
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Survey on Deep Visual Place Recognition / Masone, Carlo; Caputo, Barbara. - In: IEEE ACCESS. - ISSN 2169-3536. -
9:(2021), pp. 19516-19547. [10.1109/ACCESS.2021.3054937]

Original

A Survey on Deep Visual Place Recognition

Publisher:

Published
DOI:10.1109/ACCESS.2021.3054937

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2975815 since: 2023-02-08T17:23:38Z

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC



Received January 18, 2021, accepted January 23, 2021, date of publication January 27, 2021, date of current version February 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054937

A Survey on Deep Visual Place Recognition
CARLO MASONE 1, (Member, IEEE), AND BARBARA CAPUTO1,2, (Member, IEEE)
1Visual and Multimodal Applied Learning Team, Istituto Italiano di Tecnologia, 10141 Torino, Italy
2Department of Computer Engineering and Automation, Politecnico di Torino, 10124 Torino, Italy

Corresponding author: Carlo Masone (carlo.masone@iit.it)

This work was supported in part by the H2020 European Research Council under Grant 637076 (project RoboExNovo).

ABSTRACT In recent years visual place recognition (VPR), i.e., the problem of recognizing the location of
images, has received considerable attention from multiple research communities, spanning from computer
vision to robotics and even machine learning. This interest is fueled on one hand by the relevance that
visual place recognition holds for many applications and on the other hand by the unsolved challenge of
making these methods perform reliably in different conditions and environments. This paper presents a
survey of the state-of-the-art of research on visual place recognition, focusing on how it has been shaped
by the recent advances in deep learning. We start discussing the image representations used in this task
and how they have evolved from using hand-crafted to deep-learned features. We further review how metric
learning techniques are used to get more discriminative representations, as well as techniques for dealingwith
occlusions, distractors, and shifts in the visual domain of the images. The survey also provides an overview of
the specific solutions that have been proposed for applications in robotics and with aerial imagery. Finally the
survey provides a summary of datasets that are used in visual place recognition, highlighting their different
characteristics.

INDEX TERMS Visual place recognition, image representation learning, deep learning.

I. INTRODUCTION
‘‘Wherewas this picture taken?’’ – understanding the location
of a generic photo is a problem that has interested researchers
for nearly two decades, under the name of visual place
recognition (VPR). The last decade in particular has seen a
drastic acceleration of the research in this field, driven by
three forces. Firstly, the mass diffusion of smartphones and
the consequential demand for new services that can lever-
age their integrated cameras, such as consumer photography,
vision based navigation and augmented reality. Secondly,
the large availability of publicly shared pictures on social
media and other platforms, which can be used to locate inter-
esting venues, holiday sites, restaurants, etcetera. Thirdly,
the rise of mobile robots operating in the open world, e.g.,
self-driving cars, and the inherent challenge of their long term
autonomy. Pertaining to the last point, recognizing places by
vision is regarded as a key component for localization and
navigation, being used for loop-closure in SLAM algorithms
in GPS denied environments as well as an input to learn
navigation policies [1] under different conditions. Remark-
ably, the development of visual localization in robotics is also
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paving the way for new applications of VPR, such as assistive
technologies for people with visual impairments [2].

Such a variety of use-cases and application domains trans-
lates to a rich research panorama where VPR is studied by
different communities (computer vision, robotics, machine
learning) and with different problem settings. For instance,
in computer vision VPR is often studied as the task of recog-
nizing the location of a single image. In robotics, VPR algo-
rithms can typically leverage streams of heterogeneous data
(e.g., videos, pointclouds, odometry, etc.) as well as some
knowledge of the motion of the robot. Moreover, in robotics
there is a stronger emphasis on computational efficiency and
real-time execution. Even the definition of placemay change
depending on the task: a place could be denoted by the name
of a landmark, a GPS coordinate or even a 6 DoF pose with
respect to a frame of reference.

Given the breadth of research in VPR and its fragmentation
across multiple scientific domains, it is arguably challenging
for scientists to have a comprehensive view of the state of the
field. This challenge is exacerbated by the profound evolu-
tion of VPR that was prompted recently by the adoption of
deep learning techniques. This manuscript aims at describing
the state of research in VPR, by collecting, analyzing and
systematizing studies pertaining that are published within

19516 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1609-9338
https://orcid.org/0000-0002-4964-6609


C. Masone, B. Caputo: Survey on Deep VPR

the communities of computer vision, robotics and machine
learning. We focus on the most recent literature to identify
the current research trends, particularly from the perspective
of deep learning. Yet, this manuscript is not intended to be an
introduction to deep learning, andwe assume that the reader is
at least familiar with basic concepts regarding convolutional
neural networks. Finally, we remark that the goal of this paper
is not to provide an empirical validation or comparison of
the numerous methods discussed. On one hand, it would be
infeasible to experimentally assess all the many approaches
discussed. On the other hand, we think that such an evaluation
study is better left to a benchmarking report with a much
narrower scope than a survey.

A. VISUAL PLACE RECOGNITION: CONCEPTS AND
ORGANIZATION OF THE SURVEY
Visual place recognition is, broadly speaking, the task of
recognizing the place depicted in an image (or a sequence
of images). This task is commonly addressed as an image
retrieval problem. In this formulation, the prior knowledge
of the places of interest for the task is represented as a
collection of images (database). Each image in the database
is tagged with an identifier of its location, e.g., the name of
a landmark or a GPS coordinate. When a new picture needs
to be localized (query), the place recognition system searches
through the database for images that are similar to it. If similar
pictures are found, their tagged locations are used to infer
the location of the query. This retrieval process is typically
implemented as a three-stages pipeline (see Fig. 1):

1) an encoding procedure extracts from each image a vec-
tor representation of its content (image representation);

2) a similarity search performs a pairwise comparison
between the representations of the query and of every
image in the database according to a scoring func-
tion (e.g., Euclidean distance or cosine similarity), and
returns the best matches;

3) a post-processing stage refines the results produced by
the similarity search.

The first part of this survey (Secs. II to VII) expands on the
three stages of the VPR retrieval pipeline. First, Sec. II gives
an overview of the hand-crafted representations that were
used for image retrieval and VPR in the pre-deep learning
era. Then, Sec. III moves on to discuss how these represen-
tations have evolved with the advent of deep convolutional
networks (CNN), highlighting similarities and differences
with the engineered descriptors. In particular, Sec. III focuses
on the architectural aspect of the CNN-based representations,
discussing the methods used in VPR to extract a vector
description of an image using CNNs. Section IV reasons
about the dimensionality of the representations and how to
reduce it, which is important for the scalability of VPR to
large databases. Section V delves into the topic of how the
CNN models for extracting the image representations used
in VPR are trained. Finally, Secs. VI and VII focus on the
last two stages of the VPR retrieval pipeline, with a brief
discussion on the similarity search and then a detailed review

of the post-processing methods used to refine the results of
the search. In this regard, we observe that most methods
in this last stage are still based on engineered approaches,
however few learning-based solutions are recently emerging,
e.g., using CNN-based local feature descriptors for geometric
verification or graph convolutional networks (GCN) to revise
the results of the search.

Although VPR is formulated as an image retrieval task,
there are specific challenges and use-cases in the recogni-
tion of places that set it apart from other retrieval problems.
The second part of the survey (Secs. VIII to X) elaborates
on these unique challenges and research questions. These
challenges are largely related to the complexity of the scenes
and to the dynamic nature of the world. First of all, images
of places hardly ever present a single identifying object in
the foreground. On the contrary, they usually contain multi-
ple visual elements. Many of these elements may carry no
useful information regarding the place and they might even
occlude more useful objects in the background. Moreover,
the appearance of landscapes naturally changes over time, not
only because of dynamic objects or physical modifications
(e.g., a temporary construction site), but also due to variations
in illumination, weather and seasons. Other challenges in
VPR arise from i) the presence of recurring elements and
architectural patterns that make different places look similar,
and ii) the large variety of viewpoints from which a place can
be observed. Section VIII discusses these challenges that are
peculiar to place recognition and identifies the research trends
that have emerged to address them. The survey then covers
the development of VPR in two application domains with
very specific characteristics. The first domain is that of aerial
images taken either from a high altitude satellite/aircraft or
from a low altitude micro aerial drone. Section IX discusses
how the viewpoint and the lack of distinctive visual details
in aerial imagery make VPR in this setting rather different
than when performed with street-level images. Afterwards,
Sec. X analyzes VPR in the context of robotics. In robotics,
place recognition is a task that is performed continuously
during the navigation of the robot and it can often leverage
multiple streams of data. These reasons, combined with a
strong emphasis on computational efficiency, have led to
unique developments of VPR.

At the beginning of this introduction we have established
that VPR is commonly formulated as an image retrieval
task and we have described how the survey covers differ-
ent aspects of this formulation, particularly from the per-
spective of deep learning. However, the influence of deep
learning in VPR goes beyond its application to the image
retrieval pipeline shown in Fig. 1. In fact, the remarkable
results achieved by deep classification models have led some
researchers to investigate VPR as a classification task. In this
formulation, unlike in image retrieval, the database images
are categorized in classes, with each class representing a
place. A deep CNN is then trained for a classification task
on these images. At inference time the database images are
not needed: new queries are run through the classifier which
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FIGURE 1. Visual place recognition is commonly formulated as an image retrieval problem. The known places are collected in a database and a new
image to be localized is called query. The place retrieval is performed in three logical stages. 1) In the first stage, vector representations are generated
for the query and the database images. From a practical perspective, the representation of the query is computed online, whereas the representations
of the database images are computed offline. 2) the representation of the query is compared to those of the database images, to find the most similar
ones (here only the top 3 are shown). 3) The best results of the comparison are further refined with post-processing techniques (here only the top
3 are shown).

predicts their corresponding classes, i.e., their places.
Section XI discusses VPR as a classification task, looking
in particular at the solutions that have been developed to
partition large database of images, that are not necessarily a
discrete set of landmarks, into classes.

Finally, the survey closes in Sec. XII with an overview
of the evaluation metrics used in VPR, as well as with a
comprehensive discussion on the publicly available datasets
for VPR.

B. RELATED WORKS
Prior to this survey only few works have tried to provide an
overview of the state of research in VPR. Lowry et al. [3]
reviewed the evolution and state-of-the-art of visual place
recognition, mostly from a robotics perspective. Their anal-
ysis focuses on the role of VPR in mapping and localization
for mobile robots, discussing how the representation of the
known world may include topological and metric informa-
tion, besides appearance, and how all this information can
be exploited. The paper also discusses image representa-
tions, albeit restricted mostly to classical hand-crafted or
shallow learned descriptors. Strictly related to VPR, Piasco
et al. [4] provide a survey on visual based localization. The
main difference between visual place recognition and visual
based localization is that the latter has the goal of precisely
estimating the pose of the camera when it took the photo,
whereas the former has the broader scope of recognizing the
location. Therefore, a focal point of [4] is about methods
that directly regress the pose of the camera. That survey also
provides an insightful analysis on the role of heterogeneous
data in VPR.

With respect to these prior works, this survey distinguishes
itself not only for including more recent references, but most
importantly for providing a review of visual place recognition
from a different perspective. Although we comprehensively
describe the broad landscape of VPR, we focus primarily on
the advances that deep learning has introduced in this task.
Among the other things we discuss the adoption of image
representations based on convolutional neural networks and
how these representations are trained using metric learn-
ing, we analyze multi-modal and multi-task architectures,
we review the deep-learning based strategies that are emerg-
ing to cope with distractors and domain shifts. Given its
different perspective, this survey can be considered comple-
mentary to [3], [4] and we encourage the reader who wants to
get a broader view on the subject to consult also these other
documents.

We also acknowledge that, during the time this manuscript
was under review, another survey on VPR from the per-
spective of deep learning was published [5]. However, even
with respect to [5], the present survey brings additional value
because:
• the two surveys, which are the result of independent
studies, organize and present the topics differently, thus
providing readers with different points of view;

• this manuscript discusses aspects of VPR that are not
touched upon in [5] (i.e., VPR as a classification task,
in depth analyses on the application to robotics and aerial
imagery) and delves with greater detail in some aspects
of the problem that are discussed in both manuscripts
(e.g., metric learning for place retrieval, techniques for
refining the results of place retrieval);
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• this manuscript cites around 25% more references
than [5].

II. HAND-CRAFTED REPRESENTATIONS FOR PLACE
RETRIEVAL
Visual place recognition is commonly framed as an image
retrieval pipeline (see Fig. 1). This formulation relies on the
ability to generate image representations that are discrimina-
tive w.r.t. places. This section briefly revisits the hand-crafted
representations that were used for this task before the advent
of CNNs. The following discussion is divided in two parts:
representations generated from descriptors of local features
and representations that describe an image as a whole. As
it will be seen in Sec. III, the concepts and lessons learned
from these representations provide a useful insight also for
convolutional-based representations.

A. REPRESENTATIONS FROM LOCAL DESCRIPTORS
A local feature descriptor analyzes only a patch of the
image, highlighting patterns that differ from its neighbor-
hood [6]. These patches can be densely sampled [7], however
in visual place recognition they are generally originated from
a sparse detector that identifies points of interest (keypoints).
Examples of detectors are the Hessian-Affine detector [8]
or MSER [9]. A description is then extracted around each
keypoint using methods such as SIFT [10], SURF [11],
RootSIFT [12], BRIEF [13], DSP-SIFT [14] and kernel
descriptors [15], [16].

Several studies, even recent ones, have showcased the use
of hand-crafted detectors and local descriptors to represent
images in VPR [17]–[30]. Two images can be compared
by analyzing pairwise correspondences among their respec-
tive descriptors, however this approach is not effective and
hardly scalable to a database-wide search. Not all detected
features are discriminative for the task, so good features can
be selected using shallow classifiers [27]. Far more effective
and scalable is the idea that for searching the database the
images should be compared by analyzing the statistics of
their descriptors, rather than matching them on an individual
basis. This idea was pioneered by Sivic and Zisserman [31]
who adopted the Bag of Words (BoW) approach for image
retrieval. In this method the descriptors are quantized in
clusters, based on a codebook of visual words, and the
image representation is then obtained as the histogram of the
assignment of all image descriptors to visual words, weighted
according to the ‘‘term frequency – inverse document fre-
quency’’ (tf-idf). During retrieval, the images in the database
are ranked based on the normalized inner product of their rep-
resentation w.r.t. the query (i.e., the cosine similarity). Since
the representation is sparse, retrieval can be implemented effi-
ciently using an inverted file structure [32]. This was the first
method that demonstrated efficient image retrieval, although
on a small sized database. Following in its footsteps, other
representations based on the quantization of local descriptors
have been proposed, improving upon the BoW with a better
ranking under the similarity measure [33]–[35], a reduction

in the memory footprint [33] and a reduction in the number of
visual words in the codebook [35]. Jégou and Zisserman [36]
observe thatmethods that create a single vector representation
from local feature descriptors can be regarded as two-steps
approaches: i) an embedding step that individually maps each
vector (feature) to a higher-dimensionality space, and ii) an
aggregation step that generates a single representation from
the mapped vectors. The rationale behind the embedding step
is to improve the distinctiveness of the individual features and
suppress false positives. For example VLAD embedding [33],
[34] suppresses all matches between features that are adjacent
to different centroids in the codebook. Notable examples of
such methods are Fisher Vectors [35], VLAD [33], [34] and
Triangular embeddings with democratic aggregation [36].
In [37] Tolias et al. proposed a general family of represen-
tations and similarity functions that, besides embedding and
aggregation, includes a mechanism to select the contribution
of each pair of descriptors per cluster. Using this formula-
tion, the authors not only revisit methods such as BoW and
VLAD, but also derive a novel aggregated selective matching
kernel (ASMK) that achieves state-of-the-art performance in
large scale place recognition. A regional version of ASMK
was introduced in [38]. One property of these representa-
tions that makes them particularly good for image retrieval,
as discussed in [39], is that they inherit to some extent the
invariance properties (change in viewpoints, cropping, etc.,)
of the local descriptors they are computed from.

B. REPRESENTATIONS FROM GLOBAL DESCRIPTORS
While the aggregation of local feature descriptors allows to
obtain a single vector representation of an image, this can also
be done directly using global feature descriptors, i.e., descrip-
tors that encode holistic properties of the scene. Since they
process the image as a whole, global descriptors do not
require a detection phase, thus being less expensive to com-
pute. Examples of whole-image descriptors are HOG [40]
and Gist [41]. A low-dimensional binary coded representa-
tion of Gist was proposed in [42], which not only reduces
the memory footprint but also allows for rapid recognition.
Representations from global feature descriptors have been
used in visual place recognition [26], [43]–[46]. Compared to
the representation from local descriptors, global descriptors
are less robust to viewpoint changes, clutter and occlusions.
However, global descriptors like Gist are not dependent on
illumination changes [47].

III. DEEP LEARNED REPRESENTATIONS FOR
PLACE RETRIEVAL
Convolutional neural networks (CNNs) are a type of neural
network that is specialized for processing data organized
in a grid-like topology, e.g., images. CNNs have several
remarkable properties, which have led them to become a
powerful tool in different fields, including computer vision.
In particular, since Krizhevsky et al. [48] demonstrated
that deep CNNs can reach excellent performance in visual
tasks, it has been recognized that these architectures can act
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as powerful generators of image representations [49]–[51].
Moreover, it has been shown that CNNs can learn generic
features that are, to some extent, transferable to other visual
tasks [52]–[54]. These findings have also inspired the appli-
cation of deep learned representations to image retrieval,
where they have surpassed the performance achieved with
handcrafted methods.

In the rest of this section we discuss how CNNs are used to
generate image representations for VPR. Given the breadth
of CNNs as a subject, we do not provide an introduction
to it. That would be impractical to do in a limited space
and it would unnecessarily dilute the survey. Rather we refer
the reader to other sources for an introduction, e.g., [55],
and hereinafter we assume that the reader is familiar with
basic concepts of CNNs such as convolutional layers, pooling
layers, fully connected layers, feature maps, etcetera.

A. FULLY CONNECTED REPRESENTATIONS
The first attempts at using CNNs as representation generators
for image and place retrieval date back to 2014-2015, when
several studies [49], [56]–[60] demonstrated that the vector of
activations of a fully connected (FC) layer of a classification
network pre-trained on ImageNet [61] could be effectively
used for retrieval. Soon afterwards, it was shown that the
better retrieval results were achieved with FC representations
when the model was trained specifically for the retrieval task
using a triplet loss [60], [62].

From this early studies it became soon clear that the infor-
mation extracted by a FC layer is akin to a global descriptor:
it is not robust to the presence of distractors or occlusions
and lacks invariance to translation and scale. In order to
mitigate these issues, a few studies tried to extract multiple
sub-patches from the input image, each with a FC repre-
sentation, and use each patch for retrieval [56], [58], [62].
Although such a strategy was shown to close the gap with
classical hand-crafted representations from local descriptors,
especially when considering low-memory footprint, it is com-
putationally expensive and it does not solve all the limitations
of FC layers. In particular, FC representations are limited
by the fixed input size and by requiring large numbers of
parameters.

B. CONVOLUTIONAL REPRESENTATIONS
The limitations of FC representations have inspired
researchers to investigate the generation of image repre-
sentations directly from the output of convolutional layers.
The first study in this direction was proposed by Babenko
et al. [57]. In that work, the authors demonstrate that
the feature maps produced by a convolutional layer of a
CNN trained for classification can be used as representation
for place retrieval. More specifically, the authors take the
H ×W × C tensor produced by a convolutional layer of the
network, where H is the height of the tensor, W is its width
andC is the number of channels, and flatten it as a vector. This
vector is then normalized and used as image representation.
A similar approachwas demonstrated also in [63]. Despite the

interesting use of the convolutional feature maps, the results
achieved with this simple method are not far off from those
obtained with FC representations. Intuitively, simply flatten-
ing the featuremaps of a convolutional layer does not take full
advantage of the spatial information contained therein. This
consideration has guided the development of the current state-
of-the-art representations for place retrieval. These methods
can be categorized into two families:
• aggregation of the convolutional features using meth-
ods derived from hand-crafted representations of local
descriptors;

• pooling methods that summarize the convolutional
features.

1) AGGREGATED REPRESENTATIONS
Rather than collapsing the H × W × C features extracted
from a convolutional layer to a vector, they can be consid-
ered as a H × W grid of C-dimensional feature descrip-
tors, each one having a limited receptive field. Namely,
the output of a convolutional layer can be assimilated to
a set of densely extracted local descriptors. Following the
lessons learned from classical non-learned approaches, these
dense descriptors can be aggregated in a single vector rep-
resentation and then compared using a similarity function
(e.g., Euclidean distance or cosine similarity). Several studies
demonstrated the applicability of classic encodings to these
dense convolutional descriptors, e.g., VLAD [64], BoW [65],
[66], ASMK [67]. Moving further, researchers have proposed
aggregation modules that can be plugged on top of a CNN
and allow end-to-end learning. In [68], the authors combine
a fully convolutional network to a Fisher vector module.
By computing the gradient of the contrastive loss w.r.t. the
parameters of the Fisher Vector, this module can be trained
together with the CNN. In [69] it is introduced NetVLAD,
a layer that implements the VLAD embedding and aggre-
gation with differentiable operations, thus allowing end-
to-end training of the network. Moreover, NetVLAD presents
more trainable parameters than VLAD, hence providingmore
flexibility.

2) POOLED REPRESENTATIONS
Researchers have shown that convolutional features from
mid/late layers, unlike shallow non-learned features, can
be successfully aggregated and compared without embed-
ding. Babenko and Lemiptski [70] show that for shallow
hand-crafted features like SIFT, the embedding step is fun-
damental to improve their discriminativity. However, they
argue that raw convolutional features have a higher discrimi-
native capability and therefore they can be pooled together
with simpler schemes, thus providing not only a leaner
pipeline and, in many cases, more compact representations,
but also improving performance. Namely, an image represen-
tation can be generated by summarizing the statistics of the
convolutional features. The simplest pooled representation
is achieved by max-pooling the feature maps of a convo-
lutional layer. Despite its simplicity, the low-dimensional
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representation obtained with this scheme can outperform
more complex hand-crafted representations with a similar
memory footprint scheme [71]. Another popular representa-
tion is obtained by a parameterless sum-pooling of convo-
lutional feature maps (SPoC) [70], which can be interpreted
as an implementation of a simple match kernel. Sum-pooling
has been shown to perform better than max-pooling, espe-
cially when the image representation is whitened [69], [70].
An intuition about these two pooling strategies is elaborated
in [72]. The authors observe that max-pooling is more invari-
ant to scale changes, whereas sum-pooling is less sensitive
to distractors in the feature maps. To combine the advantages
of both methods, they test an hybrid pooling that concate-
nates the sum and max-pooling descriptors. Inspired by the
max-pooling described in [51], [71], Tolias et al. [73] design a
new pooling procedure that encodes multiple regions. Rather
than extracting multiple patches from the image and making
a forward pass for each of them, they select regions directly
on the feature maps using a uniform sampling scheme.
A max-pooled vector is computed for each region and these
regional descriptors are then summed and `2 normalized.
This descriptor, called ‘‘Regional Maximum Activations of
Convolutions’’ (R-MAC) can be implemented with integral
images, which only requires specifying one parameter and
yields a more efficient computation. This implementation
reduces to sum-pooling for a specific choice of the param-
eter. Later, [74] introduces an implementation of the R-MAC
descriptor using differentiable operations, thus yielding a
module that can be plugged atop any CNN and that allows
end-to-end training. R-MAC uses different pooling opera-
tions to capture multi-scale information from the regions.
This approach is modified in [75] in two ways: i) the different
pooling operations are applied to the whole image, and ii) the
obtained feature maps are concatenated in a pyramid. Then,
the multi-scale feature maps of the pyramid are fused using
1 × 1 convolutions. With this fusion operation, the network
learns to combine the multi-scale context at each location. A
generalization of sum-pooling is presented in [76] by using a
cross-dimensional weighting scheme before the sum-pooling.
The weights across both dimensions are engineered based
on heuristic. The spatial weighting is based on the normal-
ized total response across all channels and it tends to boost
the response for locations in which multiple channels are
active, which likely correspond to salient regions. The chan-
nel weighting is based on the sparsity of the feature maps.
Conceptually, it is similar to an inverse document frequency
and it boosts the contribution of rare features in the overall
response.

Together with R-MAC, the current state-of-the-art pool-
ing method is the generalized-mean aggregation layer
(GeM) [77]. This layer implements a parametric generalized-
mean. There is one parameter per feature map, however
they can be shared reducing the parameters count to one.
GeM generalizes both max and average pooling (SPoC),
which can be considered as special cases corresponding
to a proper selection of the parameters. Since the pooling

operation is differentiable, the parameters can be learned as
part of the back-propagation. Experiments show that GeM
consistently outperforms max-pooling (MAC) and average
pooling (SPoC), and even R-MAC (in the implementation
with fixed region sampling).

IV. DIMENSIONALITY REDUCTION AND WHITENING
Another important aspect of image representations, besides
the retrieval performance they yield, is their dimensionality.
Intuitively, the number of dimensions of an image represen-
tation is directly connected to the size it occupies in mem-
ory. This has practical consequences for scalability, consid-
ering that for the similarity search in the retrieval pipeline
(see Fig. 1) the representations of all the database images
should be loaded in memory. Therefore, when developing
a VPR system that needs to be deployed to large environ-
ments, i.e., with a large database of images, reducing the
memory footprint of the representations becomes critical.
Additionally, reducing the dimensionality of representations
is also helpful to reduce the retrieval time. Scalability has
indeedmotivatedmany recent works to investigate short-code
representations [57], [68], by adopting different dimension-
ality reduction approaches. With hand-crafted descriptors
there is evidence that dimensionality reduction and whitening
can, in some circumstances, slightly improve performance
over the original embeddings [78], [79]. For example, Jégou
and Chum [39] explain that PCA and whitening help with
exploiting negative evidence and mitigating the problem of
co-occurrences. Many recent studies adopt dimensionality
reduction approaches with deep learned features [49], [56],
[57], [67]–[70], [73], [77], [80]–[85], suggesting that the
learned descriptors are better suited to compression. An
explanation for this is that the network learns to discard
much of the information that is irrelevant, thus allowing for
a more aggressive dimensionality reduction [57]. However,
it is also revealed that the effectiveness of the reduction may
depend on the aggregation method. For example, training
the PCA for high-dimensional engineered descriptors needs
a lot of data and it is prone to overfitting [70]. Early works
with FC descriptors report improvements when using PCA
and whitening [49], [56], [57]. In [56], where a multi-patch
approach is used, the dimensionality reduction is applied
both to the FC descriptors and to the aggregated representa-
tion. Starting from a 4096 dimensional (4096-D) descriptor,
the performance degradation is negligible up to 256-D and
128-D. Replacing the PCA with a learned projection matrix
that optimizes distances of the projected features can further
reduce the compression degradation.

Several works have confirmed that the effectiveness
of dimensionality reduction and whitening on convolu-
tional representations depends significantly on the method
used to build the representation. PCA and whitening are
shown to be more beneficial with sum-pooling than with
max-pooling [68]–[70], [76]. One explanation of this phe-
nomenon is that in sum-pooling whitening helps suppress-
ing the contribution of features that are both common
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across images and bursty. For max-pooling, burstiness of
popular features is a minor issue and whitening actually
causes a drop in performance [69]. Ong et al. [68] confirm
that PCA-whitening works better for sum-pooling, whereas
max-pooling shows better results when compressed with
linear discriminant analysis (LDA). Several alternatives to
PCA-whitening have also been used with convolutional
descriptors. In [83] the authors use the linear discriminant
projections originally proposed by Mikolajczyk and Matas
for SIFT features [78], directly learning it on the training data.
While this approach works better for high-dimensional rep-
resentations, PCA is shown to be superior for very compact
codes (64-D or less). The PCA projection is implemented
in [80] with a shifting and a FC layer, which can be advanta-
geously trained with the rest of the network. This implemen-
tation shows results that are comparable to classic whitening,
albeit being sensitive to initialization (random orthogonal
projection is reported to work best). This is explained by the
fact that the FC layer introduces a huge number of parameters
and it is prone to overfitting [69]. Another approach is to learn
the projection matrix from the representations of semantic
landmarks in the image, and then use it to reduce the dimen-
sionality of a holistic descriptor [86], [87]. This solution
effectively allows integrating both image-wide information
and the information from the semantic landmarks in a unique
representation.

While PCA whitening is an effective way to solve the
problem of over-counting and co-occurrences [39], it may
excessively penalize over-counting. Zhu et al. [84] observe
that whitening balances the energy across the dimensions of
the rotated descriptor, but they argue that it would be bene-
ficial if the variance of the first few dimensions is preserved
to some extent. For this reason they introduce a PCA power
whitening, in which the variance scaling is modulated via
a parameter. This parameter allows changing the tradeoff
between reducing over-counting and preserving the energy
distribution of the features. Experiments show that the power
whitening improves upon the classic whitening, and it can
even add a small gain to max-pooling (whereas the PCA
whitening generally worsens results). A similar formulation
is also proposed in [85] in the context of patches similarities.
In [67] the authors use a convolutional autoencoder (AE)
module to learn low-dimensionality local descriptors. This
approach is appealing because the AE can be integrated in the
network and trained with it by adding a reconstruction loss,
without the need to perform post-processing learning steps as
in the case of PCA. However, caremust be taken to control the
flow of the gradients from the autoencoder to the backbone.
Experiments show that AE outperforms PCA and a simpler
dimensionality reduction using a single FC layer.

V. LEARNING TO RETRIEVE PLACES
Section III introduced the topic of CNN-based representa-
tions used in VPR but only from an architectural perspective.
However, besides the aggregation or pooling method used
to build these representations, their effectiveness depends

also on how they are learned from the data. This section
discusses the approaches that are used to train the CNNs
as representation generators for VPR, highlighting also new
directions of research in this regard.

A. LEARNING FROM CLASSIFICATION
Asmentioned in Sec. III, the first CNN-based representations
used in VPR were actually generated from models trained
for a classification task, not for retrieval. This is motivated
by the fact that classification is the first visual task where
CNN demonstrated extraordinary results, and also by the
observations that CNNs can learn generic features that are,
to some extent, transferable to other visual tasks [52]–[54].

The first attempts with CNN-based descriptors for image
retrieval amounted to using an off-the-shelf classification
network pre-trained on ImageNet as feature extractor [49].
Although the pre-trained network is shown to be reasonably
capable of localizing queries, the retrieval performance was
noticeably improved in [57] by fine-tuning on a landmarks
dataset that is much closer to the target domain for urban
place recognition. Despite these improvements, it is generally
argued that learning for a classification task is sub-optimal
because the extracted features are not necessarily suitable
for the retrieval task [69], [80], [83]. One point to support
this objection is that descriptors trained for classification
learn to distinguish between semantic classes but are robust
to intra-class variability, which is undesirable for instance
retrieval [80].

Nevertheless, there a few recent studies that have gone
back to investigating the use of classification models to gen-
erate global representations for retrieval (i.e., FC representa-
tion, see Sec. III-A). For instance, [67], [88] use the ArcFace
loss [89] to train the global features with image level labels,
achieving good retrieval results under the cosine similarity.
There is a couple of reason that motivate this interest in
revisiting classification models as generators of image repre-
sentations for VPR. On one hand, the global descriptors they
produce can be quite compact. On the other, they only need
image level labels, without incurring in the cost of mining
examples that is discussed in the next section for metric
learning. Both these aspects are relevant for scalability to
large databases.

B. LEARNING TO RANK
Image retrieval is akin to a ‘‘learning-to-rank’’ problem,
therefore it naturally lends itself to metric learning, i.e., learn-
ing image descriptors that represent well the similarity under
a distance function. Indeed, most studies in VPR train the
CNN that generates the image representations with one of two
ranking losses: the contrastive loss, using a siamese network
setup, [68], [77], [83], or the triplet loss, using a triplet
network setup [69], [74], [80], [90]–[92]. Albeit different,
these two losses are based on a similar idea. For each training
sample the model is provided also with positive and/or neg-
ative examples. The two losses enforce that the learned rep-
resentation for the training sample is close to that of positive
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examples and distant to that of negative examples, according
to a metric. In the context of VPR, a positive example is an
image of the same place as the training sample, whereas a
negative example is an image of a different place. There are no
explicit comparisons between these two losses in VPR, with
only a few studies providing some indications: [93] reports
superior performance using a triplet network, but only for a
classification task; on the other hand, [77], [83]mention using
a siamese architecture because it yielded faster convergence
and better generalization, but no evidence is given.

Various modifications of the classic contrastive and
triplet losses have been discussed in image retrieval.
Mishchuk et al. [66] propose a triplet loss variant that max-
imizes the distance between the closest positive and closest
negative example in the batch. In [94] a Quadratic Hinge
Triplet loss which constraints first-order similarity is paired
with a loss that regularizes second-order similarity for local
descriptor learning. This idea is also applied to global descrip-
tors learning in [95]. In [96], the triplet loss is modified
by setting the distance to the hardest negative example to a
constant value, so that the corresponding derivative of the
loss is set to zero. The effect is to bring positive samples
together and then distributing them in the space, satisfying
the triplet margin criterion. Amulti-scale version of the triplet
loss is proposed for place recognition in [97], so as to create
embeddings from features extracted at multiple layers.

As mentioned earlier, representation learning via ranking
losses requires selecting positive and negative examples for
each training image. This topic is discussed next.

1) EXAMPLES MINING
The selection of positive and negative examples is crucial
when training a model with contrastive and triplet losses.
If they are too easy, the network will not learn to prop-
erly discriminate the images. On the other hand, forcing
the network to learn extremely hard examples could lead
to overfitting [83] and bad local minima [98]. The pairwise
similarity learning process is also not very tolerant to outliers,
therefore it needs clean training data [80]. Another challenge
in mining hard examples is efficiency, especially for scaling
to large databases. Various solutions have been proposed to
mine positive and negative examples. In [99] the authors use
stochastic sampling to select a set of samples, propagate them
through the network, and retain only those with the largest
losses. A similar approach is taken in [80] and the authors
report that, to reduce the computational effort, they mine hard
triplets every 16 network updates.

Learning through examples allows for weakly-
supervised [69], [91], [100] or unsupervised training [77],
by exploiting additional information to guide the mining
process. Radenovic et al. [77] exploit 3D models (clusters)
constructed via structure-from-motion (SfM) to inform the
choice of the examples. Hard negatives are mined from
clusters different from the one the query belongs to. Positive
examples are instead selected at random from the images
that co-observe enough 3D points with the query, but with

a threshold on the scale. Since the positive examples do not
depend on the current state of the CNN, but only on the
images and 3Dmodels, they can be mined once and then kept
fixed during training. GPS information is exploited in [69],
[91], [100]. In [91], the set of positive examples is selected as
those images that are within 50meters from theGPS tag of the
training query. Considering that images from the same GPS
coordinates could be taken pointing the camera at different
directions, the positive candidates are refined via geometric
verification. For the negative examples, the authors mimic
the image geo-localization process within the training batch
and for each iteration they pick as a negative candidate the
top retrieved image at least 225 meters away from the GPS
location of the training query. Since a learning based only
on the hardest negatives can lead to a bad local minima [98],
some negatives are also randomly selected from the batch.
The main difference in [69], [100] is that the loss considers
all the negative examples for each training sample. A naïve
computation of all negatives is infeasible because it would
require for each query to perform a forward pass on all
database images. Moreover, many negative examples would
have a negligible contribution to the loss, so considering them
would be a waste of computations. The authors propose three
strategies to make the mining process more efficient:
• Sampling: the loss is computed only for a set of negative
samples and each step inherits the hardest negatives from
the previous epoch.

• Caching: the representations are cached and recomputed
after a certain number of training queries. This number
can be chosen depending on the learning rate.

• Clustering: the queries are clustered according to their
GPS location and the queries in a cluster share the same
negative examples.

C. LISTWISE RANKING
Although the contrastive and triplet loss are the most popular
methods used in VPR for learning image representations,
they both come with two limitations. The first limitation
is practical: the procedures for mining examples can add
a significant overhead to the training and might even lead
to poor results if the examples are not chosen properly.
The second limitation is theoretical: these losses have been
shown to be only upper bounds on themean average precision
(mAP) [101]. Hence, optimizing these ranking losses is not
guaranteed to also optimize the mAP. A few recent works
have instead proposed to use a different loss that can address
both limitations. The idea is to directly optimize the mAP
by leveraging a listwise loss formulation (Fig. 2) [82], [102],
[103]. This formulation approximates the non-smooth and
non-differentiable AP using the method of histogram-binning
with a differentiable soft-assignment. This allows to compute
a quantized and differentiable mAP and to use backpropa-
gation. From an implementation perspective, backpropaga-
tion with the listwise-loss needs large batch sizes, which is
generally intractable. This problem can be bypassed using
a multi-stage backpropagation [82] or heuristics to split the
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FIGURE 2. The triplet loss (left) only considers few examples at a time. The listwise loss (right) considers all the images simultaneously and directly
optimizes the AP. Image from [82], Copyright 
2019, IEEE.

batch in mini-batches [102]. Experiments in image retrieval
demonstrate that learning with the listwise loss consistently
surpasses the results achieved with contrastive or triplet loss,
even compared to methods that perform multi scale analysis.
Moreover, this is achieved by using a smaller number of
forward/backward passes, a smaller number of iterations,
with a training process that is several times faster and without
the need to mine hard positive and negative examples [82].

D. LEARNING FROM EXPERT KNOWLEDGE
Learning to rank allows training a network directly for the
retrieval task, but the process can be long and costly. If one
such network has already been trained, knowledge distilla-
tion [104] can be used to train a student network. This is the
approach followed in [105], [106], where the student network
is based on a lightweightMobileNet architecture. Following a
similar concept, the feature extractor for the retrieval task can
also be trained from an expert system based on hand-crafted
features. For example, [107] uses an autoencoder architecture
that, instead of reconstructing the input image, is tasked to
decode a holistic feature vector that tries to reconstruct a
handcrafted HOG descriptor. The HOG descriptor provides
the geometric prior knowledge needed to train the network,
while also guaranteeing some invariance to illumination con-
ditions. This approach is shown to be capable of producing
a lightweight feature extractor and it can be trained without
supervision. The limitation of these methods is that they
depend on the availability of an expert system.

VI. SIMILARITY SEARCH
The second step of the retrieval procedure is a k-nearest
neighbour search (kNN), i.e., finding the k database instances
that are closest to the query. Albeit simple, this task
is quite expensive. Even though there are efficient algo-
rithms that implement exact nearest neighbour search for
low-dimensional cases, in high-dimensional problems they
can even be outperformed by a naïve linear search due to
complex effects (curse of dimensionality [108]). The search
can be drastically sped up using approximate nearest neigh-
bour methods (ANN) that perform a non-exhaustive search
implemented using different indexing structures, encoding
and stopping criteria [18], [59], [78], [109]–[113]. Efficient
implementations of several approximate nearest neighbour
algorithms are available in the FLANN library [109] and in

themore recent FAISS library [113] which also supports GPU
operations. The similarity search for visual place recognition
can also be implemented by matching multiple features per
image. This approach has been demonstrated using a nearest
neighbour (NN) for each individual local feature in the query
and resorting to techniques such as the GeneralizedMinimum
Clique Problem [114] or the Dominant Set Clustering [30].
These techniques are combined with NN pruning strategies
and with filtering based on global features to shortlist the
results from the matched images.

For image retrieval, it is also important to consider the
memory requirements of the indexing structure of the simi-
larity search method because large image representations can
lead to unsustainable memory footprints for big databases. In
the literature of image retrieval and visual place recognition,
several techniques have been used to make the similarity
search more efficient and scalable. Indexing structures based
on an inverted file [115] have been adopted to implement
a non-exhaustive search that is particularly effective with
sparse vector representations [24], [31], [37], [65], [81],
[116]. In [24] retrieval time is reduced by first grouping
similar database images and then performing the matching
by cluster. Quantization techniques such as k-means [116],
[117], binarization [35], [37], [67], [118], [119] and product
quantization [74], [81], [120], [121] have been used to reduce
the memory requirements for storing the data, in some cases
by more than one order of magnitude. They have also been
combined with asymmetric distance computation [120] and
multiple assignments [37], [118], [120], [122]–[124] to miti-
gate the quantization errors. The inverted index has also been
generalized to work with product quantization [58], [120],
[125], further improving the speed and accuracy of the search,
at a small memory cost. For an in-depth review on the topic
of approximate and efficient methods for nearest neighbors
search that is out of the scope of this document we refer the
reader to [111].

VII. RETRIEVAL REFINEMENT
The shortlist of database images retrieved by the similarity
search provides a set of hypotheses of the place corresponding
to the query. Due to the complexity of representing the sim-
ilarity, noise in the data and approximations, the hypotheses
can contain false positives or they can miss relevant instances
from the database. This section reviews several methods that
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can be applied to improve precision and recall by re-ranking
and even expanding the shortlist of candidates.

A. SPATIAL VERIFICATION
Spatial (geometric) verification is a popular technique for
boosting the performance of image retrieval and particularly
visual place recognition [24], [66], [67], [96], [106], [116],
[117], [119], [124], [126]–[131]. The gist of this method is
to first detect feature-to-feature correspondences among a
pair of images and then verify their reliability by analyzing
the consistency of spatial transformations between them. The
result of this analysis is then used to re-rank the shortlisted
results. Although spatial verification is generally used at the
refining stage, the same principle can also be used as a
procedure clean the database from labeling noise [80] before
setting up the place retrieval pipeline.

Spatial verification is typically implemented by using
model-based methods, such as RANSAC [116], [132] or
PROSAC [133], to generate transformation hypotheses based
on feature-to-feature correspondences, which are typically
pruned by imposing different kinds of constraints, such as
geometric [24] or semantic [128]. Each hypothesis is eval-
uated based on the number of ‘‘inliers’’ among all features
under that hypothesis, which can then be used as score for re-
ranking. Alternatively to model-based methods, some works
use model-free methods for the verification step [124], [128].

Spatial verification methods use sparse local descriptors to
detect correspondences and check the consistency between
images. In pre-deep learning VPR, the same hand-crafted
local descriptors that were aggregated to build the representa-
tion of an image for the retrieval could also be used for spatial
verification [117]. However, the transition to CNN-based
image representations raises the question of how these sparse
local descriptors for spatial verification can be extracted,
given that the methods discussed in Sec. III to generate holis-
tic image representations do not make sparse local descriptors
readily available. Aside from the naïve solution of addition-
ally computing hand-crafted local feature descriptors espe-
cially for the spatial verification [119], new approaches that
leverage CNNs have been proposed. These methods can be
categorized in three families:
• use a single CNN specialized to generate image repre-
sentations and then extract sparse local descriptors from
the same network using some heuristics;

• use two CNNs, one to generate image representations
and the other to extract sparse local descriptors;

• use a hybrid CNN trained to both generate holistic image
representations and to extract sparse local descriptors.

1) HEURISTIC EXTRACTION OF SPARSE
LOCAL DESCRIPTORS
These methods aim at simplicity and efficiency, trying to
extract spatial local descriptors without the need of retraining
the model for this task nor a second model. One strategy
proposed by Taira et al. [119] is based on the observation that
the feature maps from a convolutional layer of a CNN can

be interpreted as a dense grid of local feature descriptors, but
these descriptors can be matched in a coarse-to-fine-manner
to sparsify them. For this purpose, the authors first find
broader matches among the features of the fifth convolutional
layer (conv5) and then look for matches in the finer features
from the third convolutional layer (conv3) restricted by the
already found conv5 correspondences. Another solution is
to extract sparse local descriptors from the CNN used for
the first stage by selecting high activations of the convolu-
tional feature maps [128], [131]. This method is based on
the observation that the output of a convolutional layer can
be interpreted as a collection of 2D response maps of pattern
detectors. Hence, the selection of the high activations can be
seen as choosing the local features with the most confident
detections.

2) SEPARATE MODEL FOR EXTRACTING SPARSE
LOCAL DESCRIPTORS
This family of methods aims at using a separate model spe-
cialized to extract the sparse local descriptors. These methods
are based on the observation that the feature maps from a con-
volutional layer of a CNN can be interpreted as a dense grid of
local feature descriptors because they lack the detection step
that is instead used for hand-crafted local descriptors. There-
fore, they propose to combine the detection and description
steps in the model that is specialized for extracting the sparse
local descriptors (Fig. 3).
An architecture for this purpose that is tailored for VPR is

DELF [81]. In DELF the detection step is implemented as an
attention module that sits on top of the convolutional layer
and weights its activations. Effectively, this module works as
a keypoint detection, albeit the detection happens after the
description step. Revaud et al. [103] argue that salient regions
are not necessarily discriminative and that the model must
learn to detect keypoints that are both repeatable and reliable
for matching. For this purpose, they filter local descrip-
tors extracted at each pixel position based on a repeatabil-
ity map, learned in a self-supervised way, and a reliability
map, trained using a modified listwise loss. A non-learned
detection approach is used in [134], where detections are
obtained by performing a non-local-maximum suppression
on convolutional feature maps followed by a non-maximum
suppression across each descriptor.

3) HYBRID MODELS TO EXTRACT BOTH IMAGE
REPRESENTATIONS AND SPARSE LOCAL DESCRIPTORS
The use of two specializedmodels, one to generate image rep-
resentations and the other to extract local descriptors, clashes
with the limited resources and need for efficiency that arise
in many applications. For this reason several researchers have
investigated hybrid solutions that combine the computation
of both global descriptors (for similarity comparison) and
local descriptors (for spatial verification) into a single CNN
with multiple heads. This approach is used in DELG [67],
where local and global features are extracted from a common
backbone with two heads: i) a GeM pooling that produces
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FIGURE 3. Different approaches for detecting keypoints and describing
local descriptors from CNN features. a) Classical pipeline. b) Pipeline that
combines the two steps. Figure from [134], Copyright 
2019, IEEE.

the global representation, and ii) an attention module inspired
by DELF [81] to produce the local descriptors. In order to
train the two tasks simultaneously, the authors leverage the
concept of hierarchical representations in CNNs [53]: global
features are associated with the deep layers of the network
that encode high-level cues, while local features are associ-
ated to themid-levels that encodemore localized information.
Therefore, at training time, only the gradient of the similarity
loss of global descriptors is propagated back to the back-
bone whereas the gradients of the losses concerning the local
descriptors are stopped before. This is due to the observation
that a naïve optimization of the three losses would disturb the
hierarchical feature representation and produce weakmodels.
Another two-headed architecture is proposed in [106], but in
this case using distillation to learn the tasks directly from off-
the-shelf teacher networks. In particular, the authors use a
NetVLAD [69] based network for the image representations
and SuperPoint [135], a generic detector-descriptor architec-
ture, to extract the local descriptors.

B. NON-GEOMETRIC RE-RANKING
Even though spatial verification is the most popular method
for re-ranking, other methods that do not rely on geometric
correspondences are also used. In [73] the re-ranking stage
is performed by computing the matching scores between
the MAC representation of the query and all the individ-
ual R-MAC regions for the database image. The shortlisted
images are re-ranked based on the maximum similarity
between their regions and the query. In [88], [136] the authors
use a discriminative ranking method based on the similarity
of labels assigned to the images by a kNN search with soft
voting. Namely, the search results are re-ranked by first mov-
ing up all the shortlisted images that have the same label as
the query, and then by adding the images from the database
with the same label as the query and that were not retrieved by
the search. Another manually engineered re-ranking method
is presented in [137]. This solution is a brute force algorithm
based on matching descriptors from mid-level convolutional
layers while accounting for their spatial location.

C. QUERY EXPANSION
One of the most successful and widely used techniques to
improve the retrieval result is query expansion (QE) [12],

FIGURE 4. Example of diffusion. Left) retrieval from two queries using a
nearest neighbour search. Right) the diffusion process allows bettering
capturing the underlying data manifold. Image from [139], Copyright

2013, IEEE.

[23], [37], [65], [66], [70], [73], [74], [76], [77], [80], [82],
[88], [92], [96], [123], [126], [127], [129], [130], [138]. The
idea of query expansion is to use the shortlisted images
as a feedback to produce an enriched representation that is
re-submitted for a new search through the database. This solu-
tion can significantly increase the recall by retrieving relevant
images that were not selected with the first search. However,
it requires the initial candidates to be reliable and accurate
enough, hence it benefits from a prior verification step. More-
over, queries with few relevant images might see a degrada-
tion in performance after query expansion [129].

There are several versions of QE that are commonly used.
Average Query Expansion (AQE) [126] creates the enriched
representation as the average of the high ranked results. The
Discriminative Query Expansion (DQE) [12] instead uses
the top and bottom ranked results as positive and negative
examples to train a linear SVM. The SVM learns a weight
vector that is then used to re-rank all the candidates. The
Hamming Query Expansion revisits query expansion mak-
ing it compatible with Hamming Embedding [123]. The
α-weighted query expansion (αQE) [77] is a generalization
of AQE that uses a weighted average. Namely, each of the
top retrieved results is weighed by its similarity score raised
to the power of a tunable scalar parameter.

D. DIFFUSION
One of the limitations of retrieval by similarity search is
that the pairwise formulation ignores the structure of the
data manifold. Instead, similarities could be estimated more
accurately along the geodesic path on the data manifold.
Even query expansion, which has been shown to boost
the retrieval performance, only uses the closest neighbours
selected according to the pairwise similarity values to issue
new queries. In contrast to these methods, diffusion is a
technique that exploits the context similarities between all
elements of the database to unveil the data manifold and
it uses this information to perform a search in a principled
way (Fig. 4). The manifold here is interpreted as a weighted
graph, where each instance is represented by a node and the
weight on an edge is a pairwise similarity measure between
the connected nodes. The diffusion process then follows the
concept of a random walk that propagates a ranking score
through the whole graph.

The diffusion technique has recently gained popularity
in retrieval tasks because it has been shown to signifi-
cantly increase the performance [139], but this comes with
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some caveats. Firstly, this is a very expensive procedure that
can dominate the computational time of all other phases in
the retrieval. Secondly, the diffusion process assumes that the
query is part of the graph (i.e., the database), which is not
the case in visual place recognition. A major step towards
overcoming these issues was the Regional Diffusion algo-
rithm by Iscen et al. [140], which included several strategies
to make the diffusion refinement more efficient. Firstly, new
queries are handled without augmenting the original graph
but rather by expressing the vector that selects the initial
graph nodes in terms of the top ranked nearest neighbors
retrieved with the similarity search. The scores are then prop-
agated with a conjugate gradient solver. To further speed
up the online computation, diffusion is applied only on the
truncated graph corresponding to the nearest neighbors, with
a trade-off between precision and size of the truncation. This
technique is also generalized to handle multiple query vector
representations, typical of regional methods. The Fast Spec-
tral Ranking algorithm (FSR) [141] improves upon [140],
by moving more computations offline, effectively reducing
the online stage to a sequence of sparse matrix-vector multi-
plications. The Regularized Diffusion Process (RDP) [142]
is an algorithm that introduces a smoothness criterion that
simultaneously regularizes four vertices in the affinity graph.
This regularization is used to guide the iterative diffusion
process on the tensor product graph. An evenmore significant
speed boost is achieved by Yang et al. [143]. In comparison
to Iscen’s method their algorithm completely moves offline
the computation of the graph Laplacian that is used for the
diffusion, thus reducing the online process to a linear com-
bination of precomputed vectors. With this solution, the cost
of the diffusion process becomes almost negligible w.r.t. the
nearest neighbour search. Additionally, the authors use a
late truncation (truncation of the Laplacian) and demonstrate
that, contrary to Iscen’s early truncation (truncation of the
affinity matrix) [140], this does not reduce performance.
The motivation for this is that the subgraph obtained with
an early truncation contains incomplete manifolds and the
later normalization raises the probabilities to reach nodes
on such incomplete manifolds. The improved truncation
allows implementing more sizeable graph reductions with
a benefit in terms of the memory footprint. Regarding the
offline computation, building the affinity matrix of the graph
requires an exhaustive pairwise similarity check among all
the images of the database. Even though the operation is not
as critical as the online stage, this procedure cannot scale
to large databases. Generally an approximate NN search is
used [140]. Magliani et al. [112] propose an ANN algo-
rithm based on local sensitivity hashing that is specifically
tailored for the diffusion task. Inspired by diffusion, [130]
introduces a graph traversal approach called Explore-Exploit
Graph Traversal (EGT) to be applied to the kNN graph from
the similarity search. Themain idea is to combine the strength
of QE (exploiting the neighbours) and diffusion (exploring
the descriptor space) by alternating exploitation and explo-
ration steps. Additionally, a variant of this traversal algorithm

includes spatial verification to adjust the weights of the edges.
The spatial verification helps mitigating the problem of topic
drift – the exploration drifting away from the original query
– and improves results on a number of benchmarks.

The essential idea of classic diffusion methods is to
unveil the manifold structure to better guide the similarity
search. This idea has been revisited with the use of graph
convolutional networks (GCN). GCNs can be used to encode
the information from the kNN graph directly into the image
descriptors used for the similarity search. This generates new
descriptors that encode the high-order neighbour information.
In [144] this idea is explored with a GCN that is trained
without supervision by using a loss function inspired by
the concept of clustering: similar descriptors should move
closer, while dissimilar descriptors should be pushed apart.
After the model is learned, the image descriptors can be
forwarded through it to get the updated representation. At
inference time, computing the updated representation for the
query requires first to update the adjacency matrix of the
graph, which can be done in an approximated manner to
limit the time cost. This method depends on the quality of
the adjacency matrix, so the authors suggest using spatial
verification in the offline construction of the graph of the
database images. A similar idea is explored in [145], where
three different implementations of the transition equation for
the graph are demonstrated but not for the specific task of
retrieval. Another GCN-based method is presented in [146],
with a model that is trained without supervision using two
loss functions that directly depict the diffusion process with-
out any labeled information: a local loss that enforces smooth-
ness (if two nodes are topologically close in the graph the
similarity of their features should be high), and a global loss
that enforces global order (similarities measured by different
nodes from two neighborhoods should remain consistent).
The learned feature space can be applied to unseen queries
without a second nearest neighbour search, by a resorting to
a QE-like averaging.

VIII. CHALLENGING CONDITIONS IN VISUAL PLACE
RECOGNITION AND HOW TO TACKLE THEM
Although VPR is mostly treated as an image retrieval task,
there are numerous challenges specific to the recognition
of places that set it apart from other retrieval problems.
One peculiar problem is that two places might present com-
mon elements that make them difficult to be distinguished.
For example, man-made structures in urban environments
are rich of recurring patterns such as building facades or
fences [117]. These recurring patterns cause the phenomenon
of ‘‘visual burstiness’’ [147], i.e., the presence of visual
elements that are more frequent than predicted by a sta-
tistically independent model. Another problem is that the
same scene can appear significantly different if viewed from
different viewpoints [121], [148] or there can be little over-
lap between query and database images [149], making the
retrieval task harder. Moreover, a scene can experience struc-
tural modifications over time, e.g., when there is a temporary
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FIGURE 5. Examples of challenging conditions. Images taken from: CMU
Seasons dataset [151], [152], Aachen Day/Night dataset [151], [153], [154],
Nordland dataset [155].

construction site. Unlike other instance retrieval tasks, e.g.,
catalogue search, in visual place recognition usually there
is not a single object of interest centered and well visible
in the picture. Scenes can be cluttered with non informa-
tive elements, such as people or vehicles, that might dis-
tract or even occlude distinctive elements of the environment
see (Fig. 5c). There are also challenges that are specific to
certain environments. For instance, indoor scenes, such as
campuses or hospitals, may have similarly shaped corridors
and textureless areas [119]. Another major problem is the
fact that the same scene can appear drastically different due
to changes in environmental conditions such as illumination
(day/night/shadows), weather or season (see Fig. 5a-b and
Fig. 5d). The rest of this section discusses the various tech-
niques that have been proposed to tackle these specific chal-
lenges of VPR, categorizing them in order to highlight their
different goals and properties. Once again, we stress the fact
that the following discussion is not a comparison of multiple
methods, as they are too many and pursue different goals. For
a not exhaustive comparison of few of these methods we refer
the reader to [150].

A. SELECTING WHERE TO LOOK
The problem of coping with visual clutter and distractors has
inspired different solutions for guiding the visual inspection
pipeline to focus on the most informative parts of the images
and avoiding those elements that may induce confusion.
These methods not only can extract more informative and dis-
criminative features for the localization task, but they can also
make the systemmore efficient. The idea of selecting relevant
visual information for image geo-localization is not new, and
it has been investigated also with not CNN-based descriptors
and/or handcrafted schemes [18], [23], [27], [117], [156],
[157]. Some of the lessons learned by these studies have
translated to CNN-based architectures.

1) REGION SELECTION
An approach for dealing with clutter and visual distractors
is to extract regions of interest from the image, i.e., regions
that contain only the elements that are most relevant for the
recognition task. This idea can be naïvely implemented as a
multi-scale search on the input image. Namely, patches are
cropped from the image and for each of them a representation

is extracted. The regional representations can then be com-
pared for the retrieval. Even though such an implementation
has shown to be more robust against scale and viewpoint vari-
ations [71], [149], [158], [159], extracting patches directly
from the input image is inefficient because it requiresmultiple
forward passes through the network. Inspired by the advances
in object detection, most recent works extract the regions
directly on the convolutional feature maps. Another consid-
eration, which applies also to regions extracted on the feature
maps, is that using a fixed-grid of proposals (e.g., [71], [73])
is sub-optimal. Since the fixed grid is not informed by the
content of the image, the proposed regions may fail to fully
contain relevant elements. Moreover, many of the regions
may only cover clutter, hence they can negatively affect
performance [80]. This problem, cannot be solved by simply
using a finer grid because increasing the number of regions
would not only improve coverage of the informative areas but
also of the irrelevant ones. Additionally, this would not be a
scalable solution, because increasing the number of regions
would also increment the retrieval latency and the required
memory [129]. Following these considerations, [80] modifies
the R-MAC descriptor [73] by replacing the fixed-grid sam-
pling with a region proposal network, akin to the one intro-
duced in Faster R-CNN [160], and trained on the Landmarks
dataset [57]. For a similar number of regions, the region pro-
posal network yields better performance than the fixed sam-
pling. A limitation of this proposal method is that it is trained
in a supervised fashion, from a dataset with labeled regions.
A similar modification was proposed for the ASMK aggre-
gation [37] by Teichmann et al. [38], using a MobileNet-
V2 [161] based SSD detector [162] for selecting the regions
and modifying the ASMK kernel to apply regional aggrega-
tion. Another strategy for computing the regions of interest,
without requiring annotated region proposals, is to directly
mine them on the convolutional feature maps [163], [164].
Features at late layers tend to be sparse and representative
of semantically meaningful elements such as a shape or an
object [53]. Therefore, saliency regions can be extracted
from these layers by clustering the activations and selecting
those with highest energy. Themain difference between [163]
and [164], besides the aggregation method from the local
features, is in the definition of the cluster: a set of non-zero
spatially proximal 8-connected activations in [163], a set of
neighboring activations with similar values in [164]. When
multiple regions are selected for each image, an approxi-
mate linear bidirectional similarity search across the database
can become prohibitive. To mitigate this problem, in [165]
the k-NN search from regional descriptors is replaced
by a Locality-Sensitive Hashing based method, which not
only provides a significant speedup but also improves
matching.

2) ATTENTION MODULES AND WEIGHTING MASKS
Attention modules are an approach to select the more relevant
information from the images (see Fig. 6) that can signif-
icantly improve the performance of place retrieval [166].
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FIGURE 6. Examples of images from urban environment (top) and the
attention scores (bottom) generated by the AdAGeo architecture [168]
which implements attention via class specific activation maps. The
attention is focused on building, disregarding dynamic objects,
uninformative areas (sky) and objects that are not stable over time
(trees).

Differently from region proposal methods, which effectively
extract portions of the image that are deemed interesting,
with attention modules the image is processed as a whole but
the individual features are weighted according to a relevance
criterion. The weighting scheme, particularly in early works,
can be established according to some heuristic. In [70] the
weighting heuristic is based on the assumption that objects
of interest tend to be closer to the center of the image.
The CroW descriptor [76] combines spatial and per-channel
weighting. The spatial weighting is based on the normalized
total response across all channels, effectively boosting the
response for locations in which multiple channels are active.
The per-channel weighting is based on the sparsity of feature
maps, effectively penalizing low-sparsity filters that are very
recurrent and not discriminative. Heuristics based weighting
masks can improve specific aspects of the retrieval process,
but they lack flexibility. In the spirit of deep learning, these
weighting masks are better learned end-to-end from the data.
A learned attention module is used in [81], where it serves as
a keypoint detection unit. The module learns a non-negative
scoring function for each feature with a weakly supervised
training, i.e., requiring only image-level labels. The same
attention module, both in additive and multiplicative form,
is also used in [138] to improve the localization from aerial
images (remote sensing). A learned contextual reweighting
network (CRN) is described in [91]. The CRN is implemented
as a concatenation of multi-scale context filters followed
by 1 × 1 convolutions, with downsampling/upsampling lay-
ers used for dimensionality consistency. Being implemented
with conventional differentiable layers, the CRN can sit on
top of a fully convolutional network and be trained in an
unsupervised way, meaning that the training does not need
explicitly annotated boxes. The effect of this contextual mod-
ulation is to produce a weighting mask based on semi-global
context. Qualitatively, the mask gives positive weights to
relevant structures while it penalizes repetitive lattices or not
meaningful content. This contextual reweighting surpasses
the predefined weighting mask used in Crow [76]. A method
similar to the CRN is presented in [167]. In [168] an attention
mechanism is implemented through class specific activation

maps [169], which are used as score maps to weigh the
features (see Fig. 6).

Selection of salient regions can be guided by context at
multiple scales as demonstrated by MSCAN [92] with a two
layer LSTM network. The first layer of the LSTM network
generates an initial multi-scale context memory that is then
fed to the second LSTM layer to produce a multi-scale aware
attention. MSCAN produces very focused responses on the
relevant portion of the images (e.g., buildings) but not on
occlusions such as people in the foreground. Another model
that uses an attention map based on multi-scale context is
proposed in [170]. There, a global latent context is created
for each location of the feature maps by adaptively pooling
all local descriptors. The attention mask is created by fusing
these context maps, thus combining the local information and
the global context at multiple scales. Global image infor-
mation is also used in [84] to guide the attention module
with a cascaded scheme: a first attention block of 1 × 1
convolutions produces a global attention descriptor; a second
attention block uses the global attention descriptor from the
first one as content prior. In [75], a multi-scale attention map
is implemented using two 1 × 1 convolutional layers with
sigmoid activation on a multi-scale feature map. However,
the results show that this multi-scale attention map may give
inconsistent results in presence of lighting variations.

Another solution to produce more informative attention
maps is to leverage second-order spatial information, as done
in [95] using a non-local block [171]. Second order spatial
information allows to generate a feature map in which local
features reflect the correlations between all spatial locations,
in contrast to first order features where each local feature has
a limited receptive field. This method allows to learn dense
local descriptors that account for the contribution of each
local feature in relation to the others.

B. VIRTUAL VIEWS AND WARPING
View synthesis is an approach that has been adopted in
visual place recognition to address the problem of view-
point variations. Namely, the query or database images are
replaced/augmented by artificial views that show the same
scene but from a different viewpoint. In [121], view synthesis
is used as a way to augment the database in order to help
recognition of night-time queries against day-time database
images. This use of synthesized views is motivated by the fact
that the dense local descriptors used for the matching, while
more robust than sparse local descriptors to illumination
changes [172], suffer from limited invariance to geometric
transformations (scale and viewpoint). In this case, the views
are synthesized from panoramic Google Street View images
and their associated coarse depth-maps. Despite containing
significant visual artifacts, these artificial views yield better
localization than the non-augmented database. View synthe-
sis is used in [119] for pose verification after the initial
retrieval stage. Namely, after a set of candidate poses are esti-
mated for the query, a view for each estimate is synthesized to
show how the scene would look from that pose. The synthesis

VOLUME 9, 2021 19529



C. Masone, B. Caputo: Survey on Deep VPR

leverages a database of RGBD images that provides a dense
and accurate 3D structure of the environment. The re-ranking
is finally based on the count of matching and non-matching
pixels between query and synthesized views.

Warping is used in the case of cross-view localization in
which the query is a street-level image and the database
is made of aerial images, or viceversa. Such an extreme
viewpoint difference makes it impossible to directly match
query and database images. One workaround is to project
ground and aerial images to a common artificial view. In [173]
the authors first project the 2D street view images to 3D
world coordinates and then re-project them onto the aerial
view image plane through the street-view depth estimates and
using some simplifying assumptions. A similar use of recti-
fied views is displayed in [174], where a street-level query
is geo-localized against a geographic information system
(i.e., a map from satellite imagery). In [28] virtual views are
created from Google Street View images to simulate different
camera tilt angles and improve matching with aerial queries.

C. SEMANTIC INFORMATION
Semantic information can be leveraged to guide the extraction
of the most informative and distinctive visual elements for
the retrieval task, providing more robustness to distractors
and changing conditions (Fig. 7). This approach leverages
a prior knowledge about the environment where the local-
ization is considered. For example, knowing that people and
vehicles carry no relevant information for the localization,
one could discard or penalize the visual cues corresponding to
these semantic labels. Even in the pre-CNN setting, semantic
information has been used to improve image retrieval, e.g.,
to select correspondences between images only on areas
recognized as man-made structures because they are more
distinctive and stable over time [175], to remove the sky
since it carries no localization information [176], or to filter
out patch descriptors based on the semantic content of the
patches [177]. Place categorization is instead used in [178]
to inform the recognition of the location. Namely, a clas-
sification network trained on Places365 [179] is used to
extract the most likely semantic attributes from a scene, thus
categorizing it. The semantic category of the query is then
used in the place recognition module to bias matches within
the same semantic category. The method proposed in [178]
actually uses sequences of images and the segmentation is
used to create subsequences with coherent category both in
the query and in the database. Nevertheless, the principle is
applicable to the single image scenario. A similar concept is
explored in [180], where the semantic classes of the objects in
the query are used to filter the database images, thus reducing
the search space for the image retrieval.

Dense, pixel level semantic information extracted from a
semantic segmentation network is used in [128], [181] to
tackle the specific challenge of localizing a vehicle along
a road that was previously traversed only in the opposite
direction, meaning that there is a 180◦ viewpoint difference
between queries and database images. The visual semantic

FIGURE 7. Pixel-wise semantic information can be leveraged to select
only portion of the image corresponding to content that is stable across
seasons, e.g., man-made structures. Image from [183], Copyright 
2017,
IEEE.

information is used in two ways. First, the semantic label
probability and convolutional maps of the semantic seg-
mentation network are used to construct a descriptor called
Local Semantic Tensor (LoST), which concatenates descrip-
tors for each semantic class. Then, the maximally-activated
location of the same feature maps are exploited to select
semantically labeled keypoints for verifying and re-ranking
the candidate matches. This use of the semantic informa-
tion not only mitigates the problem of viewpoint changes,
but it also boosts the recognition performance in vary-
ing weather/illumination/season condition. A similar prob-
lem and solution are considered in [182]. Here, temporal
sequences of pixel-wise semantic masks are used to build
graphs where the vertices are semantic blobs extracted from
the masks and the edges are built based on proximity con-
straints. Given a query graph and a database graph (map),
the place is then retrieved by matching descriptors built using
a random walk approach.

Pixel-wise semantic labels are used in [183] to produce
an image representation that is more robust to changes over
time. For this purpose, the authors use a semantic segmen-
tation network trained over a dataset with scenes in varying
ambient conditions to extract a binary semantic mask. Pix-
els corresponding to stable elements (buildings, signals) are
marked as discriminative and preserved, whereas dynamic
objects (pedestrian, cars), uninformative content (road, sky)
and objects with unstable appearance over time (trees) are
marked as not discriminative and removed. Both the orig-
inal and segmented image are then fed through a feature
extractor and the corresponding convolutional features are
aggregated to form the image representation. Hou et al. [184]
employ a similar semantic binary mask, however they use it
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not to compute an holistic image representation but rather
to filter out the non-discriminative regions proposed by a
landmark detector. Similarly to [183], also [185] combines
appearance-based and semantic features to produce a more
robust representation. The main difference is that [185] also
uses semantic and appearance information to estimate a
multi-modal attention module. The multi-modal attention
module, informed by both appearance and semantics, helps
the network to selectively focus on visual elements that are
more discriminative and stable. Pixel-wise semantic labels
and depth labels are combined in [97] to train a multi-task
architecture with a shared feature extractor.With this strategy,
the feature extractor implicitly learns to fuse geometric and
semantic information, thus producing more discriminative
embeddings for the retrieval task. While semantic masks can
be highly informative in urban environments, the lack of
content in bucolic scenes might make them ineffective. For
this reason [186] proposes to use descriptors created from
semantic edges, rather than the full semantic masks. However
this solution is extremely vulnerable to noise in the semantic
mask.

Despite the improvements in the localization performance
achieved by several methods that exploit pixel-wise semantic
information, the semantic classes that are used are often
few and chosen by experience or inherited by other tasks.
Larsson et al. [187] argue that such a choice of few classes is
not optimal for visual place recognition because it limits the
discriminative power of the learned representations. To over-
come this problem they propose a fine-grained segmentation
network with a high number of classes (≈ 102 − 103) that
are learned in a self-supervised way by clustering the features
extracted. The clustering, and thus the selection of classes,
is updated at a fixed number of training steps. Additionally,
a correspondence loss is applied to different views of the same
scene to encourage the model to learn semantic representa-
tions that are robust to viewpoint and ambient changes.

Semantic information has also been used to address the
place recognition problem in the case of extremely different
views. Castaldo et al. [174] consider the case in which the
query is a street-level image and the database is made of
semantically annotated top-view satellite images. In this case,
the matching is performed by searching on the map for a
tile with a spatial layout of semantic segments (e.g., road,
building, grass) which is consistent with the one in the query
image. Finally, even though not strictly relevant for the visual
place recognition task using only 2D images, it is noteworthy
that semantic information also been shown to yield more
robust results in the case of 3D-based place recognition [29].
In this case, the semantic information is exploited to generate
semantically complete 3D models, from which robust 3D
descriptors are extracted.

D. DEPTH INFORMATION
Depth maps are an auxiliary source of information that can
be combined with appearance-based processing to leverage
scene geometry in the place recognition task, hence providing

robustness to visual changes. Depth information can be used
to guide the process of extracting a global image represen-
tation for the image retrieval. This strategy is used in [97],
where the authors propose an architecture where the encoder
used to extract the image representation for the recognition
task is shared with two auxiliary tasks: depth map reconstruc-
tion and segmentationmask reconstruction. Thus, the encoder
learns to use the geometry in the scene (as well as the seman-
tic content) to extract the appearance-based representation.
Piasco et al. [188] also use depth reconstruction as an auxil-
iary task to help the place recognition task. Unlike [97], they
use separate encoders for the two tasks (plus a decoder to gen-
erate the depth map) and combine representations obtained
from these two encoders in a unique descriptor. In both [188]
and [97] the training is supervised, requiring a depth map
for each training image, but at inference time only the RGB
image is needed.

E. ADAPTING TO DIFFERENT ENVIRONMENTAL
CONDITIONS
The challenges posed to vision place recognition by changing
conditions such as illumination, weather and seasons are
widely acknowledged [151] and represent an open problem.
A significant body of literature has investigated the short-
comings of descriptors and deep features in such difficult
conditions [172], [189], [190] and the insight gained by these
analyses has provided some guidance to find more robust
descriptors. In this sense, it has been shown that sparse local
features are not robust to appearance variations such as dras-
tic illumination changes (day/night) [172]. An explanation
for this poor performance is that keypoint detectors only
consider small image regions and use low-level information
that is highly affected by pixel intensities. This can lead to
unstable detections under strong appearance changes [134].
These observations have led researchers to use dense local
descriptors without a detection phase to address place recog-
nition across day and night cycles [121]. An alternative is to
preprocess the images with a learned photometric normal-
ization to cope with significant illumination changes [191].
Notably, deep learned descriptors have shown better perfor-
mance than hand-crafted ones in benchmarks with day/night
conditions [69]. For similar reasons, dense local descriptors
have also found use in indoor localization where keypoint
detection is hindered not only by changes in lighting (arti-
ficial/natural) but also but also by the lack of textures [119].
Small performance gains have been recorded by using meth-
ods that introduce a selective focus on parts of the image,
e.g., with regions of interest [158], [163], [164], attention
modules [84], [170] or semantic guidance [128], [183]–[185].
These gains can however be attributed to the fact that these
techniques help focusing on elements in the scene, such as
buildings, that have a more stable appearance over time.
It is also worth noting that methods that use sequences
of images have shown a greater robustness to changing
conditions [192]–[195].
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A different solution to the problem of changing conditions
has been proposed for robotics and autonomous driving, and
it consists of continuously growing the database with new
images captured in different conditions. Disregarding the
collection costs, this idea is difficult to implement as the
dimension of the database, and consequently the computa-
tional cost of the place recognition algorithm, can quickly
become unmanageable. To solve this scalability problem,
Doan et al. [196] propose a solution that consists of three
elements. Firstly, a VPR algorithm based on aHiddenMarkov
Model that is efficient both in terms of training time and
testing time. Secondly, a strategy for growing the database
with the query sequences that only adds images with signif-
icant new content. Thirdly, a compression step that merges
connected portions of the map, thus decreasing its size.

More recently, a few studies have explicitly targeted the
cross-domain problem where the target domain (query) dif-
fers from the source domain (database) due to changes in
illumination, weather or season. Amethod that is investigated
in [197], [198] is to replace the query with a synthetic image
that depicts the same scene but with the appearance of the
source domain. In [197], the query image is translated to
a synthetic image in the source domain by using a Cycle-
GAN [199] that has been tailored for SURF matching by
adding a loss term on the feature detector and descriptor.
In particular, the authors use a generator based on URes-
Net [200] and train it with a two-stages procedure. In the
first, unsupervised, stage the image generators are trained
using a small set of unpaired images from the two domains.
In the second, supervised, stage the generators are fine-tuned
using pairs of pixel-aligned images from the two domains,
learning certain feature transformations that might not have
been captured in the first stage. A similar idea is developed
in [198], albeit using a ComboGAN [201] that allows for
n-domain translations. The architecture in [198] is tailored
for the retrieval task by using a triple discriminator: one
focused on texture, one on color, and the third one on hor-
izontal/vertical gradients. The main difference with [197]
is that there the cycle-consistency loss is used to enforce
that the feature detectors/descriptors are translated properly,
whereas in [198] the third discriminator emulates the process
of extracting SIFT descriptors, thus inducing the creation
of matching-relevant features in the translated version. A
ComboGAN is used also in [202], together with a feature
consistency loss, to learn domain invariant latent features
for retrieval-based place recognition. GANs with cycle con-
sistency are also used in [203] to tackle the cross-domain
problem, however there the authors directly utilize the feature
extracted by the first fully connected layer in the discrimi-
nator as image representation to be used for the similarity
search. Rather than aligning the features of different domains,
another strategy is to learn multi domain features and then
separate condition dependent features from the condition
invariant ones using a separation module [204].

One specific case of cross-domain place recognition is
considered in [205]: the database is composed of present day

RGB images and the queries are historic images from the
same area. In this case the domain shift is caused not only by
possible changes in the scene but also by the different tech-
nology used to take the photos. The architecture proposed to
tackle this specific setting is based on a CNN feature extractor
with VLAD aggregation [33] and two key elements: i) an
attention module that weighs the features and residuals in the
aggregation within the VLAD module, and ii) a multi-kernel
maximummean discrepancy (MK-MMD) domain adaptation
loss that guides the CNN to learn a latent space where the
two domains are not distinctive. Experiments show that the
attentionmodule brings only amodest improvement, whereas
the boost due to the domain adaptation loss is significant.
A different application of domain adaptation is proposed
in [97]. There, the authors propose to use a virtual dataset
to train their model which requires both depth and semantic
labels. An adversarial training with an adaptation loss is then
used to ensure that the latent features extracted from the
virtual and real domain have similar distributions. Generative
and domain adaptation approaches are combined in [168] to
tackle the problem of changing conditions in place recogni-
tion. The authors show that generative and domain adaptation
techniques bring orthogonal improvements to the recognition
results, and their combination further boosts performance.
Additionally, among the solutions discussed here, [168] is
the only one that addresses domain adaptation in VPR in a
few-shot setting.

F. USING 3D MODELS
Appearance based recognition of a place can be supple-
mented with the information of a 3Dmodel. This information
can be exploited in various ways. Firstly and most impor-
tantly, the 3Dmodel can be used to accurately regress the pose
of the camera that captured the query image with respect to
a given coordinate system. Additionally, the 3D information
can be used to improve some aspects of the retrieval pipeline,
such as the construction of the database. The 3D model can
be built directly from the database images using structure-
from-motion (SfM) [151], [206], [207], as long as the images
present enough overlaps and provide different viewpoints
of the same scene. Since the 3D points reconstructed from
SfM are usually sparse, multiview stereo algorithms [207]
or densification [208] can be used to recover more dense
and accurate models. Mining techniques such as zoom-in and
zoom-out or sideways crawl can also be included in the SfM
pipeline [208] to better capture fine details. 3D models can
also be created by other sensor information, e.g., using depth
information [209] or lidar measurements [29].

In visual place recognition 3D models are exploited in
different ways. In [210] it is used to learn a codebook to be
used for classic aggregation methods such as BoW or VLAD.
The 3Dmodel can also be used for re-ranking with geometric
verification [208], or as an instrument to guide the mining of
positive examples for metric learning [77], [83]. A predom-
inant use of 3D models is to estimate the camera pose with
respect to the map [28], [105], [106], [119]. First, the image
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is matched using descriptors, then a precise pose is com-
puted from 2D-3D matches using a PnP [211] solver within
a RANSAC loop [212]. Under strong viewpoint changes,
which are typical for instance in place recognition for aerial
robots, it can be difficult to establish 2D-3D correspondences,
so the 3Dmap can be densified using depth completion [213].
One problem with using 3D models is that they are expensive
to store and maintain, and do not scale well to large environ-
ments. To overcome this problem [214] proposes to not use
a large 3D model created offline, but rather to create a small
local model online (SfM-on-the-fly), using the top retrieved
images from the database. This solution is shown to achieve
good results, although its effectiveness deteriorates in the case
of weakly textured scenes. A 3Dmodel is also used in [119] to
synthesize views from the predicted camera pose, which can
then be used for verification and re-ranking. It is worth noting
that there are deep camera pose regression methods based on
a single CNN [215]–[217] without the need of storing the 3D
model for online inference, however these methods have not
yet achieved an accuracy comparable to those using explicitly
3D structure. A 3D model derived from SfM is used in [134]
to generate training data for D2, a network that learns to
detect keypoints for local descriptors. Structure-from-motion
is also used as a way to generate ground-truth sparse patch
correspondences between pairs of images depicting the same
scene. These correspondences can then be used to train a
model that extracts sparse local descriptors [218] for spatial
verification.

While all the aforementioned studies use 3D information
to support visual-based recognition of places, recent studies
have proposed to do the inverse. Favoured by the increasing
availability of 3D sensors, several researchers are investigat-
ing to directly use 3D-3D matching for place recognition.
In this case the images are used as an auxiliary information,
e.g., to extract semantic information to be fused with the 3D
pointcloud [29].

IX. VISUAL PLACE RECOGNITION WITH AERIAL IMAGES
The task of visual place recognition is predominantly stud-
ied in the context of images captured from the street level,
however the availability of satellite imagery and the diffusion
of camera-equipped aerial robots has led to new and specific
developments. On one hand, aerial images allow to obtain a
bigger variety of viewpoints as well as wider views of an area.
On the other, they introduce new challenges, such as drastic
viewpoint variations and a lack of distinctive visual details.
The rest of this section discusses few scenarios of VPR with
aerial images.

A. REMOTE SENSING
In remote sensing image retrieval, like in classical VPR,
the task is to identify a query image location by retrieving
similar images from a database. However, the images are
taken from a downfacing camera onboard an aircraft flying
at high altitude or from a satellite. Therefore, the images
depict large geographic areas, with objects that may have

significantly different scales. Moreover, elements that are
very distinctive from the street level, such as buildings, may
be less informative when looked from a great distance above.
On the other hand, visual elements that are not particularly
informative from the street level, such as roads, are important
for remote sensing.

Despite these differences, methods that are used in VPR
have also been applied to remote sensing place recogni-
tion. In [219] the authors use an approach based on the
bag-of-words framework. First, the images are divided in
patches using different schemes, namely uniform grid and
superpixel. Then, the image representation is constructed by
stacking together the latent features extracted by feeding
each patch through the encoding part of a deep convolutional
autoencoder. Finally, the bag-of-words is generated using
these representations. Rather than using patches, which is
computationally expensive, [138] proposes to use the DELF
architecture [81] to extract attentive local features that are
then combined via the VLAD aggregator. Additionally, since
geometric verification is difficult to apply to remote sensing
imagery, the authors use a query expansion based on memory
vectors [220] to improve the retrieval results.

B. CROSS-VIEW GEO-LOCALIZATION
Another use-case for aerial images in place recognition is
cross-view geo-localization. In this setting the query is taken
from the street level whereas the images in the database are
aerial views (or vice versa). Lin et al. [173] consider the
specific case in which the aerial images in the database are
taken at approximately 45◦ angle and the database images
are taken from Google Street View together with a coarse
depth map. This information, together with the assumption of
an orthographic camera model, allows to reproject the street
level images onto the aerial plane and establish ground-aerial
matches. These matches are then used as examples to train
a CNN-based feature extractor with a contrastive loss. The
idea of cross-view training is also explored in [221]. There
the authors propose to train a CNN to extract the FC represen-
tation of aerial images by using an `2 loss function that aligns
these representations with those extracted from a pre-trained
model for the corresponding ground images. The cross-view
scenario is specialized in [174] for the case of geographic
information system images endowed with a semantic map.
Similarly to [173], a reprojection is used to rectify the street
level image, however the projection is applied to a semanti-
cally segmented copy of the query. The cross-view matching
is then cast as a search for consistent spatial layouts of the
semantically labeled regions.

C. MICRO AERIAL ROBOTS
When the aerial images are captured from a front facing
camera onboard a multicolor micro aerial vehicle flying at
low height, the geographic area covered is not as wide as
in the case of remote sensing imagery. However, the large
roll-pitch rotations that are typical in the motion of these
robots cause drastic viewpoint changes (Fig. 8). This prob-
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FIGURE 8. Example of viewpoint variations due to the drone pitch/roll
angles during flight. Images from the camera onboard a drone flying in
Zurich. Dataset presented in [28].

lem is particularly pronounced in the cross-view setting in
which the database images are taken at the ground-level.
Majdik et al. [28] suggest using virtual views that simulate
different tilt angles as well as a verification step. The problem
of drastic viewpoint variations is also present in the aerial-
to-aerial setting and it is demonstrated in [148], [213], where
the authors propose a new dataset specifically for VPR for
aerial robots. Along the same lines, Zaffar et al. [222] show
that methods that perform very well on ground-level local-
ization show a significant degradation in performance when
applied to the aerial case with 6 DoF viewpoint changes.
The viewpoint variations encountered in this setting can be
partially mitigated by the use of geometric verification [148].

X. VISUAL PLACE RECOGNITION IN
ROBOTICS APPLICATIONS
Visual place recognition is a fundamental component in the
navigation stack of robotic systems, being used for exam-
ple for loop closure detection in GPS denied environments.
Although the techniques from computer vision research
have carried over to this scenario, the unique characteristic
implicit in the robotic application have led to specific devel-
opments. The most significant peculiarity of this problem
setting is that place recognition is intended as a continuous
task that processes streams of observations and that can
leverage a knowledge of the motion of the robot available
through egomotion estimation and motion models. Addition-
ally, robots are often equipped with different sensor technolo-
gies other than vision that can be used for VPR, such as 3D
lidars [223], [224] or range sensors [225]. Lastly, the place
recognition problem is often combined with visual based
localization, where the goal is to regress the 6 DoF pose of
the robot w.r.t. a known map.

A. MAPS
The task of recognizing a location from visual information
requires prior knowledge of all the places of interest. Since
in robotic navigation the observations are collected contin-
uously, consecutive images from the video stream of the
camera are connected by spatio-temporal constraints. In this
setting, the prior knowledge of the world is thus naturally
organized as a topological map [3], where nodes represent
places with associated observations of the world (images)
and edges indicate transitions between places. These tran-
sitions allow to naturally describe motion constraints that
are posed by the structure of the environment and by the

robot itself. For example, the navigation of autonomous cars
in a urban environment is constrained not only by their
mechanical structure but also by the roads and the traffic
rules. In this context, the transition between two spatially
near places might not be allowed because of a ‘‘no entry’’
traffic sign. Topological maps, combined with the continuous
localization of the robot, can effectively speed up matching
because the location prior can be used to limit the search
to a sub-graph with an adaptive window approach [194]. A
similar idea is proposed in [226], where the database images
for an indoor environment are partitioned in subspaces based
on spatial rules. This partitioning stems from the observation
that there is a relation between image similarity and distance.
Moreover, the partitioning rules used by the authors also
leverage the natural subdivision in spaces that is present in
indoor environments (rooms, corridors). The partitioning of
the database is used to improve the computational efficiency
of the VPR system by limiting, if possible, its search space to
the last visited subspace.

Topological maps might also be augmented with metric
information assigned to nodes or edges [3]. Suchmetric infor-
mation can be exploited to guide the place recognition process
in conjunction with motion models and odometry measure-
ments [182], [194]. The addition of odometry information
has been demonstrated to improve place recognition perfor-
mance [176]. Moreover, the information stored in the nodes is
not necessarily limited to the appearance of the corresponding
places, i.e., images, but can also contain semantic informa-
tion. For example, places might be described using scene text
such as billboards, shop names, road signs, etcetera [194],
[227]. Hong et al. [194] use a topological-metric map where
each node represents an image with an associated a descriptor
of the scene text present therein. The similarity matching is
then implemented as a combination of semantic information
(Levenshtein distance between text strings) and appearance
information (IoU between the text bounding boxes). The
semantic information that can be stored in the map is not
limited to textual descriptors. Gawel et al. [182] build graphs
using blobs of connected regions extracted from semantically
segmented images, i.e., regions with the same pixel-wise
class label.

One question that arises in this setting is how to efficiently
construct and expand the map as the robot navigates the
world. This question is critical for long-term autonomy and
scalability to wide geographical regions. In particular, when
a new sequence of images is acquired it is necessary to add
only new and relevant information to the map and to establish
connections with previously visited places. One approach
used to selectively grow the map is to link the acquisitions of
new observations to localization failures [25]. This strategy
follows the idea that the localization failure is an indication
that the prior knowledge available is not sufficient for recog-
nizing the current place. Churchill and Newman [25] apply
this solution and introduce four different methods to connect
different acquisition with new edges. New nodes can also be
added to the map based on metric information, i.e., when the
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camera moves a certain distance from an existing node [194].
Metric information can also be used to combine newly created
graphs with previous acquisition, by merging close vertices
into a single location [182]. Doan et al. [196] have recently
proposed a strategy to efficiently expand a map. This strategy
is based on two different optimizations: i) adding images that
provide only new information based on the localization belief
(culling); ii) merging nodes that refer to the same place but
were visited in different occasions (compression).

B. CONTINUOUS PLACE RECOGNITION
AND LOCALIZATION
In robotics, VPR is intended as a continuous task in which
the algorithms can access streams of video frames, rather
than single images, as well as odometry measurements and
hypotheses about the motion model. The availability of such
information can be leveraged by ad-hoc solutions to achieve
a more robust and accurate place recognition.

1) STOCHASTIC MODELS
Stochastic models are used to generate a belief distribution
about the location of the current observation (image) cap-
tured by the robot with respect to the known map. This
generation process is performed recursively, exploiting pre-
vious estimates, egomotion measurements and motion mod-
els to provide the prior localization belief. An important
milestone in this line of research is FAB-MAP [19], [21],
an appearance-only algorithm for place recognition that
extends the bag-of-words framework with a recursive Bayes
estimation. FAB-MAP implements Bayes recursion by
approximating the likelihood that the observation was orig-
inated from an unseen place. This approximation can cause
perceptual aliasing, however this problem is mitigated by the
introduction of a smoothing operator. Although FAB-MAP
can work as a pure image retrieval process by always assum-
ing a uniform location prior, using even a simple motion
model to leverage the prior estimate improves performance.
HiddenMarkovModels (HMM) are also used extensively for
visual place recognition in robotics to exploit the temporal
order of the captured images and the high correlation between
time and place due to motion constraints [193], [196].
In [193], a HMM is used to combine image representations
produced by four methods: two hand-crafted representations
and two types of deep learned representations. For this pur-
pose, the authors introduce a multi-process fusion algorithm
that compares the matching performance of each represen-
tation and ranks them by voting. Then, in the application
of the Viterbi algorithm the emission matrix is re-computed
at each element of the sequence using only the top voted
representation for that particular image.

2) SIMILARITY MATRIX
Another family of methods for VPR in robotics is based on
the use of similarity matrices. Given a sequence of frames
(query), a similarity matrix is built by comparing individ-
ually each frame of the query (rows) with each image in

FIGURE 9. Example of similarity matrix computed from sequences of
images. The rows refer to the query frames, whereas the columns refer to
the database frames. The sequences are taken from Oxford RoboCar and
the image representations are computed using a pretrained
ResNet-101 with a GeM pooling.

the database sequences (columns) (see Fig. 9). The similar-
ity matrix is then used to estimate the most likely trajec-
tory followed with respect to the known map. This kind of
approach was popularized by SeqSLAM [45], which used
image differences with local contrast enhancement to cre-
ate the similarity matrix. SeqSLAM estimates the current
location by searching on the matrix for the best fitting tra-
jectory along the map, i.e., the trajectory that provides the
best matching score, possibly given motion constraints. One
weakness of SeqSLAM is the susceptibility to perceptual
aliasing which can be counteracted by using long sequences
of images. The approach of SeqSLAM has been expanded
by subsequent works, e.g., using a Hidden Markov Model
to allow searching for non-linear trajectories [228], filter-
ing out the sky from the images [176], querying frames
by their relative distance to allow for traversals at different
speeds [176], using learned features instead of handcrafted
ones [229], using semantic-based descriptors to create the
similarity matrix [181]. The similarity matrix can also be
used in conjunction with more complex trajectory search
methods to achieve more robust and accurate localization
results. Naseer et al. [192] use the similarity matrix to build
a flow network that associates the frames in the query and
in the database. The nodes in the network represent matches
between images on the edges are associated a cost based on
the similarity score. The trajectory search is thus interpreted
as finding the minimum cost flow through the network. Not
only this method allows to find trajectories traversed at dif-
ferent speeds and with stops, but using special nodes it can
also manage trajectories with non-matching frames.

3) SEQUENCE REPRESENTATIONS
The images in the query sequence can also be processed all
at once to create a combined representation that implicitly
contains the temporal information among frames and that can
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be matched to other sequences [182], [203], [230]. In [230]
the authors test three different methods to combine deep
learned representations, i.e., concatenation, fusion via a FC
layer and recurrent representations built via LSTMs. Inter-
estingly, naïve grouping works better on standard sequences,
perhaps because it is equivalent to imposing a coherence
check. Although such a grouping can become more distinc-
tive as the length of the sequence grows [203], the rep-
resentation size also increases with the number of com-
bined frames thus imposing a trade-off. Fusion and recurrent
representations work better when the sequences are altered
(different speed, reverse traversal) as they are able to learn
complex relations among the frames. Sequence representa-
tions are created in [182] using a two-stage strategy. First,
a semantic graph is created from a sequence of images by
selecting connected semantic components. Then, for every
node of the graph a random walk is repeated and the
sequences of visited semantic nodes are stored as a matrix.
In this case, the similarity between pairs of sequences is
scored by the number of matching random walks in their
representations.

4) BIOLOGICALLY INSPIRED METHODS
Biologically inspired methods mimic the cognitive processes
of animals with relatively small brains, such as insects and
rodents, in order to create efficient and resource limited algo-
rithms. RatSLAM [231] is a notable example of such biolog-
ically inspired methods. RatSLAM is inspired by computa-
tional models of the hippocampus of rodents and it represents
the pose of the robot by the activity in a continuous attractor
network (CAN) that integrates odometry with visual land-
mark sensing. In [232] the authors present a place recognition
approach that is inspired by a recently discovered type of
spatial encoding cell, called grid cell, that is found within the
mammalian brain and whose firing structure reveals the char-
acteristics of multiple discrete and overlapping scales. The
proposed approach mimics the discrete multi-scale encod-
ing patterns of grid cells by utilizing multiple place recog-
nition channels, each of which adaptively selects spatial
scales based on environmental similarity. NeuroSLAM [233]
employsmulti-dimensional CANs to represent amultilayered
head direction cell model and a 3D grid cell model. These
models are used to perform 3D SLAM with a robot whose
state is given by a 3D position and heading (yaw angle). Chan-
can et al. [195] propose a hybrid system that concatenates
a compact and sparse two layer neural network inspired by
the brain structure of fruit flies with a one-dimensional CAN
that encodes the places. The first part of this architecture,
the FlyNet network, imitates how the fruit fly brain assigns
similar activity patterns to similar odors. The 1D CAN filters
temporal information, with units being inhibited/excited by
movement. Despite its extremely compact format, this hybrid
solution manages to achieve competitive results in several
place recognition scenarios and it is even shown to surpass
more complex algorithmic methods in the day/night domain
shift case.

C. MULTI-TASK ARCHITECTURES
Visual place recognition is just one of several tasks that a
robot needs to perform while navigating. In this context,
the performance of place recognition can be improved by
leveraging the information extracted by other related tasks,
or viceversa. For example, VLocNet++ [234] processes
incoming images with three streams: one for visual odometry,
one for global pose regression and the last one for seman-
tic segmentation. The visual odometry and pose regression
streams employ hybrid hard parameter sharing up to the third
residual block. This influences the pose regression network
to integrate motion specific features. Semantic features are
also fused at the fourth residual block of the pose regres-
sion network via an adaptive fusion module. This allows
the pose regression to leverage also semantic information.
While VLocNet++ is an architecture with parallel tasks,
DeLS-3D [235] serializes them. First, the pose is estimated
using a regression network that is fed the image stream
as well as the semantic mask obtained from a semantic
3D map and the coarse pose an inertial navigation system.
A multi-layer RNN follows the pose regression to include
temporal information. Finally, the estimated pose is used to
render a precise semantic mask from the 3D map which is
then fed into a segmentation CNN together with the RGB
image. A different take onmulti-task architectures is to have a
single primary task, e.g., place recognition, assisted by other
auxiliary tasks. This strategy is used in [97] with an architec-
ture that extracts multi-scale features for the place retrieval
task using an encoder that is shared with other two tasks:
semantic segmentation and depth estimation, each one using
a specialized map generator. This solution implicitly fuses
geometric and semantic information in the features extracted
for place recognition. Another example of multi-task archi-
tecture, in the domain of assistive technologies, is demon-
strated in [2], which introduces a model with a single back-
bone and two heads, one for VPR and the other for scene
recognition.

XI. VISUAL GEO-LOCALIZATION AS CLASSIFICATION
Although visual place recognition from a single image has
been predominantly formulated as an instance retrieval task,
few recent works have proposed to cast this problem as a
classification task. Note that this is different from what dis-
cussed in Sec. V-A, where the classification task is only used
to train a model to generate representations for the retrieval
pipeline (see Fig. 1). In the alternative formulation discussed
here, it is the classification task itself that predicts the place of
an image, without any retrieval. This idea stems not only from
the remarkable results that deep classifiers have achieved on
large-scale tasks, but also from the observation that humans
can estimate the location of a photograph without having
to perform instance level or landmark recognition. This is
particularly interesting when trying to achieve a global scale
localization, in which case category level information can
help [26].
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The pioneering study from Weyand et al. [236] is the
first one to explicitly formulate visual geolocalization on
a global scale as a classification problem. In this setting,
the surface of the earth (or just the area of interest) is divided
in non overlapping cells. Each cell, corresponds to a class for
the classification problem. A CNN with a Softmax output
layer (PlaNet) computes a discrete probability distribution
assigning a confidence to all the cells. The partition in cells
is performed using an adaptive subdivision, so that each
cell is recursively divided if it contains more than a certain
number of images. Finally, cells with too few samples are dis-
carded. Such a subdivision allows to have balanced classes,
while assigning more classes (or equivalently, more of the
network’s parameter space) to areas with higher density of
images. A shortcoming of this solution is that the size of
the regions determines the maximum accuracy achievable.
It would be tempting to use a finer subdivision in cells to
make the classification more accurate, however this does
not work too well because: i) if the cells are very fine the
number of training examples per class will reduce; ii) with the
increase in the number of classes the number of parameters
of the classifier grows substantially, thus leading to problems
with scalability and generalization. Indeed, while in some
instances increasing the number of cells may increase accu-
racy, in others it can worsen the results [237] (see Fig. 10).
To overcome this problem, [238] proposes a combinatorial
partitioning in cells. Namely, different coarse partitions of
earth’s surface are generated and then overlapped to create
finer regions. With this strategy it is possible to use a single
backbone classifier with different fully connected layers per
coarse partition, resulting in an architecture that has far fewer
parameters than a single classifier network trained for many
more classes. At inference time, the subregions overlapped by
multiple class sets are given cumulative scores from multiple
classifiers, with a normalization that accounts for the number
of cells per class. Experiments with this architecture show
that the classifier is able to correctly locate images from a
wide variety of environment types, not just urban pictures.
However, the performance drops critically as the accuracy
required increases. This can be explained not only by the
limitation of the training dataset, but also because the dis-
cretization used to create the classes is naturally lossy. The
performance of the classification-based place recognition can
be boosted by combining it with scene recognition [239].
In this approach, a first network classifies the category of the
scene and, based on the label, forwards the image to a clas-
sifier specialized for that category. The main improvement
comes from the fact that the specialized classifiers can learn
more specific features for their respective domain, however
this solution is not easily scalable.

So far, only one study has attempted to compare the per-
formance of geolocalization using image retrieval and clas-
sification approaches [237]. Even though this comparison is
not extensive and it does not include the latest architectures,
it does offer some insight. The authors observe that image
retrieval performs generally better at finer scales than the

FIGURE 10. Example that shows the effect of different partitioning
schemes on the localization result with a classification formulation. The
two rows show two different examples, where the picture on the left is
the query and the charts on the right show the predicted places for
increasing number of cells. The red point indicates the prediction,
the green point indicates the ground truth. Image from [237], Copyright

2017, IEEE.

classification method, however both have some shortcom-
ings. Image retrieval requires a database that provides images
with significant overlap with the query. Moreover, it may
be difficult to create a retrieval solution that generalizes to
different environment types (e.g., urban cities and naturalistic
scenes). On the other hand, the formulation as a classification
task can provide a more general localization solution, but it
suffers from the lossy partitioning in classes.

XII. DATASETS AND EVALUATION
A. DATASETS
The datasets that are openly available and used for visual
place recognition focus on different use cases or problems,
and therefore have substantial differences from one another.
A first broad categorization of these datasets comes from
the distinction between robotics and non-robotics datasets.
Robotics datasets [21], [45], [151], [152], [214], [240], [241],
[247]–[249], [249] are typically created by recording videos
from cameras mounted on a vehicle (e.g., car) or a smaller
robot. The data is thus available in sequences, with the tem-
poral coherence among successive frames that can be lever-
aged to formulate motion hypotheses. Moreover, the point of
view is consistently at the street level, without big changes
in the vertical orientation. Non robotics datasets typically
are not collected as sequences of frames [22], [23], [38],
[69], [80], [81], [116]–[118], [122], [125], [190], [215],
[242], [244], [246], [251]. In many cases, they are created
by collections of online images, with variable viewpoints
and resolutions. Since such collections are quite noisy and
may include mislabeled images, it has been reported that an
automatic cleaning stage can be critical to improve retrieval
results [80], [88], [136]. A source of images that is closer
to the robotics domain is Google StreetView. This is a col-
lection of panoramic images taken from a vehicle (street
level) but not organized as time-coherent sequences. Several
datasets use images from StreetView, divided in perspective
images, to create maps of cities [30], [69], [114], [117],
[121], [243]. Another distinction among these datasets is the
way they encode places. Some datasets focus on recognizing
famous landmarks or discretely sampled locations, so they
encode places by labels [22], [116], [118], [122], [190].
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TABLE 1. Summary of commonly used datasets in VPR. Among the changing conditions, D/N stands for Day/Night, W stands for Weather, and S stands for
Season. The column denoted as 3D indicates if the dataset includes 3D models.

Other datasets use the GPS information tagged on the images
as the place information [69], [121]. This is particularly use-
ful when the database densely covers an area rather than being
a sparse list of landmarks. Finally, few datasets encode places
with 6 DoF camera poses [151], [153], [154]. An additional
aspect that sets apart the datasets is the kind of environment
they consider. The majority of databases are focused on urban
environments, being this the most relevant use case for many
applications. However, a few datasets consider indoor envi-
ronments [119], [251] and non urban areas [81], [118], [190],
[249]–[251].

The available datasets have also evolved over time, in order
to better represent the current problems to be solved in VPR
and provide more challenging benchmarks. For example,
the Oxford [116] and Paris [122] datasets that served as the
main VPR benchmarks for several years have been recently
revised, not only to correct inaccuracies but also to introduce
new protocols of increasing difficulty [129]. The Google
Landmark dataset [81] has also been expanded with a second
version [251], not only to increase its size but also to ensure
that the images are stable and are not be removed from

their sources. Some datasets have also been revisited to add
extra information, such as manually annotated boxes (Google
Landmark v1 [38]) or 3D models created using structure
frommotion (CMU Seasons [151]). Most recent datasets also
provide images from different ambient conditions (day/night
cycles, different weather/seasons), because dealing with such
variations is an open problem in VPR [69], [121], [151],
[151]–[155], [155], [190], [248], [252]. Table 1 summa-
rizes the datasets that are commonly used in visual place
recognition.

The significant efforts recently poured into autonomous
driving research has led to the release of several datasets
that, although not directly aimed at visual place recog-
nition, could be potentially adapted and used for that
purpose [254]–[260]. In fact, these datasets offer long
sequences of data recordings that generally include not only
multiple camera streams, but also egomotion measurements,
lidar scans and sometimes depth masks and semantic seg-
mentation. However, to be used for visual place recogni-
tion these recordings need to be pre-processed, filtering the
video streams and associating ‘‘place label’’ to the frames.
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TABLE 2. Summary of datasets used for VPR with aerial robots. Among the changing conditions, D/N stands for Day/Night, W stands for Weather, and S
stands for Season. The column denoted as 3D indicates if the dataset includes 3D models.

This could be done by leveraging the data collected from
the vehicle inertial navigation system, although this typi-
cally operates at a different frequency than the cameras.
Additionally, there are several virtual datasets aimed at
autonomous driving that manage to generate pseudo-realistic
images from a variety of scenarios, while at the same time
providing exact annotations for semantic segmentation and
depth masks [261]–[265]. Most of these virtual datasets do
not associate a pose or coordinate to the images yet, but
if geotagged images were to be added they could become
a valuable instrument to study VPR. Lastly, there are also
datasets specialized for visual place recognition with aerial
robots [28], [148], [213], [253]. These datasets emphasize the
problem of viewpoint changes, which is extremely common
for aerial robots for two reasons: i) multi-rotor drones tilt
significantly during flight, and ii) they can fly at different
heights. Table 2 summarizes the datasets that are available
to study VPR with aerial robots.

B. EVALUATION OF RESULTS
Evaluating the performance of a visual place recognition
system requires first to define when a query is correctly
localized. This definition changes depending on how a place
is identified. For localization of landmarks identified by a
label, the place is considered recognized if the label retrieved
for the query matches the ground truth [117]. In the case
of places identified by GPS coordinates, a query image is
deemed correctly localized if the retrieved image is within
a certain distance from the ground truth position [69], [121].
Finally, if the place is identified by a pose, the correctness
of the retrieval is based on a maximum error on position and
orientation with respect to the ground truth [119]. The latter
two definitions give the flexibility to set the error thresh-
old, adapting it to the use-case. For example, the GPS error
may be set differently for recognition on street level or city
level [238].

Using these definitions, various metrics are used to
assess the performance of the recognition system. The
most common metric applied to both retrieval-based and
classification-based methods is the fraction of correctly rec-
ognized queries. This metric is indicated with different
names, such as accuracy [238] or recall (in this context
with a slight different meaning than in pure image retrieval)
[69], [121]. Another quantity of interest in the metric is the
number of hypotheses that are considered to verify a query,
i.e., the number of top ranked retrieved images or most likely
classes. The parameter is indicated in the metric with the

notation @N , i.e., recall@N . Methods can be compared for
specific values ofN or by considering full curves over a range
of N .

For datasets with a constant number of positive database
images for each query, such as Oxford [116] and Paris [122],
performance is assessed using the mean average precision
(mAP) [83]. In the classification formulation the retrieval is
evaluated by themean average precision (mAP@N), i.e., sort-
ing the top N retrieved images in order of relevance and aver-
aging the AP of the individual queries. A modified version
of the mAP that is similar to the µAP [266] is considered
in [81] to account for distractors among the set of queries. Full
precision-recall curves and the corresponding ‘‘area under
curve’’ (AUC) are also used for evaluation [81], [150].

XIII. DISCUSSION AND FUTURE DIRECTIONS
OF RESEARCH
The main proposition of this document is to present a com-
prehensive overview on visual place recognition, breaking
down this topic in its multiple facets. This overview is built
upon over 250 research items published by different scientific
communities, i.e., computer vision, machine learning and
robotics. By categorizing and analyzing all these documents,
we tried to identify the research trends in VPR and to empha-
size them. In this final section we summarize the contents
of the survey with a short discussion. Once again, we stress
that a quantitative comparison would be impossible given the
breadth and diversity of methods and aspects covered by the
survey. Afterwards, we elaborate on possible future directions
of research for this field.

A. DISCUSSION
1) IMAGE REPRESENTATIONS FOR PLACE RETRIEVAL
In Secs. II to V we touched upon various aspects concern-
ing image representations for place retrieval. This has been
a central focus of research in recent years, with convolu-
tional based representations becoming the state-of-the-art.
From an architectural perspective, excellent results have been
achieved both with aggregation and pooling schemes, but we
observe that most recent studies are leaning towards pooling
schemes. Apart from their simplicity, these solutions are
shown to produce more effective compact representations
than aggregation methods. Another important aspect to be
considered is the method used to train the representation
generator. We observe that researchers in this field are mostly
using contrastive or triplet metric learning losses. Neverthe-
less, the mining step involved with these methods can become
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a weakness moving forward to large scale databases, due to
the complexity in selecting hard examples and the computa-
tional overhead it adds to the training. The recent application
of listwise loss, which requires no mining, appears promis-
ing but it should be tested more extensively, particularly on
large databases. Novel ideas, such as including second order
appearance information or geometric/semantic information
in the metric learning process, show that this is an area where
there can be further improvements.

2) RETRIEVAL POST-PROCESSING
Although most modern research in VPR is centered around
learning better representations for the similarity search stage,
the post-processing stage is equally important. In Sec. VII we
have mentioned various refinement methods that can boost
the performance of a place recognition system. For each of
these methods we have discussed strengths and limitations,
with regards to the computational effort required, how effec-
tively the information in the database is used and applica-
bility to unseen queries. The different families of methods
discussed are not mutually exclusive, but the selection of the
most appropriate one depends heavily on the specific problem
setting and requirements. We observe that most of the refine-
ment methods used nowadays are based on well-established
principles. Nevertheless, there are some notable advances
to be acknowledged. Firstly, the promising application of
diffusion techniques. Secondly, there are some attempts to
implement deep learning solutions also at this stage, e.g., for
the computation of local feature descriptors for geometric
matching and for the implementation of diffusion processes
via graph convolutional networks.

3) VISUAL PLACE RECOGNITION IS NOT JUST ANOTHER
RETRIEVAL PROBLEM
In the survey we observed that visual place recognition, albeit
viewed as a retrieval task, is very different from other image
retrieval problems. Section VIII paints a picture of the numer-
ous challenges that make visual place recognition a unique
and very difficult problem, and it identifies several research
trends that have emerged as a consequence of these chal-
lenges. From these trends we can draw some observations:
• The selection of salient areas of the image is particularly
important in place recognition, helping not only with
occlusions and distractors but alsowith the identification
of the most stable elements across seasons. Among these
methods, attention maps stand out not only because they
do not need a separate supervised training, but also
because they allow to modulate how much focus should
be given to different elements.

• The recognition of a place based on appearance can
be greatly improved by exploiting also semantic and
geometric information.

• The variation of viewpoints can greatly affect the recog-
nition of places, but the integration of view synthesis or
warping techniques in the retrieval pipeline can mitigate
this problem.

4) VISUAL PLACE RECOGNITION IN ROBOTICS
Robotics is a major domain of application for visual place
recognition. The specific challenges and requirements in
robotics have led to several key developments in visual
place recognition (see Sec. X). Many of these developments
revolve around the continuous nature of robotics navigation.
In particular, the availability of temporal and topological
information in robotics applications can be leveraged in the
retrieval process. Most of the solutions developed with this
goal combine a multi-frame retrieval process with trajectory
exploration strategies. However, there are few studies that
try to embed the temporal information directly in the place
recognition process, e.g., using sequence descriptors or bio-
logically inspired methods. Another emerging theme in this
context is the integration of VPR in multi-task architectures.
These architectures may not only be aimed at realizing more
efficient perception stacks, but they can also combine the
information extracted from multiple sensor input to perform
better in different tasks.

5) GEO-LOCALIZATION BY CLASSIFICATION
In Sec. XI we discussed an alternative formulation of VPR
as a classification task. This formulation has interesting char-
acteristics and it can provide a more effective solution for the
coarse recognition of a place given a large and sparse database
of images. The different strengths and limitations of image
retrieval and classification methods for place recognition also
raise some interest in hybrid solutions that could combine
the accuracy of retrieval based methods with the ability
to generalize and the resilience to viewpoint changes from
classification methods.

B. FUTURE DIRECTIONS
Based on the analysis provided in this survey we can for-
mulate some considerations about the future directions of
research in VPR. One observation is that scalability is a
fundamental problem to be solved to make VPR viable in
real world applications. As discussed in the survey, there are
several aspects of the retrieval task that have repercussions
on scalability and where researchers can investigate new
solutions. Firstly, there is a need to investigate compact repre-
sentation that can be discriminative for large scale problems.
Moreover, using classic ranking losses may be infeasible for
massive databases, given the problems involved with mining
examples. From this point of view, it could be interesting
to revisit representations generated from classification tasks.
Indeed, in the survey we observe that these representations
were quickly abandoned in favour of generators based on a
contrastive or a triplet loss. However, that trend was moti-
vated by the results achieved on small scale problems. For
large scale problems, using a classification model may be
beneficial to obtain compact representations without the need
to mine examples. Additionally, even similarity search on
a massive database can become prohibitive. In this sense,
methods to reduce the search space in the database may
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be necessary. Lastly, we advocate the necessity to inves-
tigate scalability both with sparse databases (images col-
lected on a large area, without overlaps) and dense databases
(where a possibly limited area is covered by many images
with overlaps), because these two scenarios present different
problems.

Another open problem in VPR is long term reliability (or
long term autonomy), which is crucial to effectively deploy
these systems in the wild. We recognize that there are two
aspects of this problem that have barely received any atten-
tion. Firstly, these systems must be able to generalize or adapt
to different domains. As discussed in the survey, there are
many solutions that have been shown to help in this sense (i.e.,
saliency selection, use of multi-modal information) however
these methods are either not specifically developed for this
purpose or based on heuristics. There are only few studies that
explicitly tackle domain adaptation in VPR and only one that
does it in a few-shot setting. Secondly, these systems must be
able to acquire new knowledge after they are deployed. To the
best of our knowledge, the question of incremental learning
has not been addressed in this context.

At the beginning of this manuscript we mentioned that
the increasing interest in VPR largely derives from the
many potential use-cases, from apps on a smartphone to an
autonomous driving car. So far VPR has only been studied in
the scenario of a single system, however both smartphones
and autonomous cars are naturally networks of distributed
systems. From this perspective, it becomes interesting to
frame VPR as a task across multiple devices, where the
experience of one could help increase the knowledge the
others. There are several interesting challenges in such a
scenario, from the sensitivity of data, to the limited onboard
resources available on such devices. Therefore, we think that
VPR makes for a fascinating problem to be studied from the
perspective of edge computing and federated learning.

Currently, one prominent direction of research in VPR
concerns the development of multi-modal solutions that also
leverage semantic and geometric information to help in the
recognition of places. However, we find that the lack of
datasets built for VPR and that include also these other
input modalities is a limiting factor. Therefore, we believe
that to further advance the research in this direction it is
urgently required to create newmulti-modal datasets for VPR
or expand existing ones in this direction. Along this line,
we also think that autonomous driving platforms could offer
the opportunity to create VPR datasets with heterogeneous
sensor inputs (e.g., video streams and lidar pointclouds),
which could be used to further expand the visual place recog-
nition problem.
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