POSTER PRESENTATIONS - PROFFERED ABSTRACTS | AUGUST 15 2020

Abstract 885: Anti-CSPG4 CAR.CIK lymphocytes are effective against advanced sarcomas in 3D spheroid and xenograft models **FREE**

Chiara Donini; Valeria Leuci; Ramona Rotolo; Giovanni Grignani; Giulia Mesiano; Erika Fiorino; Loretta Gammaitoni; Lorenzo D'Ambrosio; Soldano Ferrone; Massimo Aglietta; Gianpietro Dotti; Dario Sangiolo

Check for updates

+ Author & Article Information

Cancer Res (2020) 80 (16_Supplement): 885.

https://doi.org/10.1158/1538-7445.AM2020-885

Split-Screen	Share \checkmark	Tools \checkmark	Versions \lor	
--------------	--------------------	--------------------	-----------------	--

Abstract

Purpose of this study is to explore, *in vivo* and within tridimensional (3D) models, a novel CARbased adoptive immunotherapy against incurable soft tissue sarcomas (STS). The strategy focuses on Cytokine-Induced Killer (CIK) lymphocytes redirected against the Chondroitin Sulfate Proteoglycan 4 (CSPG4) target, associated with tumorigenesis, tumor aggressiveness and negative clinical outcome. CIK are ex vivo expanded T-NK lymphocytes endowed with intrinsic HLA-independent antitumor activity.

Experimental procedures. The experimental platform is based on patient-derived CAR.CIK and multiple histotypes of STS. CAR.CIK were generated by transduction of PBMC with a retroviral vector encoding for a 2nd generation anti-CSPG4 CAR with 4-1BB costimulation. 3D in vitro essays were based on STS spheroids generated in ultralow attachment conditions. In vivo experiments included 3 different STS xenograft models (fibrosarcoma, leiomyosarcoma, UPS).

Results. CAR.CIK were efficiently generated by STS patients (n=5). Mean expression of anti-CSPG4 was 44%±6.2, rates of *ex vivo* expansion (29 fold, range 27-348) and phenotype (CD8: 65%±4; CD56: 38%±6, NKG2D: 66%±7) were comparable with unmodified controls (NTD.CIK.). The CSPG4 target resulted expressed in 16/17 STS (leiomyosarcoma n=2, fibrosarcoma n=1, UPS n=6, GIST n=5, liposarcoma n=3), with variable membrane density per cell (300±47). CAR.CIK efficiently killed all STS *in vitro* regardless of their histotype. Mean STS-specific killing by CAR.CIK was significantly higher compared with NTD.CIK (E:T 1:1: 71% vs 34%, p <0.0001). Within 2 different STS 3D-spheroid models, CAR.CIK showed higher penetration ability through Matrigel matrix (n=5 p≤0.05), tumor recruitment, infiltration (n=8, p≤0.01) and killing (n=3, p<0.0001) compared with NTD.CIK. Anti-STS activity by CAR.CIK appeared proportionally dependent on CSPG4 density in STS targets. We set 3 different STS xenografts (fibrosarcoma, leiomyosarcoma, UPS) in immunocompromised mice, differing for CSPG4 expression and density levels per cell. Treatment with CAR.CIK (autologous in 2/3 cases) determined a significant delay of tumor growth (p<0.0001) compared with controls, demonstrating intense STS infiltration after treatment. A persistent antitumor response was observed up to 2 weeks after end of treatment. Also in vivo, we confirmed a positive correlation between the observed anti-STS activity of CAR.CIK and target CSPG4 expression/density on tumor cells.

Conclusions. We report the intense activity of anti-CSPG4 CAR.CIK against multiple histotypes of currently incurable STS. CIK lymphocytes, considering their intrinsic antitumor activity, may be a favorable platform for the translation of CAR-based strategies against solid tumors. Our findings support anti-CSPG4 CAR.CIK as a promising therapeutic strategy warranting clinical exploration in the challenging field of advanced STS.

Citation Format: Chiara Donini, Valeria Leuci, Ramona Rotolo, Giovanni Grignani, Giulia Mesiano, Erika Fiorino, Loretta Gammaitoni, Lorenzo D'Ambrosio, Soldano Ferrone, Massimo Aglietta, Gianpietro Dotti, Dario Sangiolo. Anti-CSPG4 CAR.CIK lymphocytes are effective against advanced sarcomas in 3D spheroid and xenograft models [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 885.

©2020 American Association for Cancer Research.

Advertisement

View Metrics

Skip to Main Content

Citing Articles Via

Google Scholar

Article Activity Alert

eTOC Alert

Advertisement

Issues
Online First
Collections
News

Twitter

Online ISSN 1538-7445 Print ISSN 0008-5472

AACR Journals

- Blood Cancer Discovery Cancer Discovery Cancer Epidemiology, Biomarkers, & Prevention Cancer Immunology Research Cancer Prevention Research Cancer Research Cancer Research Cancer Research Communications Clinical Cancer Research Molecular Cancer Research
- Molecular Cancer Therapeutics

Skip to Main Content

Info for Librarians Privacy Policy

Copyright $\ensuremath{\textcircled{O}}$ 2022 by the American Association for Cancer Research.