
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A machine learning approach for an HPC use case: The jobs queuing time prediction / Vercellino, Chiara; Scionti,
Alberto; Varavallo, Giuseppe; Viviani, Paolo; Vitali, Giacomo; Terzo, Olivier. - In: FUTURE GENERATION COMPUTER
SYSTEMS. - ISSN 0167-739X. - ELETTRONICO. - 143:(2023), pp. 215-230. [10.1016/j.future.2023.01.020]

Original

A machine learning approach for an HPC use case: The jobs queuing time prediction

Publisher:

Published
DOI:10.1016/j.future.2023.01.020

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2975716 since: 2023-06-21T06:50:38Z

Elsevier

Future Generation Computer Systems 143 (2023) 215–230

G
a

b

c

m
h
o
t

a
g
p
g
o

h
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

AMachine Learning Approach for an HPC Use Case: the Jobs Queuing
Time Prediction
Chiara Vercellino a,b,∗, Alberto Scionti a, Giuseppe Varavallo a,c, Paolo Viviani a,
iacomo Vitali a,b, Olivier Terzo a

LINKS Foundation, Via P.C. Boggio 61, 10138 Turin, Italy
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
Università di Torino, Lungo Dora Siena 100A, 10153 Turin, Italy

a r t i c l e i n f o

Article history:
Received 20 January 2022
Received in revised form 27 October 2022
Accepted 28 January 2023
Available online 2 February 2023

Keywords:
High performance computing
Queues
Batch scheduler
Automatism
Machine learning
Uncertainty quantification

a b s t r a c t

High-Performance Computing (HPC) domain provided the necessary tools to support the scientific
and industrial advancements we all have seen during the last decades. HPC is a broad domain
targeting to provide both software and hardware solutions as well as envisioning methodologies that
allow achieving goals of interest, such as system performance and energy efficiency. In this context,
supercomputers have been the vehicle for developing and testing the most advanced technologies
since their first appearance. Unlike cloud computing resources that are provided to the end-users
in an on-demand fashion in the form of virtualized resources (i.e., virtual machines and containers),
supercomputers’ resources are generally served through State-of-the-Art batch schedulers (e.g., SLURM,
PBS, LSF, HTCondor). As such, the users submit their computational jobs to the system, which manages
their execution with the support of queues. In this regard, predicting the behaviour of the jobs in the
batch scheduler queues becomes worth it. Indeed, there are many cases where a deeper knowledge of
the time experienced by a job in a queue (e.g., the submission of check-pointed jobs or the submission
of jobs with execution dependencies) allows exploring more effective workflow orchestration policies.
In this work, we focused on applying machine learning (ML) techniques to learn from the historical
data collected from the queuing system of real supercomputers, aiming at predicting the time spent
on a queue by a given job. Specifically, we applied both unsupervised learning (UL) and supervised
learning (SL) techniques to define the most effective features for the prediction task and the actual
prediction of the queue waiting time. For this purpose, two approaches have been explored: on one
side, the prediction of ranges on jobs’ queuing times (classification approach) and, on the other side,
the prediction of the waiting time at the minutes level (regression approach). Experimental results
highlight the strong relationship between the SL models’ performances and the way the dataset is
split. At the end of the prediction step, we present the uncertainty quantification approach, i.e., a tool
to associate the predictions with reliability metrics, based on variance estimation.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-Performance Computing (HPC) paradigm is one of the
ajor enabling factors for the scientific advancements we all
ave seen in the last decades. Indeed, supercomputers continu-
usly raise the bar for performance in each generation, opening
he door to get new insights into complex physical phenomena

∗ Corresponding author.
E-mail addresses: chiara.vercellino@linksfoundation.com (C. Vercellino),

lberto.scionti@linksfoundation.com (A. Scionti),
iuseppe.varavallo@linksfoundation.com (G. Varavallo),
aolo.viviani@linksfoundation.com (P. Viviani),
iacomo.vitali@linksfoundation.com (G. Vitali),
livier.terzo@linksfoundation.com (O. Terzo).
ttps://doi.org/10.1016/j.future.2023.01.020
167-739X/© 2023 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
and allowing us to explore innovative designs for complex in-
dustrial systems at a faster pace than ever. Furthermore, with
the progress of manufacturing technology, more powerful CPUs
are used to complete, in a shorter time than before, ever-large
numerical simulations. At the same time, adding specialised hard-
ware co-processors (i.e., GPUs, FPGAs, ASICs) further allows for
gaining a large performance boost. As such, the next generation
of supercomputers promises to crunch more than 1018 floating-
point operations per second (i.e., 1 ExaFlop/s), providing unprece-
dented computing power for better supporting engineering, drug
designing and many scientific tasks, to mention a few.

Besides the historical task of supporting numerical simula-
tions, supercomputers have recently started to embrace the do-
main of artificial intelligence (AI), where their computing power

is used to train and run very large machine learning (ML) models.

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2023.01.020
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.01.020&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:chiara.vercellino@linksfoundation.com
mailto:alberto.scionti@linksfoundation.com
mailto:giuseppe.varavallo@linksfoundation.com
mailto:paolo.viviani@linksfoundation.com
mailto:giacomo.vitali@linksfoundation.com
mailto:olivier.terzo@linksfoundation.com
https://doi.org/10.1016/j.future.2023.01.020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

w
f
s
d

Indeed, machine learning techniques are foreseen as a profitable
way of improving traditional simulations in terms of results’
quality and simulation speed. Fast technological advancements
provided by heterogeneous hardware are also driving the re-
search on the topic, with an increasing number of works focusing
on better supporting deep learning (DL) models at very large
scales. While recently, many application workflows have been
designed to include ML/DL tasks, the usage of these techniques
is not limited to the application layer. Many works leveraged
machine learning to optimise specific aspects of the use of com-
puting resources in large-scale systems, e.g., improving energy
efficiency [1,2], server consolidation [3], and optimising network
topology [4].

Despite the architectural improvements and the advance-
ments of the connected software stacks, the way supercomputing
resources are provisioned to the end-users almost remained un-
changed for a long time. As in the past decades, supercomputing
resources still remain accessed through a batch scheduler [5],
hich applies an internal scheduling policy to guarantee the

air use of the system among the users. More in detail, batch
chedulers provide the HPC administrators with the ability to
efine specific queues for provisioning specific resources (e.g.,

access to GPU-accelerated nodes) or computing resources ac-
cording to some specific policy. Then, sophisticated heuristic
priority functions are used to prioritise and schedule jobs, still
guaranteeing fair access to the requested resources by all the
users. Generally, these functions are set by system administrators
at the beginning but hardly adapt over time to the changes in
the workloads and optimisation goals, potentially leading to the
degraded overall efficiency of the system. Some alternatives for
overcoming the limited flexibility offered by batch schedulers
have already been proposed [6,7], but their large adoption is far
away. Furthermore, a complete change in the way resources are
provisioned that implies removing batch schedulers is further far
away. Interestingly, some approaches based on ML techniques
have been proposed, already showing promising results [8].

The motivation for this work emerged in the context of two
European projects (i.e., the H2020-LEXIS and the EuroHPC–JU
ACROSS projects) focused on the execution of complex scien-
tific workflows on HPC and cloud environments: in this context,
being able to reliably predict when a job will be executed on
an HPC cluster can improve the overall experience and may
lead to novel scheduling strategies. As such, the capability of
predicting queuing time becomes worth it in many cases; for
instance, optimising the execution of a workflow by reducing the
(wasted) time between the execution of dependent jobs, or in
the case that a given job, with an execution time exceeding the
maximum allowed time on a given queue, needs to be check-
pointed and restarted from the previous state. As a matter of that,
the objective of a job allocation policy based on the presented
prediction capability is closer to the application perspective, since
it can be implemented by an orchestration system which has
the visibility of the entire workflow to be executed. Thus, such
an orchestration system would rely on the evaluation of the
makespan time for a given workflow as the optimisation criterion
targeting the optimal schedule and submission of the jobs on
the queuing system. Similarly, the minimisation of the overall
execution time for a job exceeding the maximum allotted time
on a specific queue can be used as an optimisation criterion.
Similar requirements emerged in the context of the LEXIS project,
where some workflows were required to execute ‘long-running’
jobs (Computational Fluid Dynamics simulations) whose overall
execution time exceeded the maximum allotted time to any
queue of the HPC centre. In a more general perspective, being
able to predict the time jobs spend in a queue with reasonable

accuracy will enable to set up orchestration strategies attempting

216
to provide more deterministic execution of the application work-
flows, by hiding the timing variations coming with complex and
dynamic systems as those associated to batch scheduler queues
are.

Thus, this paper reports the investigation performed on his-
torical data collected on HPC clusters, as well as the results from
the ML techniques applied to predict the queue waiting time.
Precisely, the main contribution is threefold:

• We propose an automated procedure, which combines Un-
supervised Learning (UL) and Supervised Learning (SL) tech-
niques, to predict queue waiting times in an HPC clus-
ter. The UL part corresponds to the preprocessing phase,
where State-of-the-Art approaches are used to discover pat-
terns between jobs’ features and individuate the key ones
for the prediction purpose. The SL part regards the actual
predictions of the target feature (i.e., the queue waiting
time).

• Among the many SL models, we investigated different clas-
sification and regression models to individuate candidate
models on the analysed dataset. When targeting the clas-
sification approach, a major focus is on class definitions.

• Finally, we highlight critical aspects when dealing with sim-
ilar case studies. The study on different dataset splittings
evidences the relevance of the temporal components that
impacts data distributions. Then an uncertainty quantifica-
tion approach is proposed to evaluate the reliability of the
predictions and find correlations with the errors’ distribu-
tions.

The remainder of the paper is organised as follows. In Sec-
tion 2, we describe the most relevant research works concerning
the optimisation and prediction of queuing systems, focusing on
HPC-related ones. Section 3 is devoted to describing the approach
used to collect the dataset coming from one of the HPC sys-
tems exploited in the LEXIS and ACROSS projects, along with
the main attributes that describe the jobs and which are closely
connected to the information used by the batch scheduler to
make decisions upon their execution. We also describe the way
the resulting dataset has been organised and how it has been
split into training and test sets supporting SL prediction models.
While the attributes reported in this paper are linked to a specific
batch scheduler system (Altair PBS Professional1), the proposed
methodology applies to any other batch scheduler system. This
section also introduces the different machine learning models
used in the remainder of the paper, along with their performance
and uncertainty metrics. Section 4 deeply analyses the results
obtained using the different models on the acquired dataset and
validates the methodology on the dataset from the Karlsruhe
Institute of Technology ForHLR II (KIT FHII) System, whose work-
load files are available online2. It highlights the strong relation-
ship between predictions’ performance and how the training
set is extracted from the overall collected data. It also shows
how much uncertainty inherent in the data could affect the
predictions. Finally, Section 5 summarises the main achievements
described in this work and indicates some interesting future
directions of investigation.

2. Related work

The provisioning of supercomputing resources is still domi-
nated by the batch model, where jobs are submitted to a (batch)

1 https://www.altair.com/pbs-professional/
2 https://www.cs.huji.ac.il/labs/parallel/workload/ (accessed: 10/2022)

https://www.altair.com/pbs-professional/
https://www.cs.huji.ac.il/labs/parallel/workload/

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

a
b
a
p
a

p
m
t
l
c
t
v
t
i
A

s
s
d
w
a
p
g
s
a
a
s
(
t
r
u
u
b
(
T
c

p
e
d
s
p
p

A
p
S
w
h
p
o
a
t
t
t
t
c
c
e

b
t
b
C
w
s
(
c
c
e
w
m
e
s
a
t
d
q
t
o
t
N
a
(
e
p
t
t
e

scheduler that decides which jobs to execute based on sophis-
ticated heuristic priority functions. In this context, jobs are or-
ganised into different queues, allowing the system administrators
to differentiate among kinds of resources to access and access
priorities. As such, the optimal management of the jobs entering
these queuing systems becomes the major factor in improving
performance. To this purpose, previous works focused on distinct
aspects of the ‘optimal’ management of the jobs: on one side,
some works focused on optimising the schedule of the jobs; on
the other hand, other works looked at how to make reliable
predictions of the behaviour of the queuing systems.

Apart from the HPC context, the modelling of queuing systems
nd the implementation of associated prediction models have
een considered in other domains, such as transportation systems
nd communication networks. For instance, the authors in [9]
resented an analytical model of the aircraft departure process
t an airport based on the transient analysis of the D/E/1 queuing

system. The authors showed how the proposed model could
be successfully used to predict the expected runway schedule
and takeoff times. Arnab et al. [10] deeply analysed the various
models, effects, and management strategies involved in modern
communication networks. Specifically, they surveyed different
queuing models (e.g., M/M/1, M/M/m, M/G/1, etc.) generally used
to describe queuing systems’ behaviours. In [11], the authors
investigated the modelling and prediction of delays in commu-
nication networks with feed–forward neural networks. Similarly,
Happ et al. [12] developed RouteNet, a graph neural network
augmented to support multiple scheduling policies (i.e., strict
riority, deficit round robin, weighted fair queuing) and handle
ixed scheduling policies, to estimate in advance the delays in

he networks. Another domain where machine learning and deep
earning techniques have been widely applied is that of cloud
omputing [13,14], where these techniques have been explored
o overcome challenges such as finding the optimal allocation of
irtual resource instances (i.e., virtual machines—VMs, containers)
o reduce overall energy consumption, increasing resource util-
sation, guaranteeing Quality-of-Service (QoS) and Service Level
greements (SLAs).
When we move to the specific HPC context, as previously

tated, some previous works targeted either ameliorating the
cheduling strategy of a batch scheduler or making reliable pre-
ictions related to the submitted jobs. In the first case, recent
orks have successfully applied meta-heuristics and optimisation
pproaches. As such, in [15,16] the authors considered multi-
le objectives to be optimised at the same time as the target
oal of the scheduling strategy. In particular, they modelled the
cheduling decision as an optimisation problem that was solved
t run-time (actually, jobs laying within a certain time window
re considered for the schedule, and the others remain in the
ame position within their queues) by using a genetic algorithm
GA). Fan et al. [17] also compared different scheduling strategies
o address some of the issues raised in co-scheduling on-demand,
igid, and malleable jobs on a single supercomputer. RLSched-
ler [8] is another example of a machine learning technique
sed to overcome the general limits of traditional State-of-the-Art
atch schedulers; specifically, it relies on reinforcement learning
RL) to learn from the historical data the best scheduling policy.
he paper shows the capability of the RL approach to adapt to the
hanges in the load and system configurations over time.
Focusing on the application of ML techniques for prediction

urposes, other works can be found in the literature. Soysal
t al. [18] defined and trained an ML model using the meta-
ata information associated with the jobs submitted to a batch
cheduler. The purpose of the devised model was the accurate
rediction of the jobs’ wall time. When compared with our ap-

roach, the authors targeted a different but rather challenging s

217
problem. Despite the presented results being encouraging, the
higher variability of the target prediction feature made us lean
towards the prediction of the queue waiting time. This choice also
opens the door to the implementation of workflow orchestration
strategies that aim at providing more deterministic execution
of jobs with execution dependencies. Wang et al. [19] worked
on run-time predictions: the authors collected data for three
months, reaching nearly 26 thousand jobs’ samples; then, their
ML approach combined unsupervised learning methods, to clus-
ter similar jobs, and supervised learning algorithms to predict
the running time, their best results were obtained combining
K-nearest neighbour (KNN) with a support vector regressor (SVR).

major focus was on reducing the underestimation rate (i.e.,
redicting run-time values that are lower than the actual ones).
ome similarities can be found with our proposed methodology,
hich still combines unsupervised and supervised techniques;
owever, a major difference lies in our choice of using unsu-
ervised techniques to perform an automated preprocessing step
n the acquired input dataset. The run-time prediction has been
lso investigated in [20], where the information regarding the last
wo submitted jobs (by the same user) was exploited to estimate
he run-times and enhance a back-filling strategy. Also, in [21],
he authors performed run-time estimations on jobs submitted
hrough the SLURM batch scheduler (nearly 105 samples were
ollected, with 25% of samples used as the test set). In this
ase, the best results emerged from a classification approach that
xploited Naïve Bayes classifier (NB) and support vector machine

(SVM). Historical data were also used by Smith et al. [22] for
run-time prediction, introducing similarity metrics on jobs’ fea-
tures and aggregating historical run-time as predictions for newly
submitted jobs.

Apart from solely run-time predictions, another work focused
on predicting also the memory footprint of the jobs in the HPC
context. As such, in [23], different supervised ML techniques,
i.e., Linear Regression, Lasso Regression, Ridge Regression, Decision
Tree Regression (DTR), and ElasticNetCV Regression, are applied to
oth predict the concerned features, i.e., the jobs run-time and
heir memory usage, and to establish which of the two could
e the most relevant to predict to reduce the resources wasting.
onversely, concerning the literature on predicting the queue
aiting time (hereafter referred to as ’queuing time’) for the
ubmitted jobs, the authors in [24] used a Naïve Bayes classifier
NB) on eight months based dataset, where the classifier was
ombined with classification probability adjustments to define
lasses boundaries. Furthermore, the analysis of the binning strat-
gy used to classify the queuing time is a contact point with our
ork. Finally, Nurmi et al. [25,26] focused on finding boundaries,
ore specifically upper bounds (UB), on the queuing time, by
xploiting the samples collected during 9 years from different
upercomputers. Their methodology is based on time series (TS)
nd automated changing points detectors; a very relevant charac-
eristic of their work regards the implementation of an automated
owntime detector to identify systemic failures that affect jobs’
ueuing delay. In [27], the authors targeted the prediction of
he queuing time by training a Hidden Markov Model (HMM)
n historical data sampled from the PBSpro batch scheduler (the
argeted supercomputer was the Nurion, which is managed by the
ational Supercomputing Center at the Korea Institute of Science
nd Technology Information—KISTI) over a period of six months
14,759 jobs in total). In this study, the dataset was filtered to
liminate the outliers before training the HMM model, and a
reliminary analysis of the dataset was performed to determine
he degree of correlation between the tracked job’s features and
he observed queuing times. Then, the HMM model is used to
stimate the waiting time in the next period (experiments con-

idered 6 prediction classes corresponding to predicting queuing

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

N

1

w
i

3

a
f
s
f
u
n

p
t
s
c
f

3

c
s
r

Fig. 1. Scheme of the proposed methodology from dataset collection to jobs’ queuing times’ prediction (Twq) and uncertainty quantification (made for Bayesian Neural
etwork models) Uq .
l
(
t
m
p
c
a

o
a
u
f
e
c
m
t
s
a
A
g
t
t
t
Q
c

t
a
c
a
t
e

Table 1
Related works summary: comparison of results and methodology of previous
works concerning HPC predictions.
Ref. Pred. target ML Method Performance

[18] job walltime AutoML [28] Cumulative R2 scores
[19] job walltime KNN + SVR MAE: 46 min
[21] job walltime NB, SVM F1 score: 0.79–0.81
[22] job walltime clustering + avg MAE: 40–119 min
[23] job walltime DTR R2: 0.611
[23] job memory usage DTR R2: 0.638
[24] job queuing time NB Accuracy: 0.78-0.86
[25] job queuing time BMBP for UB 95% level of CI
[26] job queuing time UB from TS 95% level of CI
[27] job queuing time HMM Accuracy: 0.3891

time for 6 different time ranges, e.g., less than 1 min, between
min and 30 min, etc.), based on the observed past waiting times.
Table 1 summarises the best results obtained by previous

orks, exploiting ML techniques to predict different features of
nterest in the HPC context.

. Queuing time prediction with machine learning

Accurate queuing time predictions represent one of the en-
bling factors for improving the execution of modern HPC work-
lows, by allowing to devise the appropriate point in time when
ubmitting the jobs to the batch scheduler. For this purpose, we
igured out a pure machine learning approach, which mixes both
nsupervised learning (UL) and supervised learning (SL) tech-
iques to perform: (i) the preprocessing of the input dataset to

extract the most relevant features for the queuing time prediction
(here, we used UL techniques); (ii) the fitting of SL models to
redict the queuing time of newly submitted jobs. Fig. 1 depicts
he overall approach we followed. In the following, we deeply de-
cribe the methodology which covers the whole process, from the
ollection of data coming from a production supercomputer to the
inal steps that involve predictions and uncertainty quantification.

.1. Dataset description

The input dataset is of paramount importance in using ma-
hine learning techniques, especially in the case of SL ones,
ince it determines the knowledge base from which the algo-
ithms ‘learn’. Datasets publicly accessible exist3; however, to
provide significant results in the context of the ACROSS and LEXIS
projects, we referred to a real-world supercomputer involved
in both projects. Thus, we collected data for 34 days from an

3 https://jsspp.org/workload/
218
HPC cluster, consisting of 192 standard computational nodes, 8
GPU-equipped compute nodes and 1 fat node endowed with 6
TB RAM. The data were collected by periodically querying the
batch scheduler (i.e., in our case, it was the Altair PBS Profes-
sional, hereafter referred to as PBS), allowing us to keep track
of the jobs’ status evolution over time. Keeping in mind that
HPC cluster resources are provisioned through a queuing system,
we investigated the most peculiar characteristics of this cluster’s
queues. It is worth mentioning that, in some cases, access to
dedicated queues is regulated by special authorisations. Given
that, we exploited only data related to accessible resources: those
associated with the freely accessible queue (hereafter referred
to as QF), the production queue (we will refer to as QP), the
ong-running jobs queue (QL) and the short-running jobs queue
QE). It is relevant to notice that, even if these queues reflect
he characteristics of specific types of HPC jobs, the proposed
ethodology is not directly linked to them. Therefore, the whole
rocedure can be replicated on other clusters which use different
riteria to assign jobs to the relative partitions, i.e., queues, and
pply their custom limitations on users’ requests.
Concerning the mentioned queues, PBS collects a large set

f attributes that characterise the submitted jobs [29]. These
ttributes can be easily retrieved by querying the batch sched-
ler via a dedicated command (qstatf). This query provides JSON
iles containing all jobs as JSON elements. So, some further data
ngineering has been needed to map the samples to a dataset
onfiguration that reflects the relationships among jobs: how
any jobs precede in a queue for each job sample, what is

he cluster status, concerning running jobs, when a new job is
ubmitted, etc. Table 2 shows the overall attributes we associ-
ted with each job sample, including some hand-crafted features.
mong these attributes, Rattributes and Qattributes are aggregated
roups of attributes. They reflect jobs’ characteristics at the clus-
er level (whenever the attribute is prefixed by cluster) or at
he level of a queue (in this case, the attribute is prefixed by
he queue’s name). Rattributes refer to the running jobs, whilst
attributes refer to jobs queued in the system and preceding the
onsidered job.
From the batch scheduler command line interface (the PBS qs-

at -xf command in our case) is possible to collect the attributes of
ll the jobs that completed their execution; then, these attributes
an be used as the targets (labels) of a prediction model. Among
ll the possible targets, we focused on predicting Twq, i.e., the of
ime jobs wait in the system queues before being scheduled for
xecution on the cluster’s resources.

• Twq: it indicates the total amount of time (measured in min-
utes) that a job has waited in the queue, and it is obtained
from the eligible_time attribute.

• Tr : it indicates the total amount of time (measured in min-
utes) that a job has run, and it is obtained from the
resources_used:walltime attribute.

https://jsspp.org/workload/

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

b

o
p
a
t
o

Table 2
Main attributes related to the jobs submitted to PBS. Whenever Qattributes
and Rattributes refer to a specific queue, this latter is selected by the qname
elonging to one of the accessible queues, i.e., QE, QP, QL, QF.
Attribute Description

priority Priority score that incorporates queue priority, fair-share
priority and eligible time

rerunnable Boolean attribute specifying if the job can be restarted
from the beginning without harmful side effects

qtime Timestamp in which the job enters the queue
queue The queue to which the job is submitted
state_history A string that tracks the job’s status changes
walltime The maximum running time requested by the user for the

job
fairshare The fairshare priority score
nodect The number of execution nodes requested for the job
ncpus The number of CPUs requested for the job, it is a

multiple of nodect

Rattributes:
num_job The number of jobs running
nodect The number of execution nodes

requested by the jobs running
used_cpupercent The total CPU percentage of the jobs

running
used_cput The total CPU time of the jobs

running
used_mem The total physical memory used by

the jobs running
used_ncpus The total number of CPUs used by

the jobs running
used_vmem The total virtual memory used by the

jobs running
used_walltime The total execution time actually

used by the jobs running
walltime The total execution time requested

for the jobs running

Qattributes:
priority The total priority score
eligible_time The total waiting time, in minutes, of

the jobs preceding the considered
one

ncpus The total number of CPUs requested
by jobs preceding the considered job

nodect The total number of execution node
requested by jobs preceding the
considered one

num_job The total number of jobs preceding
the considered job

walltime The total walltime, in minutes,
requested by jobs preceding the
considered job

• CPUperc : it expresses the percentage of CPU usage, sum-
ming up all the requested CPUs; it is obtained from the
resources_used:cpupercent attribute.

• CPUtime: it indicates the total CPU time used by the job (ex-
pressed in minutes); it is obtained from the resources_used:
cput attribute.

• Memphy: it provides the amount of physical memory used
by a job (expressed in KB), and it is obtained from the
resources_used:mem attribute.

• Memvir : it provides the size of virtual address space used
by a job (expressed in KB), and it is obtained from the
resources_used:vmem attribute.

It is worth mentioning that among the previously cited attributes,
the Twq of a considered job has a strong relationship with the Tr
f all the jobs preceding it on the queuing system. So, in princi-
le, being able to accurately predict Tr would imply an equally
ccurate prediction of Twq. Anyway, this approach to predicting
he queuing time brings along some drawbacks: (i) the prediction
f T is highly dependent on the HPC jobs’ specific use case, and
r

219
Table 3
The mean (measured in minutes) and standard deviation
for the Twq target attribute along with the explored queues.

Queue name Mean [min.] Standard deviation

QE 14 126.61
QF 192 514.15
QL 328 827.64
QP 122 215.95

all queues 156 409.68

there is no general relationship with other attributes that charac-
terise the jobs, except maybe for the walltime that can be set by
the users and may be significantly larger than Tr (ii) the batch
scheduler implements its logic for HPC jobs allocation, that is
usually quite complicated to reproduce faithfully, e.g., back-filling
strategies, urgent jobs submissions and jobs deletions, among the
others should be handled carefully (iii) predicting directly Twq
may help in aggregating noise coming from scheduling strategies
and users’ overestimation of the needed walltime.

The whole dataset has 90 columns, with 84 representing the
features and 6 possible target labels. The dataset consists of
37,859 samples collected over 34 days and can be split as follows:
20,512 samples belong to the QF queue, 15,510 samples come
from the QP queue, 1,692 samples have been collected from the
QE queue, and finally, only 145 samples from the QL queue. These
samples correspond to jobs whose entire execution process could
be tracked, i.e., from entering the queuing system to exiting it.
Table 3 summarises some basic statistics (mean and standard
deviation) on the Twq attribute for the various accessed queues as,
among the available target labels, it is the one of interest. From
the samples’ distribution among the queues, we can notice that
34 days would not be sufficient to train a separate prediction
model for each of them: indeed, QE and QL have too few sam-
ples. However, some information could still be gathered through
other queues’ data to make predictions for these less-represented
queues. The physical resources accessed via QL and QE partially
overlap with those accessed through the other queues: out of the
192 nodes in the cluster, QE, QP, QL and QF have respectively
access to 189, 187, 20 and 189 computational nodes. Thus several
nodes can be accessed by more than one queue.

Given that, we built the following three datasets to evaluate
our methodology:

• D-Q*: this dataset contains the samples coming from all the
monitored queues, thus allowing us to make predictions also
for samples belonging to QE and QL queues, without the
need of collecting further data for these specific queues.

• D-QF: this dataset only contains samples referring to jobs
submitted to the QF queue.

• D-QP: as for the D-QF dataset, but with samples referring to
the QP queue.

Among the possible targets, we focused our attention on the
Twq attribute, since it may strongly influence any strategy aimed
at improving the execution of workflows on a batch scheduler-
based system. A first observation that can be done is that Twq
is highly variant both in time (see Fig. 2(a)) and among jobs
belonging to the same queue (see Fig. 2(b)), thus justifying the
prediction purpose. Secondly, the collected data presents highly
variable distributions over time, and this variability is reflected
in the relationships between the target labels and the attributes
used to make the predictions. As such, any dataset we intend to
use for building the prediction model needs to be appropriately
split. To point out how much this can be important, we split the
three datasets according to the following strategies: (i) random
split – the test set is sampled randomly and in the case of the D-
Q* dataset the samples are stratified over the queues, accounting

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230
Fig. 2. Queuing time Twq distribution plot for the jobs in the D-Q* dataset: on the left (a), there are the queuing times time-series collected over a 34-day time
window for each queue; on the right (b), there is the boxplot of the queuing time for each queue.
for the 10% of the total samples; (ii) last-day split – the training
set is made of all the data that correspond to jobs that ended
their executions before the last day in the dataset, while the test
set consists of the remaining jobs, only considering the ones that
entered in the queue system after the last job in the training set
has finished its execution; and (iii) window-based split – the
training and the sets are iteratively formed using the temporal
split described before (last-day split), but the time windows are
of 7 days for the training set and 1 day for the test set. In this
latter strategy, multiple training and test sets are defined and
evaluated as the time-windows slide along with the whole 34-day
dataset.

3.2. Data preprocessing phase

Each constructed dataset requires some preprocessing steps
before being used by a learning model. This preprocessing aims
at reducing the dimensionality of the features and improving the
quality of the results. First, a scaling step is performed, the sample
mean and the sample variance are computed on the training sets,
and then they are used to normalise both the training and the test
sets. After that, a dimensionality reduction step takes place. The
following two approaches are combined to aggregate correlated
features and select those that are relevant for the prediction
purpose.

PCA-based Features Aggregation (PFA) The first approach we
considered in the dimensionality reduction step is to perform the
Principal Component Analysis (PCA) [30] on the input dataset,
that at this step is yet split into training and test sets. The
outcome of PCA is uncorrelated features, i.e., the principal com-
ponents (PCs), that are a linear combination of the original scaled
features. PCs represent the maximum variance directions along
which data are projected [31]. This allows summarising effec-
tively high-dimensional data when the considered PCs are limited
to the first N components, with N significantly lower than the
original dimension [32]. In our case, the number of principal
components (PCs) is selected considering the relative increment
of explained variance obtained by adding new components. Sub-
sequently, the scaled features are clustered according to the prin-
cipal components’ loadings, which are weights associated with
the original features in the linear combinations. The clustering
technique we chose is hierarchical clustering with Ward linkage,
with the number of clusters selected by thresholding the clusters’

distances. As such, we aggregate samples’ features that are highly

220
correlated with one another. The features belonging to the same
cluster form a single new feature through the mean function.
According to a non-anticipative strategy, the PCs’ computation
and the following features’ aggregation are based exclusively
on the samples belonging to the training set. Once the proper
features’ aggregations are computed on the training set, then the
same aggregations take place on the test set features.

Features selection (FS). Feature selection is an important and
challenging task in statistical modelling. After the PFA step, the
most relevant features for predicting the target variable Twq are
selected by applying the Lasso regression [33–35]. Lasso regres-
sion automatically selects useful features while discarding ones
not related to the target variable or that introduce redundancy.
The approach relies on a linear regression model enhanced by
a penalty strategy: the fitting of the statistical model minimises
both the residual sum of squares of linear regression and the
absolute values of the regression coefficients, thus shrinking to 0
the ones that correspond to predictive features that do not relate
to the target variable. In the Lasso regression context, the absolute
values of the regression coefficients play the role of relevance
scores; the higher they are, the stronger the relationship with
the target variable. So, for this capability of selecting relevant
features, the Lasso regression is chosen to perform the features
selection process: the variables that have a non-zero regression
coefficient are selected as predictive attributes for the subsequent
SL step, whereas the other ones (i.e., those whose regression
coefficient is zero) are considered unrelated with respect to the
Twq target and discarded. Feature selection is fit on the samples
belonging to the training sets, then the selected features are also
extracted from the test set.

To exemplify the whole preprocessing procedure, in Fig. 3, we
report the results obtained on the D-Q* dataset with the last-
day split. In this case, the PFA step found 21 feature clusters,
with the features belonging to a certain cluster correlated to each
other. For instance, Cluster 5 (see the plot on the left in Fig. 3)
contains all the features that represent the resources requested
for the jobs belonging to the QE queue. As such, it aggregates
QE_Q_ncpus, QE_Q_nodect, QE_Q_num_job, and QE_Q_walltime. On
the other hand, Cluster 14 aggregates QP_R_used_mem and QP-
_R_used_vmem features that summarise the HPC cluster memory
usage for the running jobs submitted to the QP queue. As this
first step is totally unrelated to the predictive attribute Twq, the FS

step is applied to find the relationships between the aggregated

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

l

f
s
r
C
p
w
t
a
p
t
n
r
s
Q
w
r
t
L
l
a
t
c

3

v
i

Fig. 3. PCA correlation circle (on the left) and features relevance (on the right), obtained from the preprocessing steps applied to the D-Q* dataset according to the
ast-day split.
eatures and the Twq, thus also setting a common background with
upervised learning techniques. Fig. 3, the right plot, reports the
elevance score of the selected aggregated features. For instance,
luster 2 has the highest relevance score, it indeed includes the
riority of the submitted jobs and the specific queue where they
ere submitted: these two features highly impact the waiting
ime (the higher the priority, the sooner the job execution begins)
nd have a high correlation (due to the considered HPC cluster
olicy, the computation of the priority scores takes into account
he belonging queue). Still looking at the right plot in Fig. 3, we
otice that the Lasso analysis excluded aggregated features rep-
esented by Cluster 4, which mixes up the features of running job
ubmitted to the QP queue (i.e., the QP_R_nodect, QP_R_num_job,
P_R_used_cpupercent, QP_R_used_ncpus, QP_R_walltime). Being
illing to figure out the reasons for discarding Cluster 4, the
eader can realise that they might be different. On one hand,
here is the limit of the linear hypothesis that lies behind the
asso approach; as such, the aggregated feature does not have a
inear relation with the predictive attribute. On the other side, the
ggregated features are discarded as the information concerning
he running jobs submitted to the QP queue just marginally
ontributes to the prediction of the Twq target.

.3. Overview on the supervised learning models

As a matter of evaluating the capability of different super-
ised learning (SL) models on the task of predicting the Twq, we
nvestigated the application of models falling into two categories:

• Classification models highly depend on the binning of the
queuing time (i.e., the time a job spends waiting in the
assigned queue); as such, they require to discretise the
labels Twq. Classifiers can be effectively exploited either for
predicting the order of magnitude of the queuing time or
when the classification bins can be defined to well-fit the
data distribution.

• Regression models are the more natural choice for a con-
tinuous attribute. They can treat each job’s submission as a
sample, without requiring any particular data manipulation,
thus preventing the introduction of approximation errors

due to the discretisation process. As such, they are able to

221
provide very precise predictions, thus allowing us to target
near-optimal scheduling of jobs (when their performances
are good enough), especially in those cases there is a logical
dependence among them (i.e., workflow’s jobs).

3.3.1. The classification approach
The Twq classification task requires a further data manipulation

step. We investigated four different approaches to discretise the
time, where the number of time-steps used in the discretisation
process corresponds to the number of classes (Ncls) used by the
classification models.

• Uniform time binning (U-bin): Twq is discretised using a
constant time-step for each class.

• Log-uniform time binning (LU-bin): first, we transform the
Twq into T ∗

wq = log2(Twq); then, this transformed log-times
(i.e., T ∗

wq) are binned with constant time-step. Finally, the
classes are obtained by inverse transforming the boundary
of the bins. In this case, the classes reflect mostly the order
of magnitude of the queuing time.

• Log-KMeans time binning (LK-bin): the labels are trans-
formed through the log2(·) function as in the LU-bin case;
however, here the bins are determined by applying a K-
Means algorithm targeting a number of clusters equal to
Ncls.

• Balanced time binning (B-bin): the boundaries of the bins
for the Twq classes are computed in such a way that the
training samples represent balanced classes, i.e., with nearly
the same number of samples for each class.

It is worth noticing that the bins are computed using the data
referring to the training set, while the classes are then obtained
for the whole dataset. Table 4 summarises, for each of the above-
described binning approaches, the number of samples belonging
to each class, as Ncls changes. The tables also report, for each class
and each binning approach, the mean queuing time (expressed
in minutes), which has been computed with respect to the time
boundaries of the classes. The interpretation of a job belonging
to class Ci, i ∈ {1, . . . ,Ncls} is that its queuing time is in the time
interval [T i

a, T
i
b], where T i

a and T i
b (T i

a < T i
b) are the boundaries
used to discretise the time domain. The reader can observe that

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

a
t
i
s
p
e
a

Table 4
Queuing times discretisation for classification models: for each class, we show the corresponding mean and standard deviation (std) of the queuing times, along
with the number of samples. The mean times are reported in minutes. These tables refer to the case of classes build over all samples in D-Q*.

Ncls = 4

U-bin LU-bin B-bin LK-bin

Class Samples Mean Std Samples Mean Std Samples Mean Std Samples Mean Std

C1 37,187 698 197 6,672 5 3 9,424 7 4 6,992 4 3
C2 440 2,096 450 19,453 42 16 9,511 24 6 17,439 32 13
C3 217 3,493 412 9,519 361 142 9,444 70 20 8,694 170 66
C4 15 4,891 438 2,215 3,119 984 9,480 2,847 690 4,734 2,938 837

Ncls = 6

C1 36,781 466 164 3,347 3 1 6,307 4 3 2,434 1 1
C2 550 1,398 227 8,708 11 4 6,294 13 3 9,187 9 4
C3 296 2,329 330 14,070 46 14 6,334 27 5 13,344 38 11
C4 95 3,261 385 7,229 195 66 6,323 48 7 6,569 134 42
C5 135 4,193 167 3,787 821 244 6,283 136 40 5,208 535 192
C6 2 5,124 1 718 3,459 936 6,318 2,900 776 1,117 3,225 1025

Ncls = 8

C1 35,932 349 128 2,525 2 1 4,722 3 2 2,081 0 1
C2 1,255 1,048 205 4,147 6 2 4,702 9 2 5,323 5 2
C3 250 1,746 221 9,020 17 5 4,743 18 3 8,275 17 5
C4 190 2,445 192 10,433 50 12 4,768 28 4 9,406 42 9
C5 41 3,144 206 5,660 147 42 4,769 43 5 4,980 104 25
C6 176 3,843 185 3,859 433 117 4,677 78 16 4,041 261 68
C7 13 4,542 73 1,711 1,274 310 4,736 195 54 2,756 736 209
C8 2 5,240 1 504 3,746 786 4,742 2,938 837 997 3,344 966
the U-bin approach produces the most unbalanced classes, with
the unbalancing increasing with the number of classes. In this
situation, a classifier that assigns to each sample the most repre-
sentative class in the training set could easily reach a 0.94−0.98
ccuracy. This observation led us to evaluate the performance of
he classification models considering the F1-score metric, which
s less affected by the unbalancing of the classes than the accuracy
core, and so it better represents the ability of the models to
redict the correct classification. We also used a time-based error
valuation metric, called Mean Time Absolute Error (MTAE), that
verages over the Time Absolute Error (TAE) samples defined as

follows:

TAE =

{
0 Ci = Ĉi

min(|T̂ i
a − tq|, | ˆT i

b − tq|) Ci ̸= Ĉi
(1)

where Ĉi, with time-boundaries [T̂ i
a,

ˆT i
b], is the predicted class, Ci

is the true class, and tq is the actual queuing time of the evaluated
job.

Looking at some preliminary classification results, we realised
that the U-bin approach generated a time discretisation able to
drive the classification algorithms to the best results in terms
of classification accuracy. However, the high unbalancing among
the classes makes these results unreliable and suggests that this
binning is more tailored to an outliers detection task than to a
classification one. Indeed, the classification models were able to
reach good performance basically by assigning all the test set
jobs to the first two or three more representative classes. The
B-bin approach puts jobs that are too different from each other
within the same class: this strong balancing policy reduces the
information about queuing times distribution, thus leading to
the worst classification results. LU-bin seemed to provide reliable
results (in terms of class balancing), without worsening too much
the prediction performance. Moreover, considering the PCA out-
comes of the preprocessing step, the projection on the first 3 PCs
(see Fig. 4) suggests that the logarithmic scale of T ∗

wq combined
with a proper feature selection step could lead to interesting re-
sults. At last, the further improvement on the logarithmic binning
provided by the LK-bin approach is our choice to evaluate the
classification models, as it better reflects the distribution of the
labels.
222
As previously mentioned, we evaluated different classification
models in order to determine the best combination of UL and SL
algorithms for predicting the target Twq label. In the following,
these algorithms are briefly presented.

Naïve Bayes classifier (NB). This classification model is based
on the Naïve Bayes algorithms4 (i.e., the Multinoulli version for
categorical variables and the Gaussian version for the continuous
ones) and relies on the assumption that the features are condi-
tionally independent of the classes’ distribution. This assumption
may affect the performance of the classifier. Anyway, despite this
assumption being tough to fully satisfy, this model has previously
been used for performing HPC queuing time predictions [24]
with good results. Moreover, it can be easily adapted to perform
real-time predictions without needing a (complex) continuous
retraining process.

K-Nearest Neighbours classifier (KNN). This classifier is con-
trolled by the positive integer hyper-parameter K . For each test
sample xi, the KNN classifier identifies the nearest K points in the
training data that are closest to xi and then it estimates the con-
ditional probability as the fraction of points in the neighbourhood
of xi belonging to each class. Finally, KNN applies the Bayes rule
to determine the class with the largest probability and classify
the test observation.

Neural Network classifier (NN). This model does not require
specific hypotheses on the input features and usually, it well-
performs in approximating non-linear data distributions, hence
it is broadly used in the ML context. As a drawback, standard
NN-based models lack reliability metrics about their predictions,
which are of crucial importance if critical decisions (e.g., how
workflows’ jobs should be scheduled) are made based on the
obtained predictions. Moreover, NNs are intrinsically dependent
on hyper-parameters (e.g., the number of hidden layers and the
number of nodes in each layer) that are difficult to relate to
the models’ performance. Finally, continuous retraining of these
models over time, according to data distribution changes to avoid
their obsolescence, can be computationally expensive. From this

4 https://pypi.org/project/mixed-naive-bayes

https://pypi.org/project/mixed-naive-bayes

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

D
D
v

p
l
t
c
m
l
a
c
l
o
r
p
r
c
l
d
t
e
a
r
a

c
t
d
p
B
d
t
e
p
m
w
w

Fig. 4. Scatter-plot of the jobs’ queuing time distribution, projected along with the first 3 principal components (PCs). On the right, the plot is related only to the
-QF dataset, on the left the one concerning D-Q*. Each scatter-point is a job and the colour represents the job’s queuing time (Twq) in log2-scale. Especially in the
-QF case, we can observe a relation between the queuing time distribution and the principal components: increasing values of PC 1 and PC 3 and decreasing the
alues of PC 2 correspond to higher Twq .
oint of view, even not optimal hyper-parameters setting al-
ows, in most cases, to achieve better results than other predic-
ion models. Concerning the drawback of continuous retraining,
ontinual learning could come in handy, allowing the trained
odel to learn new data features without forgetting the previous-

earned ones [36]. As such, we let this possible development
s an open door for future works. Looking at the chosen NN-
lassifier for our experimental evaluation, we opted for a multi-
ayer model, composed of 4 hidden layers consisting respectively
f 256, 128, 64 and 32 neurons. The number of input neu-
ons was set equal to the number of features generated by the
reprocessing step, while the output layer, consisting of Ncls neu-
ons, undergoes a soft-max activation function to obtain the
lassification probabilities. The loss function is a Cross-Entropy
oss function with L2-regularisation applied to the weights and
ropout regularisation (i.e., dropout probability was set to 0.2
o better prevent over-fitting). The weights were updated by
xploiting the Adam optimiser with the learning rate found using
learning rate finder function, relying on the cyclical learning

ates technique [37]. Finally, the batch size has been fixed to 256,
nd the number of training epochs was set to 100.

Bayesian Neural Network classifier (BNN). This NN-based
lassifier has the same architecture and hyper-parameters as
he previously described NN classifier. Unlike this latter, the
ropout layers are activated also in the inference phase, thus
roviding a non-deterministic classification (hence, the name
ayesian Neural Network — BNN classifier). This model, with the
ropout applied before every weight, the L2-regularisation and
he Cross-Entropy loss function, is shown to be mathematically
quivalent to an approximation of the probabilistic deep Gaussian
rocess [38,39]. Therefore, it is possible to compute uncertainties
etrics to evaluate the reliability of the model’s predictions,
ithout implementing a more complex variational NN model
ith twice the number of parameters. The final classification
223
leverages Monte Carlo (MC) simulations; as such, we applied
200 MC iterations and we got as well 200 predictions for each
sample to evaluate. Then, the final predicted class is the most
representative of the predictions.

3.3.2. The regression approach
With the regression models, we target to predict Twq with

the granularity of minutes, thus, avoiding further manipulation of
the overall features. The performance of the models is evaluated
on the test set samples using the Mean Absolute Error (MAE)
metric (expressed in minutes). As for the classification approach
cases, in the following, we briefly describe the various models we
evaluated.

K-Nearest Neighbours regression model (KNN). This model
is the regression counterpart of the KNN classifier introduced in
Section 3.3.1. The final prediction of test samples is obtained by
averaging their neighbourhood computed on the training set.

Multi-Layer Perceptron (MLP). Similarly to the KNN case, this
model architecture reflects the one described in the classification
subsection. The only modifications concern the loss function and
the output layer. In the former case, we exploited the mean
squared error loss function, in the latter case the output consists
of just one neuron with a ReLU activation function.

Bayesian Multi-Layer Perceptron (BMLP). This is the Bayesian
version of the MLP, with the dropout layers also activated in
the inference phase. This model allows for obtaining uncertainty
scores, whose correlation with errors can be investigated. It is the
regression counterpart of the BNN classifier (see Section 3.3.1);
hence it shares the same architecture and the same training
and inference hyper-parameters (i.e., dropout probability, training
epochs, batch size and MC iterations).

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

f
t
d
c

V

e

t
c

S

4

o
3
t

4

s

3.4. Uncertainty quantification

When using BNN models, we can rely on a standard approach
or uncertainty quantification. In particular, we estimate the to-
al predictive uncertainty Var(Y |X) by exploiting the predictive
istribution [40]. According to the law of total variance, Var(Y |X)
an be split into 2 components as follows:

ar(Y |X) = Var(E[Y |X, Θ]) + E[Var(Y |X, Θ)] (2)

where Y represents the target variable distribution, X is the
input features distribution and Θ models the random param-
eters within the Bayesian NN-based model. The two compo-
nents in Eq. (2) represent respectively, the epistemic uncertainty
Var(E[Y |X, Θ]), and the aleatoric uncertainty E[Var(Y |X, Θ)]. The
former refers to the uncertainty of the model, and it can be de-
creased by introducing more training data, for instance, to better
represent some classes in a classification task. Epistemic uncer-
tainty can also be affected by the model architecture. Conversely,
the latter concerns data’s inherent randomness, which can be
either constant along with data (homoscedastic) or a function of
the data itself (heteroscedastic). Aleatoric uncertainty cannot be
reduced, but it can be learned from data in its heteroscedastic
component. We will estimate the total variance through Monte
Carlo sampling both in the case of regression and classification
models.

Var(Y |X = xi) = Var(E[Y |Θ; X = xi]) + E[Var(Y |Θ; X = xi)]

≈
1
T

T∑
t=1

f (xi, θt)2 − (
1
T

T∑
t=1

f (xi, θt))2 +
1
T

T∑
t=1

S2(xi, θt) (3)

To be more precise, Eq. (3) describes how to approximate the
uncertainty for a given data sample xi. Here, f (·, ·) is a forward
valuation of the Bayesian NN-based model, θt represents the

set of parameters sampled by the Monte Carlo (MC) simulations
exploiting variational dropout, T is the number of the MC iter-
ations, and S2(·, ·) is the predictive variance concerning the Y
variable distribution. For instance, in the case of the classification
model, where we have a Bernoulli distribution for each one of
the possible classes, with pc,i,t representing the probability of
assigning sample i to class c with a single forward evaluation t ,
he predictive variance is given by Eq. (4). Here, ĉ is the predicted
lass.
2(xi, θt) = pĉ,i,t (1 − pĉ,i,t) (4)

. Results

In the following, we analyse the results obtained from a study
n the performance of the various UL and SL approaches over the
4-day data we collected on a real-world production cluster and
he KIT FHII dataset.

.1. Classification results

In this section, we compare the results obtained with the clas-
ification models applied to the D-Q*, D-QF and D-QP datasets.
Firstly, we want to highlight the relevance of the dataset splitting
in training and test sets. In this context, job submissions that
are very close in time to each other may refer to a status of the
queues that have a negligible change. In this case, performing a
random split in both training and test sets allows for obtaining
artificially good predictions. This fact is confirmed by comparing
Fig. 5 plots. KNN and NN-based models achieved good F1-score
and MTAE performance when the test set is sampled randomly,
whereas the performance considerably decreased for the predic-
tions using a last-day split. Generally, the NB classifier seems to
224
perform poorly, irrespective of the dataset split strategy used. Al-
though poor performance is predictable when the last-day split is
applied (as for the other classifiers, the temporal split introduces
high variability between training and test set distributions), the
low F1-scores obtained by the NB classifier, even in the case of the
random split, might be a symptom that the model is not suitable
for the proposed prediction task. A motivation for this can be
found in the strong hypotheses of conditional independence that
are the basis of the NB classifier and that are not consistent with
the actual distributions of the predictive features and the target
variable.

When moving to compare the performance of queue-specific
(we took into consideration models for D-QF and D-QP datasets)
classifiers with that of models treating all the queues at once,
specialised models trained on QF queue data performed better.
However, interestingly to notice, this well-performing behaviour
is not reflected in the dedicated models trained on the QP dataset.
Therefore, it is difficult to establish whether queue-specific mod-
els should be preferred to a unique model which refers to all the
batch scheduler queues.

Starting from these considerations, we investigated the re-
lationship between classification performances and data distri-
bution through uncertainty quantification. Thus, we applied a
window-based split, and, to avoid partially represented days, we
removed the first day (Day 0) and the last day (Day 33) from the
overall dataset; then, we made a weekly-based split of the re-
maining days (that is why the results in Fig. 6 cover days from the
8th to the 32nd). The classification results presented here concern
the D-Q* dataset using 4 classes to assign labels since a higher
number of classes lowered the classification performance. Since
the NN-based models appear like a more natural choice when the
model has to deal with a temporal-aware split, we addressed the
BNN classifier. This latter has also the advantage that, in addition
to its deterministic counterpart, it provides proper uncertainties
metrics. In particular, referring to Fig. 6, we can highlight a con-
nection between uncertainties among the test set predictions and
the F1-score on the same test set. The histograms associated with
each day represent the number of samples belonging to certain
ranges of uncertainty. Each daily histogram has 15 bins and a
variance limit range going from 0 to 0.3 (the top-left corner of
each of these plots corresponds to the origins). We observe higher
total uncertainty among samples corresponds to lower F1-score
(see, for instance, Day-8, Day-25, Day-26, and Day-27); on the
contrary, days for which the models achieved good classification
performance correspond to lower uncertainty. It is worth noticing
that the greater contribution to the total uncertainty derives from
the aleatoric component. In particular, the predictions present a
relevant heteroscedastic aleatoric component that highlights the
presence of data-dependent noise.

Finally, as a general observation concerning the performance
of the classification models and datasets with a log2(·) trans-
formation applied, we remark that the models we considered
in this study tend to be less accurate in the predictions as Ncls
increases; as such, the F1-score decreases and the MTAE metric
increases accordingly. We interpreted this general behaviour as
the consequence of the following two main facts:

• Increasing the number of classes (Ncls) makes it more diffi-
cult to distinguish between jobs’ belonging to classes that
are less separated in the time dimension. This is even more
prominent when we consider the first classes since they are
the ones nearest in time (keep in mind the log2 transforma-
tion).

• Another significant consequence of increasing the number of
classes is that the number of samples belonging to each class

is reduced. On average, the 8-classes classification relies on a

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

a

Fig. 5. Classification results at the varying of the number of classes (Ncls) and the classification models.
Fig. 6. Connection between classification performance (F1-score) and uncertainties of the predictions on the D-Q* dataset, with weekly training of the BNN classifier
nd Ncls set to 4.
number of samples per class that is halved compared to the
4-classes one. Moreover, as Ncls increases, the unbalancing
between the classes increases as well. For instance, in the
4-classes classification, the less represented class has a num-
ber of samples equal to the 27% of the samples belonging to
225
the most represented class; on the contrary, in the 8-classes
classification, this ratio decreases to 10%.

As previously stated, all these considerations led us to investigate
the regression models as a better alternative to their classification
counterparts, since they are able to provide a prediction with

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

s
w
w
e
a

D

w
d
f
s

t

s
w
o
h
b

o
m
t
f

a minute-scale granularity. The following subsection details the
experimental results we obtained using regression models.

4.2. Regression results

With the regression models, we evaluated the capability of
upervised learning approaches to predict the target Twq variable
ith a temporal scale of minutes. As in the previous subsection,
e remark on the relevance of proper dataset splitting. To this
nd, the plots in Fig. 7 reflect the same splitting approaches
lready used in the classification task, i.e., a random split on

one hand (Figs. 7(a), 7(b), 7(c)), and a last-day split on the other
hand (Figs. 7(d), 7(e), 7(f)). We considered the D-Q* dataset, the
-QF dataset and the D-QP dataset for our evaluations. All the

reported plots represent the distribution of the Absolute Error
(AE) expressed in minutes for the samples belonging to the test
set, according to the used regression models.

First, the plots concerning the performance evaluation on the
D-Q* dataset point out the variation of the errors among the
queues. Specifically, in Fig. 7(a), we observe that all the regression
models performed pretty well. In particular, the MLP regressor
has lower outliers’ errors on the QF, QP and QE queues than the
other two models. Samples belonging to the QL queue are tough
to predict correctly, as this is emphasised in Fig. 7(d). Indeed,
in this case, the major contribution to the mean absolute error
(MAE) on the test set is ascribed to the QL queue. This can be
easily related to the very small number of samples belonging
to this queue. Another worth-noticing behaviour concerns the
(test) errors related to the samples belonging to the QF queue.
Here, the small errors we see in the case of the random split
become quite large when the last-day split is applied. This trend
is maintained in the subsequent two plots (i.e., Figs. 7(b) and 7(e)),
here the samples in the test set exceed 250 min of AE and are
efinitely not negligible. On the contrary, the samples coming
rom QP present a more stable behaviour for the two different
plits, so the outliers’ errors are lower when the last-day split is
applied (see Figs. 7(c) and 7(f)).

To better study the variability of the AEs, we also applied
the window-based split to the D-Q* dataset, being careful of
removing only the QL samples. In this case, the chosen regres-
sion model was the BMLP, as it provides variance scores and
has performed quite equivalently to the other models. Looking
at Fig. 8, for each subplot, we reported day-by-day the AEs on
the y-axis and the variance on the x-axis. Moreover, we added
information concerning the maximum AEs, to give a reference
scale for the plots. These daily 2D histograms distinguish the
contributions of each queue: we can notice that, across the days,
the greatest errors are due to the queuing time prediction of the
jobs belonging to the QF queue. Another interesting observation
concerns the relationship between the variance values and the
AEs. Indeed, discarding the predictions concerning the QF queue’s
samples (in this case, it seems that these samples bring a lot of
erroneous and noisy predictions), we can see that usually, greater
variance values correspond to greater errors on the test samples
belonging to the QE and the QP queues.

4.3. Comparison with the KIT FHII dataset

This other dataset is obtained from workload files covering a
period of approximately 1 year and 8 months on the KIT FHII
System. The collected data refers to 2 HPC queues, respectively
named Q1 and Q2. Some basic statistics concerning the queuing
times are summarised in Table 5. To provide a fair comparison
with previous results, we elaborated the workload dataset to
match the attributes available in our dataset as much as possible.
Table 6 shows all the features we succeeded in obtaining for the
226
Table 5
The mean (measured in minutes) and standard deviation
(std) for the Twq target attribute along with the queues in
the KIT FHII dataset.
Queue name Mean [min.] Std Samples

Q1 149 2897 112006
Q2 6 74 2349

all queues 146 2868 114355

Table 6
Attributes available in the KIT FHII dataset. Whenever Qattributes and Rat-
tributes refer to a specific queue, this latter is selected by the qname belonging
o one of the accessible queues, i.e., Q1, Q2.
Attribute Description

qtime Timestamp in which the job enters the queue
queue The queue to which the job is submitted
walltime The maximum running time requested by the

user for the job
proc The number of processors requested for the job

Rattributes:
num_job The number of jobs running
proc_used The number of processors used by the jobs

running
walltime The total execution time requested for the

jobs running

Qattributes:
num_job The number of jobs running
proc The total number of processors requested by

jobs preceding the considered job
walltime The total walltime, in minutes, requested by

jobs preceding the considered job

new dataset. From a comparison with Table 2, the new dataset
provides much less information on the cluster status each time
a new job is submitted, e.g., there is much less information on
the usage of the resources for running jobs. Moreover, there is no
reference to any priority score driving the scheduler allocation
policy.

As for the previously considered dataset, the prediction meth-
odology consists of an automated preprocessing phase, followed
by a classification or regression step. The results are reported in
Tables 8 and 9, respectively. The importance of the temporal ef-
fect is again studied by applying both the random split and last-
day split to obtain training and test sets. It is worth noticing that
even if, given a dataset-splitting approach, the selected features
are the same (see Table 7), the outcomes of the classifications and
regressions lead to very different interpretations.

Concerning classification, the last-day split seems to produce
a better performance. However, the high F1-scores of NN and
BNN classifiers are obtained by classifying all the test set sam-
ples to the first class, to which actually the 90% of the test set
samples belong. KNN and NB classifiers perform slightly better
by correctly classifying the samples belonging to the last class.
Nevertheless, these results are not sufficiently reliable to enhance
an effective scheduling strategy. Interestingly, the NB, BNN and
NN models’ predictions do not improve when applying random
plit, NN and BNN still assign each test sample to the first class to
hich 77% of the test samples belong, NB classifier assigns most
f the samples to either the first or the last class. On the other
and, KNN improves its classification performance. Thus, it is the
est classification model for the random split.
When it comes to regression, the high MAEs suggest that none

f the regressors is suited for this prediction task. Moreover, all
odels worsen their performance on random split: we observe

hat, even if the preprocessing step tries to maintain as many
eatures as possible, they are not sufficient to reconstruct the HPC

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

Fig. 7. Regression results in terms of absolute errors (AE) in minutes at the varying of the regression models.

Fig. 8. Connection between the regression performance (MAE) and uncertainties of the predictions on the D-Q* dataset, except QL samples, with weekly training of
the BMLP regressor.

227

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

t
t

s

p
t
c
c

a
d
F
a
W
n
r
F
s
w
r
d
(

p
r
d
t
r

i

Table 7
Aggregated features (PFA) selected by the FS step on the KIT FHII dataset. Both
he random split and the last-day split are considered for the creation of the
raining (Strain) and test (Stest) sets.
random split: |Strain| = 102919, |Stest | = 11436

cluster 1 cluster_Q_num_job, Q1_Q_num_job
cluster 2 walltime
cluster 3 proc
cluster 4 cluster_R_proc_used, Q1_R_proc_used
cluster 5 cluster_Q_walltime, Q1_Q_walltime
cluster 6 queue
cluster 7 Q2_Q_proc, Q2_Q_walltime
cluster 8 Q2_R_proc_used
cluster 9 cluster_R_num_job, cluster_R_walltime,

Q1_R_num_job, Q1_R_walltime

last-day split: |Strain| = 112216, |Stest | = 439

cluster 1 cluster_Q_num_job, Q1_Q_num_job
cluster 2 walltime
cluster 3 proc

Table 8
Classification results (Ncls = 4) on the KIT FHII dataset: both last-day split (Tmp)
and random split (Rnd) are considered.

NB KNN NN BNN

Tmp Rnd Tmp Rnd Tmp Rnd Tmp Rnd

MTAE 42.7 244.3 48.9 22.9 45.7 119.8 45.7 119.8
F1-score 0.85 0.48 0.84 0.91 0.85 0.67 0.85 0.67

Table 9
Regression results on the KIT FHII dataset: both last-day split (Tmp) and random
plit (Rnd) are considered.

KNN MLP BMLP

Tmp Rnd Tmp Rnd Tmp Rnd

Max AE 2841.6 12271.2 2801.2 8791.7 2804.0 8787.0
MAE 42.8 76.2 80.3 94.7 73.1 109.5

cluster status at the submission time of each job, this combined
with a large time-period, which implies higher variability com-
pared to the previous dataset, causes poor performance of the
predictive models.

As mentioned, the KIT FHII dataset lacks some features com-
ared to the D-Q*, D-QF and D-QP datasets. Thus, it is interesting
o analyse the impact on the predictions after maintaining only
ommon features (since they have a similar meaning, we will
onsider proc ≡ ncpus).
Classification results are summarised in Table 10: maintaining

fixed set of features, performances still worsen when the last-
ay split is applied, only the NB classifier’s results, from an
1-score point of view, are approximately the same, though they
re not sufficiently accurate to provide meaningful predictions.
hen the dataset splitting approach is set, the removal of the
on-common features has no significant effect in the case of
andom split; on the other hand, it reduces MTAEs and increases
1-score significantly in the case of a last-day split. So, this
uggests that the removed features change their relationship
ith the prediction target over time. In particular, since their
elation during the training days is no more valid for the test
ay, their removal enhances the prediction through more stable
concerning correlations along time) features’ contribution.

Concerning regression results, see Table 11, the worsening of
erformances remains when the last-day split is applied, and the
emoval of the features not in common between the two datasets
oes not significantly impact the prediction. Nevertheless, since
he prediction outcomes are still poor, this does not provide
elevant insights for the choice of predictive features.

The results we reported here are evaluated on a dataset of
nterest in the context of the ACROSS and LEXIS projects and, to
228
Table 10
Classification results (Ncls = 4) on the D-Q* dataset: comparison starting with
all the features (0-subscript) or considering only the features in common with
the KIT FHII dataset (r-subscript). Both last-day split (Tmp) and random split
(Rnd) are considered.

NB KNN NN BNN

Tmp Rnd Tmp Rnd Tmp Rnd Tmp Rnd

MTAE0 209.2 88.5 236.9 8.4 203.5 21.1 204.8 23.3
MTAEr 152.4 82.7 179.6 9.4 190.7 21.5 178.6 20.2

F1 − score0 0.12 0.46 0.04 0.92 0.20 0.82 0.14 0.81
F1 − scorer 0.44 0.48 0.29 0.92 0.28 0.81 0.26 0.80

Table 11
Regression results on the D-Q* dataset: comparison starting with all the features
(0-subscript) or considering only the features in common with the KIT FHII
dataset (r-subscript). Both last-day split (Tmp) and random split (Rnd) are
considered.

KNN MLP BMLP

Tmp Rnd Tmp Rnd Tmp Rnd

MAE0 242.2 20.7 224.6 39.9 213.9 41.2
MAEr 218.1 24.1 218.4 42.0 209.6 43.9

Max AE0 3214.9 4172.2 3170.4 4214.7 3170.7 4224.8
Max AEr 3214.9 4205.2 3107.2 4230.5 3066.7 4220.4

provide some degree of generality, on another dataset available
online. Further testing on other datasets could result in divergent
conclusions: (i) the best prediction models may be different, and
models’ performance could vary a lot according to the considered
data; (ii) data inherent noise may have a different impact on
the predictions, generally lowering the noise allows for achieving
better performance; (iii) different measured features can easily
go through the UL step, as it is automatised, but may provide
different correlation with the target variable, thus also impacting
on the interpretation of the results.

5. Conclusion

This work presents a machine learning (ML) based method-
ology for predicting the time jobs, submitted to an HPC batch
scheduler, have to wait before being executed. This specific pre-
diction task still remains challenging, as only partially successful
results have been achieved on the collected data. However, it is
important to highlight that the lack of prediction performance on
the test sets when applying a temporal split instead of a random
split can be related to many aspects: (i) the data were collected
at the turn of maintenance periods, which probably affected the
data distribution; (ii) the random split introduces overfitting by
assigning to the test set samples that are too near in time to
the ones belonging to the train set; (iii) the correlation between
the features and the target variable is not preserved over time
or could not be properly addressed by the proposed models; (iv)
there is an intrinsic noise in the data, which uncertainty analysis
also highlighted; (v) the main contributors to this noise can be
restricted to the samples belonging to one specific queue, in our
case, it is the QF queue. This latter aspect is totally in line with
the expected outcomes, concerning the considered HPC cluster
configurations: the jobs submitted to the QF queue (i.e. the queue
which refers to freely accessible resources) tend to fail more than
those submitted to the production queue (i.e., production jobs).
Consequently, their running time is usually pretty different from
the users’ set walltime, thus highly impacting the predicted queu-
ing time of the following jobs in the queue. The absence of such
noise-affected queues, linked to a specific HPC cluster’s queueing
policy, could improve significantly the prediction performance.

By applying the entire methodology on the KIT FHII dataset,
we extended the analysis outside the main scope of the study,

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230

d
t
p
a
a
a
t
i
m
t
p
d
i
r
s
r
w
e
d
o
t
t
t
T
i
d
n
s
t
f

t
c
C
t
a
a
P
u
d

C

D
t
r
a
R
&
a

D

c
t

D

A

b
(
H
h
a
f
‘

R

motivated by supporting scheduling strategies with ML predic-
tions. In this way, we showed the generality of the approach
and proposed further interpretations of the results, also following
a comparison with the features in common between the two
datasets.

Although there is still room for improvement, this work intro-
uces some novelty over the State-of-the-Art machine learning
echniques applied in the HPC field. The proposed methodology
resents an uncertainty-based approach to evaluate predictions
nd the quality of data in the context of HPC queuing systems,
s it paves the way for improving the prediction results through
proper selection of the predictions by relying on the uncer-

ainty scores. The comparison of the different splits leads to other
mportant considerations: the difference in the prediction perfor-
ance among the split approaches highlights the importance of

he temporal component and can be further investigated to find
oints in time that mark significant changes in the jobs’ data
istribution. Concerning the split approaches, even the results
nterpretation is different. In fact, predictions made when the
andom split is applied are not predictions in a strict sense,
ince they do not foretell future events. Instead, they are more
elated to a historical data analysis purpose and, in the limit of
hen the predicted labels are close to the real value, they could
nhance a data augmentation task or the implementation of a
ata-driven queuing system simulator. Concerning the method-
logy per-se, the preprocessing step leads to aggregated features
hat are automatically generated and are not fixed a priori; thus,
hey are not constrained to the ones that can be obtained from
he batch scheduler (e.g., the PBS Professional as in our case).
his allowed us to test our methodology on the KIT FHII dataset
n a straightforward way. Moreover, the features are selected
ay-by-day in the case of the window-based split, so they are
ot even fixed in time, which comes in handy to adjust feature
elections and aggregation towards more relevant features for
he predictions. This allows modelling the relationships between
eatures and labels more dynamically in time.

As a future activity, the methodology will be further inves-
igated and improved. While on the preprocessing side, more
omplex features’ extraction methods can be tested, such as a
NN-based approach presented in LAXCAT [41], on the predic-
ion side, better modelling of the temporal component could be
chieved through RNN models [42] or a continuous-time series
pproach. An example of this latter approach can be found in the
rophet model by Facebook [43], which can be combined with
ncertainty quantification to individuate changing points in the
ata distribution.

RediT authorship contribution statement

Chiara Vercellino: Methodology, Software, Formal analysis,
ata Curation, Writing – original draft, Visualization, Concep-
ualization. Alberto Scionti: Writing – original draft, Writing –
eview & editing, Conceptualization. Giuseppe Varavallo: Formal
nalysis, Writing – review & editing. Paolo Viviani: Investigation,
esources, Conceptualization. Giacomo Vitali: Writing – review
editing, Conceptualization. Olivier Terzo: Supervision, Project

dministration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The data that has been used is confidential.
229
cknowledgements

This work has been supported by the LEXIS project funded
y the EU’s Horizon 2020 research and innovation programme
2014–2020) under grant agreement No 825532, and by the Euro-
PC–02-2019 ACROSS project, grant agreement No 955648. Data
as been gathered thanks to The Ministry of Education, Youth
nd Sports of the Czech Republic from the Large Infrastructures
or Research, Experimental Development, and Innovations project
‘e-INFRA CZ - LM2018140’’.

eferences

[1] H. Shoukourian, T. Wilde, D. Labrenz, A. Bode, Using machine learning
for data center cooling infrastructure efficiency prediction, in: 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops,
IPDPSW, IEEE, 2017, pp. 954–963.

[2] Y. Ran, H. Hu, X. Zhou, Y. Wen, Deepee: Joint optimization of job
scheduling and cooling control for data center energy efficiency using deep
reinforcement learning, in: 2019 IEEE 39th International Conference on
Distributed Computing Systems, ICDCS, IEEE, 2019, pp. 645–655.

[3] K. Haghshenas, A. Pahlevan, M. Zapater, S. Mohammadi, D. Atienza, Mag-
netic: Multi-agent machine learning-based approach for energy efficient
dynamic consolidation in data centers, IEEE Trans. Serv. Comput. (2019).

[4] S. Salman, C. Streiffer, H. Chen, T. Benson, A. Kadav, DeepConf: Automating
data center network topologies management with machine learning, in:
Proceedings of the 2018 Workshop on Network Meets AI & ML, 2018, pp.
8–14.

[5] Y. Etsion, D. Tsafrir, A short survey of commercial cluster batch schedulers,
in: School of Computer Science and Engineering, Vol. 44221, The Hebrew
University of Jerusalem, 2005, pp. 2005–2013.

[6] M.A. Salim, T.D. Uram, J.T. Childers, P. Balaprakash, V. Vishwanath,
M.E. Papka, Balsam: Automated scheduling and execution of dynamic,
data-intensive HPC workflows, 2019, arXiv preprint arXiv:1909.08704.

[7] D.H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer, M. Schulz, Flux:
A next-generation resource management framework for large HPC centers,
in: 2014 43rd International Conference on Parallel Processing Workshops,
IEEE, 2014, pp. 9–17.

[8] D. Zhang, D. Dai, Y. He, F.S. Bao, B. Xie, RLScheduler: An automated HPC
batch job scheduler using reinforcement learning, in: SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE, 2020, pp. 1–15.

[9] I. Simaiakis, H. Balakrishnan, A queuing model of the airport departure
process, Transp. Sci. 50 (1) (2016) 94–109.

[10] A. Roy, J. Pachuau, A. Saha, An overview of queuing delay and various
delay based algorithms in networks, Computing (2021) 2361–2399.

[11] J. Behrmann, P. Vicol, K.-C. Wang, R. Grosse, J.-H. Jacobsen, Understanding
and mitigating exploding inverses in invertible neural networks, in: Inter-
national Conference on Artificial Intelligence and Statistics, PMLR, 2021,
pp. 1792–1800.

[12] M. Happ, M. Herlich, C. Maier, J.L. Du, P. Dorfinger, Graph-neural-network-
based delay estimation for communication networks with heterogeneous
scheduling policies, ITU J. Future Evol. Technol. 2 (4) (2021).

[13] H.M. Makrani, H. Sayadi, D. Motwani, H. Wang, S. Rafatirad, H. Homayoun,
Energy-aware and machine learning-based resource provisioning of in-
memory analytics on cloud, in: Proceedings of the ACM Symposium on
Cloud Computing, 2018, pp. 517–517.

[14] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong, R. Buyya, Machine learning
(ML)–Centric resource management in cloud computing: A review and
future directions, J. Netw. Comput. Appl. (2022) 103405.

[15] Y. Fan, ROME: A multi-resource job scheduling framework for exascale
HPC systems, 2021, arXiv preprint arXiv:2108.13175.

[16] Y. Fan, Z. Lan, P. Rich, W.E. Allcock, M.E. Papka, B. Austin, D. Paul,
Scheduling beyond CPUS for HPC, in: Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing,
2019, pp. 97–108.

[17] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, M.E. Papka, Deep rein-
forcement agent for scheduling in HPC, 2021, arXiv preprint arXiv:2102.
06243.

[18] M. Soysal, M. Berghoff, A. Streit, Analysis of job metadata for enhanced
wall time prediction, in: Workshop on Job Scheduling Strategies for Parallel
Processing, Springer, 2018, pp. 1–14.

[19] H. Wang, Y.-Q. Dai, J. Yu, Y. Dong, Predicting running time of aerodynamic
jobs in HPC system by combining supervised and unsupervised learning
method, Adv. Aerodynam. 3 (2021) 22, http://dx.doi.org/10.1186/s42774-
021-00077-8.

http://refhub.elsevier.com/S0167-739X(23)00027-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb5
http://arxiv.org/abs/1909.08704
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb14
http://arxiv.org/abs/2108.13175
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb16
http://arxiv.org/abs/2102.06243
http://arxiv.org/abs/2102.06243
http://arxiv.org/abs/2102.06243
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb18
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb18
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb18
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb18
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb18
http://dx.doi.org/10.1186/s42774-021-00077-8
http://dx.doi.org/10.1186/s42774-021-00077-8
http://dx.doi.org/10.1186/s42774-021-00077-8

C. Vercellino, A. Scionti, G. Varavallo et al. Future Generation Computer Systems 143 (2023) 215–230
[20] D. Tsafrir, Y. Etsion, D.G. Feitelson, Backfilling using system-generated
predictions rather than user runtime estimates, IEEE Trans. Parallel Distrib.
Syst. 18 (6) (2007) 789–803, http://dx.doi.org/10.1109/TPDS.2007.70606.

[21] M. Rezaei, A. Salnikov, Machine learning techniques to perform predictive
analytics of task queues guided by slurm, in: 2018 Global Smart Industry
Conference, GloSIC, IEEE, 2018, pp. 1–6.

[22] W. Smith, I. Foster, V. Taylor, Predicting application run times
with historical information, J. Parallel Distrib. Comput. 64 (9) (2004)
1007–1016, http://dx.doi.org/10.1016/j.jpdc.2004.06.008, URL https://www.
sciencedirect.com/science/article/pii/S0743731504000991.

[23] M. Tanash, B. Dunn, D. Andresen, W. Hsu, H. Yang, A. Okanlawon, Improv-
ing HPC system performance by predicting job resources via supervised
machine learning, in: Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (Learning), PEARC
’19, Association for Computing Machinery, New York, NY, USA, 2019, pp.
1–8, http://dx.doi.org/10.1145/3332186.3333041.

[24] V. Jancauskas, T. Piontek, P. Kopta, B. Bosak, Predicting queue wait time
probabilities for multi-scale computing, Phil. Trans. R. Soc. A 377 (2142)
(2019) 20180151, http://dx.doi.org/10.1098/rsta.2018.0151, URL https://
royalsocietypublishing.org/doi/abs/10.1098/rsta.2018.0151.

[25] J. Brevik, D. Nurmi, R. Wolski, Predicting bounds on queuing delay for
batch-scheduled parallel machines, in: Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’06, Association for Computing Machinery, New York, NY, USA, 2006,
pp. 110–118, http://dx.doi.org/10.1145/1122971.1122989.

[26] D. Nurmi, J. Brevik, R. Wolski, QBETS: Queue bounds estimation from time
series, in: E. Frachtenberg, U. Schwiegelshohn (Eds.), Job Scheduling Strate-
gies for Parallel Processing, Springer Berlin Heidelberg, Berlin, Heidelberg,
2008, pp. 76–101.

[27] J.-W. Park, M.-W. Kwon, T. Hong, Queue congestion prediction for large-
scale high performance computing systems using a hidden Markov model,
J. Supercomput. (2022) 1–22.

[28] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter,
Efficient and robust automated machine learning, Adv. Neural Inf. Process.
Syst. 28 (2015).

[29] L. Documentation, PBS attributes, 2021, https://linux.die.net/man/7/pbs_
job_attributes. (Online: Accessed May 2021).

[30] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical
Learning: with Applications in R, Springer, 2013, URL https://faculty.
marshall.usc.edu/gareth-james/ISL/.

[31] B.M.S. Hasan, A.M. Abdulazeez, A review of principal component analysis
algorithm for dimensionality reduction, J. Soft Comput. Data Min. 2.1
(2021) 20–30.

[32] A. Tharwat, Principal component analysis-a tutorial, Int. J. Appl. Pattern
Recognit. 3.3 (2016) 197–240.

[33] V. Fonti, E. Belitser, Feature Selection Using Lasso, VU Amsterdam Research
Paper in Business Analytics, Vol. 30, 2016, pp. 1–25.

[34] R. Jain, W. Xu, HDSI: High dimensional selection with interactions
algorithm on feature selection and testing, PLoS One 16.2 (2021).

[35] J. Wang, et al., Feature selection using a neural network with group lasso
regularization and controlled redundancy., in: IEEE Transactions on Neural
Networks and Learning Systems, 2020, pp. 1110–1123.

[36] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis,
C. Clopath, D. Kumaran, R. Hadsell, Overcoming catastrophic forgetting in
neural networks, 2017, arXiv:1612.00796.

[37] L.N. Smith, Cyclical learning rates for training neural networks, 2017,
arXiv:1506.01186.

[38] Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning, in: Proceedings of the 33rd Interna-
tional Conference on International Conference on Machine Learning - Vol.
48, ICML ’16, JMLR.org, New York, NY, USA, 2016, pp. 1050–1059.

[39] A. Damianou, N.D. Lawrence, Deep Gaussian processes, in: C.M. Carvalho,
P. Ravikumar (Eds.), Proceedings of the Sixteenth International Conference
on Artificial Intelligence and Statistics, in: Proceedings of Machine Learning
Research, vol. 31, PMLR, Scottsdale, Arizona, USA, 2013, pp. 207–215, URL
http://proceedings.mlr.press/v31/damianou13a.html.

[40] J.D.J.Z. Jeremy Oldfather, Quantifying Uncertainty in Deep Learn-
ing Systems, AWS, 2020, URL https://d1.awsstatic.com/APG/quantifying-
uncertainty-in-deep-learning-systems.pdf.

[41] T.-Y. Hsieh, S. Wang, Y. Sun, V. Honavar, Explainable multivariate time
series classification: A deep neural network which learns to attend to
important variables as well as informative time intervals, 2020, arXiv:
2011.11631.

[42] E. Diaconescu, The use of NARX neural networks to predict chaotic time
series, WSEAS Trans. Comput. Res. 3 (2008).

[43] S.J. Taylor, B. Letham, Forecasting at scale, PeerJ Prepr. 5 (2017) e3190.
230
Chiara Vercellino holds an M.Sc. degree in Mathemati-
cal Engineering (orientation: statistics and optimisation
on networks and data), received from Politecnico di
Torino. Currently, she is attending a Ph.D. in Computer
and Control Engineering at Politecnico di Torino, and
she is a researcher at the CPE (Advanced Comput-
ing, Photonics and Electromagnetics) area of LINKS
Foundation, where her main focus is on optimisation
algorithms, targeting, among the others, HPC/Cloud
resources orchestration and Quantum optimisation for
industrial applications. She participates in the ACROSS

EuroHPC project and she is a member of the SRA-5 WG6 ‘‘Mathematics and
Algorithms’’ at ETP4HPC.

Alberto Scionti holds a M.Sc. and a Ph.D. (European
doctorate degree) in computer science and control
engineering, both received from Politecnico di Torino,
Italy. He is a senior researcher in the Advanced Com-
puting, Photonics and Electromagnetics group at LINKS
Foundation. His main research interests include man-
agement of heterogeneous HPC/Cloud infrastructures
and quantum computing. He was involved in several
national and EU-funded projects. He is co-author of
more than 50 peer reviewed papers on international
conferences and journals. He was editor of a book on

heterogeneous computing architectures and is currently leading the orchestrator
design in the EU-H2020 ACROSS project.

Giuseppe Varavallo Ph.D. Candidate in Innovation for
the Circular Economy at the University of Turin. In 2017
he won a Research Grant in Data Science for Social
Good at ISI Foundation, Turin. He was involved in a
project to develop a composite indicator to measure
Environmental Injustice in the World, using Sustain-
able Development Goals data. From 2019 to 2022, he
worked as a researcher at LINKS Foundation (Turin),
working on activities related to Data Mining, Web
Development, and Distributed ledger technologies.

Paolo Viviani holds a M.Sc. in Theoretical Physics and a
Ph.D. in Computer Science both achieved at University
of Turin. He worked for more than 5 years as Research
Engineer at Noesis Solutions NV on machine learning
methods for engineering. He is now senior researcher
at the Advanced Computing, Photonics and Electro-
magnetics area of LINKS Foundation, Turin, where he
works on HPC applications, HPC and AI convergence,
and Quantum computing. During his career, he par-
ticipated in several EU and nationally funded research
projects and published several papers at peer reviewed

conferences.

Giacomo Vitali, currently Ph.D. student at Politecnico
di Torino in Quantum Computing, he is graduated in
Physics of Fundamental Interactions at the University
of Pisa. After a year as a researcher at the Normale
di Pisa where he worked for the LHCb experiment, he
moved to LINKS foundation as a senior researcher in
computer science, mainly dealing with HPC topics, like
optimisation and Quantum Computing.

Olivier Terzo holds Ph.D. in Electronic Engineering and
Communications and M.Sc. Degree in Computer Engi-
neering from both achieved at Politecnico di Torino. He
is currently the Head of the CPE Advanced Computing,
Photonics and Electromagnetics Research Domain with
a staff of 25 Researchers at the LINKS Foundation
Applied Research Center. He was the Technical and
Scientific coordinator of the OPERA H2020 project. He
is the coordinator of the ACROSS EuroHPC project and
the co-design and dissemination manager of the LEXIS
project. He is a delegate member at ETP4HPC and an

active member of the HiPEAC community. He peer-reviewed several journals.

http://dx.doi.org/10.1109/TPDS.2007.70606
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb21
http://dx.doi.org/10.1016/j.jpdc.2004.06.008
https://www.sciencedirect.com/science/article/pii/S0743731504000991
https://www.sciencedirect.com/science/article/pii/S0743731504000991
https://www.sciencedirect.com/science/article/pii/S0743731504000991
http://dx.doi.org/10.1145/3332186.3333041
http://dx.doi.org/10.1098/rsta.2018.0151
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2018.0151
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2018.0151
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2018.0151
http://dx.doi.org/10.1145/1122971.1122989
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb28
https://linux.die.net/man/7/pbs_job_attributes
https://linux.die.net/man/7/pbs_job_attributes
https://linux.die.net/man/7/pbs_job_attributes
https://faculty.marshall.usc.edu/gareth-james/ISL/
https://faculty.marshall.usc.edu/gareth-james/ISL/
https://faculty.marshall.usc.edu/gareth-james/ISL/
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb35
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1506.01186
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb38
http://proceedings.mlr.press/v31/damianou13a.html
https://d1.awsstatic.com/APG/quantifying-uncertainty-in-deep-learning-systems.pdf
https://d1.awsstatic.com/APG/quantifying-uncertainty-in-deep-learning-systems.pdf
https://d1.awsstatic.com/APG/quantifying-uncertainty-in-deep-learning-systems.pdf
http://arxiv.org/abs/2011.11631
http://arxiv.org/abs/2011.11631
http://arxiv.org/abs/2011.11631
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb42
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb42
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb42
http://refhub.elsevier.com/S0167-739X(23)00027-4/sb43

	A Machine Learning Approach for an HPC Use Case: the Jobs Queuing Time Prediction
	Introduction
	Related Work
	Queuing time prediction with machine learning
	Dataset description
	Data preprocessing phase
	Overview on the supervised learning models
	The classification approach
	The regression approach

	Uncertainty quantification

	Results
	Classification results
	Regression results
	Comparison with the KIT FHII dataset

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

