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Abstract: Although the effectiveness of machine learning (ML) for machine diagnosis has been
widely established, the interpretation of the diagnosis outcomes is still an open issue. Machine
learning models behave as black boxes; therefore, the contribution given by each of the selected
features to the diagnosis is not transparent to the user. This work is aimed at investigating the
capabilities of the SHapley Additive exPlanation (SHAP) to identify the most important features
for fault detection and classification in condition monitoring programs for rotating machinery. The
authors analyse the case of medium-sized bearings of industrial interest. Namely, vibration data were
collected for different health states from the test rig for industrial bearings available at the Mechanical
Engineering Laboratory of Politecnico di Torino. The Support Vector Machine (SVM) and k-Nearest
Neighbour (kNN) diagnosis models are explained by means of the SHAP. Accuracies higher than
98.5% are achieved for both the models using the SHAP as a criterion for feature selection. It is
found that the skewness and the shape factor of the vibration signal have the greatest impact on the
models’ outcomes.

Keywords: explainable AI; XAI; SHAP; Shapley; machine learning; rolling bearings; machine fault
diagnosis; intelligent fault diagnosis; condition monitoring; rotating machinery

1. Introduction

One of the most important components of modern industry is rotating machinery [1].
Rolling element bearings are one of the essential parts of these machines, because they
provide stiff support with a low-power consumption, thanks to their overall low friction
coefficient, in a wide range of operating conditions [2]. They are also the most critical com-
ponent, because they are susceptible to many failure causes not only related to wear and
fatigue, but also to faulty installation, poor maintenance, and bad handling practices [3–5].
Their damage and consequent failure can cause significant unexpected downtimes, eco-
nomic losses, and safety-related issues [6,7]. Therefore, in the past few decades, industries
have recognised the importance of a reliable and robust condition monitoring (CM) system
for fault detection and diagnosis [8,9].

Rolling element bearings are complex mechanical systems, in which the interaction
between their elements produces vibrations even if they are “geometrically perfect”, and the
presence of faults, defects, and their location produce a characteristic impulsive vibration
signature [10]. Thus, vibration analysis has become one of the most used techniques in CM,
because the signal acquired from the machine contains clear fault-related signatures and
can be explored easily through signal processing techniques [11–16]. In most situations
the bearing vibration cannot be measured directly, so the vibration signature is affected
by noise coming from the structure and other equipment in the system. For that reason,
machine users would prefer an automatic method to shorten the maintenance cycle and
improve the diagnosis accuracy, which is called intelligent fault diagnosis (IFD). This
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technique uses machine learning (ML) theories and algorithms, such as the support vector
machine (SVM) [17–21], the k-nearest algorithm (kNN) [22,23], artificial neural networks
(ANNs) [24,25], deep belief networks (DBNs) [26], and convolutional neural networks
(CNNs) [27–29], for fault classification [30]. A database of vibration data is used to extract
some important and characteristic features to train the ML algorithms at the recognition of
faults. Features can be extracted from the time, frequency, or time–frequency domain, but
high-dimension feature vectors may contain either redundant or irrelevant information
that can increase the computational cost and reduce the accuracy of the classification
algorithm [31]. Indeed, overfitting problems correlated to high-dimensional data can
deteriorate the performance of ML algorithms, since their generalisability decreases as the
number of features increases [32]. Thus, feature selection, with a dimensionality-reduction
technique, plays a fundamental role in designing powerful and robust AI algorithms [33].
Then, unlike physics-based models, explaining the contribution given by each feature to
the outcome of an IFD model is not straightforward.

The term “feature importance” refers to a set of strategies for allocating scores to
input features in a predictive model, indicating the relative significance of each item when
producing a prediction [34]. Commonly used feature selection algorithms for bearing fault
diagnosis include the following:

• Filter-based methods: filters directly pre-process the collected features depending
on the data intrinsic characteristics (correlation between features and class label),
independent to the training of the algorithm. Typical importance indicators are Re-
lief and Relief-F [35], information gain (IF) [36], Minimum Redundancy Maximum
Relevance [37], Fischer score [38], and Distance Evaluation (DE) [39];

• Wrapper-based methods: wrappers evaluate the interaction of the feature selection
activity with the training phase of classifiers [40,41];

• Embedded methods: feature selection is performed during the classification process
by adding an L1 [42] or L2 [43] regularisation term in the cost function, making the
computation faster than that of the wrappers.

Other widely used data-compression techniques are the principal component anal-
ysis (PCA) [44], the linear discriminant analysis (LDA) [45], and the partial least square
(PLS) [46], which are based on an algebraic calculation and geometric projection to create
the separability into the feature space. However, these approaches lack an appropriate
explanation of the feature selection process and a proper justification about the influence of
each feature on the final output of the IFD. Without a proper understanding of the feature
selection process, all the ML-based classifiers only focus on the classification accuracy, such
as the black box approach [9].

The SHAP (SHapley Additive exPlanations) value [47] is a novel feature importance
calculation method, which is suitable for both regression and classification problems that
can represent a valid alternative to the most used feature selection methods, because
it can provide a local interpretation of the model on a single prediction, as well as the
global average behaviour of the model in terms of the contribution of each feature to
the outcome of the ML algorithm [48].According to the existing literature [9,49–51], the
terms “interpretability” and “explainability” are often used synonymously, referring to
models where users can understand how the inputs are mapped into outputs. This is the
case for the techniques aimed at quantifying the contribution given by each feature to
determine the outcome of their importance and highlight those with the greatest impact
on prediction. In recent years, the SHAP value has become a popular method for the
interpretation of the feature contributions in fitted ML models, as it can be seen in the
references [47,52–57], posing the bases to Explainable Artificial Intelligence (XAI) [58] and
new feature selection methods.

1.1. Literature Review

A review of the existing literature about Shapley values shows that the researches from
Strumbelj et al. [55,59] were the first to propose them in the explanation of how features
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contribute to the prediction of classification and regression machine learning algorithms,
posing the basis for XAI. They showed that Shapley values can reveal the influence of
features, no matter the concept that the AI algorithm learns. An issue that affected all
the algorithms based on the Shapley values was the high computational cost, but Song
et al. [52] proposed a solution to make the computation feasible, even for a large number
of input data and features, by sampling the permutations of the inputs randomly and
estimating the cost functions related to the evaluated algorithms via the Monte Carlo
simulation. The work by Lundberg et al. [47] introduced the kernel SHAP framework,
which involved the standard Shapley value algorithm and the local interpretable model-
agnostic explanation (LIME) algorithm, to assign each feature an importance value for a
particular prediction. Further developments of the SHAP method were carried out by Aas
et al. [53], who introduced the extension to the kernel SHAP to reduce the computation time
and lead to more reliable predictions when features are correlated. Redelmeier et al. [56],
who developed an algorithm able to explain the contribution of mixed (continuous, discrete,
and categorical) and dependent features using conditional inference trees, and reported an
improvement in the computation time when the features are dependent, with respect to
Aas et al.

The kernel SHAP and the extension to the kernel SHAP were successfully used in
studies regarding many different subjects to explain the outcome of both classifiers and
the regression ML algorithms. Banerjee et al. [60] used the Shapley values to find causal
connections between socioeconomic metrics and the spread of COVID-19 in the different
phases of the pandemic. Vega Garcia et al. [34] applied the SHAP method to explain the
forecasts of the air quality in terms of the NO2 concentration made by the long short-term
memory (LSTM) deep learning model, while Rohmer et al. [61] explained the predictions
of a machine-learning-based model for sea-level projections. The SHAP method can also be
applied to finance, as it was performed in the study by Moehle et al. [57], who wanted to as-
sess the feature importance in the evaluation of the portfolio performance to genomics. This
is similar to the work by Watson et al. [62], who explained the importance of interpretable
machine learning (iML) for making the prediction of the ML algorithm understandable
to human, when the observed phenomena are highly complex and dependent on a large
number of variables, and to aviation, as cited in the research by Midftfjord et al. [63]. They
employed the SHAP method to highlight the most important features affecting the outcome
of the XGBoost algorithm for the real-time evaluation of the airport runway conditions.
The SHAP method can also be used for the multi-label classification problem, as it was
reported in Dong et al. [64] and Goštautaite et al. [65]: the former proposed and tested a
multi-label learning fused with the Shapley value (SHAPFS-ML), while the latter used the
SHAP method to explain the predictions about the students’ learning style. The SHAP ex-
planation was also used in medicine (Chen et al. [66], Oh et al. [67]), psychology (Akimoto
et al. [68], Li et al. [69]), and engineering (Sun et al. [70], Remman et al. [71])

In the field of feature selection, the research from Cohen et al. [72] was the first to
present contribution selection algorithms (CSAs) that were based on Shapley values to
select the most relevant features. The CSA was tested on seven different datasets and the
authors reported its capability to improve the performance of their classifier, competing
with the most used feature selection methods, especially in those cases where features
interacted with each other. Marcilio et al. [73] stated that the absolute of the SHAP values
can be extrapolated to be used as a feature selection mechanism, while providing a human-
compatible explanation for the predictions of ML algorithms. However, they reported that
the kernel SHAP approach takes a quadratic amount of time in both the dimensionality and
size of the dataset, making the computation unfeasible even for moderate datasets, but they
concluded that this problem could be decreased by selecting features based on correlation
before feeding the SHAP algorithm. Zacharias et al. [74] developed a design framework of
an XAI-based feature selection method that evaluates the performance of a ML model with
a reduced number of features, selected depending on their SHAP values, with respect to
the original one, which is trained considering all the features. They highlighted that the
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use of XAI for feature selection may make the task more accessible for intermediate data
scientists and might thereby contribute to data democratisation, facilitating the exchange
of information between ML developers and domain experts to enhance the effectiveness of
feature selection. This kind of algorithm was employed by Guha et al. [75] in a ML model
for visual human action recognition and by Jothi et al. [76] for a ML model predicting
generalised anxiety disorder among women. They both reported a high improvement in
the computation time of their models after feature selection, proving the validity of that
method. A further development was proposed by Tripathi et al. [77] who developed a
feature selection algorithm that was based on the SHAP values for a binary classification
problem, which does not need a user-defined threshold on the importance values or the
number of important features.

There are reports in the literature about the application of the SHAP method to explain
the outcomes of ML classifying algorithms for fault detection in rotating machinery. The
SHAP algorithm was applied to supervised learning in the works by Hasan et al. [9], who
explained the decisions of a kNN classifier for a small-sized ball bearing fault diagnosis,
highlighting the most relevant features and concluding that the presented model had a
better generalisation capability than the standard algorithm, making it perform a bearing
fault diagnosis under different configurations and working conditions. Mey et al. [78]
explained that the prediction of deep neural networks applied to the fault diagnosis of
rotating systems through the analysis of vibration data. On the other hand, Brito et al. [49]
explained the outputs of an unsupervised machine learning algorithm for fault detection
in rotating machinery with gears and employed the Shapley values in a fault diagnosis to
find the root causes of the faults.

1.2. Scope of the Research and Outline

In the field of IFD that is related to rotating machinery, only few works deal with
the SHAP value as an instrument to assess the importance of features [9,17,49,78,79].
Additionally, the literature presents no evidence of XAI analysis performed for industrial
applications characterised by medium-sized bearings and the assessment of the effects of
SHAP-based feature selection on the testing accuracy of classifying algorithms. To the best
of the authors’ knowledge, this is the first work dealing with this topic for industrial cases,
involving medium-sized spherical roller bearings for high-duty applications.

For that reason, the present work is aimed at investigating the capabilities of the
SHAP method to analyse feature contributions, making their selection univocally justifiable
and trackable to achieve more robust and reliable ML algorithms for IFD of industrial
bearings in rotating machinery for industrial interest. To this aim, specific experimental
activities were conducted on the test rig for medium-sized industrial bearings available at
the Mechanical Engineering Laboratory of Politecnico di Torino [80].

This paper is organised as follows: The introduction provides and overview of IFD
and XAI by exploring the existing literature. Additionally, the aim of this work is described.
The second section provides insight into the theoretical arguments underlying SVM, kNN,
and Shapley values. The third section describes the test rig and the experimental activity
conducted on medium-sized bearings. Section 4 includes the application of the SHAP
analysis to the trained IFD models, whereas the fifth section provides the results and
discussion on the explainability of diagnosis models and feature selection abilities. Finally,
the sixth section includes the concluding remarks.

2. Theoretical Background

This section introduces the Artificial Intelligence (AI) tools that are employed in this
study for the IFD and interpretability of AI models. Namely, the SVM and the kNN
algorithms are selected among the ML models, whereas the SHAP technique is employed
for interpreting the diagnosis that is achieved through the black box models.
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2.1. ML Models

AI algorithms for fault diagnoses of rotating machinery have become popular due to
their robustness and adaptation capabilities The first and most traditionally used algorithms
for fault diagnosis are the SVM and kNN [30].

2.1.1. Support Vector Machines (SVMs)

A SVM is a supervised learning AI algorithm developed by Cortes and Vapnik [81]
that is widely used in classification tasks and can manage large feature spaces, because the
dimension of the classified vectors used for the training phase does not have an influence on
the performance. Thus, the SVM is a good approach for fault diagnosis, since the vibration
features might not have to be limited. It has good generalisation properties, because in
the goal of the training phase is the minimisation of the Structural Misclassification Risk
(SMR) [82–84]. The SMR is an inductive principle of use in ML, which was introduced
by Vapnik and Chervonenkis [85] and is implemented through the minimisation of the
expression reported in Equation (1):

Etrain + λ H(w) (1)

where Etrain is the training error, λ is the constant regularisation term, H is the regularisation
function that controls the trade-off between minimising the training error and minimising
the expected gap between the training and test errors, and w is the vector containing the
weight of each feature.

Thus, the cost function J of the algorithm can be written as reported in Equation (2):

J(w) =
1

2N

N

∑
i=1

(hw(xi)− yi)
2 +

λ

2

d

∑
j=1

w2
j (2)

where N is the number of examples in the database, x the vector of the feature values
related to the i-th example, hw is the predicting function of the classifier, y is the label of the
i-th example, d is the number of features, and w is the j-th entry of the vector of weights.

Given the set of input data reported in Equation (3),

D = {(x1, y1), . . . , (xN , yN)} i = 1, . . . , N (3)

which are labelled depending on the class (yi = ±1). The linear SVM theory supposes that
there exists a hyperplane that represent the boundary between classes. The hyperplane is
expressed in Equation (4),

wT x + b = 0 (4)

where b is a constant scalar term.
The maximisation of the margin distance between the points and the decision hyper-

planes provides some reinforcement to the algorithm, making the classification of new
points simpler [86].

Considering the possible presence of noise in data with the slack variable ζi and the
error penalty constant C, the optimal hyperplane that separates the data can be obtained as
a solution to the optimisation problem of Equation (5):

minimize 1
2‖w2‖+ C

N
∑

i=1
ζi

s.t.
{

yi
(
wT xi + b = 0

)
≥ 1− ζi, i = 1, . . . , N

ζi ≥ 0, i = 1, . . . , N

(5)
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Replacing the weight vector w with w =
N
∑

i=1
αiyixi, where α is the weight of the i-th

sample, the optimisation problem can be written in the form of Equation (6):

f (x) = sign

(
N

∑
i,j=1

αiyi(xixj) + b

)
(6)

SVMs can also be used in nonlinear classification problems that apply kernel functions,
which map the d-dimensional input vector x into a l-dimensional feature space to make a lin-
ear classification feasible. Using the non-linear vector function K

(
xi, xj

)
=
(
ΦT(xi) Φ

(
xj
))

,
the decision function can be written in the form of Equation (7):

f (x) = sign

(
N

∑
i,j=1

αiyi(Φ
T(xi) Φ

(
xj
)
) + b

)
(7)

The kernel function of the following Equation (8) returns the dot product of the feature
space mapping from the original data points:

K
(
xi, xj

)
=
(

ΦT(xi) Φ
(
xj
))

(8)

There are many types of kernel functions, such as linear, polynomial, and Gaussian
RBF (radial basis function). The selection of the most suitable kernel is crucial, because it
defines the feature space in which the training set data will be classified [20,82].

2.1.2. k-Nearest Neighbour (kNN)

The kNN algorithm is a non-parametric, supervised learning method developed by Fix
and Hodges [87], in which the input is made of the k closest training samples of a dataset
and the output for a classification problem is a class membership: the object is assigned to
the class most common among its k nearest neighbours. Given a set of observations D,

D = {(x1, y1), . . . , (xN , yN)} i = 1, . . . , N (9)

where xi is the feature vector and yi is the corresponding class label of the i-th exam-
ple. The (xi, yi) is assumed to be i.i.d. from some unknown distribution P of (x, y) on
Rd × {ω1, . . . , ωM}, where M is the number of classes, and the goal is the design of a
classifying function φn : Rd → {ω1, . . . , ωM} that maps a feature vector x into its desired
class from {ω1, . . . , ωM}.

The performance of the classifier is evaluated through the probability error of Equation
(10) [88]:

J(φn) = P{(x, y) : φn(x) 6= y} (10)

where J is the cost function and φn is the classifying function.
If the underlying distribution is known, then the optimal decision rule φ∗ that min-

imises the probability of error is the Bayes decision rule of Equation (11):

φ∗(x) = argmaxP(y|x) (11)

It can be shown that at any given point, x, the probability that its nearest neighbour x′

belongs to class ωi converges to the corresponding a posteriori probability P(ωi|x′) as the
number of reference observations goes to infinity. It was shown by Cover and Hart [89]
that under some continuity conditions on the underlying distribution, the asymptotic
probability of error LNN for a multi-class kNN classifier is bound by the terms reported in
Equation (12):

L∗ ≤ LNN ≤ L∗
(

2− M
M− 1

L∗
)

(12)
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where L∗ is the optimal Bayes probability of error. Thus, the nearest-neighbour rule is
asymptotically optimal when the classes are not overlapping [90].

In the classification phase, after the constant k has been defined by the user, an
unlabelled vector is classified by assigning the label that is most frequent among the
k training samples that are nearest to that query point. The distance metric could be
represented by the Euclidean distance, the Hamming distance, or the correlation coefficients.
The value of k deeply affects the classification performance [40]: larger values reduce the
effects of noise but make the boundaries between classes less distinct. The accuracy is
also affected by the presence of noisy or irrelevant features, or if the feature scales are not
consistent with their importance. Finally, data-reduction is one of the biggest problems
when working with huge datasets, because only some of the data points, called prototypes,
are needed for accurate classification. A commonly used algorithm for dataset reduction is
the Hart algorithm [91].

2.2. Shapley Values

The Shapley values [92] were introduced to assign pay-outs to players depending on
their contribution towards the total playout, but they can be effectively used to measure the
global importance of a feature. Shapley values can be explained by using the game theory
as follows: given a cooperative game with d players aiming at maximising a payoff and
letting S ⊆ M = {1, . . . , d} be a subset of |S| players, the contribution function ν(S), which
maps a subset of players to the real number, called the contribution of coalition S, describes
the total expected sum of payoffs that the member of S can obtain by cooperation. Thus,
Shapley values embody a method to distribute the total gains to players. The amount that
player j earns is given by Equation (13) [53]:

φj(ν) = φj = ∑
S⊆M\{j}

|S|!(d− |S| − 1)!
d!

(ν(S ∪ {j})− ν(S)), j = 1, . . . , d (13)

This expression is a weighted mean over the contribution functions differences for
all subsets S of players not containing player j. The algorithm also accounts for the non-
distributed gain φ0 = ν(∅).

In the ML theory, single predictions take the place of a pay-out, and features become
the players. The main properties of the Shapley values can be summarised as follows [93].

• Efficiency: the total gain is distributed
d
∑

j=0
φj = ν(M);

• Symmetry: if i and j are two players that contribute equally to all coalitions, then their
Shapley value is the same ν(S ∪ {i}) = ν(S ∪ {j})→ φi = φj ;

• Dummy player: if a player does not contribute to any coalitions, then his Shapley value
is zero φj = 0;

• Monotonicity: if two games v and v′ and a player always makes a greater contri-
bution to v than to v′ for all S, then the gain for v will be greater than that for v′

ν(S ∪ {i})− v(S) ≥ ν
′(S∪{i}) − v

′(S) ∀S → φi(v) ≥ φi(v′) ;
• Linearity: if two coalition games described by the gain functions v and w are combined,

the distributed gain is the sum of the two gains is φj(v + w) = φj(v) + φj(w). This is
valid also for a multiplication by a constant value α, φj(α v) = α φj(v).

Given a training set of N labelled samples D = {(x1, y1), . . . , (xN , yN)} used to train a
predictive ML model f (x) whose outcome should be as close as possible to label y, Shapley
values can be used to explain the prediction y∗ = f (x∗) for a specific feature vector x = x∗.
The prediction can be written as reported in Equation (14):

f (x∗) = φ0 +
d

∑
j=1

φ∗j (14)
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where φ0 = E[ f (x)] and φ∗j is the φj for x = x∗.
Therefore, Shapley values explain the difference between the prediction y∗ = f (x∗)

and the global average prediction. For the computation of the Shapley values for a pre-
diction explanation, the contribution v(S) for a certain subset S must be defined. This
function should take values similar to f (x∗) when only the value of the subset S of these
features is known. As cited by Lundberg [47], the expected output of the predictive model
of Equation (15), conditional to the feature values xS = x∗S of this subset, can be used:

v(S) = E[ f (x)|xS = x∗S] (15)

Thus, the conditional expectation summarises the whole probability distribution and,
if it is considered the prediction for f (x∗), it is also the minimiser of the squared error loss
function.

There are two main algorithms for the computation of the Shapley: the KernelSHAP
and the extension to the KernelSHAP method. Both define the value function of Equation (16)
such that the sum of the Shapley values of a query point over all the features corresponds to
the total deviation of the prediction for the query point from an average:

d

∑
j=1

φj(ν(S)) = f (x)− E[ f (x)] (16)

Their main difference is in the way the feature contribution to the final prediction is
evaluated: the latter is an interventional method, which attributes an influence onto xj
only if the value function that is computed and considering that element is significantly
different than if it was computed without it. On the contrary, the conditional approach of
the former attributes even influences features with no interventional effect, only because of
their presence in the model. Thus, this kind of approach requires further modelling of how
the features are correlated [94].

The extension to the KernelSHAP algorithm [53] defines the value function of Equation (17)
of the feature in S at the query point x using the conditional distribution of XSC , given that XS
is the query point values:

ν(S) = EXSC |XS=xS
[ f (xS, XSC )] (17)

3. Dataset for Industrial Bearings

The dataset employed in this study was constructed by means of the test rig for
industrial medium-sized bearings available at the Mechanical Engineering Laboratory of
Politecnico di Torino [80]. The test rig was specifically designed for research activities. A
comprehensive description of the test rig is provided in the reference [80]. The dataset
involves ten shaft speeds, three different radial loads, and three bearing health states.

3.1. Test Rig Description

The test rig shown in Figure 1 is powered by a 30 kW three-phase motor by SIEMENS®,
which is connected to the SIEMENS® G120_CU240E_2 INVERTER with a brake resistor
that drives the shaft up to 195 Nm of the maximum torque at the rated spin speed of
1470 rpm. The speed and torque controls, managed by the inverter, can set the motor speed
up to 2500 rpm. The “self-contained box” (Figure 2) is made of two housing blocks with
oil lubrication and is equipped with up to four different roller bearings, whose reactions
are directly balanced by the box. Hydraulic actuators on the upper panel of the box
and between each pair of bearings allow the application of radial and axial static loads,
respectively, up to 200 kN. The innovative design of the box makes it an isolated system
with respect to all of the loads applied; in fact, radial and axial loads act only inside the box
and are uncoupled with the outer part of the rotor system. The vibration signature is in the
time and frequency domain as long as the operating temperature of each bearing under
test can be measured through four SKF CMSS 2200 T sensors, which are mounted along the
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radial direction of the bearing-box adapters. Vibration signals are acquired through the LMS
Scadas III Digital Acquisition system, equipped with four PQMAs (Programmable Quad
Microphone Amplifiers). The main advantages of this test rig can be resumed as follows:

• Independent radial and axial loads of up to 200 kN on each tested bearing;
• Simultaneous testing of four bearings, which allows the self-balance of applied loads

with minimal transmission to the platform;
• High modularity, which enables testing on different sized bearings up to 420 mm of

the outer diameter;
• Direct measure of friction torque of tested bearings;
• Main bearings are immune to the loads acting on the test bearings.
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3.2. Vibration Dataset

The vibration signals coming from any bearing are always affected by the noise coming
from the surrounding parts of the machine, which can make the recognition of defects
and faults difficult [5]. In fact, those paths are usually complex and have non-stationary



Appl. Sci. 2023, 13, 2038 10 of 22

behaviour and the extraction of the required information could be hard [49]. For those
reasons, a preliminary analysis of the vibration signature of the test rig in regular operating
conditions is essential before the beginning of any condition monitoring activity [80].

In the experimental testing session carried out for the generation of the database of
vibration data used in this work, four SKF spherical self-aligning bearings 22,240 CCK/W33
with a tapered bore and a 360 mm outer diameter were mounted inside the test rig. The
vibration signals were acquired through the sensors and the DAQ system and were digitally
sampled at fs = 20, 480 Hz with AC coupling, which was used to remove the offset DC
component of the voltage that was used to energise the piezoelectric accelerometers from
the acquisition. A sixth-order Butterworth filter with a 10, 200 Hz cut-off frequency was
initially applied to the acquired signals and some digital filters were then designed for the
elimination of the mechanical and electromagnetic noise to improve the signal-to-noise
ratio (SNR).

Experimental data were obtained for three radial load cases over ten different rotational
speeds and three defect conditions. The rotational speed refers to the three-phase motor
synchronous velocity. Point defects were made by removing a circular portion of the
material with a diameter of 2 mm and a depth of 0.5 mm from the raceways and only a
single defect was present at a time in the bearing. The inner race (IR) and the outer race
(OR) defects are shown in Figure 3, whereas Table 1 shows the operating conditions for
the tests. Each recorded vibration path is 60 s long and the whole database consists of
90 vibration paths, labelled depending on the defect condition of the tested bearing.
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Figure 3. SKF 22240 CCK/W33 [29]: (a) normal state bearing during dismounting; (b) inner race
damage with 2 mm diameter and 0.5 mm depth; and (c) outer race damage with 2 mm diameter and
0.5 mm depth.

Table 1. Operating conditions.

Case 1 Case 2 Case 3

Radial load (kN) 0 62.4 124.8
Nominal speed (rpm) 127, 227, 353, 457, 523, 607, 727, 877, 937, and 997

Defect type Non-defective (0), inner race defect (1), and outer race defect (2)

4. SHAP Analysis for Industrial Bearings

In this paragraph the proposed methodology for feature selection through the SHAP
analysis is presented, and the results obtained in the above-mentioned experimental
database are reported. All the computations were carried out using Matlab® and Python
environments. These are the main steps of our method:

1. Vibration database acquisition and data pre-processing;
2. Feature extraction and creation of a database of the labelled samples;
3. Training of AI algorithms;
4. Shapley values computation and feature selection.

Figure 4 resumes the most important phases and operations performed in this work.
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4.1. Features Extraction and Labelling of Vibration Samples

The extraction of the most relevant features from the data gathered during the collect-
ing phase is the step following the data acquisition for the setup of the ML models. This
stage is aimed at the identification and computation of representative features from the
recorded data using a time-domain statistical analysis and a Fourier spectral analysis [95].

These characteristics can highlight the presence of defects, but they can also contain
irrelevant information that can influence the performance of the classifier [96].

The features used in this work belong to the time and the frequency domain. The
time-domain signal usually changes in its amplitude and distribution when a defect is
present in one of the elements of the bearing since it induces some characteristics vibration
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impulses. For example, the mean, root mean square, and impulse factor reflect the vibration
amplitude and energy, while the standard deviation, crest factor, kurtosis, and shape
factor can be used to describe the time series distribution [97,98]. The frequency-domain
parameters can add some information, which is not present in the time-domain. They can
be extracted after the computation of the frequency-domain signal through the Discrete
Fast Fourier Transform (DFFT) [99]. Commonly used frequency-domain features include
the mean frequency, which represents the vibration energy, frequency centre, and root
mean square frequency, which shows the position shift of the main excited frequencies and
the standard deviation frequency that describes the degree of convergence of the spectrum
power [100].

In this work, prior to the feature extraction, the vibration paths were segmented into
400 ms long intervals to achieve more examples for the training phase of the AI algorithms.
From each segment, twenty-three features, taken from Lei et al. [101,102], were extracted
and they are reported in Table 2. The first eleven parameters belong to the time-domain,
whereas the others belong to the frequency domain: x(i) is the i-th acceleration sample, N
is the number of data points in the time segment, s(k) is the k-th spectrum amplitude, K is
the number of spectrum lines, and fk is the frequency value of the k-th spectrum line. After
the feature extraction activity, a sample with twenty-three features and a label depending
on the defect condition was generated from each segment. Therefore, a wide database of
labelled samples was setup for the subsequent training phase.

Table 2. Features.

Time−Domain Features Frequency−Domain Features
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4.2. Training of AI Algortihms

ML algorithms such as the SVM and kNN have been among the most used theories
since the introduction of IFD [30]. For that reason, they were chosen for the analysis made
in this work. Both the algorithms are characterised by some parameters that must be tuned
to achieve their best performance.
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As said previously, the goal of the SVM algorithm is the identification of the optimal
hyperplane that maximises the margin of the training data and therefore, the distance
between the nearest points of each class. The parameters that were tuned are the following:

• The kernel function that defines the function of the hyperplane used to separate data;
• C, called the regularisation term, which is the penalty parameter of the error term and

controls the tradeoff between a smooth decision boundary and classifying the training
points correctly;

• γ, which influences the number of nearby points used for the calculation of the
separating hyperplane using the radial basis function (RBF) kernel.

Regarding the kNN algorithm, the main tuneable parameter is the number of neigh-
bours k, which represents the number of the closest training examples that are considered
for the classification of a new point. The training of the algorithms and optimisation of the
tuneable parameters were carried out through the Python function GridSearchCV, using a
5-fold cross-validation, and the main parameters of the optimised algorithms are resumed
in Table 3, where d is the number of features and σX is the variance of the feature database.
Before the training phase, N = 2000 samples were randomly selected from the original
database and then split into two sets with a ratio 80/20: the bigger dataset was used for
the training phase itself, while the other one was used for the evaluation of the algorithms
testing accuracy.

Table 3. Hyperparameters for the SVM and kNN algorithms.

SVM kNN

Kernel Radial Basis Function (RBF) Nearest neighbours 1C 43
γ 1

d σX Distance metric Euclidean
Decision function one vs. one

4.3. Shapley Values Computation and Features Selection

When a trained model provides an outcome for a regression or classification task,
we may want to analyse its behaviour with respect to the inputs and outputs in an easy
and understandable way, since the accuracy does not give a complete and exhaustive
description of the performance [34]. For example, the decision process of non-linear
and complex models is often difficult to be understood. To evaluate the performance of
the proposed AI algorithms and the contribution of each feature to the outcome of the
classification problem, three stages were implemented in this study:

• Computation of Shapley values;
• Feature selection;
• Accuracy evaluation.

The SHAP values can be analysed from two points of view: they are the expression of
the contribution of each feature to the outcome of a single classification outcome or, on the
other side, we can study how these values are attributed globally for each feature.

The SHAP values computed on each point explain how each feature contributed to the
model classification prediction, by modifying the base value, which is the mean prediction
of the model trained on the specific set of data used in the training phase. Figure 5 shows
how each feature contributes to the change of the base value towards higher or lower values.
The base value of each class is the probability that a sample is classified into that class,
independent of the values of its features. Therefore, it is highly linked to the probability
distribution of the training examples among the classes. On the contrary, the final value of
the prediction represents the probability of the point under investigation to be classified in
that specific class and it is the result of the feature contribution: if the computed value is
one, the predicted probability of a specific fault by the model is 100%. Thus, the outcome
of the classification would be the class with the highest probability. In this specific case
the base value is around 0.34. This is plausible because, since the training examples were
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taken randomly from the database, the distribution among the selected examples of each of
the three defect classes should be around 33%. Then, the base value is modified by each
feature, depending on its value. The amounts of contribution of each feature is represented
by the Shapley value and is displayed by an arrow that pushes to increase or decrease the
prediction. During the training phase, the SHAP algorithm learns a threshold value for
each feature that is related to each different class to determine if that feature, depending on
its value, will have a positive or negative effect towards the prediction and the magnitude
of the contribution. For example, a certain feature can have a positive effect on a class and a
negative effect on the others. From Figure 5 It can be seen that p17, p18, and p19 (red arrows)
are the most important features in increasing the probability of this example to be classified
in that class, whereas p21 (blue arrow) is the most influent in decreasing the base value.
Features can have a positive or a negative contribution depending on their value, which is
related to the threshold value computed in the training phase of the algorithm. The final
value, which is 0.40, tells that the sample under investigation has a 40% probability to be
classified in this defect class.
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Then, if this computation is replicated for the entire dataset, it is possible to analyse
how the SHAP values are attributed to features globally. The computation of the Shap-
ley values was performed using the “shapley” library in Python on both the optimised
algorithms trained on the previously cited training set with Ntrain = 1600 examples. The
Shapley values were computed using the first 500 samples of the training set. Only the ten
most important features, selected depending on the overall absolute value of their Shapley
values, were plotted for each one of the three classes of defect.

5. Results and Discussion

Figure 6 shows the SHAP values obtained for different damage classes when the SVM
and the kNN algorithms are applied; similarly, Figure 7 shows the mean SHAP values for
the features. The plots of Figure 6 present the features sorted along the y-axis depending on
their impact on the output, but they also report the SHAP values of every feature computed
on each example of the dataset. As stated in Shapley [92], for the feature with the highest
importance, their SHAP values span over a greater range than the rest. Points are also
coloured depending on their value. In this way, it is easy to figure out when a feature has
a high or low impact on the output and when it contributes to increasing or decreasing
the base probability value of each class. Interestingly, the impact on model outputs given
by the analysed features is similar in both the ML models. For instance, high values of
the feature p6 have a positive impact for the class zero and the class one, whereas high
values of the feature p6 have a negative impact for the class two, which is the outer race
damage. This means that signals characterised by high values of p6 are very unlikely to
belong to bearings that are damaged on the outer race. For some features, such as p19 and
p3, a similar attitude is detectable for both the models.
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Figure 7 reports the SHAP values of the ten most important features, which are sorted
depending on their average impact on predictions for the three different defect conditions.
As it can be seen from those plots, p6, which is the skewness parameter, is by far the most
important feature for the classification of the bearing defect condition for both the SVM
and kNN algorithms. Skewness is the ratio of the average deviation from the mean cubed
divided by the standard deviation cubed; for a random variable with normal distribution,
the skewness is zero. Higher values of skewness discriminate between an outer race defect
and the other two defect conditions. For classes zero and two, the skewness has a much
higher mean SHAP value than the other features. Other important features for both the



Appl. Sci. 2023, 13, 2038 16 of 22

algorithms that belong to the time-domain are p3, the squared mean root of absolute values
(SMRA), which is determinant in the recognition of the defect-free class, and p10, the shape
factor, which is a parameter dependent on the signal shape that seems to be important in
the discrimination between the inner and the outer race defect, especially for the SVM. The
skewness and shape factor were also found to be relevant features in other works, such
as the one from Hui et al. [41]. The last two relevant parameters that are in common with
both the algorithms are p18 and p19: the former, which is the root mean square frequency,
is nearly the most important feature for class one, while the latter has a greater impact
on kNN.
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After the SHAP analysis was carried out, the four most important features of each class
were selected for the SVM and kNN algorithms. Table 4 reports all the selected features
for each algorithm. In kNN, only five features appear in the top four places of the three
different defect-related classes, while the most relevant features related to the SVM are
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nine. Therefore, the kNN model is explained by fewer parameters, with respect to the SVM.
The influence of the feature selection activity was evaluated by comparing the accuracy
of the algorithm trained considering all the twenty-three features, or only the features in
Table 4 that are in common to both the SVM and kNN, which are p3, p6, p10, p18, and p19.
For this task, 100 different datasets containing N = 2000 randomly selected samples from
the original database were used. Each dataset was split into two subsets with a ratio 80/20:
the former was used for the training phase, while the latter was used for the computation
of the testing accuracy. The accuracy of the algorithms in both the considered cases and for
each set of data was recorded and the mean accuracy was computed to analyse the overall
impact of the feature selection activity. The results are reported in Figure 8.

Table 4. Most important features according to SHAP analysis.

Model Selected Features

SVM p2, p3, p4, p6, p10, p13, p16, p18, p19
kNN p3, p6, p10, p18, p19
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Thus, with the help of the insights provided by the SHAP analysis, the number of
relevant features could be reduced with proper justification, making the ML models more
robust and easily explainable in terms of feature importance for the outcome of the model.
As it can be seen from Figure 8a, the accuracy for the SVM is only 1% worse, as if it has
been trained considering all the features, whereas Figure 8b shows that the kNN algorithm
performs better only if the most important features are considered. This was expected,
because, as cited previously, this kind of algorithm suffers from feature redundancy. Then,
diagnosis accuracies are not significantly affected by the selection of only five features out
of twenty-three, as long as the SHAP values are employed to select the relevant features by
means of model explanations.

6. Conclusions

This study aimed at investigating the capabilities of SHAP for explaining machine
learning models in the intelligent fault diagnosis of industrial bearings. Additionally,
this results in identifying the most relevant features for diagnosis. The explanations
of the diagnosis outcomes were provided for the SVM and kNN models. The authors
investigated the case provided by the test rig for industrial bearings available at the
Mechanical Engineering Laboratory of Politecnico di Torino. The conclusions are as follows:

• The SVM and the kNN models are able to achieve diagnosis accuracies higher than
98.5% for medium-sized industrial bearings;

• The SHAP values are effective for interpreting machine learning models that are aimed
at industrial condition monitoring;

• The SHAP analysis is employed to show that four features out of twenty-three are
really important to achieve good diagnosis accuracies;
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• The skewness and the shape factor of the vibration signals have the greatest impact on
the outcomes of machine learning diagnosis models.

The generalisability of these results is subjected to certain limitations. For instance,
the choice of the diagnosis model could influence the explainability. Then, future works
will provide explanations for different ML models, and the results will be compared with
those of this study. Especially, research will be focused on deep learning, which is the
most used in IFD nowadays, because it allows the automatic learning of fault features
from the collected data instead of the artificial feature extraction, attempting to provide
end-to-end diagnosis models when handling increasingly grown data and connecting the
raw monitoring data to their corresponding health states of machines, which will further
release the contribution of human labour [30,103]. Another field of investigation will be
the effect of the feature selection through the SHAP analysis on the computation time.
We noticed a little improvement in the computation time between the ML model trained
with all the features and those trained only with the selected ones, but since the SHAP
analysis is computationally very expensive, an overall time saving could not be achieved.
However, as it is reported in the literature [75,76], ML models involving deep learning
techniques could take advantage of the feature selection through the SHAP method in
terms of the computation time, and, therefore, it will be the subject of our future study.
Additionally, the feature selection capabilities should be assessed on a general level, and
we will mainly focus on feature selection capabilities besides explainability, by providing
proper comparisons with the common techniques targeted in this task.
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65. Goštautaitė, D.; Sakalauskas, L. Multi-Label Classification and Explanation Methods for Students’ Learning Style Prediction and

Interpretation. Appl. Sci. 2022, 12, 5396. [CrossRef]
66. Chen, Y.; Aleman, D.M.; Purdie, T.G.; McIntosh, C. Understanding Machine Learning Classifier Decisions in Automated

Radiotherapy Quality Assurance. Phys. Med. Biol. 2022, 67, 025001. [CrossRef]
67. Oh, A.R.; Park, J.; Lee, J.-H.; Kim, H.; Yang, K.; Choi, J.-H.; Ahn, J.; Sung, J.D.; Lee, S.-H. Association Between Perioperative

Adverse Cardiac Events and Mortality During One-Year Follow-Up After Noncardiac Surgery. J. Am. Heart Assoc. 2022,
11, e024325. [CrossRef]

68. Akimoto, S.; Lebreton, P.; Takahashi, S.; Yamagishi, K. Quantitative Causality Analysis of Viewing Abandonment Reasons Using
Shapley Value. In Proceedings of the 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), Shanghai,
China, 26–28 September 2022; pp. 01–06.

http://doi.org/10.1371/journal.pone.0189143
http://www.ncbi.nlm.nih.gov/pubmed/29261689
http://doi.org/10.1111/j.1467-9868.2005.00490.x
http://doi.org/10.1016/j.arcontrol.2012.09.004
http://doi.org/10.1016/j.asej.2014.10.005
http://doi.org/10.1002/aic.690400509
http://doi.org/10.1016/j.ymssp.2021.108105
http://doi.org/10.1109/ACCESS.2018.2870052
http://doi.org/10.48550/arXiv.1710.00794
http://doi.org/10.1137/15M1048070
http://doi.org/10.1016/j.artint.2021.103502
http://doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
http://doi.org/10.1007/s10115-013-0679-x
http://doi.org/10.1109/ACCESS.2021.3119110
http://doi.org/10.1038/s41598-022-18725-4
http://doi.org/10.5194/tc-16-4637-2022
http://doi.org/10.1007/s00439-021-02387-9
http://doi.org/10.1016/j.coldregions.2022.103556
http://doi.org/10.3390/e23081094
http://doi.org/10.3390/app12115396
http://doi.org/10.1088/1361-6560/ac3e0e
http://doi.org/10.1161/JAHA.121.024325


Appl. Sci. 2023, 13, 2038 21 of 22

69. Li, L.; Wu, X.; Kong, M.; Zhou, D.; Tao, X. Towards the Quantitative Interpretability Analysis of Citizens Happiness Prediction. In
Proceedings of the 39th International Joint Conference on Artificial Intelligence (IJCAI-ECAI 2022), Vienna, Austria, 23–29 July
2022; Volume 6, pp. 5094–5100.

70. Sun, Q.; Sun, J.; Guo, K.; Liu, J. Investigation on Mechanical Properties and Energy Absorption Capabilities of AlSi10Mg Triply
Periodic Minimal Surface Sheet Structures Fabricated via Selective Laser Melting. J. Mater. Eng. Perform. 2022, 31, 9110–9121.
[CrossRef]

71. Remman, S.B.; Strumke, I.; Lekkas, A.M. Causal versus Marginal Shapley Values for Robotic Lever Manipulation Controlled
Using Deep Reinforcement Learning. In Proceedings of the 2022 American Control Conference (ACC), Atlanta, GA, USA, 8–10
June 2022; Volume 2022, pp. 2683–2690.

72. Cohen, S.; Ruppin, E.; Dror, G. Feature Selection Based on the Shapley Value. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, Montreal, QC, Canada, 19–27 August 2005; Cohen, S., Ruppin, E., Dror, G., Eds.; Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 2005; pp. 665–670.

73. Marcílio, W.E.; Eler, D.M. From Explanations to Feature Selection: Assessing SHAP Values as Feature Selection Mechanism. In
Proceedings of the 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil,
7–10 November 2020; pp. 340–347.

74. Zacharias, J.; von Zahn, M.; Chen, J.; Hinz, O. Designing a Feature Selection Method Based on Explainable Artificial Intelligence.
Electron. Mark. 2022, 32, 2159–2184. [CrossRef]

75. Guha, R.; Khan, A.H.; Singh, P.K.; Sarkar, R.; Bhattacharjee, D. CGA: A New Feature Selection Model for Visual Human Action
Recognition. Neural Comput. Applic 2021, 33, 5267–5286. [CrossRef]

76. Jothi, N.; Husain, W.; Rashid, N.A. Predicting Generalized Anxiety Disorder among Women Using Shapley Value. J. Infect. Public
Health 2021, 14, 103–108. [CrossRef] [PubMed]

77. Tripathi, S.; Hemachandra, N.; Trivedi, P. Interpretable Feature Subset Selection: A Shapley Value Based Approach. In Proceedings
of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5463–5472.

78. Mey, O.; Neufeld, D. Explainable AI Algorithms for Vibration Data-Based Fault Detection: Use Case-Adadpted Methods and
Critical Evaluation. Sensors 2022, 22, 9037. [CrossRef]

79. Yang, D.; Karimi, H.R.; Gelman, L. A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement
Deep Convolutional Neural Networks. Sensors 2022, 22, 671. [CrossRef] [PubMed]

80. Brusa, E.; Delprete, C.; Giorio, L.; Di Maggio, L.G.; Zanella, V. Design of an Innovative Test Rig for Industrial Bearing Monitoring
with Self-Balancing Layout. Machines 2022, 10, 54. [CrossRef]

81. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
82. Widodo, A.; Yang, B.-S. Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis. Mech. Syst. Signal Process.

2007, 21, 2560–2574. [CrossRef]
83. Boser, B.; Guyon, I.; Vapnik, V. A Training Algorithm for Optimal Margin Classifier. In Proceedings of the Fifth Annual Workshop

on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992. [CrossRef]
84. Buchaiah, S.; Shakya, P. Bearing Fault Diagnosis and Prognosis Using Data Fusion Based Feature Extraction and Feature Selection.

Measurement 2022, 188, 110506. [CrossRef]
85. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY, USA, 1999.

ISBN 978-0-387-98780-4.
86. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms, 1st ed.; Cambridge University Press:

New York, NY, USA, 2014; ISBN 978-1-107-05713-5.
87. Fix, E. Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties; USAF School of Aviation Medicine: Randolph

Field, TX, USA, 1985.
88. Hart, P.E.; Stork, D.G.; Duda, R.O. Pattern Classification; Wiley: Hoboken, NJ, USA, 2000.
89. Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
90. Wang, J.; Neskovic, P.; Cooper, L.N. Neighborhood Size Selection in the K-Nearest-Neighbor Rule Using Statistical Confidence.

Pattern Recognit. 2006, 39, 417–423. [CrossRef]
91. Hart, P. The Condensed Nearest Neighbor Rule (Corresp.). IEEE Trans. Inf. Theory 1968, 14, 515–516. [CrossRef]
92. Shapley, L.S. A Value for N-Person Games. In Classics in Game Theory; The Rand Corporation: Santa Monica, CA, USA, 1997;

Volume 69.
93. Covert, I.; Lundberg, S.M.; Lee, S.-I. Understanding Global Feature Contributions with Additive Importance Measures. In

Proceedings of the Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H.,
Eds.; Curran Associates, Inc.: Seattle, WA, USA, 2020; Volume 33, pp. 17212–17223.

94. Kumar, I.E.; Venkatasubramanian, S.; Scheidegger, C.; Friedler, S. Problems with Shapley-Value-Based Explanations as Feature
Importance Measures. In Proceedings of the Proceedings of the 37th International Conference on Machine Learning; PMLR, Salt Lake
City, UT, USA, 13 July 2020, Daumé, H., III, Singh, A., Eds.; Volume 119, pp. 5491–5500.

95. Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards
Mechanical Big Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]

96. Yousefi, S. A Data-Driven Approach for Fault Classification of a Manufacturing Process. Master’s Thesis, NTNU, Trondheim,
Norway, 2022.

http://doi.org/10.1007/s11665-022-06883-5
http://doi.org/10.1007/s12525-022-00608-1
http://doi.org/10.1007/s00521-020-05297-5
http://doi.org/10.1016/j.jiph.2020.02.042
http://www.ncbi.nlm.nih.gov/pubmed/32273237
http://doi.org/10.3390/s22239037
http://doi.org/10.3390/s22020671
http://www.ncbi.nlm.nih.gov/pubmed/35062632
http://doi.org/10.3390/machines10010054
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/j.ymssp.2006.12.007
http://doi.org/10.1145/130385.130401
http://doi.org/10.1016/j.measurement.2021.110506
http://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.1016/j.patcog.2005.08.009
http://doi.org/10.1109/TIT.1968.1054155
http://doi.org/10.1109/TIE.2016.2519325


Appl. Sci. 2023, 13, 2038 22 of 22

97. Lei, Y.; Zuo, M.J.; He, Z.; Zi, Y. A Multidimensional Hybrid Intelligent Method for Gear Fault Diagnosis. Expert Syst. Appl. 2010,
37, 1419–1430. [CrossRef]

98. Caesarendra, W.; Tjahjowidodo, T. A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its
Application for Degradation Trend Estimation of Low-Speed Slew Bearing. Machines 2017, 5, 21. [CrossRef]

99. Elliott, D.F.; Rao, K.R. Fast Transforms: Algorithms, Analyses, Applications; Academic Press: New York, NY, USA, 1982,
ISBN 978-0-12-237080-9.

100. Oppenheim, A.; Schafer, R. Discrete-Time Signal Processing, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2009.
ISBN 978-0-13-198842-2.

101. Lei, Y.; He, Z.; Zi, Y.; Hu, Q. Fault Diagnosis of Rotating Machinery Based on Multiple ANFIS Combination with GAs. Mech. Syst.
Signal Process. 2007, 21, 2280–2294. [CrossRef]

102. Lei, Y.; He, Z.; Zi, Y.; Chen, X. New Clustering Algorithm-Based Fault Diagnosis Using Compensation Distance Evaluation
Technique. Mech. Syst. Signal Process. 2008, 22, 419–435. [CrossRef]

103. Dou, Z.; Sun, Y.; Wu, Z.; Wang, T.; Fan, S.; Zhang, Y. The Architecture of Mass Customization-Social Internet of Things System:
Current Research Profile. ISPRS Int. J. Geo-Inf. 2021, 10, 653. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.eswa.2009.06.060
http://doi.org/10.3390/machines5040021
http://doi.org/10.1016/j.ymssp.2006.11.003
http://doi.org/10.1016/j.ymssp.2007.07.013
http://doi.org/10.3390/ijgi10100653

	Introduction 
	Literature Review 
	Scope of the Research and Outline 

	Theoretical Background 
	ML Models 
	Support Vector Machines (SVMs) 
	k-Nearest Neighbour (kNN) 

	Shapley Values 

	Dataset for Industrial Bearings 
	Test Rig Description 
	Vibration Dataset 

	SHAP Analysis for Industrial Bearings 
	Features Extraction and Labelling of Vibration Samples 
	Training of AI Algortihms 
	Shapley Values Computation and Features Selection 

	Results and Discussion 
	Conclusions 
	References

