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1 Introduction and discussion

An interesting aspect of the AdS/CFT correspondence is the study of the possible ground
states as a function of the boundary conditions. The first non-trivial example is the AdS
soliton of [1], which is conjectured to correspond to the ground state of the theory with a
planar boundary, with one direction compactified on a circle with antiperiodic boundary
conditions for fermions. In the present paper, we study generalizations of the AdS soliton
when we add Wilson loops for gauge fields around the circle.
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We will work in the context of asymptotically AdS4 solutions of a truncation of N =
8 supergravity. Let us consider a representative of the conformal boundary of a four-
dimensional metric as

ds2
bound. = −dt2 + dϕ2 + dz2 , (1.1)

where ϕ is a periodic coordinate. Fermions can be either periodic or anti-periodic around
the circle parametrized by ϕ. If fermions are anti-periodic, it is possible to construct an
interior solution where the vector ∂ϕ has vanishing norm: this is the AdS soliton. One might
wonder what happens if extra sources are added to this configuration, like, for instance, a
Wilson loop

Φm =
∮
Aϕ dϕ . (1.2)

In the following, we will consider the case of anti-periodic boundary conditions on the
ϕ circle, but periodic boundary conditions on the z circle. As we will see, this allows
supersymmetric solitons for appropriate choices of Wilson loops; it also has the effect of
excluding the possibility of an AdS soliton solution where the z circle contracts smoothly
in the interior. The relevant solutions will then either have both circles non-contractible
in the interior, or the ϕ circle contractible. The latter solutions, which generalise the AdS
soliton and can be obtained by double analytic continuation from electrically charged black
holes [1–12], are the main focus of our interest.

In the case of the simplest Einstein-Maxwell theory, the configuration has been known
for a while [13, 14]. In [12] it was found that some of these configurations are supersymmet-
ric and that, at the supersymmetric point, there are two possible solutions, the soliton and
a Poincaré-AdS solution dressed with a constant Wilson loop. In this article, we extend
this study to the case of gauged N = 8 supergravity, and construct solutions of its STU
model truncation in which the three dilatons are equal and all axions vanish. In particular,
we want to analyse whether the degeneracy of supersymmetric solutions extends to this
more general context.

In the pure Einstein-Maxwell case, supersymmetry was obtained for a single value of
the source (1.2) [12]. In the model we study here, there are two Wilson lines, with a one-
parameter family of values of the Wilson lines which give supersymmetric solitons. There
are also Poincaré-AdS solutions and domain wall solutions dressed by constant Wilson
loops, which satisfy the same boundary conditions.

We observe that for the Poincaré-AdS solutions regularity requires a quantization con-
dition on the Wilson loops which was missed in [12]. This arises from considering the uplift
of the configuration to a M4×S7 solution of M theory, where the Wilson loops parametrise
a shift on the S7 as we go around the ϕ circle.

For fixed flux boundary conditions, the coexistence of the soliton and the Poincaré-AdS
and domain wall solutions leads to a degeneracy of supersymmetric solutions as in [12]. We
also consider the alternate boundary condition of fixed currents on the boundary — we will
in the sequel refer to these boundary conditions as fixed charge — although this is actually
correct only for the Euclidean continuation, as the currents are spacelike in the Lorentzian
solution. We find that, for supersymmetry-preserving fixed charge boundary conditions,
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there are two distinct soliton solutions, leading to a new kind of degeneracy of supersym-
metric solutions (the Poincaré-AdS and domain wall solutions do not satisfy these boundary
conditions, so there is no degeneracy at fixed charge in the previous case studied in [12]).

Finally, we find that the non-supersymmetric solutions of [12] also satisfy the boundary
conditions which give supersymmetric solutions for fixed charge, and one branch of those so-
lutions has lower energy than the supersymmetric solutions. This is surprising as we would
expect the supersymmetric solutions to saturate a BPS bound, forbidding the existence of
solutions with lower energy. The BPS bound for these alternate boundary conditions has
however not been explicitly worked out as far as we are aware. We discuss this result in light
of the positive energy theorem [15, 16], which implies that the energy of a supersymmetry
preserving solution is lower than the energy of any other solution satisfying the same bound-
ary conditions. We show that our result is not in contradiction with this general property.
The central point of the argument is that a necessary condition for the positive energy
theorem to apply is the existence, for the non-supersymmetric solution, of an asymptotic
Killing spinor which coincides, up to O(1/r2) terms at radial infinity, with the Killing spinor
of the supersymmetric one. Since the latter has antiperiodic boundary conditions along the
circle at infinity, in order for the positive energy theorem to apply, the non-supersymmetric
solutions should admit an asymptotic Killing spinor with the same property at the bound-
ary. As we shall prove, this is the case only if the charges at infinity have specific values, for
which the energy of the non-supersymmetric solution exceeds that of the supersymmetric
one. In summary, there is no contradiction with the positive energy theorem if we include
among the boundary conditions those applying to the asymptotic Killing spinor.

Another important direction for future work is to find a more general understanding of
the degeneracy of the susy solutions. We believe this is a generic feature of such boundary
conditions; we intend to provide a general proof in a forthcoming paper.

It is also possible to construct black holes in this theory [17–23] and endow them with
Wilson lines along the lines of [24]. This will provide an even more complete phase diagram
of this model that we leave to analyze in the future.

The outline of the paper is as follows. In the next section 2, we review the model
under consideration. In section 3, we present the soliton solutions within this model, and
explain their relation to the solutions of [12]. In section 4, we discuss the solutions with
constant fluxes, and explain the quantisation of the flux from demanding a well-behaved
action on the S7 factor in the uplift. In section 5, we find the supersymmetric solutions for
both fixed flux and fixed charge boundary conditions. In section 6, we describe the phase
structure for the different boundary conditions, and point out that for supersymmetric
fixed charge boundary conditions there are both supersymmetric and non-supersymmetric
solutions, with a surprising family of non-supersymmetric solutions of lower energy and
free energy than the supersymmetric ones. The consistency of this result with the positive
energy theorem for asymptotically AdS solutions is discussed in subsection 6.3.1.
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2 The model

We are interested in studying the dilatonic sector of the STU model of the SO(8)-gauged,
N = 8 supergravity with action:

S = 1
2κ

∫
d4x
√
−g

(
R−

3∑
i=1

(∂Φi)2

2 + 2
L2 cosh (Φi)−

1
4

4∑
i=1

X−2
i F̄ 2

i

)
, (2.1)

where F̄i are two forms, related with gauge fields in the standard way

F̄i = dĀi , Xi = e−
1
2~ai·~Φ , ~Φ = (Φ1,Φ2,Φ3) , (2.2)

and

~a1 = (1, 1, 1) , ~a2 = (1,−1,−1) , ~a3 = (−1, 1,−1) , ~a4 = (−1,−1, 1) . (2.3)

We will be interested in purely magnetic solutions, in which case it is consistent to truncate
the axions to zero. The Lagrangian (2.1) can be obtained from the compactification of
eleven dimensional supergravity over the seven sphere with the ansatz [25]

ds2
11 = ∆̃2/3 ds2

4 + 4L2∆̃−1/3
4∑
i=1

X−1
i

(
dµ2

i + µ2
i

(
dϕi + 1

2LĀi
)2
)
, (2.4)

F = − 1
L
ε4

4∑
i=1

(
X2
i µ

2
i − ∆̃Xi

)
+ LX−1

i
?4dXi ∧ dµ2

i−

− 4L2 ∑
i

X−2
i µi dµi ∧

(
dϕi + 1

2LĀi
)
∧ ?4F̄i , (2.5)

where ?4 is the Hodge dual with respect to the four-dimensional metric ds2
4, ε4 its volume

form and F is the four-form field strength. The ϕi are 2π periodic angular coordinates
parametrizing the four independent rotations on S7. We will be interested in considering
the higher-dimensional interpretation of some of our solutions using this uplift.

We shall work with a simplified version of this theory, where all dilatons take the same
value, the so-called T3 model. In this case we set

Φa =
√

2
3 φ , F̄1 =

√
2F 1 , F̄2 = F̄3 = F̄4 =

√
2
3 F

2 , (2.6)

to obtain an action of the form:

S = 1
κ

∫
d4x
√
−g
(
R

2 −
1
2 (∂φ)2 + 3

L2 cosh
(√

2
3φ
)
− 1

4 e
3
√

2
3 φ
(
F 1
)2
− 1

4e
−
√

2
3 φ
(
F 2
)2
)
,

(2.7)
where FΛ

µν = ∂µA
Λ
ν − ∂νAΛ

µ (Λ = 1, 2). The field equations read

∂µ

(
e3
√

2
3 φ
√
−g F 1µν

)
= 0 , ∂µ

(
e−
√

2
3 φ
√
−g F 2µν

)
= 0 , (2.8)

Rµν −
1
2gµν R = e3

√
2
3 φ T 1

µν + e−
√

2
3 φ T 2

µν + T φµν , (2.9)

∂µ
(√
−g gµν ∂νφ

)
+
√

6
L2 sinh

(√
2
3 φ
)

= 1
2
√

6

(
3 e3

√
2
3 φ
(
F 1
)2
− e−

√
2
3 φ
(
F 2
)2
)
, (2.10)
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with
TΛ
µν = FΛ

µρ F
Λ
ν
ρ − 1

4 gµν F
Λ
ρσF

Λ ρσ ,

T φµν = ∂µφ∂νφ+ gµν

(
−1

2 (∂φ)2 + 3
L2 cosh

(√
2
3 φ
))

.
(2.11)

2.1 Supersymmetry

The general formulae related to the supersymmetry transformations in N = 2, D = 4
supergravity with FI terms are given in appendix A. In what follows we shall restrict to
the T3 truncation of the STU model whose embedding in the SO(8)-gauged maximal theory
was outlined above. This smaller T3 model can also be obtained from the more general
class studied in [19] and labeled by a parameter ν, by setting ν = −2. This is also discussed
in the aforementioned appendix, where we also define our spinor conventions.

T3 truncation. The fermionic variations (A.6), once adapted to the T3 model, read

δΨA
µ = ∂µε

A + 1
4 ωµ

ab γab ε
A − 1

2L

(
1√
2
A1
µ +

√
3
2 A

2
µ

)
i
(
σ2
)A
B εB+

+ 1
8

(
1√
2
F 1
νρ e

√
3
2 φ +

√
3
2 F

2
νρ e
− φ√

6

)
γνρ γµ ε

AB εB+

+ 1
2 W γµ δ

AB εB , (2.12)

δλA = −γµ ∂µφ εA + 1
2
√

2

(
−
√

3
2 F

1
νρ e

√
3
2 φ + 1√

2
F 2
νρ e
− φ√

6

)
γνρ εAB εB−

− 1
2L

√
3
2

(
e−
√

3
2 φ − e+ φ√

6

)
δAB εB , (2.13)

where the superpotential explicitly reads

W = e−
√

3
2 φ + 3 e

φ√
6

4L . (2.14)

The above expressions coincide with those given in [26] once redefinitions (2.6) are imple-
mented in the latter.

With reference to the spinor conventions defined in appendix A, we write the chiral
spinors in terms of their real and imaginary parts:

εA = Re εA + i Im εA , (2.15)

and define the following complex spinors:

χR = Re ε1 + i Re ε2 , χI = Im ε1 + i Im ε2 . (2.16)

As we shall see below, the Killing spinor equations can be written as first-order differential
equations in each of them separately. The two, however, are not independent and we can
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solve the Killing spinor equations in only one of them, for example χR . Indeed, since in
our spinor basis εA =

(
εA
)∗
, the Majorana spinors εA

(M)
read:

εA
(M)

= εA + εA = 2 Re εA . (2.17)

The action of γ5 = i γ0γ1γ2γ3 on the above spinors gives

γ5 εA
(M)

= εA − εA = −2 i Im εA , (2.18)

so that
Im εA = i γ5 Re εA , (2.19)

and therefore

χI ≡ Im ε1 + i Im ε2 = i γ5
(
Re ε1 + i Re ε2

)
= i γ5 χR , (2.20)

expressing the relation between χR and χI .
Being εA and εA the chiral components of two Majorana spinors, the only freedom we

have is to act on the solution by:

χR → eiΘ χR ⇒ χI → eiΘ χI , (2.21)

which is the SO(2) symmetry of the solution, this group being the one gauged in the N = 2
model. The corresponding transformation on the Weyl spinors εA is:

εA = S(Θ)AB ε̊B , S(Θ)AB =
(

cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

)
. (2.22)

From a solution χR of the Killing spinor equations, one can extract the corresponding
supersymmetry parameters as follows

ε1
(M)

= 2 ReχR , ε2
(M)

= 2 ImχR , (2.23)

and
ε1 =

(
1− γ5)

2 ε1
(M)

=
(
1− γ5

)
ReχR ,

ε2 =
(
1− γ5)

2 ε2
(M)

=
(
1− γ5

)
ImχR .

(2.24)

The Killing spinor equations for χR explicitly read

0 = ∂µχR + 1
4 ωµ

ab γab χR + i

2L

(
1√
2
A1
µ +

√
3
2 A

2
µ

)
χR−

− i

8

(
1√
2
F 1
νρ e

√
3
2 φ +

√
3
2 F

2
νρ e
− φ√

6

)
γνρ γµ χR + 1

2 W γµ χR , (2.25)

0 = −γµ ∂µφ χR −
i

2
√

2

(
−
√

3
2 F

1
νρ e

√
3
2 φ + 1√

2
F 2
νρ e
− φ√

6

)
γνρ χR−

− 1
2L

√
3
2

(
e−
√

3
2 φ − e+ φ√

6

)
χR . (2.26)

The corresponding conditions on χI are simply obtained by multiplying the above equations
by i γ5 from the left.
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3 Hairy soliton solutions

We can obtain soliton solutions of this theory, which generalize the soliton studied in [27] by
including a non-trivial scalar profile. These solutions are double analytic continuations of a
particular case of the electrically charged black hole solutions that have been studied in [19,
21, 28]. The charged planar black holes in this theory are a particular case of the charged
STU model black holes [25], which oxidize to spinning M2 branes.1 The vierbein and matter
fields of the hairy soliton configuration can be obtained by means of a double Wick rotation

t→ i ϕ , ϕ→ i t , QΛ → iQΛ , (3.1)

of the electrically charged planar black hole of [19] for ν = −2 and read

e0 =
√

Υ(x) dt, e1 =
√

Υ(x)
f(x) η dx, e2 =

√
Υ(x) f(x) dϕ, e3 =

√
Υ(x) dz, (3.2)

φ =
√

3
2 ln(x) , A1 = Q1

(
x−2 − x−2

0

)
dϕ , A2 = Q2

(
x2 − x2

0

)
dϕ , (3.3)

with

Υ(x) = 4L2 x

(x2 − 1)2 η2
, f(x) = 1 + η2 (x2 − 1

)3 (3Q2
1 − x2Q2

2
)

6L2 x2 . (3.4)

The conformal boundary of the metric is located at x = 1, where the conformal factor of
the metric has a pole of order 2. We remark that the boundary can be approached from
the region with x > 1 or from the region where x < 1. Therefore, this form for the metric
can represent two different spacetimes, one for x in the range x ∈ (0, 1) and the other for
x in the range x ∈ (1,∞). The solutions with x < 1 and x > 1 are physically distinguished
by the sign of the dilaton.

The canonical form of an asymptotically locally AdS4 spacetime is achieved with the
transformation

x = 1±
(
L2

η ρ
− L6

8 η3ρ3

)
+ L8

8 η4ρ4 +O(ρ−5) , (3.5)

where the choice of sign depends on whether we are considering x > 1 or x < 1, which
yields

Υ(x) = ρ2

L2 +O(ρ−2) , (3.6)

gϕϕ = Υ(x) f(x) = ρ2

L2 −
µ

ρ
+O(ρ−2) , (3.7)

µ = ∓4L2

3 η
(
3Q2

1 −Q2
2

)
. (3.8)

1The STU model [29–31] is a N = 2 supergravity coupled to 3 vector multiplets and characterized, in a
suitable symplectic frame, by the prepotential Fstu(XΛ) = − i

4

√
X0 X1 X2 X3, together with symmetric

scalar manifold of the form Mstu = (SL(2,R)/SO(2))3 spanned by the three complex scalars zi = Xi/X0

(i = 1, 2, 3); this model is in turn a consistent truncation of the maximal N = 8 theory in four dimensions
with SO(8) gauge group [26, 32–34].
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As we shall see, µ is proportional to the energy of the configuration. The expansion of the
scalar field yields

φ = L2 φ0
ρ

+ L4 φ1
ρ2 +O(ρ−3) , (3.9)

where
φ0 = ±

√
6

2 η , φ1 = −
√

6
4 η2 . (3.10)

We can regard these solitons as solutions with a boundary condition φ1 = − 1√
6 φ

2
0 for

the scalar field, which preserves conformal invariance. This boundary condition involves
the cubic boundary conterterm corresponding to the triple-trace deformation, which is
required, in the maximal theory, by supersymmetry [35].

We are interested in soliton solutions where the ϕ circle contracts in the interior of the
geometry, at some position x0 such that

f(x0) = 0 . (3.11)

If x0 < 1, we have a soliton with x ∈ (x0, 1), while if x0 > 1, we have a soliton with
x ∈ (1, x0).

Regularity of the metric at x = x0 requires ϕ ∈ [0,∆] where

∆−1 =
∣∣∣∣ 1
4π η

df

dx

∣∣∣∣
x=x0

=
∣∣∣∣∣η
(
x2

0 − 1
)2

4π L2 x3
0

(
Q2

1

(
1 + 2x2

0

)
−Q2

2 x
4
0

)∣∣∣∣∣ . (3.12)

We have normalized the gauge fields to vanish at f(x0) = 0 to ensure their regularity.
Solutions with non-zero charges have net magnetic fluxes at infinity,

Φ1
m =

∫
F 1 =

∮
A1 = Q1 ∆

(
1− x−2

0

)
≡ 2πLψ1,

Φ2
m =

∫
F 2 =

∮
A2 = Q2 ∆

(
1− x2

0

)
≡ 2πLψ2 .

(3.13)

The scalar field induces a vev of an operator of conformal dimension one in the dual theory

〈O〉 = φ0 = ±
√

6
2

π x0
∣∣ψ2

1
(
1 + 2x2

0
)
− ψ2

2
∣∣

∆ , (3.14)

and the source of the scalar vanishes on these solutions as it turns out to be proportional
to φ1 + 1√

6 φ
2
0 . The dual energy momentum tensor is given by [36–39]

〈Ttt〉 = − µ

2κL2 , 〈Tzz〉 = µ

2κL2 , 〈Tϕϕ〉 = − µ

κL2 . (3.15)

The gauge field gives a vev for the current in the boundary theory [40]

〈Jν1 〉 = δS
δA1

ν

= −1
κ
Nµ e

3
√

2
3 φ F 1µν

√
|h| = 2Q1

η κ
δνϕ , (3.16)

〈Jν2 〉 = δS
δA2

ν

= −1
κ
Nµ e

−
√

2
3 φF 2µν

√
|h| = −2Q2

η κ
δνϕ , (3.17)

where Nµ is the outward pointing normal to the boundary metric hµν = gµν −NµNν . The
above calculation for the JνΛ is valid for the solution at x < 1. Otherwise there is a flip of
sign which can be traced back to the Nµ. Note that the currents are proportional to QΛ/η.
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3.1 Existence of solitons

From the bulk point of view, the solutions are parametrised by Q1, Q2 and η. It is simple
to show that there are solitons for all non-zero values of the parameters. Indeed, non-zero
parameters imply f(x = 1) = 1, f(+∞) < 0 and f(0) < 0, so we must have f(x0) = 0 for
at least one value x0 in (0, 1) and at least one value in (1,∞). Thus, there are two soliton
solutions, one for x ∈ (x−, 1), where x− is the largest root of f for x < 1, and one for
x ∈ (1, x+), where x+ is the smallest root of f for x > 1.

From the boundary point of view, however, it is more natural to parameterise solutions
in terms of the boundary data we hold fixed: we can consider either fixed fluxes (Wilson
loops), holding fixed ψ1, ψ2 and the period ∆, or fixed charges, holding fixed Q1/η, Q2/η,
and the period ∆.2 It turns out to be convenient to describe the fixed charge boundary
conditions in terms of the rescaled parameters

q1 ≡
∆2

4π2L

Q1
η
, q2 ≡

∆2

4π2L

Q2
η
. (3.18)

Solitons only exist for a range of values of ψ1, ψ2 or q1, q2.

Fixed fluxes. In order to study the existence of soliton solutions as functions of the
boundary data ψ1, ψ2 and ∆, we consider the bulk parameters as functions of the boundary
data

Q1 = 2π Lψ1

∆ (1− x−2
0 )

, Q2 = 2π Lψ2
∆ (1− x2

0)
, η = x−1

0 ∆
π
∣∣ψ2

1
(
1 + 2x2

0
)
− ψ2

2
∣∣ . (3.19)

Substituting these expressions into f(x0), we obtain

f(x0) = 1 + 2
3

3
(
1− x2

0
)2
ψ2

1 −
(
1− x2

0
) (

3ψ2
1 − ψ2

2
)

x2
0
(
2
(
1− x2

0
)
ψ2

1 −
(
3ψ2

1 − ψ2
2
) )2 . (3.20)

The solitons are thus parametrised by x0 satisfying3

P (x0) = 4ψ4
1 x

6
0 +2ψ2

1

(
2ψ2

1−2ψ2
2 +1

)
x4

0 +
(
ψ4

1 +ψ4
2−2ψ2

1ψ
2
2−2ψ2

1−
2
3ψ

2
2

)
x2

0 + 2
3ψ

2
2 = 0.
(3.21)

This is a cubic equation for x2
0 and therefore there are at most three different solutions.

In fact, P (x0) is positive at large x0, P (x0 = 1) = (3ψ2
1 − ψ2

2)2 and P (x0 = 0) = 2
3ψ

2
2, so

the cubic has either two or no roots for x0 > 0. If it has two roots they are either both
at x > 1 or both at x < 1.4 The boundary between two roots and no roots occurs where

2More precisely, this is a boundary condition of fixed boundary currents, which is the alternate boundary
condition for the bulk gauge fields. We refer to this as fixed charges, although this language is more
appropriate for the Euclidean continuation; the currents here are spacelike so they do not correspond to a
physical charge density in the Lorentzian solution.

3To obtain this expression we multiplied out the denominator in the second term in f . This denominator
is non-vanishing on the solution x0 unless the numerator also vanishes, which only happens if 3ψ2

1−ψ2
2 = 0;

we will discuss this case in the next subsection.
4This is consistent with the earlier analysis for fixed bulk parameters, since here a change the root also

changes the values of the bulk parameters through (3.19).
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P (x0) has a double root; solving P (x0) = 0 and dP/dx0 = 0, we find that the boundary is
given by

36ψ6
1− 36ψ6

2 + 108ψ4
1ψ

2
2− 108ψ2

1ψ
4
2− 141ψ4

1− 258ψ2
1ψ

2
2 + 75ψ4

2 + 132ψ2
1− 52ψ2

2 + 12 = 0.
(3.22)

As (3.21) is a simple cubic equation for x2
0, we have been able to solve it analytically and

find that indeed there are two real roots characterizing two solutions, this can be found in
the appendix B. Hence we see that, as happens in the Einstein-Maxwell system [12, 14],
there is a range of parameters where there are two different soliton solutions, which coalesce
at the boundary of the parameter range.

Fixed charges. For fixed charges the situation is more intricate. We determine η by

η = 3
2π ∆

∣∣x4
0 q

2
2 − 2x2

0 q
2
1 − q2

1
∣∣

x0
(
x2

0 − 1
) (
x2

0 q
2
2 − 3 q2

1
) , (3.23)

and the polynomial to be solved is

f(x0) = 1 +
(
x4

0 q
2
2 − 2x2

0 q
2
1 − q2

1
)4

x6
0
(
x2

0 − 1
) (

3 q2
1 − q2

2 x
2
0
)3 33

2 = 0 . (3.24)

This polynomial is of order 8 in x2
0 . We find that by setting

q2
2 = 2

27

(
x2

0 − 1
)

x4
0

λ3 + q2
1

(
1 + 2x2

0
)

x4
0

, (3.25)

all the dependence on x2
0 drops out from (3.24). One is thus left with four quadratic

equations for x2
0 of the form (3.25), one for each value of the parameter λ3 given by

8λ9(λ2 − 1)(λ2 + λ+ 1) + 4× 34 q2
1 λ

6 − 2× 37 q4
1 λ

3 + 39 q6
1 = 0 . (3.26)

We can also view this equation as a cubic for q2
1, with three solutions

q2
1 = 2

33

(
λ3 − λ4 e

2πi
3 k
)
, (3.27)

with k = 0, 1, 2. Real solutions exists only for k = 0. Thus, for given q1, q2, we can
determine λ from q2

1 = 2
33
(
λ3 − λ4) and then determine x0 from (3.25).

The number of solitons that might exists for every value of the parameters
(
q2

1, q
2
2
)
is

not obvious. We find that there could be between zero and four solutions, as can be seen
from the plots of the roots in figures 1 and 2. The analysis of the supersymmetric cases
is much more simple and we found that there are 2 superymmetric solitons for the same
boundary conditions, both solutions featuring the same energy and free energy.

In figure 1 it is possible to see that, for this region of the phase space, there are two
solitons at low q1 and there could be four solitons for larger values of q1. The supersym-
metric configurations are embedded in the region of the phase space where there are four
solitons. In figure 2 we show a region of the phase space where the structure of the roots
seems to be different but the number of solutions is the same, and again there are two
supersymmetric configurations. Let us remark that the structure of the solution space is
actually very different than for pure Einstein-Maxwell-AdS system, where there are only
two solitons at each value of the charge [12].
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Figure 1. The square x2
0 of the roots of (3.24) in the y-axis vs. the “rescaled charge” q1 in the

x-axis. The blue line shows the location of the supersymmetric solitons, where q2 is determined
as a function of q1 by q2 = −

√
3 q1 (see section 5). The red and black lines are the roots of (3.25)

plotted for fixed q2 = −0.1. The green line indicates the value of q1 that satisfies the susy condition
q1 = − 1√

3 q2 at q2 = −0.1. As expected, this intersects the red and black lines where they intersect
the blue line: these are the supersymmetric solitons for fixed q2 = −0.1. There is also an intersection
at x0 = 1, where also the black and red roots intersect; we will see below that this corresponds to
non-supersymmetric solutions with zero scalar.

3.2 Relation to earlier solutions

In [12], solutions were found in a theory with a single gauge field, obtained by compactifi-
cation from D = 11 supergravity setting Āi = 1

2 A (i = 1, . . . 4) and Φa = 0 (a = 1, 2, 3).
The theory we have considered here thus reduces to the theory studied there if we set
A1 = 1√

3A
2 = 1

2
√

2A and φ = 0.
We would like to understand the relation between the solutions obtained here and the

solutions in [12]. This is complicated by the fact that the coordinate system adopted here is
adapted to the scalar field, and that the functional form of A1 and A2 is different. Suppose
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Figure 2. The square x2
0 of the roots of (3.24) in the y-axis vs. the “rescaled charge” q1 in the x-

axis. The blue line is the same as in the previous plot - it shows the location of the supersymmetric
solitons, where q2 is determined as a function of q1 by q2 = −

√
3 q1 (see section 5). The red and

black lines are the roots of (3.25) plotted for fixed q2 = −0.14. We see that for this value of q2, there
is both a lower and an upper bound on q1 for the existence of solitons. The green line indicates the
value of q1 that satisfies the susy condition q1 = − 1√

3 q2 at q2 = −0.14. As expected, this intersects
the red and black lines where they intersect the blue line: these are the supersymmetric solitons
for fixed q2 = −0.14. There is also an intersection at x0 = 1, where also the black and red roots
intersect; we will see below that this corresponds to non-supersymmetric solutions with zero scalar.

we make the change of coordinates

x2 = 1− α

r
, (3.28)

so that the boundary lies at r →∞, and α is a parameter to be determined. We also define
r0 by

x2
0 = 1− α

r0
. (3.29)
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Then, the vierbein and matter fields are

e0=
√

Υ(r)dt, e1=
√

Υ(r)
f(r)

αη

2r3/2(r−α)1/2dr, e2=
√

Υ(r)f(r)dϕ, e3=
√

Υ(r)dz,

φ=
√

3
8ln

(
1−α

r

)
, A1=

Q1α
(

1
r−

1
r0

)
(
1−α

r

)(
1− α

r0

)dϕ, A2=−Q2α

(1
r
− 1
r0

)
dϕ, (3.30)

with

Υ(r) =
4L2

√
1− α

r r
2

α2 η2 , f(r) = 1−
η2 α3 (3Q2

1 −Q2
2 +Q2

2
α
r

)
6L2 r3 (1− α

r

) . (3.31)

We see that we would obtain a vanishing scalar and the same functional form for A1 and
A2 by taking α → 0, but this seems like a singular limit. However, we can obtain a well-
behaved solution in this limit by scaling the parameters of the solution appropriately. If
we take η →∞ with η α fixed, the vierbein has a finite limit and Υ→ 4L2r2

α2η2 . Let’s choose
coordinates so that η α → 2L2 in the limit, so that Υ → r2

L2 , reproducing the usual form.
Now recall that the boundary currents are proportional to Q̃1 = Q1/η, Q̃2 = −Q2/η,
so the physical limit with fixed vevs is η → ∞, holding Q̃1, Q̃2 fixed. There is a final
problem in f(r), where, in order to make the second term finite in the limit, we must take
3 Q̃2

1 − Q̃2
2 → 0, with µ = 4 η L2

3 (3 Q̃2
1 − Q̃2

2) fixed. This is the expected limit where we set
the two gauge fields equal. Indeed, this limit gives

φ = 0 , A1 = 1√
3
A2 = 2L2Q̃1

(1
r
− 1
r0

)
dϕ, (3.32)

and
e0 = r

L
dt , e1 = dr√

f0(r)
, e2 =

√
f0(r) dϕ , e3 = r

L
dz , (3.33)

with
f0(r) = r2

L2 f(r) = r2

L2 −
µ

r
− 8L4 Q̃2

1
r2 , (3.34)

which matches the solution in [12] with Q = 2
√

2L2 Q̃1. Thus, as expected, the solutions
in [12] arise as limit of the solutions considered here, when we choose parameters such that
the scalar field vanishes and the gauge fields are equal.

We are interested in studying the set of solitons obtained as a function of the bound-
ary conditions. In particular, one might wonder whether it is possible to find new hairy
configurations, from our more general model, satisfying the same boundary conditions as
the previous solutions.

For fixed flux boundary conditions, the previous solutions satisfy boundary conditions
with 3ψ2

1 = ψ2
2, see (3.32). With the latter condition, the polynomial (3.21) becomes

P (x0) = 2ψ2
1

(
1− x2

0

)2 (
1 + 2ψ2

1 x
2
0

)
, (3.35)

so it seems that the only real solution is x0 = 1. Thus, as 3ψ2
1 − ψ2

2 → 0, we need x0 → 1,
which is achieved by taking the limit η →∞ in which these solutions reduce to the previous
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solutions. That is, the only solutions with these boundary conditions are the ones with
φ = 0 obtained previously.

The above conclusion is correct, but is worth to analyse this limit slightly more care-
fully, as there is a subtlety in the relation between f(x0) and P (x0). As previously noted,
P is obtained from f by multiplying out the denominator in the second term in (3.20), but
when 3ψ2

1 − ψ2
2 = 0 and x0 = 1 this denominator vanishes, so we should be more careful

about this operation. First, we set 3ψ2
1 − ψ2

2 = ε ψ2
1 and x2

0 = 1− ε y0. Then, as ε→ 0 ,

f(y0) = 1 + 2
3ψ2

1

3 y2
0 − y0

(2 y0 − 1)2 . (3.36)

This indeed has two solutions for y0, when ψ1 <
1√
6 . We also see that, as ε → 0 for fixed

∆, η → ∞ with fixed Q̃1, Q̃2, so we are in the limit where the solutions here reduce to
the solutions of [12]. Thus, for the boundary conditions with fixed flux and 3ψ2

1 = ψ2
2, the

only soliton solutions are the ones found in [12].
For fixed charge, the situation is more interesting. Expressing f in terms of the charge

parameters q1, q2, we have

f(x0) = 1− 33

2

(
q2

2 − 3 q2
1 − 2

(
1− x2

0
) (
q2

2 − q2
1
)

+
(
1− x2

0
)2
q2

2

)4

x6
0
(
1− x2

0
) (

3 q2
1 − q2

2 + q2
2
(
1− x2

0
) )3 , (3.37)

and

η = 3 ∆
2π

∣∣∣(q2
2 − 3 q2

1
)
− 2

(
1− x2

0
) (
q2

2 − q2
1
)

+
(
1− x2

0
)2
q2

2

∣∣∣
x0
(
1− x2

0
) (

3 q2
1 − q2

2 + q2
2
(
1− x2

0
)) . (3.38)

The solutions of [12] satisfy the boundary conditions for q2
2 = 3 q2

1, and can be obtained
from these solutions again by scaling x2

0 → 1 as q2
2 − 3 q2

1 → 0. But in this case there are
also solutions with q2

2 − 3 q2
1 = 0 for x0 6= 1, setting

f(x0) = 1− q2
1

2x6
0

(
1 + 3x2

0

)4
= 0 , (3.39)

and
η = ∆

2π
1 + 3x2

0
x0
(
1− x2

0
) . (3.40)

Indeed, for q1 = − 1√
3 q2, these are the supersymmetric solutions which are the main focus

of our subsequent interests.
Thus, for the boundary conditions in the fixed charge case, we have both the super-

symmetric hairy solutions and the solutions with φ = 0 obtained in [12]. The latter are not
supersymmetric, except at the maximum value of the period ∆. These non-supersymmetric
solutions correspond to the additional intersection of the green line with the red and black
lines at x0 = 1 in the plots in figures 1 and 2.

At the maximum value of ∆, where the previous solutions become supersymmetric,
they coincide with the supersymmetric hairy solitons found here. In [12], it was found that
fixed charge boundary conditions gave the supersymmetric solution for ∆ϕ = π

√
L3

Q . As
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Q = 2
√

2L2 Q̃1, this corresponds to ∆ = π

√
η L

2
√

2Q1
, which gives q1 = 1

8
√

2 , where the only

real solution of f(x0) = 0 is x2
0 = 1, implying η → ∞, so that we are again in the limit

where these solutions reduce to the previous ones. This is illustrated in figure 6.

4 Constant flux solutions

In addition to these soliton configurations, for the fixed flux boundary conditions, we
can obtain a solution satisfying the latter by adding constant Wilson lines to a simple
background. As in [12], we can obtain such solutions by adding the Wilson lines to Poincaré-
AdS.

There is now an additional possibility: we can take domain wall solutions with a
non-trivial scalar profile and add Wilson lines. The relevant planar domain walls can be
obtained from our general solution by setting Q1 = Q2 = 0. We then have f(x) = 1, and
the ϕ circle is non-contractible in the interior of the spacetime, but the solution still has
a non-trivial scalar profile. The domain wall can be obtained as a limit of the solutions
originally obtained in [25]. The domain wall configurations have a curvature singularity at
x = 0, where the dilaton blows up, and the classical gravity description will break down.
Both Poincaré-AdS and the domain wall would be supersymmetric solutions if we had
periodic boundary conditions on the ϕ circle and no flux.

Both Poincaré-AdS and the domain wall have vanishing gauge field strengths, but they
can be made to satisfy the fixed flux boundary conditions by adding constant Wilson lines
around the ϕ circle,

A1 = 2π Lψ1
∆ , A2 = 2π Lψ2

∆ . (4.1)

These imply that we have a shift on the S7 as we go around the ϕ circle.

4.1 Quantization of fluxes

A point that was missed in [12] is that these fluxes must be quantized to make the Poincaré-
AdS solution regular everywhere. Poincaré-AdS has a coordinate singularity on the horizon
at z =∞ in the standard coordinates, where the metric is5

ds2 = L2

z2

(
dz2 + dyadya

)
. (4.2)

To satisfy our boundary conditions, we must periodically identify one of the boundary
coordinates. This quotient of AdS has fixed points, which lie in the horizon at z =∞.

To identify the fixed points, it is convenient to embed AdS in a higher dimensional
spacetime with signature (−,−,+,+,+), with the constraint

−
(
X−1

)2
+XaXa +

(
X3
)2

= −L2 . (4.3)

5Note that the z coordinate here is unrelated to the one appearing in our soliton solutions earlier; z here
is a radial coordinate analogous to x earlier, but with the boundary at z = 0.
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The higher dimensional embedding coordinates are related to the Poincaré coordinates by

X−1 = 1
2 z

(
z2 + L2 + yaya

)
, Xa = Lya

z
, X3 = 1

2 z
(
z2 − L2 + yaya

)
, (4.4)

with a = 0, 1, 2 and ηab = (−,+,+).
Suppose we pick y1 to be periodic. In terms of the embedding coordinates we have

∂

∂y1 = L−1
(
X−1 −X3

) ∂

∂X1 + L−1X1
(

∂

∂X−1 + ∂

∂X3

)
, (4.5)

so the Killing vector has fixed points when X−1−X3 = 0 and X1 = 0 (the former corre-
sponds to z =∞ in the Poincaré coordinates). If we simply made a periodic identification
in y1, we would have singularities at these fixed points. Since we have added Wilson lines,
the identification in y1 is made with a shift on the S7. The identification is then freely
acting on AdS4 × S7. At the fixed points of the action on AdS4, we have a quotient of the
sphere generated by

ϕ̄1 ∼ ϕ̄1 + 2π ψ1√
2
, ϕ̄i 6=1 ∼ ϕ̄i 6=1 + 2π ψ2√

6
. (4.6)

This seems to lead to a completely regular solution. A formal discussion of this identifica-
tion is given in appendix C.

However, the point which was missed in [12] is that the coordinates ϕi are 2π periodic
on the sphere, so for the quotient to be well-behaved we need this identification to involve
shifts in ϕi which are rational multiples of 2π. That is, we have Poincaré-AdS solutions
for the fixed flux boundary conditions when ψ1/

√
2, ψ2/

√
6 are rational numbers. The

somewhat surprising consequence is that these solutions exist only for a dense subset of
the possible fixed flux boundary conditions.

Formally, we can apply a similar analysis to the domain wall solution. The periodicity
in the ϕ direction is imposed by an appropriate identification on the domain wall, and the
presence of the Wilson lines implies that this identification involves a shift on the sphere.
The identification on the domain wall has fixed points at x = 0, where we have a quotient
on the sphere, and imposing regularity of this quotient would restrict us to rational fluxes.
However, in the case of the domain wall, the solution is already singular at x = 0 because
of a divergence in the dilaton, so it is not clear whether it is necessary to impose regularity
of the quotient of the sphere for this case.

5 Supersymmetric solutions

The solutions will preserve some supersymmetry when

Q1 = − 1√
3
Q2 =⇒ µ = 0 , (5.1)
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that can be obtained by explicitly constructing the Killing spinors.6 In this case the metric
function f(x) drastically simplifies, giving

f(x) = 1−
(
x2 − 1

)4
x2

η2Q2
2

6L2 , (5.2)

and we find that the Killing spinors are

χR(1)
= ei ω ϕ


α−(x)

0
0

−i α+(x)

 , χR(2)
= ei ω ϕ


0

α+(x)
−i α−(x)

0

 , (5.3)

χI(1)
= ei ω ϕ


0

α−(x)
−i α+(x)

0

 , χI(2)
= ei ω ϕ


−α+(x)

0
0

i α−(x)

 , (5.4)

being χI(k)
= i γ5χR(k)

(see (2.20)) and

α±(x) = x1/4

(x2 − 1)1/2

√
1± f(x)1/2 , ω = − π∆ . (5.5)

Hence, the spinors are antiperiodic. The chiral spinors can be reconstructed as

ε1(k) = ReχR(k)
+ i ReχI(k)

=
(
1− γ5

)
ReχR(k)

,

ε2(k) = ImχR(k)
+ i ImχI(k)

=
(
1− γ5

)
ImχR(k)

.
(5.6)

Explicitly, they read

ε1(1) =


cos(ωϕ)α−(x)
i cos(ωϕ)α−(x)
i sin(ωϕ)α+(x)
sin(ωϕ)α+(x)

 , ε2(1) =


sin(ωϕ)α−(x)
i sin(ωϕ)α−(x)
−i cos(ωϕ)α+(x)
−cos(ωϕ)α+(x)

 , (5.7)

ε1(2) =


−i cos(ωϕ)α+(x)

cos(ωϕ)α+(x)
sin(ωϕ)α−(x)

−i sin(ωϕ)α−(x)

 , ε2(2) =


−i sin(ωϕ)α+(x)

sin(ωϕ)α+(x)
−cos(ωϕ)α−(x)
i cos(ωϕ)α−(x)

 , (5.8)

and indeed satisfy
γ5 εA(k) = −εA(k) . (5.9)

A more general basis can be obtained by acting on εA by the transformation (2.22). Using
this redefinition, in the special case α− = 0 = ω (corresponding to the domain wall
solutions we discuss below) although two of the spinors in (5.8) vanish, we still have two
independent solutions εA(k) for each value of the index A and the solution is 1/2-BPS.

As we have 4 chiral spinors in an N = 2 theory we can identify the soliton solution to
be 1/2 BPS in N = 2. With respect to the N = 8 theory, the solution is 1/8 BPS.

6Note that supersymmetry implies the vanishing of the energy parameter µ (see (3.8)) as expected, but
the converse is not true; in fact, the solution is not supersymmetric for Q1 = 1√

3 Q2, even though this also
gives µ = 0.
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5.1 Supersymmetric solutions with fixed fluxes

We have supersymmetric solitons when the bulk solution for given boundary conditions
satisfies Q1 = − 1√

3 Q2 . For fixed flux boundary conditions, this requires

ψ1 = ψ2 x
−2
0√
3

. (5.10)

Using (3.24) to determine x0, we find that there are supersymmetric solitons for

ψ1 =
√

2−
√

3ψ2 , x2
0 = ψ2√

6− 3ψ2
, 0 < ψ2 <

√
6

3 , (5.11)

ψ1 = −
√

2−
√

3ψ2 , x2
0 = − ψ2√

6 + 3ψ2
, −

√
6

3 < ψ2 < 0 . (5.12)

This reduces to the previous solution in [12] when ψ2 = ±
√

6
4 .

For the fixed flux boundary conditions, we can also look for supersymmetric domain
wall/Poincaré-AdS solutions. As far as Poincaré-AdS solutions are concerned, we can start
from the general expression of the Killing spinors in the appropriate parametrization of
AdS4, given in [12]. Considering Poincaré-AdS solutions in which ϕ is compact, half of these
spinors are not consistently defined and thus the solution is 1/2-BPS in the N = 8 theory.
In the absence of fluxes the Killing spinors can only obey periodic boundary conditions
along the ϕ-circle. We can switch on constant values of the four STU vector fields along
the compact direction, defining Wilson-lines. This will not alter the local AdS geometry
since the field strengths F̄ iµν are all kept zero. If we denote by εIα , ε

Iα , (α = 1, . . . , 4,
I1 = 1, 2, I2 = 3, 4, I3 = 5, 6, I4 = 7, 8) the N = 8 supersymmetry parameters, we choose
those describing the N = 2 supersymmetry of the STU truncation to be the first two
I1 = A = 1, 2. Restricting to the dilatonic field φ and setting FΛ

µν = 0, the supersymmetry
variation of the N = 8 fermions read:

δψAµ = ∂µε
A + 1

4 ω
ab
µ γab ε

A − 1
2
√

2L
(A1

µ +
√

3A2
µ) εABεB + W

2 γµ εA , (5.13)

δψIαµ = ∂µε
Iα + 1

4 ω
ab
µ γab ε

Iα − 1
2
√

2L

(
A1
µ −

1√
3
A2
µ

)
εIαJαεJα + W

2 γµ εIα , (α 6= 1) .

In the Poincaré-AdS solution φ = 0 and W = 1/L . From the minimal couplings to the
vector fields, we can infer the dependence of the Killing spinors on the fluxes:

εA(ϕ, r) = ei ω1ϕ ε̊A(r) , εIα(ϕ, r) = ei ω2ϕ ε̊Iα(r) (α 6= 1) , (5.14)

where:
ω1 = π√

2 ∆
(ψ1 +

√
3ψ2) , ω2 = π√

2 ∆

(
ψ1 −

1√
3
ψ2

)
. (5.15)

By appropriately choosing the fluxes, we can have the Killing spinors satisfy both periodic
and anti-periodic boundary conditions. One needs to restrict ψ1, ψ2 to satisfy:

ψ1 = 3m+ n

2
√

2
, ψ2 = 1

2

√
3
2 (n−m) , (5.16)
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where m,n are even or odd integers for periodic or anti-periodic boundary conditions,
respectively.

Let us now consider domain wall solutions obtained by setting Q1 = Q2 = 0 in the
solitonic ones. The Killing spinors are obtained from eqs. (5.8) by setting α−(x) = 0, being
f(x) = 1. The latter feature implies that the ϕ-circle, as opposed to the charged solition
case, is non-contractible. In the absence of fluxes, ω = 0, as pointed out in the previous
section, and for each A we have two linearly independent solutions εA(k) so that the solution
preserves therefore 1/2 of the N = 2 supersymmetries of the model and all Killing spinors
can only obey periodic boundary conditions on the S1 spanned by ϕ. When embedding the
solution in the N = 8 model, one can verify that Killing spinor equations for εIα (α 6= 1)
are the same as those in the spinors εA and thus admit the same solutions. The domain wall
solutions, in the absence of fluxes, are therefore 1/2-BPS in theN = 8 model. Switching the
fluxes on, as constant potentials along S1, the supersymmetry counting does not change and
we still have a 1/2-BPS solution in the N = 2 model. Within the N = 8 model, εIα (α 6= 1)
satisfy the same Killing spinor equation as εA, though with a different combination of fluxes,
which implies that the Killing spinors will acquire a dependence on ϕ given in (5.14), with
ω1, ω2 given in (5.15). Thus choosing the fluxes to satisfy (5.16), for suitable choices of
the integers m, n, we can have the Killing spinors satisfy either periodic or anti-periodic
boundary conditions, which are both allowed on the domain wall backgrounds.

5.2 Supersymmetric solutions with fixed charges

We get supersymmetric solutions if

q1 = − q2√
3
. (5.17)

We find that for every value |q2| <
√

6/16 there are two charged solitons, located at the
two xs that follow from the equation:

q2 = ±
√

6 x3
s

(3x2
s + 1)2 , (5.18)

the signs depending on whether the charge is positive or negative. One of the solitons is
located at xs > 1 and the other is located at xs < 1. As previously noted, in addition to
these supersymmetric solutions this choice of boundary conditions has non-supersymmetric
solutions with vanishing scalar.

6 Phase structure

6.1 Euclidean action

To compute the Euclidean action we continue the metric to a real Euclidean metric ge
with Euclidean time τ ∈ [0, β], where β is the inverse of the temperature. The magnetic
gauge field and the dilaton remain invariant under this change yielding a periodic bosonic
solution in β.
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We remark that the thermal partition function is not compatible with supersymmetry
unless β = ∞, as the thermal partition function requires the fermions to be antiperiodic
in Euclidean time. Hence, the supersymmetric solutions exist only at zero temperature.
However, the non-supersymmetric bosonic solutions are well defined for all β.

The Euclidean action Se has several contributions:

Se
V

= Ibulk + Igh + Ibk + Ict + Iφ , (6.1)

where
V = β∆ ∆z , ∆z =

∫
dz . (6.2)

The Ibulk term is the bulk contribution,

Ibulk = lim
ε→1−

1
κ

ε∫
x0

dx
√
ge (6.3)

×
(
−R2 + 1

2 (∂φ)2 − 3
L2 cosh

(√
2
3 φ
)
− 1

4 e
3
√

2
3 φ
(
F 1
)2
− 1

4 e
−
√

2
3 φ
(
F 2
)2
)
,

while Igh is the Gibbons-Hawking term, Ibk the Balasubramanian-Krauss counterterm, Ict
is a divergent counterterm for the scalar field and Iφ is a finite counterterm that ensures
that the action principle is well posed for the scalar field:

Igh = −1
κ

lim
ε→1−

K
√
h ,

Ibk = 2
κL

lim
ε→1−

√
h ,

Ict = 1
2κL lim

ε→1−

√
hφ2 ,

Iφ = −L
2

κ

1
3
√

6
φ3

0 .

(6.4)

It is straightforward to find that

Ibulk = 1
κ

lim
ρ→∞

(
ρ3

L4 + 3 ρ
8 η2 −

µ

L2 + L2

2 η3

)
,

Igh = −1
κ

lim
ρ→∞

(
3 ρ3

L4 + 9 ρ
8 η2 −

3µ
2L2 + 3L2

2 η3

)
,

Ibk = 1
κ

lim
ρ→∞

(
2 ρ3

L4 −
µ

L2

)
,

Ict = 1
κ

lim
ρ→∞

(
3 ρ
4 η2 + 3L2

4 η3

)
,

Iφ = L2

κ

1
4 η3 ,

(6.5)

and we also have
Se
V

= − µ

2L2 κ
. (6.6)
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We found that the result is the same for both solutions with the definition of µ given
in (3.8). These configurations do not have an associated entropy, so we get that their free
energy is just their energy.

6.2 Fixed fluxes ψ1 and ψ2

The free energy density of the hairy soliton solution is

Se
V

= Gφ
∆ ∆z

= M

∆ ∆z
= − µ

2κL2 = ± 2
3 η κ

(
3Q2

1 −Q2
2

)
=

= ±8π3L2

3 ∆3 κ

x0
∣∣2x2

0 ψ
2
1 + ψ2

1 − ψ2
2
∣∣ (3ψ2

1 x
4
0 − ψ2

2
)(

x2
0 − 1

)2 .
(6.7)

The free energy of the AdS soliton is given by [1]

G0 = −32
27

π3L2

∆3 κ
∆ ∆z . (6.8)

We can use this energy as a convenient normalization7 and plot the ratio

Gφ
|G0|

= ±9
4
x0
∣∣2x2

0 ψ
2
1 + ψ2

1 − ψ2
2
∣∣ (3ψ2

1 x
4
0 − ψ2

2
)(

x2
0 − 1

)2 , (6.9)

together with the value of the rescaled vev 〈O〉∆ in figures 3, 4 and 5. In these plots, the red
line is the solution associated with the root x0,1 and the green line is the solution associated
with the root x0,3 (defined in appendix B). For the rescaled vev 〈O〉∆, the blue line is the
vev of the solution x0,1 and the black line is the vev of the solution x0,3. The region with
negative vev are the solutions at x > 1 and the region with positive vev are the solutions
at x < 1. The susy soliton is located at the intersection of the free energy with the ψ1 axis.

When ψ1 = 0, the family with lower energy goes to a state with negative energy and
finite vev, which is the soliton with only ψ2 6= 0. The family with higher energy goes to
a state with zero energy and infinite 〈O〉. We also found that, if we set ∆ = δψ−4

1 , the
metric goes to the domain wall solution with f(x) = 1 and finite ψ2.

6.3 Fixed qΛ

Now we consider the Legendre transform of the Euclidean action

Fφ
V

= Se
V
− 〈JνΛ〉AΛ

ν

∣∣∣
x→1

=

= − µ

2L2 κ
− 〈Jφ1 〉Q1

(
1− x−2

0

)
− 〈Jφ2 〉Q2

(
1− x2

0

)
=

= ± 2
3 η κ

(
3Q2

1 −Q2
2

)
± 2Q2

1
η κ

(
1− x−2

0

)
∓ 2Q2

2
η κ

(
1− x2

0

)
,

(6.10)

where the minus sign is for the solutions with x < 1 and the plus sign is for the solutions
with x > 1.

7As previously remarked, the AdS soliton does not satisfy the boundary conditions except at ψ1 = ψ2 = 0.
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ψ1

-0.4
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0.0

0.2

0.4

0.6

Figure 3. Rescaled free energy Gφ

|G0| (red, green) and rescaled vev 〈O〉∆/π (black, blue) for
ψ2 = ±0.6. Different colours are used to represent different branches of the solution.

0.2 0.4 0.6 0.8
ψ1

-0.8

-0.6

-0.4

-0.2

0.0

Figure 4. Rescaled free energy Gφ

|G0| at ψ2 = ±0.4. The different colours represent different
branches of the solution.
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0.05 0.10 0.15 0.20 0.25
ψ1

-0.10
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0.00

0.05

0.10

0.15

0.20

Figure 5. Rescaled free energy Gφ

|G0| for ψ2 = ±0.8. The different colours represent different
branches of the solution. We note that, for these values of ψ2, only the x > 1 solutions are
necessary to describe the phase diagram.

Supersymmetric solutions. As described in section 5, we have supersymmetric solitons
for q2 = −

√
3 q1, and the solutions of [12] with φ = 0 also satisfy these boundary conditions.

It is therefore particularly interesting to plot the phase diagram in this sector of the fixed
qΛ boundary conditions. We will see that it leads to a significant surprise.

The parameters of [12] are related to the parameters here by

q1 = ∆2

4π2L

Q√
8L2 . (6.11)

The free energy for the Einstein-Maxwell solutions is [12]8

Fem
∆ ∆z

= − m

2κL2 + 2Q2

κL2 r0
= 2π3L2

∆3 κ
x2 (5− 4x) , (6.12)

with q2
1 = 2−7 x3 (4− 3x) and x = r0 ∆

πL2 . For the supersymmetric hairy solutions we find

Fφ
|G0|

= 27√
2
|q1| . (6.13)

Both the Einstein-Maxwell and the hairy solitons exist for q2
1 ≤ 2−7. At this point all the

different branches of solutions merge yielding a unique supersymmetric soliton there.
In figure 6 we plot F

|G0| as a function of q1 for q2 = −
√

3 q1. Surprisingly, we see that one
branch of the non-supersymmetric Einstein-Maxwell solutions has lower free energy than

8Here we fix a wrong sign in front of Q2 in equations (44) and (45) of [12].
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the supersymmetric hairy solution (they also have lower energy). At first sight this seems
surprising as we would expect the supersymmetric solutions to saturate a BPS bound.
As anticipated in the Introduction, this result is not in contradiction with the positive
energy theorem if we include among the boundary conditions defining a solution also those
applying to the asymptotic Killing spinor, which is the central ingredient in the proof of
the theorem. We shall expand on this point in the next subsection.

In figure 7 we plot the phase diagram as a function of q1 for fixed q2 for several values
of q2. Is possible to see that, for a given value of the charges, there are from 0 to 4
solitons, as we discussed earlier. The purple line indicates the value of q1 that satisfies
the supersymmetric condition q2 = −

√
3 q1 for the given value of q2. We note that the

supersymmetric solutions are located at the intersection of this line with the blue and red
branches. The solutions on the purple line which are above or below this intersection do
not exist as hairy solutions. However, there is a non-supersymmetric solution satisfying the
same boundary conditions with zero dilaton, that can be found at the spot where the hairy
solutions does not exist. To show this, we plot the free energy of the Einstein-Maxwell
solitons in black in the d panel. It is possible to see that, when the blue and the red
solutions do not exist, the black solution takes their place in the free energy diagram. This
is what is expected from figure 6. We remark that the Einstein-Maxwell soliton represented
by the black line only satisfies the boundary conditions when q2 = −

√
3 q1.

6.3.1 Boundary conditions and the positive energy theorem

In order to compare the energy of the non-supersymmetric solutions of [12], for fixed
charges at infinity, with that of the supersymmetric hairy ones, in light of the positive
energy theorem, the former should admit a spinor field which asymptotes a Killing spinor
of the latter at radial infinity, namely satisfy the Killing spinor equation with the same
boundary conditions, up to terms of order 1/r2. This asymptotic Killing spinor should
then satisfy anti-periodic boundary conditions along the S1 at the radial boundary. This
amounts, on the non-supersymmetric solution, to the requirement:

1
2
√

2L
lim
r→∞

(
A1
ϕ +
√

3A2
ϕ

)
∆ = π n , n ∈ Z , n odd , (6.14)

which implies

q2
1 = 2−7 n2X2 , X ≡ r0 ∆

πL2 . (6.15)

Equating this expression with q2
1 = 2−7X3 (4 − 3X), which is required by the regularity

of the soliton, we find real solutions in X only for n = ±1. These solutions are

X = 1 , 1
3 (6.16)

and correspond to

q2
1 = 2−7 or q2

1 = 2−7

9 , (6.17)

respectively.
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The ratio of the free energies, in terms of X, reads:

Fem
Fφ

= (5− 4X)X2√
(4− 3X)X3 . (6.18)

At X = 1 the ratio is 1 since the two solutions coincide. At X = 1/3 the solution of [12]
is non-supersymmetric and the above ratio is:

Fem
Fφ

∣∣∣∣∣
X= 1

3

= (5− 4X)X2√
(4− 3X)X3

∣∣∣∣∣
X= 1

3

= 11
9 > 1 , (6.19)

that is the energy of the non-supersymmetric solution is greater than that of the super-
symmetric one with the same boundary conditions and asymptotic Killing spinors.
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A Spinor conventions and SUSY for N = 2 models

We shall use the Majorana basis for the Clifford algebra:

γ0 = −i
(

0 σ2
σ2 0

)
, γ1 = −

(
σ3 0
0 σ3

)
, γ2 = i

(
0 −σ2
σ2 0

)
, γ3 =

(
σ1 0
0 σ1

)
, (A.1)

in which it is possible to pick the charge conjugation matrix to be C = γ0. We also define
the matrix γ5 as:

γ5 = i γ0γ1γ2γ3 , (A.2)

We shall use N = 2 chiral supersymmetry parameters εA, εA (A = 1, 2), defined as the
chiral components of two Majorana spinors εA

(M)
:

εA
(M)

= εA + εA , (A.3)

and satifying
γ5εA = −εA , γ5εA = εA . (A.4)

In the chosen basis we also have

C (ε̄A)T = εA ⇔ C

((
εA
)†
γ0
)T

= εA ⇔
(
εA
)∗

= εA . (A.5)
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Figure 6. Rescaled free energy F
|G0| vs q1 on the supersymmetric shell q2 = −

√
3 q1. The yellow

line represents the hairy supersymmetric solitons. Note that there are two distinct solitons for each
point on this curve that coalesce at the right-hand end. The non-supersymmetric pure Einstein-
Maxwell solitons are shown in blue. It is surprising that there are non-supersymmetric solutions
with lower free energy (and lower energy), for the same boundary conditions asymptotic charges,
than a supersymmetric solution. This issue discussed in section 6.3.1.

SUSY variations. The fermionic variations, in a generic N = 2 model with Fayet-
Iliopoulos terms θM , have the general form [41, 42]:

δΨA
µ = Dµε

A + 1
4 T

+
νρ γ

νρ γµ ε
AB εB + SAB γµ εB ,

δλiA = −∂µzi γµ εA + 1
2 gī f̄Λ

̄ IΛΣ FΣ−
µν γµν εAB εB + W iAB εB .

(A.6)

The covariant derivatives are written as

Dµε
A = ∂µε

A + 1
4 ωµ

ab γab ε
A + i

2
(
σ2
)A
B

AMµ θM εB + i

2 Qµ ε
A , (A.7)
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(a) q2 = −0.14.
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(b) q2 = −0.1.
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(c) q2 = −0.01.
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(d) q2 = −0.05.

Figure 7. Rescaled free energy Fφ

|G0| vs. q1 for different values of q2. The supersymmetric solutions
are located at the intersection of the blue and red branches with the purple line. The other intersec-
tions of the purple line with the red and blue branches are solutions of the pure Einstein-Maxwell
system at zero dilaton. This is verified in the last panel by plotting the Einstein-Maxwell solutions
in black and observing how it intersects the blue and red branches at exactly the point where they
also intersect the purple line. We remark that the Einstein-Maxwell soliton represented by the black
line is not part of the last phase diagram except at the points of intersection with the purple vertical
line; otherwise it does not satisfies the same boundary conditions of the hairy configurations.
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where

Qµ = i

2
(
∂ı̄K ∂µz̄

ı̄ − ∂iK ∂µz
i
)
, (A.8)

is the Kahler connection, with K Kahler potential, and AM the electric and magnetic vector
potential.9

The explicit form of the quantities in (A.6) is given by [42]

F±µν = 1
2 (Fµν± i?Fµν) , FMµν =

(
FΛ
µν , GΛµν

)
, γµν = γ[µγν] ,

Tµν =LΛ IΛΣ F
Σ
µν = 1

2i L
Λ
(
N−N

)
ΛΣ

FΣ
µν =− i2

(
MΣF

Σ
µν−LΛGΛµν

)
= i

2 VM CMN FNµν ,

T+
µν = L̄Λ IΛΣ F

Σ+
µν =− i2 V

M CMN FN+
µν , VM = e

K
2 ΩM =

(
LΛ, MΛ

)
,

SAB = i

2
(
σ2
)A

C ε
BC W , W =VM θM , UMi =

(
∂i+

1
2 ∂iK

)
VM =

(
fΛ
i , hiΛ

)
,

W iAB = i
(
σ2
)
C

B εCA θM gīUM̄ , gī = ∂i∂̄K , (A.9)

being ΩM =
(
XΛ, ∂ΛF

)
the holomorphic section of the characteristic bundle defined over

the manifold, CMN the symplectic invariant matrix and having also used the properties

NΛΣ F
Σ− = G−Λ , LΛ NΛΣ = MΣ . (A.10)

The kinetic matrix N = R + i I can be expressed as [43]

NΛΣ = ∂Λ̄∂Σ̄F + 2 i Im [∂Λ∂ΓF ] Im [∂Σ∂∆F ] LΓ L∆

Im [∂∆∂ΓF ] L∆ LΓ , (A.11)

with ∂Λ = ∂
∂XΛ , ∂Λ̄ = ∂

∂X̄Λ .
The special geometry of T3 model, which we will be working in, is characterized by a

prepotential

F(XΛ) = − i4
(
X 0
) 1

2
(
X 1
) 3

2 , (A.12)

and is selected among the class of theories discussed in [19] by choosing ν = −2.
To make contact with the model described in section 2, we choose the FI terms θM =

(θ1, θ2, θ3, θ4) to be

θM =
(
(θ2/3)−3 (4L)−4, θ2 , 0, 0

)
, (A.13)

having set α = 0 in the general class of models considered in [19]. We will further suitably
shift the dilaton and rescale the vector fields as described in the same reference.

9We use the convention of [19, 42] though in a mostly plus signature.
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B Analytic solutions for the fixed fluxes

The explicit relation between the roots P (x0) = 0 in (3.21) and the boundary data (ψ1, ψ2)
is given by

x2
0,1 =−W +Z cos(θ) , x2

0,2 =−W +Z cos
(
θ+ 2π

3

)
, x2

0,3 =−W +Z cos
(
θ+ 4π

3

)
,

W = ψ−2
1
6
(
2ψ2

1−2ψ2
2 +1

)
, Z =

(
W 2 +ψ−2

1 −
ψ−4

1 ψ2
2

9 + 1
12 ψ

−4
1

)1/2

(B.1)

cos(3θ) = W 3

Z3 −
ψ−2

1
Z3 −

1
23 32

(
4ψ2

2−3
)(

2ψ2
2−1

)
ψ6

1Z
3 + 1

22 32
16ψ2

2−21
ψ4

1Z
3 .

The x2
0,1 and x2

0,3 roots are real positive quantities for certain range of values of ψ1 and
ψ2. When x < 1, the x2

0,1 root yields the large and x2
0,3 the small soliton, and viceversa

for x > 1. Only in the x < 1 region these two configurations coalesce in the same object.
Around ψ1 = 0, we find that x0,1 is divergent and x0,3 is finite.

C Global properties of the D = 11 background at radial infinity

Let us consider the spacetime geometry of our D = 11 solution at radial infinity and restrict
to the submanifold consisting of the product of S7 and the interval [0,∆] spanned by ϕ.
The corresponding metric in this limit has the general form:

ds2
S7×[0,∆] = F1

4∑
I=1

(
dµ2

I + µ2
I (dϕI − χI dϕ)2

)
+ F2 dϕ

2 , (C.1)

where F1, F2 are functions and χI are constants derived from the D = 11 metric in the
x→ 1 limit. This eight-dimensional submanifold has the global structure:

(S7 × [0,∆])/ ∼ (C.2)

where ∼ is an identification defined as:

(p, ϕ = 0) ∈ S7 × [0,∆] ∼ (M · p, ϕ = ∆) ∈ S7 × [0,∆] , (C.3)

where M is a monodromy acting on S7 as derived below. We can describe a point in S7

through the coset representative:

L̂(X) ≡
(

(1−XTX)
1
2 −XT

X (1−XXT )
1
2

)
∈ SO(8)

SO(7) , (C.4)

where X = (Xm)m=1,...,7 is a 7-vector. To obtain the parametrization in terms of µI , ϕI
we write:

XT = (µ1 cos(ϕ1), µ1 sin(ϕ1), µ2 cos(ϕ2), µ2 sin(ϕ2), µ3 cos(ϕ3), µ3 sin(ϕ3), µ4 cos(ϕ4)) ,
(C.5)
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where
∑
I µ

2
I = 1. Next we define the restriction

X0 ≡ X|ϕi=0 ,

which only depends on µI and introduce the matrices:

T (ϕI) ≡ e−(e23 ϕ1+e45 ϕ2+e67 ϕ3−e18 ϕ4) , L0(µI) ≡ L̂
(
X0(µI)

)
, (C.6)

where the matrices eij ∈ so(8) are defined as follows:

(eij)k` = δki δ
`
j − δkj δ`j , i, j, · · · = 1, . . . , 8 . (C.7)

One can show the following relation to hold:

L(µI , ϕI) ≡ T (ϕI) · L0(µI) = L̂(X(µI , ϕI)) · h , (C.8)

where h is a local compensating transformation in SO(7). Thus both coset representa-
tives L(µI , ϕI) and L̂(X(µI , ϕI)) yield the same parametrization of S7 in the coordinates
(µI , ϕI). The S7-metric in (C.1) is obtained by twisting the coset representative L by the
SO(8)-transformation T (−χI ϕ), namely by defining a new coset representative as follows:

L′(µI , ϕI , ϕ) ≡ T (−χI ϕ) · L(µI , ϕI) = T (ϕI − χI ϕ) · L0(µI) . (C.9)

Clearly locally we can write L′(µI , ϕI , ϕ) = L(µ′I , ϕ′I) and thus this redefinition does not
change the local structure of the seven-dimensional manifold. However, as ϕ→ ϕ+ ∆, we
have:

L′(µI , ϕI , ϕ+ ∆) = M · L′(µI , ϕI , ϕ) , (C.10)

where the monodromy matrix reads:

M ≡ T (−χI ∆) . (C.11)

This defines the identification (C.2), as a consequence of which the SO(8)-symmetry of the
sphere is broken to a subgroup G0 which depends on χI , being G0 defined as the maximal
subgroup of SO(8) commuting with M. For the T3-model χ2 = χ3 = χ4 and SO(8) is
broken to SO(2)× SO(6).

D Remarks on the stability of the hairy soliton vs the AdS soliton at
fixed fluxes

As it can be seen from figures 3, 4, and 5, the hairy soliton has always larger free energy
at fixed fluxes than the AdS soliton of Horowitz and Myers [1]. Let us analyze what is the
meaning of this for the stability of the hairy solutions.

Besides the radial coordinate, the AdS soliton has two spacelike coordinates, let us
call them (ϕc, ω), where ϕc is the contractible cycle. When ϕc = ϕ, the AdS soliton
can never have the same boundary conditions than the hairy soliton, since the use of the
Stokes theorem is incompatible with trivial electromagnetic fields F 1 = F 2 = 0. Hence,
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both solution can coincide only at ψ1 = ψ2 = 0, in which case the hairy soliton becomes
a domain wall for non-trivial φ. The domain wall would be unstable when fermions are
anti-periodic around ϕc and stable for periodic fermions. Indeed, when the magnetic flux
vanishes, the domain wall is supersymmetric if and only if the fermions are periodic in ϕc.

The AdS soliton can have the same boundary conditions as the hairy soliton if ω =
ϕ and ϕc ∈ [0,∆z]. Then, one needs zero energy to put two Wilson lines around ω to
match the magnetic fluxes (ψ1, ψ2) of the hairy soliton. Under these conditions, the hairy
soliton would be stable if periodic boundary conditions are set for the fermions around ϕc.
Indeed, regularity of the fermions around ϕc in the AdS soliton require that the fermions
are antiperiodic when they go around this cycle. However in the hairy soliton this cycle is
non-contractible and one is free to set periodic or antiperiodic boundary conditions there.
Hence, the hairy AdS soliton is stable for fixed fluxes if periodic boundary conditions are
set on its non-contractible cycle.

We conclude that for non-trivial magnetic fluxes, the AdS soliton is not the lowest en-
ergy configuration of the theory, provided the fermions are antiperiodic in one cycle and pe-
riodic in the other spacelike cycle. If fermions are antiperiodic in each spacelike cycle of the
boundary, the AdS soliton is the ground state, otherwise hairy solutions can take this role.

In the case where the AdS soliton is the ground state, since antiperiodic boundary
conditions are set on both cycles, there are two AdS solitons with boundary

ds2
bound. = −dt2 + dϕ2

1 + dϕ2
2 , (D.1)

which are
ds2 = f1(r) dϕ2

1 + dr2

f1(r) + r2

L2

(
−dt2 + dϕ2

2

)
,

ds2 = f2(r) dϕ2
2 + dr2

f2(r) + r2

L2

(
−dt2 + dϕ2

1

)
,

(D.2)

with
f1,2(r) = r2

L2 −
µ1,2
r

. (D.3)

These two solutions have the same energy provided µ1 = µ2. It is clear that in p + 2
dimensions there are p solitons with the same energy for boundary conditions where the
fermions are antiperiodic along every spacelike cycle.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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