)

 represents the output 

of the 𝑖𝑡ℎ neuron of the previous layer. The weights are reported as 𝑤𝑖,𝑗 and are referred to the neuron 

of the previous layer, as the bias[29,33]. The activation function is indicated with 𝑓 and is given by 

𝑓 = 𝑡𝑎𝑛ℎ().  

MATLAB (R2019b) was used to create the neural networks used in the present work exploiting the 

Neural Net Fitting toolbox. It is a toolbox allowing the building of the neural network by setting 

several parameters. Firstly, it was essential to define the percentages of training and test set of the 

initial dataset. After the construction of the network a training function must be selected. In this work 

the Levenberg-Maqruardt algorithm was used, by selecting trainlm in the associated setting, which 

has been found to be much more efficient than other techniques. As transfer function, the hyperbolic 

tangent was used by selecting tansig for all the hidden layers. The preprocessing of the data was 

applied both to the input and the output data by processing PCA with the command processpca and 
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by normalizing them to fall in the range [-1,1] with the command mapminmax. Further details on the 

Levenberg-Marquardt algorithm may be found in [34,35,36].  

During the training step, neural networks learn by repeating the process of forward and 

backpropagation for every input variable several epochs updating the values of the parameters. The 

training of the neural network stops when the maximum number of epochs (equal to 1000) is reached, 

the performance gradient falls below the minimum value, or the validation performance has increased 

more than the maximum failures selected (equal to 6). The most challenging step is the validation of 

the network with the test set. Once the neural network has fit the data, it forms a generalization of the 

input-output relationship and is ready to predict new input variables that has never been seen [32].  

 

 Experimental Procedures 

Freeze-drying cycles were conducted in the laboratories of the Guidonia Montecelio (Italy) site of 

Merck Serono S.p.A using a lab-scale freeze-drier (Lyostar3, SP Scientific, Warminster, USA). 

Specifically, the dataset acquired by Bobba et al. was expanded carrying out additional tests in the 

same operating conditions. Other experimental data were acquired from the previously published 

study [30]. Seven different aqueous solutions, freeze-dried into 2R glass vial (Nuova Ompi, Piombino 

Dese, Italy) with a filling volume of 1 mL, were considered for samples preparation: 

- sucrose 6%w aqueous solution, labelled as S6; 

- sucrose 3%w aqueous solution, labelled as S3; 

- sucrose 9%w aqueous solution, labelled as S9; 

- sucrose 6%w + arginine 0.5%w aqueous solution, labelled as SA05; 

- sucrose 6%w + arginine 1%w aqueous solution, labelled as SA1; 

- sucrose 3%w + arginine 3%w aqueous solution, labelled as SA3; 

- trehalose 6%w aqueous solution, labelled as T6. 

Sucrose and arginine were supplied by Merck Life Science (Darmstadt, Germany), while trehalose 

by Sigma-Aldrich (Saint Louis, USA). Ultra-pure water was obtained by a Millipore water system 

(IQ 7000, Merck Millipore, Burlington, USA). Vials were placed in a honeycomb layout and 

surrounded by metal frames, in direct contact with the shelves of the freeze-dryer. The process 

conditions of the freeze-drying cycle conducted were the same used by Bobba et al. [30] and here 

reported for the sake of clarity: 

- freezing at -45°C for 6 h, with an annealing step at -15°C for 2 h; 

- primary drying at -25°C and 5 Pa for 30 h; 

- secondary drying at 35°C and 5 Pa for 10 h. 

All the cooling / heating rates were set at ± 2°C/min, except for the heating rate in the transition from 
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the primary to the secondary drying, set at +1°C/min. In order to explore a wide range of moisture in 

the samples, an already implemented manual humidification was made to get a range of residual 

moisture in the sample between 1 – 5 %. The amount of water to be added (in the order of 𝜇𝐿) in each 

vial was calculated by multiplying the weight of the cake by the target moisture content to reach, by 

assuming an initial RM of 0.5 %. Then, the small amount of water was inserted into the stopper and 

vials were closed upside-down. They were left in the upside position over-night, leading the diffusion 

of water [37]. The number of samples making up each dataset is summarized in Table 1. 

 

Table 1: Number of samples in each dataset and description of the corresponding formulation. 

Data set Formulation N° Samples 

S6 Sucrose 6%w 91 

S3 Sucrose 3%w 63 

S9 Sucrose 9%w 36 

SA05 Sucrose 6%w + arginine 0.5%w 30 

SA1 Sucrose 6%w + arginine 1%w 28 

SA3 Sucrose 3%w + arginine 3%w 31 

T6 Trehalose 6%w 45 

 

 

 NIR Spectra Acquisition 

After freeze-drying and humidification, all the samples were analyzed by a Fourier Transform NIR 

spectrometer (Antaris MX FT-NIR, Thermo Fischer Scientific, Waltham, USA), equipped with an 

InGaAs detector and a halogen NIR source. The acquisition of the spectra was in diffuse reflectance 

mode in the full wavelength range 10000 – 4000 cm-1. The spectrum of each sample was the result of 

the average between 96 scans to reduce the noise of measurement and increase its quality. The NIR 

probe pointed on the side of the freeze-dried cake [30].  

 

 Karl-Fisher titration 

After the acquisition of the spectra, all the samples were analyzed by KF titrations following the 

Standard Operative Procedure (SOP) of the company. A coulometric titrator was employed (C30S 

Mettler Toledo, Columbus, USA). The equipment was calibrated before each analytical session with 

the titration of a standard solution (Honeywell HYDRANAL Water Standard 1.0, Fisher Scientific, 

Milano, Italy). The solvent used included formamide and methanol and the percentage of water 

content was calculated [30]. The KF titration was used as reference method to build the regression 
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model. Being a standardized analytical procedure, the reference values contain an analytical error and 

a limit of detection. The expected error from a KF analysis may be up to ±0.3% [38, 39, 40]. A such 

high error with respect to the NIR measurements is justified by the handling and variability of the 

sample preparation. 

 

 Pretreatment of spectra 

Preprocessing is a general term for methods to go from “raw” instrumental data to “clean” data for 

the processing step. In fact, due to the working principle of instruments of measurement, many 

physical and chemical phenomena can cause a deviation from the linear relationship given by the 

Beer’s law. This results in noise and offset in the plot of the spectra and the aim is to remove it and 

make all the samples comparable with each other [41,42]. The must-have preprocessing technique 

used with NIR spectra is the Standard Normal Variate (SNV) correction. It is a row-wise method that 

allows to highlight better the actual differences between samples. By looking at the full wavelength’s 

spectra, the trend appeared flat for wavenumber values higher than 7000 𝑐𝑚−1. Therefore, the 

wavelength range used for model development was reduced to 7000 − 4250 𝑐𝑚−1, according to the 

findings of Bobba et al. [30].  Moreover, some spectra were very noisy and different from the expected 

ones and so they were removed by PCA or manually.  

 

 Models developed 

Three models were developed in two different wavelengths ranges. The signals specific to water were 

observed in the band of O-H stretching and H-O-H bending at around 5150 cm-1. Also, an overtone 

of O-H stretch was observed at around 6900 cm-1. As pointed out above, most of the spectral 

information was observed in the region between 4250 and 7000 cm-1. Here, signals specific to the 

analyzed product were noticed. For instance, in the region between 4000 and 4500 cm-1 the sucrose 

presented a peak corresponding to the C-H stretching. The same situation was almost noticed for the 

trehalose. Instead, by looking at the spectra of the sucrose-arginine mixtures it appears that as the 

concentration of arginine increases (in terms of percentage of the total solid fraction), the peak in the 

water region tends to decrease and another peak, specific to the arginine product, appeared at around 

4900 cm-1. The spectra of the different formulations in the smaller region were reported in Fig. S1 

and in Fig. S2 of the Supplementary Information.  

Taking into account all these considerations, two different wavelengths ranges were examined: 

- Small Range (SR): it considered the 5290 – 4787 cm-1 region and focused on the most 

significant peak of water at around 5150 cm-1, the one with the highest loading value. 

According to previous literature works, in this way specific peaks in product characteristics 
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were less considered and the model would be more robust and generalized [30]. 

- Wide Range (WR): it considered the 7100 – 4250 cm-1 region and also included the peaks 

characteristics of the different products contained in the individual formulations.  

In this framework, three different models were developed: 

1) Model S6: dataset S6 was used (as reference product) as to build and internally validate the model 

and all the remaining datasets (S3, S9, SA05, SA1, SA3 and T6) were used as external validation 

set. The percentages of the training and test set were changed during the analysis from 70% up to 

40%. The purpose of this model was to obtain a robust model in the perspective of reducing the 

experimental effort for model development and laboratory testing. The term “robust” refers to the 

ability of the model to predict with good accuracy the RM value of formulations not included in 

the calibration step. This may be possible if the inputs given to the model are similar, that is, if 

the formulations have comparable spectra. In addition, the use of neural networks greatly 

improved the analysis and can handle even small differences in the input data. The dataset used 

as reference product (S6 in this case) to build the model was chosen arbitrarily, based on the fact 

that a larger amount of data was available for this product, although, in principle, any other dataset 

could have been chosen.  

2) Ad – Hoc Models: two ad hoc models were developed for the sucrose-arginine mixture at different 

percentages and for the trehalose solution. This step was done to assess the quality of the dataset 

containing an amino-acid (arginine) and a different excipient (trehalose) with respect to the 

dataset used for the calibration step in the development of the model. In fact, very bad results 

were obtained with sucrose-arginine mixture as external dataset with the Model S6. The key 

reasons will be explained in the following section.  

3) Global Model (GM): a single dataset, including a certain percentage of all the datasets shown in 

Table 1, was used in the calibration phase. Also, in this analysis, the percentages of the training 

set were changed from 70% to 40% to see if any worsening in performance occurred. Many trials 

were done in this direction by previous literature works, but very few have used neural networks. 

Being nonlinear tools, they have the advantage to better handle the huge and so different dataset, 

used as input, with respect to the linear model.  

 

3 Results and Discussion 

 

The performances of the two algorithms, based on the linear model and on neural network, were 

compared for the prediction of residual moisture in freeze-dried products. The performances are 

summarized in Table 2 and in Table 3, where the RMSE is shown for Model S6 and the Global model 
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(Table 2) and for the Ad-Hoc Models (Table 3), both in the small range and in the wide range, used 

for the various datasets. 

Neural network and linear regression turned out in comparable performances in the case of the two 

ad hoc models, as confirmed by the RMSE values in Table 3. For example, in the case of SA05 

dataset the RMSEs were respectively 0.288 (LR) and 0.233 (NN). On the contrary, neural network 

was more accurate in the prediction of dataset different from the ones used in the calibration phase to 

develop the model, i.e. Model S6. In fact, by considering for example the T6 dataset the RMSE of 

the neural network was much lower than the one calculated by the linear model (0.199 against 0.334). 

Also in the Global Model, neural network was better performing thanks to its non-linearity. 

Especially, its main advantage is the capacity of dealing well with the presence of arginine or 

trehalose. The RMSE values in Table 2 confirmed these findings.  A detailed discussion is provided 

in the following sections. 

 

Table 2: RMSE obtained when using the Model S6 and the Global Model in the wavelength range SR or WR, and 

using the linear model (LR) or the neural network (NN). 

 Model S6 SR Global Model SR Model S6 WR Global Model WR 

Dataset 
RMSE 

LR 

RMSE 

NN 

RMSE 

LR 

RMSE 

NN 

RMSE 

LR 

RMSE 

NN 

RMSE 

LR 

RMSE 

NN 

S6 0.122 0.172 0.358 0.213 0.066 0.156 0.133 0.167 

S3 0.519 0.446 0.493 0.295 0.509 0.681 0.269 0.298 

S9 0.774 0.305 0.444 0.309 0.539 0.296 0.249 0.259 

SA05 0.873 0.554 0.658 0.356 0.765 0.643 0.426 0.367 

SA1 0.707 0.351 0.436 0.387 0.583 0.803 0.269 0.573 

SA3 0.519 0.572 0.352 0.173 0.514 0.963 0.367 0.318 

T6 0.334 0.199 0.325 0.181 0.773 0.338 0.283 0.249 
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Table 3: RMSE obtained when using the LR and the NN models in case of ad hoc models for arginine-sucrose and for 

trehalose formulations. All the results reported were obtained for SR. 

 
Ad-hoc Model for Arginine-

Sucrose 
Ad-hoc Model for Trehalose 

Dataset RMSE LR RMSE NN RMSE LR RMSE NN 

SA05 0.288 0.233 - - 

SA1 0.336 0.229 - - 

SA3 0.227 0.115 - - 

T6 - - 0.334 0.199 

 

 

 Model S6 

Model S6 was developed and tested considering both wavelength ranges, SR and WR. The model 

was developed splitting the S6 dataset into two portions: 70% was used as training set (64 samples) 

and the remaining 30% as test set (27 samples) in a random way, so in a way that all RM values would 

be explored by both sets. The dataset S3, S9, SA05, SA1, SA3 and T6 were used as external dataset 

to assess the robustness of the model. The parity plots are reported in Fig. 1 and compare the RM 

values calculated by the model with the ones measured by the reference method, the KF titration. In 

the upper part of the graph, on the left, results obtained using the linear model are reported (graph a) 

and on the right, those obtained with the neural network (graph b). Obviously, the best situation is 

that all points lie on the bisector, but small deviations are permitted for technical limitations of the 

analytical technique and issues with the models. In this case, since S6 dataset was included in the 

calibration step, the trend fitted perfectly the points as shown in Fig. 1, graphs a and b. Also, the 

graphs of the absolute error as a function of the RM value measured by KF were reported in Fig. 1, 

graphs c and d. The absolute error was calculated as the absolute difference between the calculated 

and the measured value of RM (in %). The red line at 0.5% was assumed as the limit to assure the 

applicability of the model. In Fig. 1, graphs c and d, it is clearly visible that both the developed models 

are characterized by a very good accuracy, with 100% of the points lying below the acceptance 

threshold (red line).  
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Figure 1: Parity diagrams (a, b), comparing the RM measured (%) and the RM calculated (%), and absolute error plots 

(c, d), obtained using the linear regression (a, c) and the neural network (b, d) models for dataset S6 for SR.  

 

According to the data reported in Table 2, the neural network resulted in lower RMSE values than 

the linear model for small wavelength ranges (SR). In particular, its better performance was 

confirmed by the RMSE values of the arginine-sucrose mixture: for SA05 the neural network showed 

an RMSE value of 0.554 against 0.873 for the linear model; for SA1 the RMSE values were 

respectively 0.351 and 0.707. The parity diagrams and the absolute error plots were reported in the 

Supplementary Information in Fig. S3 and Fig. S4.  For the reasons explained in the Materials and 

Methods section, a RMSE value not greater than 0.5 was acceptable. So, the neural network 

demonstrated a very good accuracy, comparable to the intrinsic error of the analytical method. 

Instead, both algorithms, neural network and linear model, failed in the prediction of the SA3 dataset, 

characterized by the highest percentage of arginine in solution (50% of the total solid fraction), with 

RMSE values respectively equal to 0.572 and 0.519. The spectra of the sucrose solution, the product 

used in the calibration of the model, is, in fact, very different from the one of sucrose-arginine mixture 

at high percentage. The plots of the different spectra are reported in Fig. S2 of the Supplementary 
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Information. The presence of arginine led to the disappearance of the peak specific of water at 5150 

cm-1. Since the model was analyzed in the SR wavelength range, specific for the highest peak of 

water, these results were considered reasonable. The bad performances of the models were also 

confirmed by the absolute error plots shown in Fig. 2, graphs c and d, where almost half of the points 

are above the acceptance threshold (red line).  

Neural network described better also the dataset characterized by a different percentage of sucrose, 

S3 and S9 (for SR). In the first case the RMSE value calculated was 0.446 against 0.519 of the linear 

model. The parity diagrams and the absolute error plots were reported in Fig. S5 of the Supplementary 

Information. The largest difference was found for the prediction of the dataset with the highest 

percentage of sucrose, S9, resulting in RMSE values respectively equal to 0.305 and 0.774. The 

spectra of S6, S3 and S9 were similar, as reported in Fig. S1 of the Supplementary Information. 

However, some small differences, due to the different percentages of sucrose in water, led the linear 

model to give a worse prediction than the neural network. These findings were confirmed by the 

absolute error plots reported in Fig. 2, graphs a and b. Here, in the case of neural network only the 

9% of the samples exceeded the acceptance threshold (red line); while, in the case of linear regression 

model 40% of the samples were above the acceptance threshold, index of the poor predictivity of the 

linear model.  
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Figure 2: Comparison between the absolute error plots obtained for S9 dataset (a, b) and for SA3 dataset (c, d) in case of 

linear regression (a, c) and neural network (b, d) models developed with S6 database are used for SR. 

 

The same considerations were done for the trehalose formulation, T6 (SR). The shape of the spectrum 

is similar to the one of S6 dataset. Therefore, the prediction turned out in accurate values of RMSE 

(0.199) for the neural network. A worse prediction, but still acceptable, was obtained for the linear 

regression, with a RMSE value equal to 0.334. The parity diagrams and the absolute error plots are 

reported in the Supplementary Information in Fig. S6. It has to be highlighted that the RMSE value 

found was slightly equal to the one obtained for S6 dataset (equal to 0.172), involved in the calibration 

step. This means that the model, which was calibrated only with sucrose as excipient, can perfectly 

predict the RM value of a formulation containing a different excipient, such as trehalose. This was 

made possible by the application of neural networks, which are nonlinear algorithms that can handle 

even more complex and challenging problems, and by focusing in the region specific of the peak of 

water.  

The application of the model to a wider range of wavelengths yielded in worst performances for the 

neural network, as shown in Table 2. Obviously, the prediction of dataset S6, also included in the 
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calibration step, resulted in good accuracy. For all the other datasets, the RMSE values found were 

above the acceptable error given by the experimental method. This was considered as legitimate, 

since by enlarging the range of wavelengths, more peaks specific of the formulations were included.  

 

 Ad-Hoc Models 

The poor results obtained with the Model S6 for the prediction of SA3 dataset suggested to develop 

an ad hoc model for the sucrose-arginine mixtures. The model was developed by including a certain 

percentage of SA05, SA1 and SA3 datasets in the calibration step, so that all the three different 

formulations containing the arginine were involved in the training phase of the model. Only the small 

range was analyzed. Also in this case, 70% of the dataset was used as training set (62 samples) and 

the remaining 30% as test set (27 samples).  The results are shown in Table 3. For the SA3 dataset 

the RMSE values were 0.227 (for linear model) and 0.146 (for neural network); for SA1 they were 

respectively 0.336 and 0.229 and for SA05 they were equal to 0.287 and 0.233. The performances of 

the linear model and the neural network appeared to be comparable. This was reasonable since only 

few samples were involved in the calibration step and they had pretty similar spectra. The parity 

diagrams and the absolute error plots are reported in the Supplementary Information in Fig. S7, S8 

and S9.  

 

 

Figure 3: Parity diagrams comparing the RM measured (%) vs the RM calculated (%) using the linear regression (a) and 

the neural network (b) models developed for dataset T6 for SR.   

 

Another ad hoc model was developed, for the trehalose containing mixtures. The training set was 

made of 32 samples (70%) and the test set of 13 samples (30%). The comparison between the two 

models is given in Table 3, with a RMSE value equal to 0.155 for the linear model and 0.128 for the 

neural network. As in the previous case, the performance of the two models was comparable for the 
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reasons discussed above. These findings were confirmed by the parity diagrams shown in Fig. 3a and 

3b, indicating no or little difference between the two plots.  The absolute error plots were reported in 

Fig. S10 of the Supplementary Information.  

 

 Global Model 

For the global model evaluation, the whole dataset made up of S6, S3, S9, SA05, SA1, SA3 and T6, 

was split into two independent calibration and validation sets. The calibration set was composed of 

70% of the dataset (228 samples) and the validation set of the remaining 30% (97 samples).  

Firstly, the focus was on the application of the global model to the small range wavelengths. 

Obviously, the performance of the Global Model S6 dataset was worse than the first model, Model 

S6, since a lower percentage of that dataset was included into the calibration set to reach a 

homogeneity between all the formulations. The term homogeneity refers to having the same 

percentage of each formulation in the training set. In fact, the RMSE value in this case was 0.213 

with the neural network and 0.358 with the linear model, higher than the previous model (respectively 

0.172 and 0.122). The performance of dataset S3 globally improved with lower values of RMSE in 

both cases, respectively equal to 0.295 (for neural network) and 0.493 (for linear model). For S9 

dataset, the situation remains the same for the neural network, while an improvement was observed 

for the linear model with a RMSE value of 0.444. These findings were expected, since both datasets 

were involved in the training set to build the model. However, the differences in the performance of 

the two models were not so marked. Therefore, it can be concluded that it is not necessary to build a 

global model to predict the RM value of S3 and S9, but the model S6 is sufficient to obtain a very 

good accuracy (comparable with the one obtained by the global model). Another evidence of the good 

performance of the model was displayed in the parity diagrams shown in Fig. 4 and Fig. 5. In Fig. 4, 

graphs a and b, the observations were more spread out than in the previous case, but they had similar 

distributions among the two models, an index of similar performances. The same observation can be 

made for the T6 dataset, with RMSE values equal to 0.181 (neural network) and 0.325 (linear model), 

values comparable with the ones obtained with the Model S6.  The plots are reported in the 

Supplementary Information in Fig. S11, S12 and S13.  
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Figure 4: Parity diagrams comparing the RM measured (%) and the RM calculated (%) for dataset S6 (a, b) and for 

dataset S9 (c, d), obtained using the linear regression (a, c) and the neural network (b, d) global models for SR. 

 

The situation appeared to be different for the sucrose-arginine mixtures. In this case, the performance 

was improved with respect to Model S6. In fact, arginine-based formulations were included in the 

training set, leading to an improved prediction for the three datasets (SA05, SA1 and SA3). In this 

way the specific peaks characteristic of arginine, which were different from the ones containing in 

the sucrose formulations were considered. The better performance was confirmed by the RMSE 

values reported in Table 2. It is evident that neural network always turned out in lower values of 

RMSE than the first model. For example, for SA3 the RMSE value is 0.173 against 0.572 for the 

previous model. So, it could be necessary to develop a model including samples of the new 

formulation (containing arginine in this case) in the training phase to take into account the very large 

variability in the spectra of the different formulations. Moreover, neural network was more suitable 

to deal with a huge dataset in input and to take into account their variability for the prediction of RM 

values of freeze-dried products. In fact, all the RMSE values were lower than the ones calculated by 

the linear regression model. The key reason is the non-linearity of the neural network. It is apparent 
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from Fig. 5, graphs a and b, where a more spread distribution is observed for the linear model with 

respect to the neural network. Also, the absolute error plots, in Fig. 5, graphs c and d, showed the best 

performance of the neural network, with no observation above the acceptance threshold.  

 

 

Figure 5: Parity diagrams (a, b), comparing the RM measured (%) and the RM calculated (%), and absolute error plots 

(c, d) obtained using the linear regression (a, c) and the neural network (b, d) global models for SR.   

 

The global model was also applied to a wider range of wavelengths (WR) and the results obtained 

are reported in Table 2. In this case, the performance of the two models seemed to be quite 

comparable, with similar RMSE values between each other. All the values were on the order of the 

intrinsic error of the analytical method.  

 

 Comparison of performances between the Neural Network and the PLS model  

The better performance of the presented models with respect to the PLS model (developed by Bobba 

et al. [30]) was observed both for the product-specific and the global model.  

A comparison was made between the neural network and the PLS model for the Model S6. The higher 

difference was found for the dataset including the arginine product.  In fact, for the SA05 dataset the 
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neural network gave an RMSE value of 0.554 against 0.65 for the PLS model; for SA1 the values 

were respectively 0.351 and 0.974 and for SA3 they were equal to 0.572 (NN) and 2.412 (PLS). These 

results allowed to emphasize again the improved ability of the neural network to deal with nonlinear 

problems, such as the prediction of a product not included in the calibration set. In this case, the tested 

product was arginine (an amino acid), which was characterized by specific features very different 

from those of sucrose. Also, for the dataset with a different percentage of sucrose, an improved 

prediction was reached. In fact, for S3 dataset the RMSE value calculated by the neural network was 

0.446 against 0.562 calculated by the PLS model. For S9 dataset the RMSE values were respectively 

0.305 (NN) and 0.741 (PLS). The same consideration could be done for the T6 dataset (0. 199 for 

NN and 0.578 for PLS), thus pointing out the higher accuracy of the neural network method based.  

A comparison for the global model was done. Also, in this case, the results demonstrated the better 

accuracy of the neural network with respect to the PLS model. In fact, some examples are here 

reported: for dataset S3 the values were 0.295 (NN) and 0.578 (PLS); for S9 they were 0.303 (NN) 

and 0.555 (PLS) and for T6 they were respectively 0.181 (NN) and 0.703 (PLS).  

 

 Effect of training set size on the performances  

The effect of the training set size on model performance was tested by calculating the RMSE values 

in each case. The results are summarized in Table 4 for both models used.  

The RMSE values were calculated for both models by varying the size of the training set, expressed 

as percentage of the available data, from 70% to 40%, allowing also to point out problems of 

overfitting or underfitting. The results obtained by processing data with Model S6 are reported in 

Table 4. The highest values of RMSE were obtained for the sucrose-arginine mixture. In particular, 

the higher was the percentage of arginine in solution and the higher was the value of RMSE. Globally, 

the RMSE values obtained with the linear model were higher than the ones obtained with the neural 

network for all the percentages used. A close inspection of Table 4 indicates that the RMSE values 

remained slightly constant at the different sizes of training set analyzed for the datasets S3, S9 and 

T6. This is a really good result, since it allows a reduction in the experimental effort for developing 

the model. A moderate increase has been observed for the dataset SA05, while a huge increase is 

observed for the dataset with higher percentage of arginine, so SA1 and SA3. In these cases, in fact, 

the RMSE values ranges from 0.6 up to 2 for very low percentages of training set. The same situation 

can be observed for the neural network, but all the curves are shifted down, index of its better 

performance.  

A different situation was observed for the global model in Table 4. For the linear regression model, 

the performances were bad at 40% of training set with very high values of RMSE ranging from 0.7 
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up to 1.4. The remaining trend was approximately constant, with minimal changes for the 60% of 

training set. For the neural network, it was clearly visible that the performances were better with very 

low values of RMSE whatever the percent of training set. This Table could be helpful in reaching a 

compromise between the accuracy of the model and the experimental effort done to develop it. Also, 

a confirmation of the results could be obtained by considering other statistical parameters, such as the 

Root Mean Square Error of Calibration (RMSEC) and the one of Cross-Validation (RMSECV). In 

fact, as an example, by focusing on the neural network-based model developed using the 70% of 

dataset as calibration set, in the case of the product-specific model for S6, their values were 

respectively equal to 0.131 and 0.094; while in the case of the global model, values equal to 0.105 

and 0.177 have been obtained.  

 

Table 4: Effect of training set size on model performance. In the first row the type of model is specified. In the second 

row the percentage of available dataset (from 40% up to 60%) used for training purposes is reported. All the values in the 

Table are the RMSE values corresponding at each dataset for each value of the size of the training set. The results are 

reported for SR. 

 Model S6 LR Model S6 NN Global Model LR Global Model NN 

Dataset 40% 50% 60% 40% 50% 60% 40% 50% 60% 40% 50% 60% 

S3 0.427 0.375 0.392 0.408 0.352 0.283 0.757 0.598 0.681 0.422 0.294 0.334 

S9 0.574 0.558 0.412 0.252 0.333 0.189 0.691 0.689 0.468 0.286 0.212 0.304 

SA05 0.877 0.415 0.909 0.593 0.419 0.644 0.969 0.559 0.669 0.426 0.323 0.330 

SA1 1.998 0.544 0.993 0.506 0.349 1.061 1.352 0.495 0.631 0.384 0.354 0.401 

SA3 0.599 1.880 1.169 0.952 0.868 1.219 1.229 0.723 0.430 0.632 0.397 0.400 

T6 0.494 0.479 0.479 0.491 0.291 0.358 1.363 0.465 0.473 0.660 0.487 0.578 

 

4 Conclusions 

In summary, NIR spectroscopy was coupled with machine learning techniques to quantify the residual 

moisture content in freeze-dried products. The first goal of the present work was the development of 

a model able to estimate the residual moisture in a certain reference product, the S6 dataset. Then, the 

robustness of this model was tested using the other different products as external validation dataset. 

Two different models were developed: a linear regression model and a neural network. This study 

clearly demonstrates that the coupling of NIR spectroscopy with chemometric techniques is a 

powerful tool for the quantitative prediction of RM values as an alternative to KF titration in the 

context of process development. 

By comparing the developed models, the neural network turned out in more accurate and reliable 
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performance than the conventional linear models. Its better performance was assessed both for the 

prediction of products non-involved in the calibration step and for dealing with large dataset, as in 

the case of global model. So, the robustness of the neural network was demonstrated with RMSE 

values lower than the intrinsic error of the analytical method (KF). On the contrary, the performances 

of linear model and neural network were comparable for the two ad hoc models. Also, the results 

obtained with both models were compared with the PLS model developed by Bobba et al. [30] As 

highlighted from the RMSE values, the performance of the neural network was remarkably better. It 

was assessed that the introduction of a new component, like arginine, that gives a different 

contribution in the analyzed spectral region, required for the development of a global model, while 

the product-specific model for S6 revealed accurate in the prediction of dataset containing sucrose at 

different percentage and trehalose (having a similar spectra).  

Obviously, machine learning tools require a higher computational cost than linear models. Hence, 

based on the needs, a compromise between computational cost and accuracy of the method is needed. 

However, in pharmaceutical processes, high accuracy is mandatory for quality control of the products. 

Therefore, a suitable machine learning algorithm could be more robust and powerful for this purpose.  
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Figure S2: Spectra of different formulations after SNV pretreatment: (a) S6 dataset, (b) S3 dataset, 

(c) S9 dataset and (d) T6 dataset.  
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Figure S3: Spectra of the different formulations containing arginine after SNV pretreatment: (a) 

SA05 dataset, (b) SA1 dataset and (c) SA3 dataset. 
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Figure S4: Parity diagrams (a, b) of dataset SA05 comparing the RM measured (%) and the RM 

calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) and the neural 

network (b, d) models developed using dataset S6 for SR. 
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Figure S5: Parity diagrams (a, b) of dataset SA1 comparing the RM measured (%) and the RM 

calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) and the neural 

network (b, d) models developed using dataset S6 for SR. 
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Figure S6: Parity diagrams (a, b) of dataset S3 comparing the RM measured (%) and the RM 

calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) and the neural 

network (b, d) models developed using dataset S6 for SR. 
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Figure S7: Parity diagrams (a, b) of dataset T6 comparing the RM measured (%) and the RM 

calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) and the neural 

network (b, d) models developed using dataset S6 for SR. 
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Figure S8: Parity diagrams (a, b) of dataset SA05 comparing the RM measured (%) and the RM 

calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) and the neural 

network (b, d) models developed using datasets of arginine-sucrose mixtures for SR. 
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Figure S9: Parity diagrams (a, b) of dataset SA1 comparing the RM measured (%) and the RM 

calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) and the neural 

network (b, d) models developed using datasets of arginine-sucrose mixtures for SR. 

 

 



 

38 

 

 

Figure S10: Parity diagrams (a, b) of dataset SA3 comparing the RM measured (%) and the RM 

calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) and the neural 

network (b, d) models developed using datasets of arginine-sucrose mixtures for SR. 
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Figure S11: Absolute error plots obtained suing (a) linear regression and (b) neural network models 

for T6 dataset. The data were processed by the ad-hoc model for trehalose solutions for SR.  
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Figure S11: Absolute error plots for S6 dataset (a, b) and for S9 dataset (c, d), obtained using (a) 

linear regression and (b) neural network global models for SR. 
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Figure S12: Parity diagrams (a, b, e, f) comparing the RM measured (%) and the RM calculated (%) 

and absolute error plots (c, d, g, h) obtained using the linear regression (a, c, e, g) and the neural 

network (b, d, f, h) global models for dataset S3 (a, b, c, d) and for dataset T6 (e, f, g, h) for SR. 
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Figure S13: Parity diagrams (a, b, e, f) comparing the RM measured (%) and the RM calculated (%) 

and absolute error plots (c, d, g, h) obtained using the linear regression (a, c, e, g) and the neural 

network (b, d, f, h) global models for dataset SA05 (a, b, c, d) and for dataset SA1 (e, f, g, h) for SR. 

 


