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a b s t r a c t

The state of the art in violence detection in videos has improved in recent years thanks to deep learning
models, but it is still below 90% of average precision in the most complex datasets, which may pose
a problem of frequent false alarms in video surveillance environments and may cause security guards
to disable the artificial intelligence system.

In this study, we propose a new neural network based on Vision Transformer (ViT) and Neural
Structured Learning (NSL) with adversarial training. This network, called CrimeNet, outperforms
previous works by a large margin and reduces practically to zero the false positives. Our tests on
the four most challenging violence-related datasets (binary and multi-class) show the effectiveness of
CrimeNet, improving the state of the art from 9.4 to 22.17 percentage points in ROC AUC depending
on the dataset. In addition, we present a generalisation study on our model by training and testing
it on different datasets. The obtained results show that CrimeNet improves over competing methods
with a gain of between 12.39 and 25.22 percentage points, showing remarkable robustness.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Violence detection is a very important functionality in public
r private security. In smart cities, more and more surveillance
ameras are being installed that enable several use cases
uch as traffic management, infraction or weapon detection
Salazar González, Zaccaro, Álvarez-García, Soria Morillo, & San-
ho Caparrini, 2020). In addition, in schools, hospitals, shopping
entres, and other buildings they are also generally used as a
issuasion and in the worst case to identify criminals once a
rime has been committed. This growing number of cameras
equires sufficient human resources to control the volume of
ideo they generate, however the number of cameras needing
ttention is greater than the number of staff. Furthermore, after
0 min of monitoring a CCTV system, operators’ attention spans
re considerably reduced (Ainsworth, 2002; Velastin, Boghossian,
Vicencio-Silva, 2006). The current difficulties in tackling this

roblem become even more evident when considering that
ecurity is an issue of international concern which scales up
rom single cities to the World Wide Web. The amount of violent
udiovisual content circulating on the network is excessive. To
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c-nd/4.0/).
such an extent that the operators in charge of controlling and
filtering videos of this type on social networks end up with
mental health problems due to over-exposure to violent content.1
Despite this, video surveillance systems are still being manned by
humans because the number of false positives is not acceptable
in production environments and a human in the loop is still
necessary. When analysing the literature, we found that for the
most challenging datasets the state of the art does not reach
90% accuracy (Lv et al., 2021). To overcome this issue, we aim at
designing a robust and sufficiently accurate model to minimise
the number of false positives, making it possible to use a video
violence detector in real environments.

This work covers the video detection of all types of violent
events, both visually intentional actions such as a fight between
people, as well as unintentional acts such as an explosion. More-
over, we go beyond standard anomaly detection which differen-
tiates violent from non-violent events: we target a model able
to differentiate between different types of violence. This is a
complex problem since many types of violent actions can be
similar even if their classes are different (there are categories
such as abuse, arrest or assault that can be confused with each
other) or they can even occur in the same video. To tackle these

1 https://www.bloomberg.com/news/articles/2021-12-24/tiktok-sued-by-
ontent-moderator-traumatized-by-graphic-videos
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challenges we propose to combine the powerful self-attention
learning paradigm with Neural Structured Learning (NSL). The
former is obtained by exploiting the most recent Vision Trans-
former deep architecture (ViT, Dosovitskiy et al., 2021). The latter
leverages the relation among neighbouring samples during train-
ing. Specifically, it provides a regularisation effect by biasing
the network to learn similar hidden representations for close
instances.

Our key contributions can be summarised as follows:

• We introduce CrimeNet: a deep model that combines adver-
sarial NSL with ViT for violent activity recognition in videos.
Up to our knowledge this is the first time that NSL is used
with Transformers rather than with standard convolutional
neural networks, and also the first time that it is applied for
video recognition.

• CrimeNet improves the state of the art for violence detection
on four datasets by reaching an accuracy over 99.98%, with
an advantage ranging from 9.4 to 22.17 percentage points
in ROC AUC over its competitors. A detailed ablation shows
that NSL provides and improvement of 9.55% points in ROC
AUC over the use of only ViT as the architecture of the
model.

• We present an extensive cross-dataset analysis and show
the generalisation abilities of CrimeNet. Despite the chal-
lenging setting of training and testing on different datasets,
CrimeNet advances the state of the art from 12.39 to 25.22
percentage points with respect to existing methods that are
affected by the domain shift.

This paper is organised as follows: Section 2 provides a brief
urvey of the state of the art of the problem. Section 3 describes in
etail each of the datasets used in this work. Section 4 provides
n-depth details on the proposed model architecture. Section 5
ummarises the types of experiments proposed in this work.
hen, in Sections 6 and 7 the results obtained from the experi-
entation are shown and described. Finally Section 8 summarises

he relevance of the results obtained and the possible lines of
rogress for future development.

. Related works

In this section, a review of the state of the art on video
etection of violence is carried out. Furthermore, several Neural
raph Learning proposals are shown, where NSL is a specific case,
pplied to computer vision problems.

.1. Deep learning for violence behaviour detection in videos

Crowd behaviours analysis (Li, Chen, Nie & Wang, 2017a,
017b; Sadeghian, Alahi, & Savarese, 2017) and detection of
iolent actions in videos are well-known and well-studied re-
earch fields (Bermejo Nievas, Deniz Suarez, Bueno García, &
ukthankar, 2011; Deniz, Serrano, Bueno, & Kim, 2014), how-
ver, since 2014 when the first paper using a deep learning
pproach (Ding, Fan, Zhu, Feng, & Jia, 2014) appeared, violence
etection has advanced by leaps and bounds. Specifically, for
ome datasets (Bermejo Nievas et al., 2011; Hassner, Itcher,
Kliper-Gross, 2012), based on short clips and labels for the
hole clip, there exist approaches reaching up to 100% accu-
acy (Rendón-Segador, Álvarez-García, Enríquez, & Deniz, 2021).

Given that these datasets were not sufficiently challenging,
esearchers created new testbeds with hours of CCTV camera
ecordings: the videos are longer and often annotated at frame-
evel. In addition, some of them have moved from 2 classes
violence and non-violence) to multiple classes distinguishing the
ypology of violence in the video.
319
The first paper to introduce this new family of datasets
was (Sultani, Chen, & Shah, 2018) in 2018: the UCF Crime col-
lection incorporates the greatest variety of violence classes (14
types). This work also presented a model called DMIL Rank-
ing, in which anomaly detection is approached as a regression
problem considering video segments as instances in ‘‘multiple
instances learning’’ (MIL) and using a ranking-based loss function
to evaluate a fully connected neural network.

The NTU CCTV Fights dataset (Perez, Kot, & Rocha, 2019) was
presented in 2019: it contains only long violent videos, labelled at
frame-level with violent or non-violent classes. This dataset has
been evaluated using different known feature extractors such as
Two-stream Convolutional Neural Network (CNN) or 3D CNN and
different classifiers such as End-to-End CNN, Long–short Time
Memory (LSTM) and Support Vector Machine (SVM).

Another method combining the spatio-temporal feature ex-
tractor of ResNet 3D (Dubey, Boragule & Jeon, 2019) and the loss
function of Sultani et al. (2018) was also published that year,
improving the results for the UCF Crime dataset. Zhong et al.
(2019) evaluated the same dataset using a convolutional graph
to clean and refine the classifier based on Temporal Segment
Networks (Wang et al., 2018).

New work focused on anomaly detection emerged in 2020.
Degardin (2020) provided a new dataset, UBI Fights, and proposed
an architecture based on the Gaussian mixture model (GMM) for
the detection of abnormal events in videos applied under the
weakly supervised learning paradigm.

Also noteworthy is the work of Kamoona, Gosta, Bab-
Hadiashar, and Hoseinnezhad (2020) in the weakly supervised
setting, using an encoder–decoder architecture (DMIL AutoEn-
coder). Furthermore in the same year, Wu et al. (2020) released
the new dataset XD Violence, with 7 classes, the largest number
of videos (4754), and hours (217), also incorporating sound. The
authors presented a method that exploits visual and audio feature
extractors whose output is mixed and provided to graph neural
networks to detect short- and long-range temporal relationships.

In 2021 Tian et al. (2021) proposed an approach for anomaly
detection in videos where a learning function recognises positive
instances on the basis of the feature magnitude learning function
and using self-attention mechanisms (Vaswani et al., 2017). In
the same year, Lv et al. presented a study in which they propose
a weakly supervised anomaly localization (WSLA) method that
measures variations in both spatial and temporal contexts. Their
results mark the current state of the art for the UCF Crime dataset.

In the work by Chang, Li, Shen, Feng, and Zhou (2021), frame
anomalies are detected starting from a single binary annotation at
the video level. Based on the extracted visual features, attention
mechanisms are used to refine the classification of anomalous
instances.

Dubey, Boragule, Gwak and Jeon (2021) proposed a model that
addresses context-dependency by analysing motion and appear-
ance features. They use a 3D ResNet network to extract spatio-
temporal and motion feature sets which are then fused and
provided as input to a network that learns context-dependencies
in a weakly supervised manner using multiple classification mea-
sures (MRM).

Another noteworthy study is that of Feng, Hong, and Zheng
(2021) in which they developed a multi-instance self-training
framework (MIST) to efficiently refine task-specific discriminative
representations with only video-level annotations. The model
is composed of a multi-instance pseudo-label generator and a
self-guided attention function encoder that aims to automat-
ically focus on anomalous regions in frames while extracting
task-specific representations.

Finally, Degardin and Proença (2021), presented an iterative
learning framework composed of two expert systems working in
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the weakly supervised and self-supervised paradigms. This work
combines 3D convolutional neural networks for both paradigms
with a Bayesian network that is responsible for performing data
augmentation.

To provide some reference background, the next section re-
iews state of the art of Neural Graph Learning, and general cases
or NSL and ViT.

.2. Applied neural graph learning

Graph-based neural learning has been applied to several tasks
elated to human action recognition.

In 2019 Shi, Zhang, Cheng, and Lu (2019) proposed to rep-
esent skeleton data in a directed acyclic graph based on the
inematic dependence between joints and bones. In 2021, Xu and
akano (2021) presented a convolutional graph neural network to
stimate 3-D human pose in which the input data were struc-
ured using an hourglass graph. In the same year, a model to
lassify sports videos was presented in Gao, Cai, and Liu (2021): it
onsists of a convolutional model designed with attention mech-
nisms for assigning weights to neighbouring nodes, combined
ith a third-order hourglass graph used to structure the features
f the videos.
Graph-based learning has been also used in Yin, Shen, Gao,

randall, and Yang (2021) to detect 3D objects in videos. In this
ase, the data were encoded through a grid message passing
etwork (GMPNet). Considering each grid as a node, the data
ere structured using a k-NN network and the model was a
patio-temporal Transformer-GRU.
There are other fields of research that have experimented with

SL and adversarial learning with significant results, such as Ren,
ang, Zhang, and Chang (2020) for fake news detection through

ocial networks. It has also been applied to protect against ad-
ersarial attacks using perturbed data (Jin et al., 2020), achieving
ignificantly better performance compared to state of the art
efense methods.

.3. Applied vision transformer

ViT (Dosovitskiy et al., 2021) profits the Transformer (Vaswani
t al., 2017) potential, avoiding inductive bias such as translation
nvariance and locally restricted receptive field in images. To do
t, it splits an image in a sequence of patches, flattens them,
roduces linear embeddings, adds positional embedding to know
here is located each patch in the original image, and feeds
his sequence as an input to a standard transformer encoder
composed by a multi-head attention layer (Vaswani et al., 2017)
hat allows the model to jointly attend to information from dif-
erent representation subspaces at different positions) as it can
e seen in Fig. 4. The success of Transformers, ViT, and their
ariations (Khan et al., 2022) is beyond doubt, and have improved
he state of the art in many areas such as frame synthesis (Liu
t al., 2020), action recognition (Girdhar, Carreira, Doersch, &
isserman, 2019), or object detection in videos (Chen, Cao, Hu,
Wang, 2020).
Our approach differs from previous proposals although being

nspired by the use of graph neural networks already leveraged
n Wu et al. (2020) and Zhong et al. (2019). As we will describe
n the following, we propose a new approach based on super-
ised NSL (Bui, Ravi, & Ramavajjala, 2018; Gopalan et al., 2021)
nd ViT (Dosovitskiy et al., 2021). To our knowledge, the NSL
aradigm is used here for the first time for violence recognition
n videos.
320
Table 1
Information on datasets used.
Dataset № Items № Classes № Hours

NTU CCTV Fights (Perez et al., 2019) 1000 2 17.68
UBI Fights (Degardin, 2020) 1000 2 80
XD Violence (Wu et al., 2020) 4754 7 217
UCF Crime (Sultani et al., 2018) 1900 14 128

3. Datasets

For our work, we focus on four video datasets recording vi-
olent events. They all contain 1000 videos or more, each one
ranging from hundreds to thousands of frames. A summary of
the datasets’ information is in Table 1, while the following list
provides further details:

• NTU CCTV Fights (Perez et al., 2019) is a dataset containing
1000 videos depicting real-world fights. Of this dataset, 280
videos are recorded from CCTV and 720 from other sources
such as mobile cameras or drones, containing different types
of fights, ranging from 5 s to 12 min, with an average
duration of 2 min.

• UBI Fights (Degardin, 2020) is a large-scale dataset of 80 h
of video fully labelled at frame-level. It consists of 1000
videos, where 216 videos contain a fight event and 784 are
normal everyday situations. All unnecessary video segments
(e.g., video introductions, news, etc.) that could disrupt the
learning process were removed. The title of the videos con-
tains indicators related to the type of the respective video.
The dataset is divided into binary classes: violence and
normal.

• XD Violence (Wu et al., 2020) is a large-scale dataset with a
total duration of 217 h, containing 4754 untrimmed videos
with audio signals and video-level tagging. The dataset is di-
vided into the following seven anomalous categories: abuse,
car accident, explosion, fight, shooting, and riot.

• UCF Crime (Sultani et al., 2018) is a dataset consisting of
long untrimmed surveillance videos covering 14 real-world
violent classes, including abuse, arrest, arson, assault, traf-
fic accident, burglary, explosion, fight, robbery, burglary,
shooting, theft, shoplifting, and vandalism.

4. Model achitecture

This section shows the type of model and architecture used to
address the problem. An in-depth definition of the model and the
adaptations applied for our use case is provided.

4.1. Pre-processing

4.1.1. Optical flow
Since our model analyses the video frame by frame, including

temporal information in each frame is critical. We use optical flow
for this purpose (Farnebäck, 2003): it takes two adjacent frames
and represents in an image the amount of pixel variation caused
by the observed movements. Of course, the parts of a frame that
move together will correspond to pixels with the same intensity
as in the example of Fig. 1.

The state of the art demonstrates that the use of optical flow
as input in violence detection typically improves the use of RGB
input (Mahmoodi & Salajeghe, 2019; Rendón-Segador et al., 2021;
Zhou, Ding, Luo, & Hou, 2018).
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Fig. 1. Sequence of frames in RGB format and their corresponding optical flow. In this frame sequence, we go from a normal event to a violent event (explosion).
Images from the XD-Violence dataset (Wu et al., 2020).
4.1.2. Adversarial neighbours
As it will be seen when describing the model’s details (Sec-

tion 4.3), NSL is used, a new learning paradigm to train neural
networks by using structured signals in a graph. This assumes
that the model receives two inputs: the RGB frames, in our case
transformed by an optical flow algorithm, and a similarity graph.
This graph, or structured signal, is used to represent relationships
between samples. The similarity graph regularises the training of
a neural network, forcing the model to learn accurate predictions
by minimising the supervised loss function while maintaining the
input structural similarity by reducing the loss function of the
neighbouring node.

The similarity graph is generated from the training exam-
ples using a graph builder. Each entry is assumed to have an
ID and an embedded vector as features. On the one hand, the
ID uniquely records and identifies each instance; on the other
hand, the embedded vector is assumed to capture the essence
of each example by representing it as a list of floating-point
values. The graph generator compares the embedded vectors of
all input pairs. The degree of similarity between any two samples
is calculated as the cosine similarity of their embedded vectors.
The brute-force approach to constructing a similarity graph from
instance embeddings is O(n2), which does not scale well to large
training sets.

To mitigate that problem, the graph builder uses a well-
known randomisation technique called locality-sensitive hashing
or LSH (Charikar, 2002). To describe this approach, it is assumed
that we have a bidimensional embedding vector represented by
n points plotted on a cartesian coordinate plane.

The first step of the LSH process is to choose some random
hyperplanes through the origin as it can be seen in Fig. 2. These
hyperplanes divide the space and thus the points into discrete
sections that are called LSH buckets. Although there are several
buckets, the number of points in each bucket is expected to be
much smaller than the complete input set. The quadratic nature
of comparing all pairs within each bin has a much smaller impact
on performance; comparisons within each bin result in a certain
number of graph edges within the bin. This generates a series of
connected components each of which corresponds to a bucket,
these components are separate and are not part of an overall
graph. To complete the similarity graph, the bucketing process is
repeated several times, with each round of bucketing choosing
to select a different number of random hyperplanes until all
connected components are connected.
321
We highlight that the similarity graph is needed only at train-
ing time, since during inference it would not be useful to regen-
erate this graph by adding only the samples to be inferred as
the whole LSH process would be necessary again. The inference
workflow will not change, simply providing predictions on new
testing video frames.

Obtaining the exact similarity relationship between input data
is difficult: it is not trivial to evaluate the likeness of one instance
to another without a predefined feature embedding that differ-
entiates the type of violence or separates crimes from normal
actions. To overcome this issue we propose to generate synthetic
neighbouring instances via Adversarial Learning (Zhang, Lemoine
& Mitchell, 2018).

In the case of image classification networks, adversarial exam-
ples are nothing more than samples to which the pixels have been
modified in order to alter the predicted class. Their appearance
is similar to that of the original images, but they induce model
confusion causing prediction errors. Generally, the adversarial ex-
amples are obtained by exploiting the inverse gradient direction
of an optimised model. We adopt this logic on the optical flow
images.

We start from the hypothesis that normal and violent events
have different pixel clustering and variability in the amount of
motion measured using optical flow, with the latter being greater
in violent events. Likewise, between different types of violent
events, there will be variations in the amount of motion and
type of pixel clustering. Fig. 3 shows the scheme of a structured
signal in which the optical flow images in Fig. 1 are grouped into
two connected components α and β , assuming a binary classifier.
The images and small circles are the new samples produced via
adversarial learning.

With this procedure, we obtain adversarial instances, one per
image with respect to the total training set. The samples in the
same connected components are visually similar but were created
on purpose to confuse the original model, thus this data makes it
more robust and able to generalise better.

4.2. Vision transformer

As basic classification model that we expect to be initially
fooled by the adversarial examples, we use a deep transformer
network.

Specifically, we consider the Vision Transformer (ViT) model
(Dosovitskiy et al., 2021) which has achieved remarkable re-
sults compared to CNN, in addition to reducing the computa-

tional cost required for training and exhibiting a generally weaker
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Fig. 2. A representation of the LSH process for the construction of the similarity graph. The dashed red lines corresponding to the labels H1, H2, and H3 are the set
of hyperplanes that divide the different points and group them into buckets. α and β correspond to two connected components of the similarity graph. The circles
represent instances of the training dataset, in this paper, frames from each training video.
Fig. 3. Similarity graph of optical flow frames generated using adversarial perturbation of the original input (Fig. 1). Component α are images of non-violent events
nd component β are images of violent events. This similarity graph is used as the second input to the model. The images inside small circles correspond to other
dversarial samples.
nductive bias. ViT is a model based on a Transformer archi-
ecture (Vaswani et al., 2017) initially used for image classi-
ication but later adapted to other visual tasks such as next-
rame prediction (Jahanbakht, Xiang, & Azghadi, 2022) or video

lassification (Arnab et al., 2021).

322
It divides an image into a sequence of fixed-size fragments
called patches, correctly embeds each of them, and includes their
positional encoding as input to the Transformer encoder. The
fragments are used similarly to the series of embedded words
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Fig. 4. ViT Architecture for frame classification, based on Dosovitskiy et al. (2021) and Vaswani et al. (2017) works.
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or text Transformers, and the output is a prediction label for the
mage.

Although training a ViT model that has good performance
equires from 10 million to more than 100 million images and
huge amount of time and resources (Dosovitskiy et al., 2021),

he authors of Steiner et al. (2022) released more than 50000 ViT
odels trained under diverse settings (including patch size of 8,
6 and 32) on various datasets.2 The one selected in this work
s called ViT-S or DeiT-S (Touvron et al., 2021) and it is trained
sing a different strategy than the original ViT (Dosovitskiy et al.,
021), achieving good metrics (83.73% in ImageNet (Russakovsky
t al., 2015) top-1) with reduced size (115 MB). It is pre-trained
ith ImageNet 21K and fine-tuned with ImageNet 1K and the
atches used are of dimension 16 × 16 pixels. Given that the
nput frames are resized to 224 × 224, that means the ViT model
ngests 142 patches. It is worth considering that smaller patch
izes are computationally more expensive. For our work we keep
his standard decomposition cardinality of the video frames in
atches since we are mainly interested in how ViT combines with
SL: we are aware that the patch size influences the performance
f the ViT models (Dosovitskiy et al., 2021; Steiner et al., 2022;
ouvron et al., 2021), but this is orthogonal to our analysis and
e expect that any improved choice of the patch size would

nevitably further improve the observed results.
ViT architecture (Dosovitskiy et al., 2021; Paul & Chen, 2022),

s shown in Fig. 4.
We split the image into fixed-size patches and linearly embed

ach of them. We add positional embeddings by generating a
ector sequence with which a standard Transformer encoder is
ed. For classification, an extra classification element is added to
he vector sequence. Classification is performed by a multilayer
erceptron.

.3. Neural structured learning

In order to take advantage of the power of the similarity
raph generated by means of adversarial instances, we follow
he scheme proposed in NSL (Bui et al., 2018; Gopalan et al.,
021) (See Fig. 5). In it we can see that we have a pair of inputs,
he frames of the training set transformed by optical flow, and
similarity graph or structured signal with instances generated
y adversarial modified versions of the sample frame to which
t is applied with small perturbations. The generated adversarial
eighbours form a similarity graph. In the next step, the original

2 https://github.com/google-research/vision_transformer
323
instances are combined with their neighbours and serve as input
to the ViT. An encoding of examples and their neighbours is
obtained as output. The final regularised graph is the sum of the
discriminate loss and the regularisation loss of the graph (Bui
et al., 2018).

Using this connection, neural networks learn to maintain the
similarities between the sample and the adversarial neighbours
while avoiding the confusion resulting from misclassifications,
thus improving the quality and accuracy of the overall neural
network.

Being T = t1 . . . tn the training dataset an Y = y1 . . . ym the
set of labels associated with the instances of the training dataset,
through the adversarial learning process a set of neighbour nodes
n is generated for each instance of the training dataset, see Eq. (1).

∀ti ∈ T → ti : {n1 . . . nk} (1)

For each subset of neighbours associated with an instance
ti a subgraph Hti = (V ′, E ′) is generated, where each of the
neighbours will be connected to the instance, see Eqs. (2) and (3).

V ′
= {ti, n1 . . . nk} (2)

E ′
= {(ti, n1) . . . (ti, nk)} (3)

The sum of all subgraphs forms the graph G(V , E) which we
call the structured signal (Eq. (4)).

G(V , E) =

∑
ti∈T

Hti (4)

From the structured signal S = G(V , E) one can distinguish
ertices containing the instances (vertices) of the pure training set
t = {t1 . . . tn} and those of the neighbouring vertices generated
y adversarial learning Vn = {n1 . . . nl} both of which form the
nput to the ViT model that finish in a multi-layer perceptron
MLP) generating a feature vector. The model returns an embed-
ing Φ(Vt ) from Vt and an embedding Φ(Vn) from Vn, the latter
nly during training. The feature vector Φ(Fv) is the result of the
raph regularisation between the vectors Φ(Vt ) and Φ(Vn), see
q. (5).

(Fv) = Φ(Vt ) + Φ(Vn) (5)

It should be noted that the ViT model takes each of the vertices
f the structured signal S and fragments the image it contains
nto a sequence of patches P(v) = {pv . . . pv } that embeds a
1 n

https://github.com/google-research/vision_transformer
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Fig. 5. Neural Structured Learning using as processing model ViT (Fig. 4). The neural network minimises two loss functions, the supervised and the adversarial loss
function, which is shown in Eq. (9). Figure inspired in Juan et al. (2020) and Gopalan et al. (2021) works.
vector Γ and then by the process of structured learning is re-
embedded under the vector Φ(Fv), the actual embedding process
is represented mathematically by the Eqs. (6), (7) and (8).

Vt =

⋃
∀vt∈V

P(vt ) (6)

Vn =

⋃
∀vn∈V

P(vn) (7)

Φ(Fv) = Φ(Γ (Vt )) + Φ(Γ (Vn)) (8)

Once the vectors are embedded, the final step consists of
regularising the vector Φ(Fv) and applying the adversarial loss
(sparse categorical cross-entropy) function (Goodfellow, Shlens,
& Szegedy, 2015). Being yi ∈ Y the actual label value of a vertex i
and gθ (nj) the prediction of the neighbour node j, the adversarial
loss function is shown in Eq. (9).∑
nj∈V (ti)

ϵ(yi, gθ (nj)) (9)

5. Experimental setting

This section shows the guidelines followed during the exper-
imentation. What kind of experimentation has been performed,
how it has been performed, and the motivations related to such
experimentation.

All experiments have been conducted using a computer with
an Intel(R) Core(TM) i7-9700F CPU 3.00 GHz, 16 GB of RAM and
an NVIDIA RTX 2080 Super GPU. Details of experimentation are
shown through GitHub.3

5.1. Datasets partitions

In the first batch of experiments, the model is trained and
tested with each of the datasets following the predefined parti-
tions for each of them. Each of the datasets opts for a different
type of labelling. These types of labelling can be grouped into
three. Firstly, frame-level labelling, where each frame has a la-
bel associated with it depending on whether it is a frame that
harbours violent behaviour or not, this is the case of UBI Fights.

3 https://github.com/FernandoJRS/CrimeNet-ViT-NSL
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Secondly, interval labelling, in which for each instance of the
dataset the interval in frames or seconds in which the violent
action occurs is provided, this is the case of NTU CCTV Fights
(intervals per second) and XD Violence (intervals per frame). And
the third and last case is video-level labelling, where the entire
instance of the dataset has a single label associated with it that
classifies the entire video, this is the case of UCF Crime training
set (the testing set is labelled using intervals per frame). We
consider the finest labelling to be at frame level so we will use
it for our model. For interval–labelled datasets, we take each
interval and label each frame belonging to that interval based on
interval class. In the case of UCF Crime training set, all frames
belonging to an instance will have the same label as the instance.

The datasets provide pre-defined guidelines for their division
into training, validation and testing datasets. Rather than creating
our own divisions, we strictly follow the guidelines provided
by each of the datasets: NTU CCTV Fights uses three randomly
selected partitions: 50% training, 25% validation and 25% testing;
UBI Fights three fixed subsets (80%, 5% and 15%); XD Violence
use 3954 videos for training and 800 for testing; UCF Crime
uses 800 normal and 810 anomalous videos for training and 150
normal and 140 anomalous for testing in 4-fold cross-validation.
The divisions are made at the instance level (videos) so first, the
partition is made into training, validation and test subsets and
then the frames are extracted from each instance and labelled.

5.2. Preparation of ablation study data

The second batch of experiments aims to see the contributions
of NSL to a deep learning model, in this case, a ViT. For this
purpose, an ablation study is performed where NSL is eliminated,
including the similarity graph using adversarial learning, and re-
placed by supervised learning, only standard optical flow frames
are used as input of the ViT. In this ablation study, the same type
of experimentation is performed as with the first batch (following
the predefined partitions), substituting one type of learning (ViT
+ NSL) for another (only ViT). The previous and this experiments
are called In-domain experiments.

5.3. Cross-datasets data preparation

In the last batch of experiments, the objective is to measure
the generality of the concept of violent action by means of cross-
datasets experiments (do not confuse it with cross-validation).

https://github.com/FernandoJRS/CrimeNet-ViT-NSL


F.J. Rendón-Segador, J.A. Álvarez-García, J.L. Salazar-González et al. Neural Networks 161 (2023) 318–329

a
w
i
d
s
t
o
m
i
‘
w

t
d
d
t
c
t

5

Fig. 6. Comparison between two frame sequences of the classes Car Accident XD Violence (Top) and Road Accident UCF Crime (Bottom).
Table 2
Matching classes between the UCF Crime and XD Violence datasets.
UCF crime classes XD violence classes Match classes

Normal Normal ✓
Abuse Abuse ✓
Arrest – ×

Arson – ×

Assault – ×

Burglary – ×

Explosion Explosion ✓
Fighting Fighting ✓
– Riot ×

Road Accident Car Accident ✓
Robbery – ×

Shooting Shooting ✓
Shoplifting – ×

Stealing – ×

Vandalism – ×

For this purpose, the whole of the source dataset is used as the
training set and the whole of the target dataset with which the
model is to be evaluated as the test dataset.

On the one hand, the single-class datasets, NTU CCTV Fights,
nd UBI Fights are crossed with each other by training the model
ith one set and validating with the other. On the other hand

n the multi-class datasets, XD Violence and UCF Crime, cross-
atasets experiment with all the classes cannot be performed
ince they do not have the same amount of classes and not all of
hem are coincident, for that reason, the model must be trained
nly with those classes coincident between both datasets. The
atched classes between XD Violence and UCF Crime are shown

n the Table 2. Given the similarity of the instances of the classes
Road Accident’ in UCF Crime and ‘Car Accident’ in XD Violence,
e consider them matched classes.
Two sequences of frames from the classes Car Accident from

he XD Violence dataset and Road Accident from the UCF Crime
ataset are shown in Fig. 6. The frames from the UCF Crime
ataset are of lower quality than those from XD Violence, in
his case from a movie. However, both classes capture the same
oncept of traffic accidents and can be compared and considered
he same class despite the difference in quality and camera focus.

.4. Metrics

The metrics used in the experiments are as follows:

• Confusion Matrix (CM): Allows the display of the number of
predictions made by a model that matches the labels.

• Receiver Operating Characteristic Area Under the Curve
(ROC AUC): Calculates sensitivity versus specificity for a
classifier system as the discrimination threshold is varied.
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• Average Precision (AP): Summarises the area under the
precision–recall curve (PR AUC) as the weighted average of
the accuracy achieved at each threshold.

6. In-domain: Results from each dataset

The results in Table 3 show the effectiveness of CrimeNet with
respect to its competitors. More precisely, Fig. 7 presents the
nearly perfect confusion matrices of CrimeNet for the multi-class
XD Violence and UCF Crime datasets. We highlight that the UCF
Crime dataset comes with four different train/test dataset splits:
for all of them the CrimeNet results are stable with almost zero
standard deviation, confirming the robustness of the model. The
inference time for these results is about 40 ms.

By reporting the results of ViT we provide an ablation on
the role of NSL: indeed CrimeNet builds over ViT and further
exploits the sample neighbour graph via NSL. The results indicate
that CrimeNet has an advantage over ViT of around 10% points
confirming that NSL generates a more robust model by establish-
ing stronger relationships between similar image features. These
surprisingly good results are in agreement with those obtained in
other works using NSL such as Uddin and Soylu (2021).

We note that ViT is already surpassing all the state of the art
models except in the case of UBI Fights where results are very
close in ROC AUC to Sultani et al. (2018) (89.76% vs 90.60%). The
approximate inference time of ViT remains at 40 ms, showing the
inclusion of NSL in the model does not cause a prediction delay.

Finally, CrimeNet outperforms the current state of the art by
far. For the less studied datasets such as NTU CCTV Fights and UBI
Fights, perfect results are obtained, which is 20.5% points higher
in AP for NTU CCTV Fights and 9.4% points higher ROC AUC in
UBI Fights. For the case of the multi-class datasets, the results
obtained are again significantly higher than the state of the art.
For the XD Violence dataset, the improvement is 22.17% in ROC
AUC while for the UCF Crime dataset is 14.6%.

7. Cross-domain: Results across datasets

Given the results of our model CrimeNet using ViT and NSL so
close to 100% of the metrics, this experiment is essential to check
if overfitting is occurring. The results of this experiment show
a good performance of the model in generalising the concept
of violent action. Figs. 8 and 9 show the confusion matrices for
the cross-datasets experiment between NTU CCTV Fights - UBI
Fights and XD Violence-UCF Crime datasets (retrained using the
common classes shown in Table 2).

Table 4 shows the accuracy results for each of the cross-
datasets experiments. These results show that the single-class
datasets generalise the concept of violence better, achieving re-
sults of around 80% accuracy. The multi-class datasets show sig-
nificantly lower performance, but higher than 70% in both cases.
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Table 3
Comparison of CrimeNet results with the state of the art for the case study datasets. Our ablation study using only ViT is also
included.
Dataset Method ROC AUC AP

NTU CCTV Fights (Perez et al., 2019)
3D CNN (Perez et al., 2019) – 79.50%
ViT 90.45% 90.40%
CrimeNet 100% 100%

UBI Fights (Degardin, 2020)

BayesianNet (Degardin & Proença, 2021) 84.60% –
ViT 89.76% 89.73%
GMM (Degardin, 2020) 90.60% –
CrimeNet 100% 100%

XD Violence (Wu et al., 2020)

HL-Net (Wu et al., 2020) – 78.64%
Contrastive Attention (Chang et al., 2021) – 76.90%
RTFM (Tian et al., 2021) 77.81% –
ViT 87.23% 87.20%
CrimeNet 99.98% 99.95%

UCF Crime (Sultani et al., 2018)

DMIL Ranking (Sultani et al., 2018) 75.41% –
GMM (Degardin, 2020) 75.90% –
3D ResNet (Dubey, Boragule, Jeon, 2019) 76.67% –
DMIL AutoEncoder (Kamoona et al., 2020) 80.10% –
DMIL-MRM (Dubey, Boragule, Gwak, et al., 2021) 81.91% –
GCN (Zhong et al., 2019) 82.12% –
MIST (Feng et al., 2021) 82.30% –
RTFM (Tian et al., 2021) 84.30% –
Contrastive Attention (Chang et al., 2021) 84.62% –
WSAL (Lv et al., 2021) 85.38% –
ViT 87.50% 87.50%
CrimeNet 99.98% 99.97%
Fig. 7. (a) XD Violence Confusion Matrix, (b) UCF Crime Confusion Matrix.
e
t
t
r

7

o
t

t should be noted that none of the state of the art works studied
sed this experiment to check the robustness of their models,
o we carried out it with the state of the art models that have
btained the best results for each dataset in Table 3, that is,
MM (Degardin, 2020) for UBI Fights, RTFM (Tian et al., 2021) for
D Violence and WSAL (Lv et al., 2021) for UCF Crime and whose
ode is available to reproduce. ViT (without NSL) is also included
o check the performance of CrimeNet over the state of the art
nd ViT. As it can be seen, CrimeNet far outperforms the cross-
atasets results of the other models, improving in 25.22% points
OC AUC for UBI Fights, 18.73% for XD Violence and 12.39% for
CF Crime respectively. For the NTU CCTV Fights dataset, there is
o reproducible code is available with which to obtain results for
omparison.
When XD Violence is used as the training dataset, better

eneralisation can be observed than when UCF Crime is used. We
 s
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consider that the size of the first dataset, with more than twice
as many videos as the second one, allows better training and ROC
AUC than the second one (73.5% vs. 70.20%).

The ablation study on the role of NSL again shows that
CrimeNet has a significant advantage over ViT, around 10%
(+9.47%, +11.06%, +10.89%, and +9.47%) in the cross-validation
xperiments. This difference is in agreement with the results ob-
ained in the In-domain experiments and shows that ViT applied
o video overpass state of the art but NSL includes much more
obustness.

.1. Recommendations

The practically perfect in-domain results motivated us to carry
ut the cross-dataset experiment, showing that CrimeNet main-
ains its advantage over the competitors even in this challenging
etting.



F.J. Rendón-Segador, J.A. Álvarez-García, J.L. Salazar-González et al. Neural Networks 161 (2023) 318–329
Fig. 8. (a) Crossvalidation NTU CCTV Fights - UBI Fights, (b) Crossvalidation UBI Fight - NTU CCTV Fight.
Fig. 9. (a) Crossvalidation UCF Crime - XD Violence, (b) Crossvalidation XD Violence - UCF Crime.
Table 4
Cross-datasets experiments between the four datasets. Binary: NTU CCTV Fights and UBI Fights; Multiclass: UCF Crime and XD
Violence. Our ablation study using only ViT is also included.
Dataset train Dataset test Method ROC AUC AP

NTU CCTV Fightsa (Perez et al., 2019) UBI Fights (Degardin, 2020) ViT 69.43% 69.50%
CrimeNet 78.90% 78.87%

UBI Fights (Degardin, 2020) NTU CCTV Fights (Perez et al., 2019)
GMM (Degardin, 2020) 56.13% –
ViT 70.29% 70.26%
CrimeNet 81.35% 81.35%

XD Violence (Wu et al., 2020) UCF Crime (Sultani et al., 2018)
RTFM (Tian et al., 2021) 54.77% –
ViT 62.59% 62.55%
CrimeNet 73.50% 73.44%

UCF Crime (Sultani et al., 2018) XD Violence (Wu et al., 2020)
WSAL (Lv et al., 2021) 57.81% –
ViT 60.73% 60.73%
CrimeNet 70.20% 70.10%

aCode not available to reproduce.
327
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Interestingly we noticed that our result in the cross-dataset
xperiment training in UBI Fights and testing in NTU CCTV Fights,
chieves a better performance than the current state of the art
81.35% vs 79.50% Perez et al., 2019).

We also consider that the cross-dataset experiment is a good
ractice that must be used in these benchmarks, which normally
s not present in the related works.

On the basis of the results we showed, it is clear that this
hallenging setting is still in need of further research.
Finally, we showed how NSL approach using Adversarial learn-

ng for generating the similarity graph is a very good approach to
btaining better results and making the model more robust.

. Conclusions and future work

In this paper, we present a case study on the detection of
iolent events in videos and the generalisation of this concept. To
ddress the case study we proposed an innovative deep learning
odel that combines NSL with ViT architectures called CrimeNet.
This model has far surpassed the current state of the art in vi-

lence detection after analysing four datasets and outperforming
ach of the best performing works by 9.4 to 22.17% points in ROC
UC.
In view of the results, we can state that the combination of ViT

ith NSL and Adversarial learning for the similarity graph input
enerates a unique model with high efficiency and robustness in
he task of video detection of violence. After the ablation study,
e checked the importance of using NSL instead of supervised

earning directly. It is shown that applying NSL improves the
esults by about 10% points compared to supervised learning
from 9.55 to 12.75% points in ROC AUC).

The model also shows a state of the art performance when
arrying out cross-dataset experiments to check the generalisa-
ion of the concept of violent action. The results reach values
bove 70% ROC AUC for multiclass (73.5% and 70.2%) and close
o 80% for binary-class datasets (81.35% and 78.9%), meaning
n improvement with respect to previous models from 12.39 to
5.22 points.
These results again manifest the robustness of the model and

he possibility to use this approach in a number of lines of
uture work such as video classification, detection, classification
f human actions, tracking of elements in a video, etc. Another
tudy that we want to carry out is the comparison of differ-
nt backbones, substituting for instance ViT by 3D ResNet, and
he generation of different types of data augmentation such as
ixup (Zhang, Cisse, Dauphin & Lopez-Paz, 2018).
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