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Abstract

Video quality assessment (VQA) has sparked a lot of in-
terest in the computer vision community, as it plays a crit-
ical role in services that provide customers with high qual-
ity video content. Due to the lack of high quality reference
videos and the difficulties in collecting subjective evalua-
tions, assessing video quality is a challenging and still un-
solved problem. Moreover, most of the public research ef-
forts focus only on user-generated content (UGC), making
it unclear if reliable solutions can be adopted for assess-
ing the quality of production-related videos. The goal of
this work is to assess the importance of spatial and tem-
poral learning for production-related VQA. In particular,
it assesses state-of-the-art UGC video quality assessment
perspectives on LIVE-APV dataset, demonstrating the im-
portance of learning contextual characteristics from each
video frame, as well as capturing temporal correlations be-
tween them.

1. Introduction
With the constant growth of services that offer video con-

tent as a form of entertainment for customers, video quality
assessment (VQA) has attracted more and more interest re-
cently [24, 22, 9, 26, 21, 5, 10]. Automated algorithms ca-
pable of predicting the quality of a never-before-seen video
become then essential in services that aim at constantly im-
proving their user experience. These methods are com-
monly referred to as No-Reference (NR) methods, since a
high quality counterpart of the video is not available. How-
ever, most of state-of-the-art NR methods [8, 22, 21, 9, 26]
mainly focus on user-generated content (UGC), due to the
vast availability of public benchmarks. Moreover, only re-
cently [22, 21, 9, 26, 14] deep learning models have been
adopted in this field, due to their outstanding performances
in various computer vision tasks [27, 12, 13, 2]. Starting
from these premises, this work selects [9] among the NR
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leading approaches in MSU Video Quality Metrics Bench-
mark 2022 [1], to investigate the impact of spatio-temporal
learning for accurate production-related video quality as-
sessment. Our intuition is that production-related content
(PRC) is perceived as low quality when customers iden-
tify unexpected spatial and temporal patterns in videos. In-
deed, a scene represented with an unusual set of colours, a
character behaving unexpectedly across time, defects intro-
ducing visual and temporal artifacts such as aliasing, video
bars, and block corruption are just a few examples of un-
expected patterns that contribute to a customer perception
of low quality. To validate the aforementioned hypothesis,
this work investigates the importance of spatial-temporal
learning for PRC adopting LIVE-APV dataset [19, 18] as
benchmark. Moreover, it highlights the diversity in the
challenges between user-generated content and production-
related content (see Figure 1) comparing respective state-
of-the-art models.

To summarize, the contributions are as follows:

1. An investigation into the contribution of spatio-
temporal learning for production-related video qual-
ity assessment. The investigation identified that both
aspects are essential to properly learn models able to
predict subjective quality of video content.

2. The assessment of VSFA [9] on the production-related
LIVE-APV [19] benchmark. The comparison with
ChipQA [5] highlights the diversity between UGC and
PRC challenges.

3. An investigation into the impact of training frame rates
in the perceptual quality that a model can learn. The
study showed that a consistent frame rate is crucial to
capture the pace of natural movements and the per-
formance is positively correlated with the amount of
frames analysed per second.

2. Related work
Historically, VQA approaches have focused on captur-

ing natural video statistics [20, 16, 17] to address VQA
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(a) Low quality UGC video (b) Low quality PRC video

(c) High quality UGC video (d) High quality PRC video

Figure 1: Challenges in video quality assessment domain. UGC is more prone to be recorded under unusual fields of view
and with lots of camera motion which might cut portions of the scene, while PRC recordings are usually more stable, and
focused on the subjects of the scene. (a) shows a low perceived quality UGC video frame due to the recording setting and
the presence of distractions (spectators, hand, hand rest); (b) shows a low quality PRC video frame characterized by a stable
camera but with a poor motion-capturing system. (c) shows a high quality UGC, recorded from an unusual field of view;
while (d) shows high quality PRC which focuses the field of view on the subject. UGC taken from [25], PRC taken from
[19].

challenges. While other attempts have been made exploit-
ing the structural information [23], motion [15], energy
[11] and saliency [28] in videos, only recently pre-defined
features have been replaced by deep learning approaches
[7, 30, 29, 9].

Motivated by the intuition that PRC is perceived as low
quality when customers identify unexpected spatial and
temporal patterns in videos, this work starts from analyz-
ing the state-of-the-art UGC approach [9], which captures
spatio-temporal features adopting two separated modules.
Firstly, it pre-trains an image classification model on Im-
ageNet [3] to learn discriminatory boundaries on various
contexts and images. Then, a Gated Recurrent Unit (GRU)
module computes long-term dependencies on the extracted
features and a final subjectively-inspired temporal pooling
is applied. On the other hand, [5] takes a slightly different
direction and introduces the concept of Space-Time Chips,
which are localized and oriented portions of a video vol-

ume extracted along the direction of the motion. In pris-
tine videos, they have been proved to follow certain regular
statistics, which motivates their adoption in video quality
assessment.

3. Method
In this section we first formalize the video quality as-

sessment problem (Section 3.1), we then describe how [9]
addresses the problem in Section 3.2 and then we analyse
the spatio-temporal learning contributions in Section 3.3.

3.1. Problem formulation

The goal of video quality assessment is to correlate video
content to the perceived quality by humans. At training
time we are provided with a dataset D = {(x, y)} where
x ∈ X is a video and y ∈ Y is its corresponding mean
opinion score (MOS). MOSs represent the ground-truth per-
ceived quality scores on a scale between 0 and 100, i.e.
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Figure 2: Illustration of VSFA. Visual content originally in [9].

Y = {y | y ∈ IR, 0 ≤ x ≤ 100}. Given D, VQA’s goal is
to learn a function M mapping a video to its corresponding
MOS, i.e. M : X → IR|Y |. We consider M built on three
components. The first is a feature extractor MFE mapping
video frames into a feature space. The second is a temporal
learning function MT mapping the spatial features learned
by MFE to temporal features. The third is a quality predic-
tion function MV QA which maps the temporal features to
the final quality scores.

3.2. PRC Video Quality Assessment

In [9], M is built adopting i) a CNN module as MFE ,
ii) a GRU network as MT and iii) a subjectively-inspired
temporal pooling module as MV QA. MFE exploits the
capabilities of CNNs to capture contextual features. More
precisely, each video frame of x is fed into a pre-trained
CNN model which outputs the semantic feature maps from
its deepest convolutional layers. To reduce the dimension-
ality of the extracted features, a spatial global pooling op-
eration is then applied. As this operation discards spatial
information, [9] also applies the spatial global standard de-
viation pooling operation to capture the variance. The re-
sults are concatenated, fed into a fully connected layer and
then given as input to MT . The output of the GRU module
is then fed into MV QA to take into account the hysteresis
effect (we advise referring to [9] for further explanation).
An overview of the method is shown in Figure. 2.

3.3. Spatio-temporal learning

This section analyses the contribution of both spatial
and temporal features learning for production-related VQA.

Content-aware features play a key role in predicting the per-
ceived quality of a video due to the high correlation be-
tween subjective human judgements and the content of the
video itself. Towards this end, pre-trained image classifi-
cation CNNs find applications in VQA as they are capable
of extracting discriminative features based on the content of
the video frames themselves. Also, as deep CNN features
are distortion-sensitive [4] they can correlate the subjective
quality with defects in videos as well. This work firstly eval-
uates the importance of contextual learning in VQA by in-
vestigating the contributions of the pre-trained image clas-
sification network. Section 4 details evaluations of multiple
ResNet [6] instances while varying their depth.

Secondly, this work reports analysis on the temporal
learning aspect. Capturing temporal features is essential
to detect defects along temporal dimensions, as they will
impact in the overall quality of videos. [9] adopts GRU net-
work to catch the temporal relations between frames, and
a subjectively-inspired temporal pooling layer to account
the hysteresis effect. In the following, the importance of
temporal learning is experimentally investigated by evalu-
ating the contribution of the GRU network coupled with the
subjectively-inspired temporal pooling (sub-GRU) against
the LSTM network coupled with the same pooling opera-
tion (sub-LSTM) and with the GRU network coupled with
an average pooling approach (avg-GRU). Finally, this work
evaluates the performance of a model which does not take
into account temporal aspects (no-time) to assess the quality
of a video.
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Table 1: Performance evaluation of temporal learning considering different types of temporal modules and pooling opera-
tions. Best results in bold.

Method MT MV QA SROCC KROCC LCC
no-time ✗ ✗ 0.659 ± 0.049 0.482 ± 0.042 0.680 ± 0.071
avg-GRU GRU Average 0.746 ± 0.067 0.558 ± 0.066 0.769 ± 0.060
sub-LSTM LSTM Subjective 0.797 ± 0.052 0.610 ± 0.056 0.800 ± 0.056
sub-GRU GRU Subjective 0.804 ± 0.060 0.619 ± 0.066 0.818 ± 0.055

Table 2: Performance evaluation of spatial learning considering different instances of ResNet [6] architectures. Best results
in bold.

SROCC KROCC LCC
ResNet-18 0.759 ± 0.061 0.575 ± 0.068 0.776 ± 0.052
ResNet-50 0.804 ± 0.060 0.619 ± 0.066 0.818 ± 0.055
ResNet-101 0.801 ± 0.072 0.611 ± 0.074 0.810 ± 0.066

Table 3: Comparison between VSFA [9] and ChipQA [5]
under SROCC. Best results in bold.

SROCC
VSFA [9] 0.80 ± 0.06
ChipQA [5] 0.83 ± 0.04

4. Experiments

4.1. Evaluation protocol

This work evaluates the temporal and spatial contribu-
tions on LIVE-APV [19] dataset. It contains 45 high-
resolution professional-grade pristine videos of production-
related content and 6 different distortions synthetically ap-
plied to each of them, resulting in a total of 315 syntheti-
cally distorted videos. The applied distortions are compres-
sion, aliasing, interlacing, judder, flicker, and frame drop.
Videos are then selected randomly to be part of the training,
validation and test sets, making sure that each pristine video
and its distorted versions fall into the same set. To fairly in-
vestigate the experiments, this work computes the mean and
the standard deviation among five different runs. An extract
of LIVE-APV dataset is shown in Figure 3.

Metrics. In LIVE-APV dataset subjective quality scores
come in the form of mean opinion score (MOS). The
standard performance criteria for evaluating VQA methods
include the Spearman’s rank-order correlation coefficient
(SROCC), the Kendall’s rank-order correlation coefficient
(KROCC) and the Pearson’s linear correlation coefficient
(LCC). While SROCC and KROCC suggest the prediction
monotonicity, LCC estimates the prediction accuracy.

4.2. Quantitative results

Table 1 reports the results assessing the temporal learn-
ing for production-related VQA. For each evaluation cri-
teria, both the mean and the standard deviation are re-
ported. sub-GRU, which couples the GRU network with the
subjectively-inspired temporal pooling, achieves the best
results, reaching up to 0.80 under SROCC, 0.62 under
KROCC and 0.82 under LCC. Adopting a standard aver-
age pooling operation (avg-GRU) instead of the subjective
temporal one is shown to be less effective, decreasing the
performance under SROCC by 0.06. Moreover, adopting a
LSTM module (sub-LSTM) is shown to achieve compara-
ble results with sub-GRU under all the metrics, showing that
beside the architectural choices, a module able to capture
temporal dependencies is essential for assessing the qual-
ity of production-related videos. This is also supported by
the first row of Table 1 which reports a model deprived of
the temporal modules achieving 0.66 under SROCC. The
overall results drop significantly under all metrics, showing
that only the spatial learning is not sufficient for high video
quality assessment performance.

Similarly, Table 2 reports the results assessing the spa-
tial learning for production-related VQA. ResNet architec-
tures are evaluated with various levels of depth. Among
all, ResNet-50 performs best, reaching up to 0.80 under
SROCC, 0.62 under KROCC and 0.82 under LCC. ResNet-
18 is shown to be less effective, decreasing by 0.04 under
SROCC. The reason is that the content-aware extracted fea-
tures are less discriminative due to the lack of depth, and
the temporal module struggles to learn dependencies. On
the other hand, ResNet-101 achieves performance compa-
rable to ResNet-50. This work attributes the lack of im-
provements to the fixed capacity of GRU which needs the
input features to be re-projected into a lower dimensional
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Figure 3: Pristine and defective samples taken from LIVE-APV [19] dataset. From top-left to bottom-right: pristine, pristine,
defective (compressions), defective (interlacing). Best viewed in color.

features space.
Finally, Table 3 compares UGC and PRC state-of-the-

art approaches under SROCC metric. Despite being created
for UGC only, [9] achieves almost comparable results with
[5], highlighting the early-staged yet promising approach
of spatio-temporal learning for production-related content.
This finding motivates us to further investigate the immense
possibilities of adopting an end-to-end deep learning model
for production-related video quality assessment.

4.2.1 On the importance of training frame rates

We begin the investigation into the impact of training frame
rates on the perceptual PRC quality that a model can learn
by mentioning that in the original LIVE-APV dataset the
frame rates are not consistent across videos, ranging from
25 to 30 fps. In Figure. 4, we compare the original results
to those obtained by feeding VSFA with LIVE-APV videos
sampled at lower and fixed frame rates.

Adopting 25 and 20 fps surpasses the performance
achieved using the original frame rates, reaching up to 0.810
SROCC, 0.820 LCC and 0.626 KROCC in the former sce-
nario, and 0.806 SROCC, 0.820 LCC and 0.622 KROCC
in the latter. We attribute the cause to the model learning
the expected pace of moving subjects. As an explanatory

Figure 4: Impact of training frame rates for perceptual PRC
quality prediction.

example, let us take the instance of humans jogging. Set-
ting the training frame rate to a constant value, teaches the
model a consistent pace for human runs. On contrary, if the
model learns the pattern of a human run at - for example -
25 fps and then observes a person jogging at 30 fps, it will
interpret the person’s slower movement as a drop in quality
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caused by the unusual temporal pattern.
However, downsampling considerably the training

frames will have a negative impact on the model. In fact,
with respect to the results achieved using 25 fps, the model’s
performance decreases by 0.015 SROCC, 0.019 KROCC
and 0.008 LCC when adopting 10 fps, and respectively by
0.037, 0.039 and 0.041 when adopting 5 fps only.

To achieve high quality assessment performance on PRC
video, we therefore find it necessary to i) analyse videos at
a consistent frame rate, which allow the model to capture
the pace of natural movements and ii) adopt the maximum
frame rate possible, to prevent misinterpreting abrupt tran-
sition between two consecutive frames for an uncommon
temporal pattern, which leads to low perceived quality.

5. Conclusions and future work

This paper investigates the importance of spatio-
temporal learning for production-related video quality as-
sessment. It assesses state-of-the-art UGC video qual-
ity assessment perspectives on LIVE-APV benchmark and
demonstrate the contribution of context-aware features is
essential, due to the high correlation between the content of
a video and its perceived subjective quality. Moreover, this
work shows that capturing temporal correlations becomes
fundamental for production-related content, as the overall
performance drops drastically when a model is deprived of
this capability.

However, despite being created for UGC, this work finds
the approach of spatio-temporal learning promising. The
deep end-to-end training, indeed, opens up unexplored fu-
ture directions. In particular, we are interested in exploiting
unlabeled production-related datasets for additional super-
vision in a self- and semi- supervised manner. In the first
approach, a contrastive learning strategy is planned to be
adopted to learn a richer and sharper feature space. Inspired
by [14], our intuition is that specific augmentation strategies
such as flipping do not interfere with the perceived subjec-
tive quality of a video. On the other hand, the second ap-
proach adopts a two-stage iterative pipeline. We aim at us-
ing the main model to produce pseudo-labels for the large
unlabeled dataset, and then use the pseudo-annotated sam-
ples to re-train the main model. This pattern is planned to
be iterated until the extra pseudo-supervision stops provid-
ing additional improvements.
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