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ABSTRACT 
In recent years, Artificial Intelligence (AI) is ever more 

exploited in all the scientific and industrial fields and is allowing 

significant developments in mechanical engineering too. An 

emblematic contribution was given in terms of safety and 

reliability since Machine Learning (ML) techniques permitted 

the monitoring and the prediction of the state of health of 

machinery, allowing the adoption of predictive maintenance 

strategies. In fact, data-driven models – based on acquisitions – 

attract considerable interest both thanks to its theoretical and 

application development. The evolution of diagnostic techniques 

is oriented towards Condition-Based Maintenance (CBM) 

strategies, thus allowing improvements in terms of safety 

enhancement, cost reduction and increased performances. This 

paper proposes the development and implementation of a 

diagnostic/prognostic tool applied to an automated books 

trimmer industrial machine, implementing condition monitoring 

by means of accelerometers which can be integrated into a 

Supervisory Control And Data Acquisition (SCADA) system. 

Given its use, the core components of this production line are 

three knives, subjected to significant impulsive forces. Therefore, 

the target of the work is to infer the wear of these three knives, 

as they are critical elements of the machinery and have a high 

impact on the quality of the final product. The project was 

carried out in collaboration with Tecnau - an industry-leading 

company - which made it possible to conduct experimentation 

and data acquisition on their machinery. An appropriate Design 

Of Experiments (DOE) and the use of inferential statistical 

techniques - such as the ANalysis Of VAriance (ANOVA) and the 

identification of significant effects - applied to the multivariate 

dataset allowed recognizing the most relevant features for 

Novelty Detection (ND). Both the Linear Discriminant Analysis 

(LDA) and the k-Nearest Neighbors (kNN) method permitted to 

correctly distinguish the patterns representing the health 

conditions of the machinery, classifying the data in the reduced 

multidimensional space according to the final product quality. 

The results obtained in terms of accuracy are very positive and 

promising. This means that the developed method is able to 

successfully identify the state of health of the blade in spite of 

varying functioning parameters (book thickness and size, paper 

type and characteristics) and operating conditions. The 

algorithm speed and its integration into the industrial line make 

a real-time condition-based maintenance strategy possible. This 

diagnostic method is suitable for applications oriented to the 

paradigm of Industry 4.0 and the digitalization of the industrial 

sector, which can be integrated with the Internet of Things (IoT) 

and cloud systems. 

Keywords: machine diagnostics; books trimmer industrial 

machine; Novelty Detection; Condition Based Maintenance; 

Industry 4.0 

NOMENCLATURE 
AI  Artificial Intelligence 

ANOVA ANalysis Of VAriance 

AUC Area Under the Curve 

CBM Condition-Based Maintenance 

CV  Cross-Validation 

DOE Design Of Experiments 

FA  False Alarms 

FF  Full Factorials 

FN  Frobenius Norm 

GA  Genetic Algorithm 

IoT  Internet of Things 

kNN k-Nearest Neighbors 

LDA Linear Discriminant Analysis 

MA  Missed Alarms 

MANOVA Multivariate ANalysis Of Variance 

MCCV Monte Carlo Cross-Validation 

ML  Machine Learning 

ND  Novelty Detection 
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OFAT One-Factor-At-a-Time 

RMS Root Mean Square 

ROC Receiver Operating Characteristic 

SCADA  Supervisory Control And Data Acquisition 

VM  Vibration Monitoring 

 

1. INTRODUCTION 
In recent years, Artificial Intelligence (AI) has reaped great 

success and has found numerous applications in all scientific 

fields. AI has also fostered significant developments in 

mechanical engineering [1,2] and has generated a significant 

contribution in terms of safety and reliability. Indeed, Machine 

Learning (ML) techniques have allowed the monitoring and 

prediction of machinery state of health, allowing the adoption of 

predictive maintenance strategies. The evolution of these 

techniques is oriented toward Condition-Based Maintenance 

(CBM) strategies with the aim of improving safety, reducing 

costs and increasing performance [3,4]. Given that modern 

industrial systems have now reached a complexity level that 

makes traditional engineering approaches difficult to pursue 

(e.g., model-based), data-driven approaches arouse considerable 

interest as they make it possible to develop diagnostic and 

prognostic systems by exploiting acquisitions through non-

destructive testing. 

Among the various forms of condition monitoring, 

Vibration Monitoring (VM) is a particularly effective and used 

technique [5,6]. It allows the recognition of the machinery 

conditions by means of the measurement of its vibrations, which 

are the small oscillations around the equilibrium point that every 

mechanical device generates during its operating phase. VM 

requires the use of accelerometers, and this makes the diagnostic 

system relatively cheap, reliable, and flexible in relation to the 

different typologies of machinery. 

The information obtained through the recordings of the 

accelerometric signals can be suitably processed and used to 

classify the health condition of machinery. A famous binary 

classification technique is Novelty Detection (ND), which 

allows recognizing a condition as novel when it deviates 

significantly from healthy reference data [7–9]. For instance, in 

[10] ND was integrated into a Genetic Algorithm (GA) optimizer 

for a complex machine diagnosis. Given that current ICT 

solutions allow the collection of large amounts of data, it is 

usually necessary to manage Big Data [11] in order to develop 

an optimal CBM strategy. In this regard, there are in the literature 

several strategies for features extraction and selection [12,13] 

and dimension reduction through statistical techniques [14,15]. 

This study proposes the development and implementation of 

a diagnostic/prognostic system on a complex machine for 

automatic book cutting. The conditions monitoring of the three 

blades - critical elements of the machinery and relevant to the 

quality of the product - is possible implementing a system of 

sensors for VM that could be integrated into a Supervisory 

Control And Data Acquisition (SCADA) system. The 

experimental campaign has been suitably investigated by means 

of a Design Of Experiments (DOE) [16,17] and the measured 

signals have been duly processed. The extracted features have 

been selected thanks to multivariate inferential statistical 

techniques. Finally, via the application of ML methods, it has 

been possible to distinguish the machinery conditions with high 

accuracy values. In particular, thanks to the implementation of 

classification techniques, the creation of a diagnostic method 

which allows improving the products' quality and the production 

line efficiency has been possible. 

In detail, the article consists of the following sections. 

Section 2 describes the machinery under analysis, the 

experimental setup, the DOE, the statistical analysis, and the 

implementation of ML algorithms. Section 3 presents the 

obtained results and a related discussion. Finally, the conclusions 

of this study are reported in Section 4. 

 
2. MATERIALS AND METHODS 

This section briefly describes the machinery under analysis 

and the related choices regarding the sensors to implement on the 

test bench. Subsequently, the factors relevant for the analysis that 

are considered for the DOE development are highlighted. After 

describing the test scheduling, the choices made for the signals 

pre-processing and the features extraction are illustrated. Given 

the considerable amount of collected data, the statistical analyzes 

developed to select the most significant features to recognize the 

blade health condition are described. Finally, the ML techniques 

adopted for the classification are expounded. 

 

2.1 Test bench 
The machinery under analysis is an automated industrial 

books trimmer designed and launched on the market by Tecnau 

SRL [18]. As can be seen in FIGURE 1, it is mainly composed 

of three knives capable of cutting a wide range of books with 

different sizes and thicknesses at high speed. By following the 

instructions contained in and processed by the system software 

to automatically adjust the cutting measurements, the mobile 

guides correctly position each book. Before cutting the book 

sides except for the spine, each of them is compressed to remove 

the air contained between the pages. Thanks to the experience 

gained by the company both in terms of research and feedback 

received from customers, it is possible to assume at first that the 

blades are the critical elements of the machinery, and their wear 

is the factor that mainly determines the quality of the final 

product. However, given that the parameters varying during the 

machine operating phase are numerous (e.g., thickness, length 

and width of the book, type and grammage of the paper), this 

hypothesis has been verified using inferential statistical analyzes 

such as the ANalysis Of VAriance (ANOVA) and the 

identification of significant effects [19]. Furthermore, given that 

ND allows the fault to be directly detected only in the event of 

the exclusion of confounding influences (including operating 

and environmental conditions), the demonstration that the effect 

of the blade wear is the main significant factor is fundamental 

for being able to assert that the measured accelerometric signals 

correctly describe the health condition of the blades. 

It was initially adopted a cDAQ-9185 chassis, two 4-

channels NI‑9234 modules with sampling frequency 𝑓𝑠 = 51.2 

kS/s/channel, three PCB 355B03 monoaxial accelerometers, and 
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a PCB 356A16 triaxial accelerometer with range equal to ±50𝑔 

to perform the tests. In addition to these sensors, the signal of the 

two-channel incremental encoder integrated into the 

servomotors (with gear ratio 𝑖) that guide the blade crank 

mechanisms was acquired (from the kinematic analysis of the 

crank mechanisms it was possible to derive the equation 𝑓(𝜃) 

which describes the blade position as a function of the 

servomotors rotation angle 𝜃). The described system is very 

expensive since it allows achieving a high degree of precision. 

Indeed, this acquisition system has been used only for an initial 

phase of investigation and understanding of the trimmer 

behavior. Subsequently, it will be possible to study an 

appropriate downgrade of the sensors in order to find out the best 

cost-performance trade-off. 

 

 
FIGURE 1: MACHINERY STRUCTURE. 

Considering the machinery structure and referring to the 

concept of the transmission path minimization [19], 

accelerometers have been positioned as shown in FIGURE 2. In 

particular, the three monoaxial accelerometers have been 

positioned on the top of the structure (M1) to measure the effects 

generated by the machinery bending due to the cutting, on the 

mobile component of the blade (M2) and on its fixed 

corresponding part (M3) to measure the transmitted vibrations. 

On the other hand, the triaxial accelerometer (T) has been placed 

near the moving blade to obtain a three-axis measurement near 

the cut itself. All accelerometers have been fixed thanks to 

cyanoacrylate glue and duct tapes. 

 
2.2 Design Of Experiments and identification of 
significant effects 

The DOE was defined based on a Full Factorials (FF) model. 

Indeed, it allows both reducing the burden in terms of necessary 

experiments and also analyzing the effects of factors interactions 

unlike One-Factor-At-a-Time (OFAT) methods [20]. Two 

levels have been selected in this study both because they are 

sufficient for the analysis and in order to limit the number of 

experiments. Considering these conditions, 2𝑛 different 

combinations are required for a Full Factorials analysis, where 𝑛 

is the number of selected factors. It should also be remembered 

that each test was performed three times in order to obtain a 

statistically relevant sample. Therefore, having identified five 

factors as relevant for the analysis, 3 ⋅ 25  =  96 tests have been 

planned. 

 

 
FIGURE 2: FRONT VIEW OF A KNIFE AND RELATED 

SENSORS POSITIONING. 

The factors considered in the DOE and the related levels are 

reported in TABLE 1. The factors can be both numerical and 

qualitative. For the latter, low and high levels were assigned in a 

purely arbitrary way. In addition, please note that the run order 

of the tests was randomized in such a way as to reduce as much 

as possible the effects related to time-dependent variables (e.g., 

the heating of machinery) that could affect the test results. The 

only factor excluded from this process is the blade wear because 

its disassembly, reassembly and adjustment would have 

excessively increased the cost and time required to carry out the 

experiments. Furthermore, it would generate a significant cross-

correlation since this operation is time-consuming and the 

machine cools down. Finally, before carrying out the 96 

scheduled tests it was necessary to carry out a few idling cycles 

to consider the machine operating in steady-state conditions and, 

consequently, to minimize the effects due to the transient phase 

of the machinery. Some example rows of the test matrix 

produced by means of DOE are reported in TABLE 2. 

Among its advantages, this DOE allows deriving the effects 

in the subsequent phases, calculating the average difference of 

the results obtained between the two levels. In addition to the  
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TABLE 1: TEST-FACTORS AND THE RELATED LEVELS FOR 

2-LEVEL FULL FACTORIALS ANALYSIS. THE NUMERICAL 

VALUES HAVE BEEN STANDARDIZED WITH RESPECT TO 

THE MAXIMUM DIMENSIONS REACHABLE BY THE 

MACHINE. 

Factor Name Units Low level High level 

A Book thickness mm 0.25 0.75 

B Book width mm 0.25 0.75 

C Paper type Material Coated Not coated 

D Paper grammage g/m2 Light Heavy 

E Blade wear State Damaged New 

 

TABLE 2: TEST MATRIX ARRANGED ACCORDING TO THE 

"RUN ORDER". THE TWO LEVELS OF THE FACTORS ARE 

CODED (THE + SYMBOL REFERS TO THE HIGH LEVEL, WHILE 

- TO THE LOW LEVEL), AND THE OUTPUT VALUES HAVE 

BEEN ASSIGNED IN TERMS OF THE CUT QUALITY. THE ROWS 

HAVE NOT BEEN REPORTED ENTIRELY FOR THE SAKE OF 

BREVITY, AS REPRESENTED BY THE ELLIPSIS EXTENSION 

SYMBOL. 

Run 

order 

Factor 

A 

Factor 

B 

Factor 

C 

Factor 

D 

Factor 

E 
Quality 

1 + – – + – 3 

2 – + + – – 3 

3 + + + – – 1 

… … … … … … … 

94 + + – + + 5 

95 – – – – + 4 

96 – – – + + 4 

 

 

 
FIGURE 3: IDENTIFICATION OF SIGNIFICANT EFFECTS 

(LABELLED) THROUGH A COMPARISON WITH A HALF-

NORMAL DISTRIBUTION (DASHED LINE).  

 
FIGURE 4: IDENTIFICATION OF SIGNIFICANT EFFECTS 

THROUGH A PARETO CHART. THE CONTINUOUS CURVE 

REPRESENTS THE CUMULATIVE VALUE OF THE EFFECTS. 

effects of the factors considered independently (A, B, C, D, E), 

the Full Factorials analysis also allows examining their 

interactions in groups (e.g., AB, AC, AD, AE, BC, BD, ... , ABC, 

ABD, ...). The binomial coefficient represents the total number 

of interactions combinations. In particular, the effects due to the 

interaction of three or more factors are not considered 

particularly relevant for the study. For this effects analysis, the 

cut quality was selected as the output value since it is the most 

determining and relevant characteristic. This value was assigned 

thanks to the quality control of the final product based on a 

graduated scale from 1 to 5 (where 1 indicates the minimum 

quality and 5 indicates the maximum quality). 

By comparing the results obtained and appropriately 

converted with respect to a half-normal distribution, as shown in 

FIGURE 3, it is possible to identify the factors that follow the 

half-normal (which are probably not significant in terms of 

effects) and those that differ visibly from it (which, therefore, are 

significant at a specific confidence interval). Effects that fall in 

a zone close to the normal (dashed line) evidently vary due to 

stochastic causes and, consequently, are presumably not 

significant. On the contrary, greater effects (e.g., E = blade wear) 

that fall far from the normal should be considered statistically 

significant. The effects can be studied similarly through a Pareto 

chart, as visible in FIGURE 4, where the ordered vertical bars 

represent the effects due to the related factor in absolute terms. 

To avoid spurious outcomes and draw incorrect conclusions, 

it is necessary to verify that the identified effects are significant 

(E, D, C, A, CD, CDE, BE, B, ABCDE, ABCD, ACE, ACD, 

ABC, AB) through an ANOVA and an analysis of associated 

residual errors. In particular, it is necessary to calculate the sum 

of the squares of the major effects and that of the minor (residual) 

effects. From these, it is possible to calculate the related F-

values. By comparing these with the reference distribution, it is 

possible to obtain consequently the probability that the factors - 

considered as significant – are such (i.e., the acceptable risk 

value to reject the null hypothesis). As shown in TABLE 3,  
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TABLE 3: 5-WAY ANOVA RESULTS CALCULATED WITH 

RESPECT TO THE MEASURED CUT QUALITY. ALL THE 

INTERACTIONS OF FACTORS (WHICH ALSO OBTAINED 

LOWER F-VALUES) HAVE BEEN AVOIDED FROM THE TABLE 

FOR THE SAKE OF CONCISENESS. 

Factor Sum Sq. D.O.F. Mean Sq. F Prob>F 

E 78.84 1 78.84 338.91 0 

D 14.26 1 14.26 61.30 0 

C 7.59 1 7.59 32.64 0 

A 7.59 1 7.59 32.64 0 

… … … … … … 

Error 18.84 81 0.23   

Total 150.16 95    

 

 

 

 
FIGURE 5: NORMAL PLOT OF RESIDUALS WITH RESPECT 

THE NORMAL DISTRIBUTION (DASHED LINE) AND 

COMPARISON BETWEEN RESIDUALS AND PREDICTED 

LEVELS FOR THE VALIDATION OF THE STATISTICAL 

ASSUMPTIONS (I.E., NORMALITY AND HOMOSKEDASTICI-

TY). 

carrying out a 5-way ANOVA, it is possible to demonstrate that 

all the effects identified as significant are such at a 5% 

confidence interval. However, in addition to a pure statistical 

analysis, it is necessary to consider that the interaction of three 

or more factors could be improbable to verify, as mentioned 

above. 

The most important result of this analysis is not so much the 

identification of all the significant effects but consists of the 

detection of blade wear (factor E) as the first and principal 

significant effect. Indeed, it is possible to observe the weight of 

the blade wear compared to the other factors both in FIGURE 3 

and thanks to Fisher's F-values in TABLE 3. Hence, this 

observation confirms that the blade wear is recognizable from 

the cut quality and, above all, validates the hypothesis that the 

features mainly describe this parameter. Finally, it should be 

remembered that the conditions of normality and 

homoskedasticity (i.e., the assumptions underlying the ANOVA) 

were checked thanks to the Q-Q plot, the Jarque-Bera and the 

Lilliepots test for the first and Bartlett's test for the second [21]. 

In particular, while homoskedasticity (i.e., property which 

characterizes a set of variables when they all have the same 

variance) has always been proved, not all tests on normality for 

each parameter have been verified (this may be mainly due to the 

presence of outliers). However, this ANOVA and the subsequent 

statistical analyses prove to be robust to the violations of these 

hypotheses, particularly if all the inspected groups show equal 

numerousness. 

For the sake of completeness, FIGURE 5 shows the residual 

graphs (represented as a normal plot of residuals and residuals-

predictions comparison) in order to validate the statistical 

assumptions. In particular, it can be observed that the residuals 

in the top graph follow rather faithfully the normal trend, while 

the residuals in the bottom graph are arranged uniformly and 

homogeneously with respect to the predicted levels. This means 

that the statistical hypotheses assumed that the residuals are 

normally distributed and have constant variance have been 

confirmed. For these reasons, the aforementioned analysis can 

be considered statistically valid. 

 

2.3 Features extraction and selection 
The features extraction only concerns the accelerometric 

signals. However, the channels recorded by the encoder are 

fundamental for the identification of the signal partition inherent 

to the actual cutting phase and, consequently, for the isolation of 

these data from the entire acquisition. For this reason, the two 

channels (A and B) of the incremental encoder (represented by a 

square wave measured in voltage) have been suitably processed 

to trace the equation of motion in terms of the servomotors’ 

rotation angle 𝜃 and to subsequently obtain the blade position 

thanks to the kinematic relations of the crank mechanism.  

Thanks to this processing, it is possible to obtain an average 

resolution on the blade position equal to about 0.04 mm. For 

instance, FIGURE 6 shows the trend of the normalized blade 

position with respect to its stroke during a cut. Thanks to this 

information, it is possible both to recognize the stroke end of the 
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FIGURE 6: BLADE POSITION OBTAINED FROM THE 

ENCODER MEASUREMENTS DURING A CUTTING CYCLE AS 

A FUNCTION OF TIME. PLEASE NOTE THAT THE VALUES ARE 

NORMALIZED WITH RESPECT TO THE BLADE STROKE. 

PLEASE NOTE THAT BLADE POSITION AND TIME HAVE BEEN 

NORMALIZED WITH RESPECT TO THEIR MAXIMUM VALUES. 

 

 

FIGURE 7: GRAPH REPRESENTING THE SIGNAL RECORDED 

BY A MONO-AXIAL ACCELEROMETER (RESPECTIVELY THE 

ONE POSITIONED ON THE KNIFE MATCHING PART) AS A 

FUNCTION OF THE BLADE POSITION. THE SIGNAL 

PARTITION INCLUDED BETWEEN THE CUT STARTING AND 

ENDING MOMENT HAS BEEN HIGHLIGHTED. PLEASE NOTE 

THAT BLADE POSITION AND ACCELERATION SIGNAL HAVE 

BEEN NORMALIZED WITH RESPECT TO THEIR MAXIMUM 

VALUES. 

blade (coinciding with the moment in which the cut ended) and 

to discover the instant in which the cut started (knowing a priori 

the book thickness). FIGURE 7 shows a graph of an 

accelerometric channel in which the selected signal partition is 

highlighted and on which the features are extracted. 

After having selected and isolated the signal partitions 

regarding the cut, it is possible to proceed with the features 

extraction. In a first analysis, the following features were 

selected as the most commonly used: 

 

• Mean value: 

𝑀𝐸𝐴𝑁 =  
∑ 𝑦(𝑡𝑘)𝑁

𝑘=1

𝑁
  (1) 

 

• Root Mean Square (RMS): 

𝑅𝑀𝑆 = √𝐸[𝑦(𝑡𝑘)2]   (2) 

 

• Skewness: 

𝑆𝐾𝐸𝑊 = 𝐸 [(
𝑦(𝑡𝑘)−𝑦̅(𝑡𝑘)

𝜎𝑦
)

3

] (3) 

 

• Kurtosis: 

𝐾𝑈𝑅𝑇 = 𝐸 [(
𝑦(𝑡𝑘)−𝑦̅(𝑡𝑘)

𝜎𝑦
)

4

] (4) 

 

• Peak: 

𝑃𝐸𝐴𝐾 = max(|𝑦(𝑡𝑘)|)  (5) 

 

where 𝑦(𝑡𝑘) represents the acceleration signal as a quantity 

discretized by the acquisition process, and 𝑁 is the number of 

samples. 

To summarize, five features were considered for each signal 

collected by the six accelerometric channels (three monoaxial 

sensors and a triaxial one) for a total of 30 features for each of 

the 96 acquisitions. 

Before proceeding with the extraction of the aforementioned 

features, the signals were further pre-processed to eliminate all 

the confounding channels by recognizing the outliers. In 

particular, given the high sensitivity to various considered 

factors (e.g., blade wear, grammage, and type of paper), it was 

observed that some tests led to the saturation of the uniaxial 

accelerometer positioned on the mobile blade. In this way, it was 

possible to remove these channels from the analysis, thus 

eliminating any related errors. 

Once it has been verified that all the features are valid and 

not affected by errors, the features have been standardized as z-

scores with respect to the healthy blade tests and a 

straightforward statistical analysis was subsequently defined to 

select the most relevant features in terms of identification of the 

blade wear. Student’s T-tests [22] have been carried out to 

compare the distributions of the two wear conditions (i.e., new 

and damaged blade) and to verify their significant deviation. For 

this reason, having only two distributions, it is not necessary to 

carry out a one-way ANOVA (one-way since, in this case, the 

only effect to identify is the blade one). Furthermore, it will not 

even be necessary to carry out post-hoc ANOVA analyses (i.e., 
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multivariate comparison techniques to investigate which groups 

show different mean values, such as Tukey's Honestly 

Significant Difference [23] or Fisher's Least Significant 

Difference [24]) since, if the null hypothesis is rejected, the 

deviation can only be revealed between the two distributions 

under analysis. 

Once these 30 T-tests were performed, it was possible to 

recognize which of these features were statistically significant at 

a 5% confidence interval. Furthermore, by sorting the features 

by increasing p-values, it was possible to observe which are the 

most significant among those that allow rejecting the null 

hypothesis. TABLE 4 lists the features that allow rejecting the 

null hypothesis (i.e., the two distributions are not significantly 

distinguishable) sorted by increasing p-values. In addition, 

TABLE 4 shows that the first features (in terms of significance) 

are the mean values of the acquisitions obtained with monoaxial 

accelerometers. It was possible to recognize a preferential 

direction for the blade condition monitoring thanks to the triaxial 

accelerometer since its X-axis seems to perform properly. 

 

TABLE 4: FEATURES THAT ALLOW DISTINGUISHING THE 

TWO DISTRIBUTIONS WITH NEW AND DAMAGED BLADES 

AT A 5% CONFIDENCE INTERVAL SORTED BY INCREASING 

P-VALUES (M1=MONOAXIAL ON THE STRUCTURE; 

M2=MONOAXIAL ON THE BLADE; M3=MONOAXIAL ON THE 

BLADE CORRESPONDING PART; TX=X-AXIS OF THE 

TRIAXIAL SENSOR).  

Rank  Feature  Sensor  p-value  

1 Mean  M1  8.05  10-15  

2  Mean M3 7.73  10-12  

3  Mean TX 3.42  10-6  

4  Peak  M3 1.18  10-4 

5  Peak M1  1.82  10-4 

6  Skewness  M2  3.34  10-3 

7  Kurtosis  M2  6.16  10-3 

8  Peak M2  9.44  10-3 

9  Kurtosis M1  9.74  10-3 

10  RMS  M1 1.59  10-2 

11  RMS  M3 4.23  10-2 

 

To conclude, FIGURE 8 shows an exemplary graph 

representing the mean value features of the accelerations 

measured by each sensor as a function of the run order. The 

vertical line represents the test division between the new (on the 

right) and damaged (on the left) blades. In a first analysis, the 

two conditions are rather effortlessly recognizable since data 

have a greater dispersion with the new blade. 

For the sake of completeness, FIGURE 9 shows the 

histograms of the signal recorded by the monoaxial 

accelerometer (M1) positioned on the top of the structure 

(because it is very significant and has a non-zero mean during 

cutting) obtained by analyzing the entire acquisition and the 

solely partitioned samples concerning the actual cut. This 

comparison aims to demonstrate how the mean value is 

effectively zero throughout the entire acquisition for all 

accelerometers that are not subject to displacements, while this 

is not true when the solely cut partition is analyzed. 

 

  
FIGURE 8: GRAPH REPRESENTING THE MEAN VALUE 

FEATURES OF THE ACCELERATIONS MEASURED BY EACH 

SENSOR AS A FUNCTION OF THE RUN ORDER. THE VERTICAL 

LINE REPRESENTS THE TEST DIVISION BETWEEN THE NEW 

(ON THE RIGHT) AND DAMAGED (ON THE LEFT) BLADES. 

PLEASE NOTE THAT THE VALUES HAVE BEEN NORMALIZED 

WITH RESPECT TO THE MAXIMUM VALUE. 

  
FIGURE 9: ENLARGEMENT OF HISTOGRAMS REGARDING 

THE ACCELERATION RECORDED BY THE MONOAXIAL 

SENSOR POSITIONED ON THE TOP OF THE STRUCTURE 

DURING TEST N.62 OF THE RUN ORDER REFERRED TO THE 

ENTIRE ACQUISITION (IN BLUE) AND THE PARTITIONED 

SAMPLES INHERENT TO THE ACTUAL CUT (IN RED). 
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2.4 Classification 
After the features extraction and selection with a view to the 

most significant in terms of the blade wear identification, it is 

possible to proceed with the patterns recognition within the data 

to classify them in an appropriate multidimensional space. 

Before proceeding with this classification, it would be possible 

to carry out a more general MANOVA analysis (Multivariate 

ANalysis Of VAriance), which is a procedure to compare the 

sample means in a multivariate space [25]. This MANOVA 

analysis – in addition to Student's T-tests – would allow to 

consider all the input parameters simultaneously and, 

consequently, to compare and distinguish the distributions in a 

multivariate space. However, this MANOVA analysis would 

return an overall p-value, which would reveal the effective 

recognition of the variable under observation (i.e., the blade 

condition) without having further information about their 

classification. For this reason, it has been decided to carry out 

the classification directly, in such a way as to be able to study the 

difference in the sample means and, at the same time, to create 

and investigate the models as the features and the dataset vary. 

The purpose of this analysis is to find and create a model 

that can recognize patterns with high accuracy (thanks to an 

initial training phase) and can subsequently predict them with a 

high degree of precision (thanks to a successive validation 

phase). Considering the number of available tests, it was decided 

to use the Cross-Validation (CV) technique to avoid overfitting 

problems. Since the K-fold CV technique consists of a random 

subdivision of data into 𝐾 groups (one used as a validation 

dataset, while the remaining 𝐾 − 1 as training), the choice of 

these data groups can occur in different ways while maintaining 

the subgroups balanced with respect to the two classes. This 

means that each of these subdivisions can lead to different results 

because the models are generated in connection with the dataset, 

and they return varying, albeit slightly, accuracy values. 

Consequently, a Monte Carlo Cross-Validation (MCCV) [26] 

was applied to obtain more precise results thanks to the random 

effect reduction due to the division into 𝐾 =  5 folds. It is 

possible thanks to the CV iteration for 𝑁 times, in addition to the 

random subdivision of the samples into the training and 

validation subgroups. In particular, the same procedure 

described in [10] has been adopted with 𝑁 =  50. However, 

given that a single type of damage was considered in the case 

under analysis, the results are calculated and interpreted mainly 

thanks to the accuracy indexes, Missed Alarms (MA), False 

Alarms (FA), Area Under the Curve (AUC) denominated 

Receiver Operating Characteristic (ROC), and the Frobenius 

Norm (FN). Thanks to this very effective MCCV method, the 

average accuracy and - in general - the performance indices 

considered tend to the theoretical value of the generated model. 

Please refer to [10] for a detailed description of the adopted 

MCCV method. 

To conclude, it is recalled that the classification models that 

have been taken into consideration in this analysis are the Linear 

Discriminant Analysis (LDA) and the k-Nearest Neighbors 

(kNN) [27] with 𝑘 =  2. 

 

3. RESULTS AND DISCUSSION 
It has been possible to adopt some supervised ML 

techniques to classify the blade health conditions, thanks to the 

DOE, the related statistical analysis for the identification of 

significant effects, and the features extraction and selection. 

Given that some of the 11 features selected based on their 

significance were obtained thanks to the uniaxial accelerometer 

M2 positioned on the mobile blade (which was subject to 

overload with consequent loss of information on some tests), it 

is necessary to circumvent this lack of information, albeit 

minimal. Therefore, this section contains the results obtained 

both (a) by keeping all the features and completely removing the 

overloaded tests, and (b) by only reducing the number of features 

employed for the classification and removing the channels 

inherent to the saturated accelerometer. In this way, it is possible 

to demonstrate whether it is more expedient to reduce the number 

of tests or features. The accuracy values obtained with the 

proposed method are reported in TABLE 5 and TABLE 6 as the 

features and tests considered vary. 

An example of confusion matrices and ROC curves obtained 

during one out of 𝑁 =  50 iterations carried out with MCCV are 

reported in FIGURE 10 and FIGURE 11 to highlight the 

behavior of the two classifiers. 

 

TABLE 5: PERFORMANCE INDICES OBTAINED WITH LDA 

AND kNN CLASSIFIERS BY REMOVING THE TESTS IN WHICH 

SATURATION OCCURRED (a). 

Features Accuracy MA FA AUC FN 

LDA 86,2% 3,1% 10,7% 0,99 0,36 

kNN 91,2% 4,4% 4,4% 0,99 0,18 

 

TABLE 6: PERFORMANCE INDICES OBTAINED WITH LDA 

AND kNN CLASSIFIERS BY REMOVING THE FEATURES 

RELATED TO THE SATURATED SENSORS (b). 

Features Accuracy MA FA AUC FN 

LDA 89,8% 1,0% 9,2% 0,99 0,26 

kNN 91,2% 5,3% 3,5% 1,00 0,18 

 

 

  
FIGURE 10: CONFUSION MATRIX INHERENT TO LDA (ON 

THE LEFT) AND kNN (ON THE RIGHT) MODELS DURING ONE 

OUT OF 𝑁 = 50 ITERATIONS CONDUCTED VIA MCCV. 
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FIGURE 11: ROC CURVES INHERENT TO LDA (ON THE LEFT) 

AND kNN (ON THE RIGHT) MODELS DURING ONE OUT OF 𝑁 =
50 ITERATIONS CONDUCTED VIA MCCV. 

Finally, the parallel coordinates plot is shown to verify that 

the selected features can correctly distinguish the two conditions. 

This chart allows visualizing data with multiple dimensions on a 

single 2D diagram. In particular, the standardized values of each 

feature (i.e., z-scores) per each test are represented, taking the 

form of approximately horizontal lines. In this way, the 

distribution of the calculated data with respect to each feature is 

visible in a two-dimensional chart since the data projection 

regarding each feature is represented on their axes. This can help 

understand the relationships between features and identify the 

best features for separating classes. Indeed, the more the lines of 

each class are separable from each other, the more the blade 

conditions are distinguishable. All the 11 selected features have 

been reported in FIGURE 12 in such a way as to analyze which 

allows a better distinction of the blade conditions. It is possible 

to observe how the “bundles” of lines representing the new blade 

and the worn blade conditions are distinguishable thanks to the 

highest p-values features, while these intertwine more 

frequently, making it difficult to classify with the lowest p-

values features. Therefore, it is possible to observe that the p-

values obtained from the previous statistical analysis allow 

adequately selecting the most relevant features to recognize the 

state of health of the blade. Finally, it is possible to observe in 

FIGURE 13 how the scatter plot representing the tests in a 2D-

reduced multidimensional space are distinguishable and 

separable. 

To conclude, these supervised learning models allow 

recognizing the machinery state of health with good results both 

by varying the number and type of features and the dataset. 

Indeed, both the examined classifiers allowed reaching accuracy 

values close to 90%. LDA model could be preferred to kNN with 

the same accuracy values since the first can involve advantages 

in terms of simplicity and computing speed. In particular, this 

would be even more relevant if the possibility of continuously 

expanding the training dataset thanks to this monitoring system 

implementation on operating machinery is considered. This new 

data collection would allow generalizing the obtained results to 

different machines and distinct configurations of the initial 

setting at the same time. To reach this conclusion with the current 

dataset, it would be necessary to assume that the cloud of points 

obtained considering the initial conditions (i.e., with a new 

blade) is unaltered. 

A second aspect to consider for the classification model 

choice concerns the cost-safety trade-off. Indeed, the error made 

by LDA models is principally caused by the failure to recognize 

borderline cases of the healthy blade as the higher FA 

percentages prove. On the contrary, kNN models mainly confuse 

some damaged blade cases, generating MA. 

 

  
FIGURE 12: PARALLEL COORDINATES PLOT OF THE 11 

SELECTED FEATURES SORTED BY p-VALUES AS IN TABLE 4. 

 
FIGURE 13: SCATTER PLOT REPRESENTING THE NEW 

BLADE AND DAMAGED BLADE TESTS IN A 2D-REDUCED 

MULTIDIMENSIONAL SPACE. 

4. CONCLUSIONS 
This work proposed the development and implementation of 

a diagnostic/prognostic tool applied to an industrial automated 

book trimmer in order to improve the safety, the reliability, the 

efficiency and the final quality of the production line under 

analysis. This was achieved by implementing a condition 

monitoring strategy by means of accelerometers that can be 

integrated into a SCADA system. Thanks to an in-depth 

preliminary study of the system and an ad hoc features extraction 

and selection, it was possible to apply some supervised ML 



 10 © 2022 by ASME 

techniques which permit the monitoring and prediction of the 

machinery state of health, allowing the adoption of predictive 

maintenance strategies. 

The results obtained are very positive and promising. This 

means that the proposed method is able to successfully identify 

the blade state of health despite the operating parameters and 

working conditions vary. The algorithm speed and its integration 

into the industrial line permit a maintenance strategy based on 

real-time condition monitoring. This diagnostic method is 

suitable for applications oriented to the Industry 4.0 paradigm 

and to the digitalization of the industrial sector, which can be 

integrated with Internet of Things (IoT) and cloud systems. 

The effectiveness of these results was obtained using a 

dataset consisting of 96 tests (equivalent to a Full Factorial 

design with five factors, repeated three times), statistically 

sufficient for a complete analysis and development of a 

diagnostic model. It exists the awareness that these promising 

results may slightly vary by extending the analysis and, 

consequently, the available dataset. 

On this basis, it is possible to continue the study – for 

instance – by expanding the analysis to a wider machines 

population to generalize the model and to investigate different 

initial settings and further parameters. Furthermore, it would be 

interesting to study the evolution of the parameters considered 

during the entire life of the machine in order to distinguish its 

conditions with greater precision. Finally, it will be necessary to 

industrialize the entire diagnostic/prognostic system with an 

appropriate analysis inherent to the sensors downgrade and the 

automation of acquisitions. 
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