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Abstract

In the mathematical epidemiology community, there is an increasing interest in shaping the
complex interplay between human behaviour and disease spreading. We give a contribution
in this direction by illustrating a method to derive behavioural change epidemic models
from a stochastic particle description by the means of kinetic equations. We consider an
Susceptible–Infected–Removed–like model where contact rates depend on the behavioural
patterns adopted across the population. The selection of the social behaviour happens during
the interactions between individuals adopting alternative strategies and it is driven by an
imitation game dynamics. Agents have a double microscopic state: a discrete label, that
denotes the epidemiological compartment to which they belong, and the degree of flexibility
of opinion, that is a measure of the personal attitude to change opinion and, hence, to
switch between the alternative social contact patterns. We derive kinetic evolution equations
for the distribution functions of the degree of flexibility of opinion of the individuals for
each compartment, whence we obtain macroscopic equations for the densities and average
flexibilities of opinion. After providing the basic properties of the macroscopic model, we
numerically investigate it by focusing on the impact of the flexibility of opinion on the epidemic
course and on the consequent behavioural responses.

Keywords: Boltzmann–type equations, Markov–type jump processes, SIR model, behavioural
epidemiology, game theory

Mathematics Subject Classification: 35Q20, 37N25, 35Q70

1 Introduction

Among the many factors known to influence the spread of infectious diseases in modern societies,
a central role is played by the human behaviour. A large body of evidence shows that spontaneous
– as well as enforced – behavioural changes deeply influence the course of an epidemics. An
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emblematic contemporary example is constituted by the ongoing COVID–19 pandemic, whose
curbing has been threatened by the individual non–compliance to hygiene–related measures [39]
and the hesitance about vaccines [23]. The analysis of Spanish flu data have shown that even one
century ago the control of that devastating pandemic was strongly affected by behavioural changes,
both in Europe [10, 43] and in the USA [4].

In the mathematical epidemiology community, the increasing awareness of the strict relation
between humans and infectious diseases has led, during the last twenty years, to the development
of a new scientific discipline: the behavioural epidemiology of infectious diseases (see [34, 49]
and references therein). Behavioural change models have contributed to the understanding of
the epidemic dynamics of, inter alia, vaccine–preventable paediatric diseases [2, 7, 12, 49], H1N1
influenza [27, 41] and also the COVID–19 disease [6, 8, 26]. In particular, the complex dynamics
of human decision making has been modelled as an imitation game [2, 42] or, equivalently, as an
infection of ideas process [49]. The imitation game, which is a mechanism typical of evolutionary
game theory [47], formalizes the idea that human decisions are conducted by imitating others who
appear to have adopted successful strategies. Specifically, different individuals’ behaviours are
modelled as different strategies whose convenience is defined by a cost–benefit balance. In epidemic
modelling, this results in explicitly considering the interplay between the disease transmission and
the spontaneous response of the population, where changes in human behaviour (and in particular
in the cost–benefit assessment) are triggered by the epidemic dynamics and vice versa.

The imitation game dynamics has been investigated in many specific epidemic models described
by different mathematical tools ranging from deterministic ODE models [2, 7, 12, 35, 42], to
reaction–diffusion PDE models [33], up to fully stochastic models, such as network and individual–
based models [20, 38], and a conspicuous body of results is now available (see also the review
papers [46, 48]). On one hand, ODE and PDE models – being implemented at population level –
are relatively simple and amenable to analytical and numerical investigations, but they disregard
the individuals’ characteristics. On the other hand, network and individual–based models allow to
introduce (more) heterogeneity in the population structure, but they have to face the right balance
between model complexity and computational boundaries.

A promising compromise between the macroscopic deterministic approach and the stochastic
particle description is provided by methods based on mesoscopic theories. The mesoscopic scale
acts as a bridge between the two antipodal scales by responding to the challenge of extracting all
the macroscopically relevant information from the microscopic dynamics. There are mesoscopic
methods – stemming from statistical mechanics – that propose a statistical description of the
microscopic system under investigation and allow to derive macroscopic models. One of the most
succesful ones is kinetic theory and the Boltzmann equation, that have proved to be a very effective
tool to describe complex phenomena in many disparate fields [40], ranging from socio–economic
dynamics to biological applications [28, 29]. Kinetic theory allows to start from the description
of the evolution of a microscopic quantity associated to each individual through interaction rules
and to derive a macroscopic model for the average quantities related to the population.

In epidemic modelling, the adoption of a kinetic theory approach has recently allowed to en-
hance the description of infectious diseases dynamics. In particular, the heterogeneity of disease
transmission and progression linked to the viral load of each infected individual has been investi-
gated [13, 31, 32]. Also, Boltzmann–like equations have been used to incorporate in the model the
role of: social structure and wealth distribution within the host population [14, 15, 52], contact
heterogeneity [37], and spatial propagation of the infection [3, 32].

However, to the best of our knowledge, no attempts have been made to derive behavioural
change models and, in particular, game theoretical epidemic models, through a mesoscopic (ki-
netic) approach. For this class of models a specific microscopic trait is the personal attitude to
change of opinion. As a matter of fact, each individual affected by the epidemics may be more or
less persuadable on the convenience of a given strategy and, hence, more or less inclined to adopt
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it. This leads, in the imitation game dynamics, to ‘breaking’ the homogeneity of the cost–benefit
assessment among members of the same group and the symmetry between alternative strategies.
The mechanisms of opinion variation are a hot topic in socio–physics and in computational social
sciences. Roughly speaking, the heterogeneity of opinion formation and dynamics within a popu-
lation may explain critical and complex social phenomena such as group polarization, conformity
and extremisms (see, just to mention a few of papers, [11, 21, 22, 24]). Opinion dynamics has been
also studied by the means of classical tools of kinetic theory starting from the pioneering work by
Toscani [44], that gave rise to a wide subsequent literature, see e.g. [1, 5, 16, 17, 18, 19, 30, 45]. In
particular, in the paper [30], the authors proposed a Boltzmann–type kinetic description of opinion
formation on social networks, which takes into account a general connectivity distribution of the
individuals described by a fixed distribution.

Motivated by the aforementioned reasons, in this paper we present a method relying on tools
of kinetic theory to derive macroscopic epidemic models with imitation game dynamics from a
stochastic particle model. We consider the host population as a multi–agent system, where the
individuals (namely, the agents) are characterized by means of suitable microscopic variables, and
the microscopic dynamics is modelled through interaction rules [13, 31, 32]. By introducing a
probability density function of the microscopic states, we recover a statistical description of the
system, whose evolution is described through kinetic equations. Then, from the kinetic evolution
equations of the probability density function, we derive macroscopic equations for the moments of
the probability density function, i.e. a macroscopic model, that naturally inherits a large number
of features of the original microscopic dynamics.

Specifically, we associate to the agents a double microscopic state: a discrete label, that denotes
the epidemiological compartment to which they belong, and a microscopic trait, that is related to
the degree of flexibility of opinion. Since the novelty of our approach in this field of application,
we consider a rather simple game theoretical framework – firstly introduced by Poletti et al. [42] –
where an epidemic outbreak develops according to an Susceptible–Infected–Removed (SIR) model,
but contact rates depend on the behavioural patterns adopted across the population. Precisely,
susceptible individuals can conform to either the ‘normal’ or the ‘altered’ pattern of social contacts.
The first group is composed of individuals that do not modify their social contacts with respect to
the pre–epidemic situation and, as a consequence, are subject to the baseline risk of contracting the
disease. The second group is composed of individuals that react to the epidemics by spontaneously
reducing their contacts, and are hence subject to a lower risk of contracting the disease with respect
to the first group. However, the latter perceive some extra cost deriving from social isolation.
The switching between the two groups follows an imitation game dynamics, by depending on
the individual cost–benefit balance in the mutual interactions [42]. Anyway, our approach is quite
general and can be easily adapted to other epidemic frameworks (involving, for example, the crucial
issue of vaccination behaviour).

The microscopic trait associated to each agent is the degree of flexibility of opinion, that
is a measure of the individual propensity to change the currently adopted strategy during an
interaction with one adopting the alternative strategy. The flexibility of opinion is intended here
as an unchanging trait of the individual personality, not a priori related to the epidemic events. We
assume that a high [resp. low] degree of opinion flexibility is characteristic of individuals that tend
to overestimate [resp. underestimate] the cost they perceive with respect to that perceived by the
others and, as a consequence, are more likely to switch [resp. preserve] their strategy. Specifically,
we consider that each susceptible individual may give a different weight to the net cost associated
to the contact pattern he/she is adopting (the normal one or the altered one) with respect to
the net cost associated to the alternative contact pattern. From the ensuing heterogeneity in the
individuals’ cost–benefit assessment it follows that members of the same group have a different
probability of switching to the other group depending on their degree of flexibility of opinion.

The rest of the manuscript is organized as follows. Section 2 deals with the development of
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the behavioural change epidemic model: we illustrate the chosen compartmental structure, the
imitation game dynamics as well as the role of the flexibility of opinion (Section 2.1). Then,
we implement the modelling assumptions in a discrete in time stochastic process (Section 2.2),
from which we derive a kinetic equation and, eventually, a macroscopic system of ODEs for the
densities and the average flexibilities of opinion of the epidemiological compartments (Section 2.3).
In Section 3, we provide the basic properties of the macroscopic model for some specific shapes of
the functions related to the selection of the social contact pattern. In Section 4, we numerically
investigate the transient and asymptotic behaviour of the ensuing model with emphasis on the
impact of the individual intransigence/volatility of opinion; we also consider two relevant parameter
settings differing from the magnitude of the risk of infection perceived by the two susceptible groups
(Sections 4.1 and 4.2). Finally, concluding remarks and future perspectives are discussed in Section
5. The manuscript is complemented by the Appendix A.

2 The model

Let us consider a system of interacting individuals in the presence of an infectious disease that
spreads through social contacts. We assume that a spontaneous reduction in the number of contacts
could develop, as a defensive response, during the epidemics and affect the course of infection events
[42]. This leads the emergence of two different behavioural patterns within the population: the
‘normal’ one and the ‘altered’ one. Individuals adopting the normal behaviour do not modify their
contacts with respect to the pre–epidemic situation. Individuals adopting the altered behaviour
spontaneously reduce their contacts in response to the epidemics.

We characterize individuals – that we also call agents – by a label x ∈ X , which denotes the
epidemiological compartment to which they belong, and by a microscopic quantity c ∈ C, which
measures the degree of flexibility of opinion, namely the individual attitude to change opinion
and, hence, to switch between the alternative social contact patterns. We want to describe the
microscopic mechanisms modelling the interactions between individuals and the switches between
compartments that follow from either the disease progression or the change of social behaviour.

In order to give a statistical description of the multi–agent system, whose total mass is conserved
in time, we introduce a distribution function for describing the probability density distribution of
the agents characterized by the pair (x, c) ∈ X × C, as

f(x, c, t) =
∑
i∈X

δ(x− i)fi(c, t), (1)

where δ(x − i) is the Dirac delta distribution centred at x = i, and we assume that f(x, c, t) is a
probability density function, namely∫

X

∫
C
f(x, c, t)dcdx =

∑
i∈X

∫
C
fi(c, t)dc = 1, ∀ t ≥ 0. (2)

In (1)–(2), fi = fi(c, t) ≥ 0 is the distribution function of the microscopic state c of the agents
that are in the ith compartment at time t. Hence, fi(c, t)dc is the proportion of agents in the
compartment i, whose microscopic state lies between c and c + dc at time t. In general, the fi’s,
i ∈ X , are not probability density functions because their c–integral varies in time due to the fact
that agents move from one compartment to another.

Then, we can define macroscopic quantities by considering the moments of the distributions
fi’s. Precisely, we denote by

ρi(t) =

∫
C
fi(c, t)dc (3)
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the density of agents in the compartment i, thus 0 ≤ ρi(t) ≤ 1 and∑
i∈X

ρi(t) = 1, ∀ t ≥ 0.

If ρi(t) > 0, then we can also define the average flexibility of opinion as

mi(t) =
1

ρi(t)

∫
C
c fi(c, t)dc. (4)

We observe that ρi(t) = 0 implies instead necessarily fi(c, t) = 0 and, in such a case, the average
flexibility of opinion is not defined because the corresponding compartment is empty. We also
remark that, if the compartment is almost empty, then the average flexibility of opinion mi, i ∈ X ,
might not be fully consistent with the empirical average flexibility resulting from the particle
description because the law of large numbers does not apply.

2.1 The underlying mechanisms

Our model is based on an SIR scheme, but in which contact rates depend on the behavioural
patterns adopted across the population. Specifically, we assume that the total population (say,
Ntot) is divided into the following disjoint compartments [42]:

• susceptible adopting the normal behaviour (x = Sn): healthy individuals subject to the
baseline risk of contracting the disease. Members of this class do not manifest a spontaneous
behavioural response to the epidemics;

• susceptible adopting the altered behaviour (x = Sa): healthy individuals subject to a reduced
risk of contracting the disease. Members of this class spontaneously reduce their social
contacts as a defensive response to the epidemics;

• infectious (x = I): individuals infected by the disease who can transmit the virus to others;

• recovered (x = R): individuals who recovered after the infectious period.

Since we model single epidemic outbreaks, the vital dynamics of the population is not taken into
account. Hence, the set of possible labels targeting the agents is given by

X = {Sn, Sa, I, R}.

Individuals from any of the two susceptible classes can become infected by interaction with an
infectious individual, I, with the difference that the Sa’s are exposed to a lower risk with respect
to the Sn’s. A susceptible individual may be persuaded to change his/her contact pattern by a
member of the alternative group, depending on the personal cost–benefit assessment in the mutual
interaction. Once infected, the individual experiences an infectious period and, eventually, recovers
by moving to the R class. For the sake of simplicity, infectious individuals all conform to a given
pattern of social contacts; this can be interpreted as an effect of their status, independently of the
state of the epidemics [42].

It follows that the non–vanishing transitions between compartments are: Sn → I, Sa → I,
Sn → Sa, Sa → Sn, I → R, where the notation (j → i) indicates the transfer from compartment
j to compartment i.

The transitions related to the selection of the social behaviour (Sn → Sa, Sa → Sn) are driven
by an imitation game dynamics [42, 49]. Let us denote by πn, πa the net costs at population
level induced by the normal and by the altered pattern of social contacts, respectively (the costs
associated to, e.g., disease safety, social and psychological well–being, . . . ). We assume that these
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costs depend on the disease status in the community and, hence, they evolve in time according to
the epidemic dynamics. Note that, if considered with opposite sign, then πn, πa can be seen in the
economic jargon as the payoffs for the corresponding strategies, i.e. −πn, −πa, respectively [42].

Remark 1. The imitation game dynamics can be equivalently inferred by employing a statistical
physics–oriented approach [7, 12, 49]. In such a case, the basic concept is that the switching between
strategies is ruled by a ‘double contagion’ of ideas between members of the alternative groups. Here,
we deliberately choose to follow the classical economics–oriented approach since we consider it more
suitable to the role and the interpretation attributed to the microscopic quantity c ∈ C.

As done in the model [42], the Sn and Sa individuals are assumed to decide whether to change or
preserve their social behaviour on the basis of the composition of the pool of susceptible individuals
with whom they interact by exchanging ideas. In other words, in the process of decision making,
susceptible individuals take into account only the ideas of those who have not yet contracted the
disease. During an interaction between agents coming from alternative groups, the probability for
the Sn individual of switching to the Sa compartment is non–null only if

sign (cown
h πn − copp

h πa) = sign

(
cown
h

copp
h

πn − πa
)

is positive, where cown
h [resp. copp

h ] is a non–negative constant representing the weight that the
agent under consideration attaches to the net cost of the own strategy, πn [resp. of the opposite
strategy, πa]. The degree of flexibility of opinion of the agent under consideration is represented
by the ratio

ch =
cown
h

copp
h

≥ 0,

that is the relative weight of the net cost πn over the weight of the net cost πa. More precisely,
if ch > 1 [resp. ch < 1], then the agent tends to overestimate [resp. underestimate] the cost of
adopting the own behavioural pattern with respect to that of adopting the alternative behavioural
pattern and, as a consequence, is more inclined [resp. less inclined] to switch to the Sa compartment.
Analogously, the probability for the Sa individual involved in the interaction of switching to the
Sn compartment is non–null only if the difference ckπa− πn is positive, where ck= cown

k /copp
k ∈ C is

his/her corresponding degree of flexibility of opinion. Note that in such a case cown
k [resp. copp

k ] is
the weight that the agent under consideration attaches to πa [resp. to πn].

Generally speaking, ch, ck are the specific values assumed by the microscopic quantity c ∈ C
when targeting the two considered agents. Note that, besides the trivial case that c is the same
for all the agents, the introduction of an individual–based weight in the cost–benefit balance
‘breaks’ two classical assumptions of the imitation game dynamics: i) the indistinguishability
among members of the same group in terms of the perception of the costs; ii) the ‘symmetry’
between the probabilities of switching from a strategy to the alternative one during an interaction.
Indeed, in the classical framework, the probabilities of switching for the two involved agents are
simply proportional to the positive and to the negative part of the difference of the net costs of the
strategies, so that when one if positive the other one is null and vice versa. In our new framework,
there is no relationship between the two probabilities, so introducing the possibility that they are
both null or both positive during the interaction, namely that neither or both of the involved
agents may change compartment.

For the sake of simplicity, we consider here

C = [0, 2],

so that agents with fully balanced opinions are targeted by c = 1, more intransigent agents are
targeted by a c ∈ [0, 1) and agents with more volatile opinions are targeted by a c ∈ (1, 2]. We
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highlight that the derivation of the model can be straightforwardly adapted to different choices of
C.

We assume that c ∈ C is continuous and distributed with a fixed probability density function
ki, i ∈ X (similarly to what done in the paper [30], where an opinion exchange is described and
c is the number of social connections of the individual). A possible simple choice for ki(c), the
initial fixed probability density function of the degree of flexibility of opinion for the agents in the
ith compartment, i ∈ X , is

ki(c) = χ{0≤c≤1}qi + χ{1<c≤2}(1− qi),

where χ is the Heaviside function, qi ∈ [0, 1] is the probability for an agent of having a degree
of flexibility smaller than or equal to 1, so that, conversely, 1 − qi is the probability of having a
degree of flexibility larger than 1. As a consequence, the initial distribution function of the degree
of flexibility of opinion for the agents in the ith compartment, i ∈ X , is

fi(c, 0) = ρi(0)ki(c).

This determines the initial average flexibilities of opinion:

mi(0) =

∫
C
c ki(c) dc, i ∈ X .

Remark 2. The concept of volatility of opinion is intended here as a trait of the individual person-
ality. It is different from the concept of speed of the imitation game, that refers to the frequency at
which the information are exchanged through interactions. This last aspect, increasingly important
in the era of social media, has been addressed in some game theoretical epidemic models (see, e.g.,
[12, 42]) by introducing a faster time scale for the imitation game dynamics with respect to the
disease transmission.

2.2 A microscopic stochastic model

In this section, we propose a microscopic stochastic process implementing the modelling assump-
tions defined so far.

Let us consider a representative agent of the system characterized at time t by the pair of
random variables (Xt, Ct) ∈ X × C, where Xt is the label denoting the compartment to which the
agent belongs and Ct is his/her degree of flexibility of opinion at time t. The joint probability
density distribution of such a pair is f(x, c, t), as given in (1).

We need to express the transitions as a stochastic process for Xt, from which we derive a kinetic
equation for f . As already mentioned, the non–vanishing transitions between compartments are:
Sn → I, Sa → I, Sn → Sa, Sa → Sn, I → R. The first four transitions happen as a consequence of
interactions among individuals. As we embrace the spirit of kinetic theory (already adopted in the
epidemic model [13]), we consider binary interactions, i.e. interactions between two individuals.
Specifically, the transitions Sn → I, Sa → I happen as a consequence of physical interactions
between susceptible individuals and infectious individuals. The transitions Sn → Sa, Sa → Sn
happen as a consequence of binary interactions between susceptible individuals adopting alternative
behavioural strategies who exchange their ideas; since the decision whether to change or preserve
the social behaviour is based only on the composition of the susceptible population, we assume that
the information exchanged through interactions is ‘normalized’ to the actual size of the susceptible
compartment. The transition I → R follows from the physiological progression of the illness and,
in the jargon of kinetic theory, it is commonly named an autonomous process, since it is not due to
binary interactions. In the current formalism, the transitions between compartments are generally
named label switch processes and they are modelled as Markov–jump processes, as the new label
of the agent only depends on the previous one. Then, the processes of interest are:
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P1 the binary interaction process between susceptible individuals and infectious individuals lead-
ing to the spread of the contagion in the population (Sn → I, Sa → I);

P2 the binary interaction process between susceptible individuals with normal and with altered
behaviour leading to a switch in the choice of the adopted strategy (Sn → Sa, Sa → Sn);

P3 the autonomous process related to the physiological recovery from the disease for infected
individuals (I → R).

Hence, during a sufficiently small time interval ∆t > 0, the label Xt of the agent may change or
not according to whether a binary interaction or an autonomous process takes place. The label
switch process may be written as a discrete in time stochastic process in the general form

Xt+∆t = (1−Θ)Xt + ΘJt, (5)

where Θ is a Bernoulli random variable with parameter µ∆t, being µ the frequency of the binary
interaction or of the autonomous process that causes the label switch, and Jt is the random variable
that takes into account the new label, i.e. the new compartment of the agent. As regards the degree
of flexibility of opinion, it does not vary in time:

Ct+∆t = Ct. (6)

As a consequence, we can introduce a probability density function for the random variable Jt alone

P (j; c) = Prob(Jt = j;Ct), (7)

that may depend on the (constant) value of the degree of flexibility of opinion, Ct = c. Since the
label switch process is described as a Markov–type jump process [32], for each switch Xt → Jt we
introduce appropriate transition probabilities.

Remark 3. If one assumed that the flexibility of opinion of the agents evolves in time, then, in
place of (6)–(7), a change of the microscopic state Ct would be described by a proper discrete in
time stochastic process and a joint probability density function for the pair of random variables Jt
and Ct, namely P (Jt = j, Ct = c), would be considered. In the present case, this corresponds to
setting P (Jt = j, Ct = c) = P (Jt = j;Ct)kJt(Ct = c), where kJt is the probability density function
of the initial distribution of the degree of flexibility of opinion in the compartment Jt.

In the following, we characterize the microscopic discrete in time stochastic process (5) in each
of the cases P1, P2, P3.

2.2.1 Transitions Sn → I, Sa → I

The transition from any of the two susceptible classes to the infectious one is due to a binary
interaction between the agent (Xt, Ct) and another agent (X∗t , C

∗
t ), where Xt = Sn or Xt = Sa

and X∗t = I. This implies that Xt = Sn or Xt = Sa and Jt = I in (5). We denote by µ = λXt,X∗
t

the frequency of binary interactions. Generally speaking, we can express the probability density
function of the random variable Jt as

P (j; c) =

∫
X 2

∫
C
P (j|x, x∗; c)f2(x, x∗, c, c∗, t)dc∗dxdx∗,

where f2(x, x∗, c, c∗, t) is the joint probability density function of the interacting agents (x, c),
(x∗, c∗), so that f2(x, x∗, c, c∗, t)dxdx∗dcdc∗ is the number of pairs of agents having label x, x∗
and degree of flexibility of opinion in [c, c + dc], [c∗, c∗ + dc∗], respectively. As usually done in
kinetic theory, we assume that the propagation of chaos holds, i.e. the pairs of random variables
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(Xt, Ct) and (X∗t , C
∗
t ) are stochastic independent since the agents retain no memory of previous

interactions. This allows the simplification

f2(x, x∗, c, c∗, t) = f(x, c, t)f(x∗, c∗, t).

The conditional probability P (j|x, x∗; c) describes the probability that an individual characterized
by the pair (Xt = x, c) moves to the compartment Jt = j when interacting with X∗t = x∗. This
process may, in general, depend on both the quantities c, c∗, associated to the two agents. In the
present work, we assume that it may depend solely on c, namely the microscopic state of the agent
whose label is switching (such a dependence is accounted for in the process P2).

Since we are considering the case that Xt = Sa or Xt = Sn, X∗t = I and Jt = I, it follows that
the probability density functions to take into account are

P (I|Si, I; c) = βd,i ∈ [0, 1], i ∈ {n, a}.

2.2.2 Transitions Sn → Sa, Sa → Sn

The switching between the normal and the altered pattern of social contacts happens as a con-
sequence of binary interactions between susceptible individuals adopting alternative strategies.
Therefore, we consider Xt = Sa, X

∗
t = Jt = Sn or vice versa in (5). Again, we denote by

µ = λXt,X∗
t

the frequency of binary interactions. For symmetry considerations, we set

λSn,Sa = λSa,Sn = λ.

Generally speaking, for this kind of process, the probability density function may be expressed as

P (j; c) =

∫
X 2

∫
C
P (j|x, x∗; c)

f2(x, x∗, c, c∗, t)

ρSn(t) + ρSa(t)
dc∗dxdx∗.

The presence of the ratio f2(x, x∗, c, c∗, t)/(ρSn(t) + ρSa(t)) is related to the assumption that the
process of exchange of ideas exclusively involve susceptible individuals who, then, take their decision
on the basis of the composition of the susceptible population (that has density ρSn + ρSa), i.e. by
looking at the fraction of individuals adopting the alternative strategy with respect to the total
susceptible sample [42]. Note that the quantity in the denominator, ρSn + ρSa , is non–vanishing
since it is proved that in SIR–like epidemic models the susceptible compartment cannot completely
empty [25].

The conditional probability P (j|x, x∗; c) describes again the probability that an individual
characterized by the pair (x, c) moves to the compartment Jt = j given a binary interaction with
an individual characterized by the pair (x∗, c∗). Specifically, during the interaction between an
agent (Si, c) and an agent (Sj, c∗), with i, j ∈ {n, a}, i 6= j, the former may enter the compartment
of the latter depending on the individual cost–benefit balance. The agent (Si, c) evaluates the
quantity

cπi(t)− πj(t), (8)

that is the difference between the net cost associated to the own behavioural strategy at time t, πi,
and the net cost associated to the alternative behavioural strategy at time t, πj, by assigning to
the first one the relative weight c with respect to the second one. If the difference (8) is positive,
then there is a chance that the agent changes compartment (the alternative behavioural strategy
is perceived as more convenient than the own one); otherwise, if the difference (8) is negative, then
the agent remains in place (the alternative behavioural strategy is perceived as less convenient
than the own one). Therefore, the transition probabilities to take into account are

P (Sj|Si, Sj; c) = g(cπi(t)− πj(t)), i, j ∈ {n, a}, i 6= j, (9)
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where g : R→ [0, 1] is a continuous, differentiable and non–decreasing function such that

g(y) = 0, ∀y ≤ 0, and g(y) ∈ (0, 1], ∀y > 0. (10)

If c = 1, then the agent is fully balanced; if c ∈ [0, 1), then the agent is likely to be intransigent; if
c ∈ (1, 2], then the agent is likely to have volatile opinions.

As far as the net costs πn, πa are concerned, they represent the costs at population level (in
terms of both health and social well–being) associated to the adoption of the normal and the altered
behavioural strategy, respectively. They evolve in time according to the status of the disease in
the community. Without loss of generality, we assume that they are continuous and differentiable
functions of the densities of the compartments:

πi(t) = πi(ρSn(t), ρSa(t), ρI(t), ρR(t)), i ∈ {n, a}. (11)

2.2.3 Transition I → R

The transfer of an infectious individual to the recovered compartment is due to a physiological
process, that is independent of interactions with other individuals. Then, we consider Xt = I,
Jt = R in (5), and denote by µ = λRI the frequency of the recovery process. In this case, the
probability density function of Jt may be simply written as

P (j; c) =

∫
X
P (j|x)f(x, c, t)dx,

where P (j|x) is the conditional probability density function of the random variable Jt given Xt.
Note that, in general, P (j|x) may also depend on the microscopic quantity c, but this dependence
is here disregarded since the flexibility of opinion of the agent only affects the switch between the
classes Sn and Sa (namely, the process P2). Then, the only transition probability to take into
account in this case is

P (R|I) = γr ∈ [0, 1].

Altogether, we express the discrete–in–time random process as

Xt+∆t = Ξ [(1−Θd)Xt + ΘdJt] + Ψ [(1−Θb)Xt + ΘbJt] + Σ [(1−Θr)Xt + ΘrJt] ,

Ct+∆t = Ct,
(12)

where Ξ, Ψ and Σ are indicator functions. Specifically, the processes P1, P2, P3 are represented,
respectively, by the mutually exclusive cases:

1 Ξ(x, x∗) = 1, Ψ(x, x∗) = 0, Σ(x, x∗) = 0, if (x, x∗) ∈ {(Sn, I), (Sa, I)};

2 Ξ(x, x∗) = 0, Ψ(x, x∗) = 1, Σ(x, x∗) = 0, if (x, x∗) ∈ {(Sn, Sa), (Sa, Sn)};

3 Ξ(x, x∗) = 0, Ψ(x, x∗) = 0, Σ(x, x∗) = 1, if (x, x∗) ∈ {(I, x∗), x∗ ∈ X}.

In (12), the quantities Θd, Θb, Θr ∈ {0, 1} are Bernoulli random variables (of parameter µ∆t
with µ ∈ {λSn,I , λSa,I}, µ = λ, µ = λRI , respectively) discriminating whether a label switch takes
place (namely, Θd, Θb, Θr = 1) or not (namely, Θd, Θb, Θr = 0) during the time interval ∆t.

2.3 Aggregate description: from kinetic to macroscopic equations

Being our final aim the proposal of a macroscopic model, we derive as an intermediate stage a
statistical description at the mesoscopic level of our multi–agent system through kinetic equations.
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Let φ = φ(x, c) be an observable quantity defined on X × C. From (12), together with the
assumed independence of Θd, Θb, Θr, we obtain that the average variation rate of φ in the time
interval ∆t satisfies

〈φ(Xt+∆t, Ct+∆t)〉 − 〈φ(Xt, Ct)〉
∆t

=

〈Ξ(1− µ∆t)φ(Xt, Ct)〉+ 〈Ξµ∆tφ(Jt, Ct)〉 − 〈Ξφ(Xt, Ct)〉
∆t

+
〈Ψ(1− µ∆t)φ(Xt, Ct)〉+ 〈Ψµ∆tφ(Jt, Ct)〉 − 〈Ψφ(Xt, Ct)〉

∆t

+
〈Σ(1− µ∆t)φ(Xt, Ct)〉+ 〈Σµ∆tφ(Jt, Ct)〉 − 〈Σφ(Xt, Ct)〉

∆t

where 〈·〉 indicates the average with respect to the random variables. Whence we deduce the
instantaneous time variation of the average of φ in the limit ∆t→ 0+ as

d

dt
〈φ(Xt, Ct)〉 = 〈Ξµφ(Jt, Ct)〉+ 〈Ψµφ(Jt, Ct)〉+ 〈Σµφ(Jt, Ct)〉

− 〈Ξµφ(Xt, Ct)〉 − 〈Ψµφ(Xt, Ct)〉 − 〈Σµφ(Xt, Ct)〉.
(13)

The first [resp. last] three terms on the right–hand side of (13) are the gain [resp. loss] terms
related, respectively, to the label switches P1, P2, P3. Generally speaking, the gain terms may be
written as follows

〈Ξµφ(Jt, Ct)〉 =

∫
X 3

∫
C2

Ξλx,x∗φ(j, c)P (j|x, x∗; c)f(x, c, t)f(x∗, c∗, t)dcdc∗dxdx∗dj,

〈Ψµφ(Jt, Ct)〉 =

∫
X 3

∫
C2

Ψλx,x∗φ(j, c)P (j|x, x∗; c)f(x, c, t)
f(x∗, c∗, t)

ρSn(t) + ρSa(t)
dcdc∗dxdx∗dj,

〈Σµφ(Jt, Ct)〉 =

∫
X 2

∫
C

Σλjxφ(j, c)P (j|x)f(x, c, t)dcdxdj,

while the loss terms as follows

〈Ξµφ(Xt, Ct)〉 =

∫
X 3

∫
C2

Ξλx,x∗φ(x, c)P (j|x, x∗; c)f(x, c, t)f(x∗, c∗, t)dcdc∗dxdx∗dj,

〈Ψµφ(Xt, Ct)〉 =

∫
X 3

∫
C2

Ψλx,x∗φ(x, c)P (j|x, x∗; c)f(x, c, t)
f(x∗, c∗, t)

ρSn(t) + ρSa(t)
dcdc∗dxdx∗dj,

〈Σµφ(Xt, Ct)〉 =

∫
X 2

∫
C

Σλjxφ(x, c)P (j|x)f(x, c, t)dcdxdj.

Then, the kinetic equation for the probability density distribution of the agents, f(x, c, t), spe-
cialises as

d

dt

∫
X

∫
C
φ(x, c)f(x, c, t)dcdx =

+

∫
X 3

∫
C2

Ξλx,x∗

(
φ(j, c)− φ(x, c)

)
P (j|x, x∗; c)f(x, c, t)f(x∗, c∗, t)dcdc∗dxdx∗dj

+

∫
X 3

∫
C2

Ψλx,x∗

(
φ(j, c)− φ(x, c)

)
P (j|x, x∗; c)f(x, c, t)

f(x∗, c∗, t)

ρSn(t) + ρSa(t)
dcdc∗dxdx∗dj

+

∫
X 2

∫
C

Σλjx

(
φ(j, c)− φ(x, c)

)
P (j|x)f(x, c, t)dcdxdj,
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which has to hold for every φ : X ×C → R. Choosing φ(x, c) = ψ(x)ϕ(c) with ψ such that ψ(i) = 1
for a certain i ∈ X and ψ(x) = 0 for all x ∈ X \ {i} and considering (1), we can obtain the system
of weak equations for the distribution functions of the agents that are in the ith compartment,
fi’s, i ∈ X :

• susceptible individuals with normal behaviour (i = Sn)

d

dt

∫
C
ϕ(c)fSn(c, t)dc =− λSn,I

∫
C2
ϕ(c)βd,nfSn(c, t)fI(c∗, t)dcdc∗

+ λ

∫
C2
ϕ(c)g(cπa(t)− πn(t))fSa(c, t)

fSn(c∗, t)

ρSn(t) + ρSa(t)
dcdc∗

− λ
∫
C2
ϕ(c)g(cπn(t)− πa(t))fSn(c, t)

fSa(c∗, t)

ρSn(t) + ρSa(t)
dcdc∗,

(14)

• susceptible individuals with altered behaviour (i = Sa)

d

dt

∫
C
ϕ(c)fSa(c, t)dc =− λSa,I

∫
C2
ϕ(c)βd,afSa(c, t)fI(c∗, t)dcdc∗

+ λ

∫
C2
ϕ(c)g(cπn(t)− πa(t))fSn(c, t)

fSa(c∗, t)

ρSn(t) + ρSa(t)
dcdc∗

− λ
∫
C2
ϕ(c)g(cπa(t)− πn(t))fSa(c, t)

fSn(c∗, t)

ρSn(t) + ρSa(t)
dcdc∗,

(15)

• infectious individuals (i = I)

d

dt

∫
C
ϕ(c)fI(c, t)dc =λSn,I

∫
C2
ϕ(c)βd,nfI(c, t)fSn(c∗, t)dcdc∗

+ λSa,I

∫
C2
ϕ(c)βd,afI(c, t)fSa(c∗, t)dcdc∗

− λRI
∫
C
ϕ(c)γrfI(c, t)dc,

(16)

• recovered individuals (i = R)

d

dt

∫
C
ϕ(c)fR(c, t)dc = λRI

∫
C
ϕ(c)γrfI(c, t)dc. (17)

Equations (14)–(17) have to hold for every ϕ : C → R.
In order to obtain the evolution equations for the macroscopic densities (3) [resp. the average

flexibilities of opinion (4)] of each compartment, we set

ϕ(c) = cα,

with α = 0 [resp. α = 1], in (14)–(17). After some rearrangement, we obtain an exact closed
system without the need of other assumptions.
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The macroscopic model is given by the following non–linear ODEs:

d

dt
ρSn(t) = λ [g(mSa(t)πa(t)− πn(t))− g(mSn(t)πn(t)− πa(t))]

ρSn(t)

ρSn(t) + ρSa(t)
ρSa(t)

− λSn,Iβd,nρSn(t)ρI(t),

d

dt
ρSa(t) = λ [g(mSn(t)πn(t)− πa(t))− g(mSa(t)πa(t)− πn(t))]

ρSn(t)

ρSn(t) + ρSa(t)
ρSa(t)

− λSa,Iβd,aρSa(t)ρI(t),

d

dt
ρI(t) = (λSn,Iβd,nρSn(t) + λSa,Iβd,aρSa(t)) ρI(t)− λIRγrρI(t),

d

dt
ρR(t) = λIRγrρI(t),

d

dt
mSn(t) = λg(mSa(t)πa(t)− πn(t))(mSa(t)−mSn(t))

ρSa(t)

ρSn(t) + ρSa(t)
,

d

dt
mSa(t) = λg(mSn(t)πn(t)− πa(t))(mSn(t)−mSa(t))

ρSn(t)

ρSn(t) + ρSa(t)
,

d

dt
mI(t) = (λSn,Iβd,nρSn(t) + λSa,Iβd,aρSa(t))mI(t)− λIRγrmI(t),

d

dt
mR(t) = λIRγrmI(t).

(18)

In the following sections, we investigate the basic properties and the numerical solutions of the
model (18) for some specific functional shapes of the net costs of the behavioural strategies πn, πa,
and of the conditional probability g.

3 Functional shapes and basic properties

In this section, we provide some basic properties of model (18) given a specific choice of the
functions πn, πa and g. Precisely:

• Net costs of the behavioural strategies.
Analogously to what done by Poletti et al. [42], we assume that the net costs at population
level associated to the two behavioural strategies (see (11)) are linear–affine functions of the
density of infectious individuals, ρI (the disease prevalence). We set

πn(t) = νnρI(t), πa(t) = νaρI(t) + k, (19)

where: νn > νa > 0 represent the perceived risks of infection for Sn individuals and for
Sa individuals, respectively (they may be related to, e.g., the risk of developing symptoms);
k > 0 represents the extra cost induced by the altered behaviour. Indeed, in terms of disease–
safety, the cost induced by the normal behavioural pattern is higher than that induced by
the altered behavioural pattern, since Sn individuals are exposed to a higher risk of infection
(νn > νa). However, from the social and psychological point of view, Sa individuals suffer
the reduction of contacts with people (less travelling, less visiting friends and relatives, . . . ).
This disadvantage can be thought as an extra fixed cost k.

• Switching rates from a social behaviour to the alternative one.
The function g represents the conditional probability that a susceptible individual changes
behavioural strategy during an interaction with a member of the alternative group (see (9)).
Given that λ is the frequency of these interactions and g must satisfy the properties (10), the
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most natural and simple choice appears us to set λg(y) = y+, where the apices + indicates
the positive part of y. This yields

gna(t) = λg(mSn(t)πn(t)− πa(t)) = (mSn(t)πn(t)− πa(t))+,

gan(t) = λg(mSa(t)πa(t)− πn(t)) = (mSa(t)πa(t)− πn(t))+,
(20)

where

(mSn(t)πn(t)− πa(t))+ = max{0,mSn(t)πn(t)− πa(t)},
(mSa(t)πa(t)− πn(t))+ = max{0,mSa(t)πa(t)− πn(t)},

being gna [resp. gan] the switching rate of susceptible individuals from the normal [resp. al-
tered] to the altered [resp. normal] social behaviour. By substituting the explicit expressions
of πn, πa, as given in (19), in the formula (20), one finally obtains

gna(t) = ((νnmSn(t)− νa)ρI(t)− k)+ ,

gan(t) = (kmSa(t)− (νn − νamSa(t))ρI(t))
+ .

(21)

Also, we note that in model (18) the disease transmission rates for Sn individuals and for Sa
individuals are represented by

βi = λSi,Iβd,i, i ∈ {n, a},
respectively, and the rate of recovery from the disease is represented by

γ = λIRγr.

As a result of the above choices and by observing that the differential equations for ρSn , ρSa , ρI ,
mSn , mSa , do not depend on ρR, mI , mR, the model (18) reduces to

d

dt
ρSn(t) = (gan(t)− gna(t))

ρSn(t)

ρSn(t) + ρSa(t)
ρSa(t)− βnρSn(t)ρI(t), (22a)

d

dt
ρSa(t) = (gna(t)− gan(t))

ρSn(t)

ρSn(t) + ρSa(t)
ρSa(t)− βaρSa(t)ρI(t), (22b)

d

dt
ρI(t) = (βnρSn(t) + βaρSa(t)) ρI(t)− γρI(t), (22c)

d

dt
mSn(t) = gan(t)(mSa(t)−mSn(t))

ρSa(t)

ρSn(t) + ρSa(t)
, (22d)

d

dt
mSa(t) = gna(t)(mSn(t)−mSa(t))

ρSn(t)

ρSn(t) + ρSa(t)
, (22e)

with gna, gan given in (21), to which we associate the following initial conditions

ρSi
(0) = ρSi,0 > 0, ρI(0) = ρI,0 > 0, mSi

(0) = mSi,0 ≥ 0, i ∈ {n, a}. (23)

Given the aspect of the equations in (22), it is useful to introduce the quantity

p(t) =
ρSn(t)

ρSn(t) + ρSa(t)
, (24)

that is the fraction of susceptible individuals with normal behaviour with respect to the total
susceptible population. The differential equation for p can be simply obtained from (22): it is
given by

d

dt
p(t) = (gan(t)− gna(t)) p(t)(1− p(t))− (βn − βa)ρI(t)p(t)(1− p(t)). (25)
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The dynamics of p will be object of some numerical investigations performed in Section 5.
It is straightforward to verify that the region

D =
{

(ρSn(t), ρSa(t), ρI(t),mSn(t),mSa(t)) ∈ [0, 1]3 × [0, 2]2 |0 < ρSn(t) + ρSa(t) + ρI(t) ≤ 1
}

with initial conditions in (23) is positively invariant for model (22), namely any solution of (22)
starting in D remains in D for all t ≥ 0. This ensures that the model is mathematically and
epidemiologically well–posed.

Model (22) is an SIR–like epidemic model where the demographic dynamics of the population
is not taken into account. As very well–known (starting from the seminal paper by Kermack and
McKendrick [25]), this class of models admits only disease–free equilibria, i.e. stationary states
characterized by the absence of the infection. Let us denote by

E = (ρ∞Sn
, ρ∞Sa

, ρ∞I ,m
∞
Sn
,m∞Sa

), (26)

the generic equilibrium of model (22), namely the solutions of the algebraic system obtained by
setting the right–hand side of (22) equal to zero. As expected, from the equation (22c) it is
necessarily ρ∞I = 0. Also, at the equilibrium the switching rates gna and gan reduce to gna =
(−k)+ = 0 and gan = (km∞Sa

)+ = km∞Sa
. Then, from the equations (22a)–(22b)–(22d) it follows

that at least one of the conditions
ρ∞Sa

= 0, m∞Sa
= 0

holds.

Remark 4. In the hypothetical case that all the agents have the same degree of flexibility of opinion,
c, the averages mSn = mSa are equal to their initial value mSn,0 = mSa,0 for all the time, so playing
the role of a constant in the individual cost–benefit balances encoded in the equations (22a)–(22b).
In particular, if c ≡ 1, namely all the agents have fully balanced opinions, then we retrieve the
model in the paper [42] as a special case of (22).

4 Numerical investigations

In this section, we numerically investigate the transient and the asymptotic behaviour of the
macroscopic model (22). We previously verified the accordance between the numerical solutions
of the particle model (12) and those of the macroscopic model (22) that was formally derived by
the former. An exemplary comparison is reported in the Appendix A.

Our aim is to qualitatively assess the impact of the flexibility of opinion of susceptible indi-
viduals on the switching between the normal and the altered patterns of social contacts. Namely,
we want to stress the role of the relative weight c (assimilated to the averages mSn and mSa in
the macroscopic equations (22)) in the individual cost–benefit balance between the two social
behaviours, and the ensuing consequences on the epidemic dynamics. To this end, we have imple-
mented the modelling assumptions by Poletti et al. [42] for what concerns the net costs associated
with the two behavioural strategies, πn, πa, that are given in (19). This allows us to derive the
model in the paper [42] as a special case of the macroscopic model (22) (see Remark 4), so making
direct comparisons between the corresponding outcomes possible.

Since our investigations are purely qualitative, the values assigned to the epidemiological and
social parameters do not address a specific disease and/or spatial area. They refer to generic epi-
demic outbreaks for which containment strategies rely on the social distancing among individuals,
as typically happens for new emerging infectious diseases (e.g., 2003–2004 SARS outbreak [50],
2014–2016 Western African Ebola virus epidemics [9], the first phase of the ongoing COVID–19
pandemic [51]), and for constantly evolving viruses (e.g., the seasonal flu).

All the parameters of the model as well as their baseline values are reported in Table 1.
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Notation Description Baseline value
βn Transmission rate for susceptible individuals with normal behaviour 0.28 days−1

βa Transmission rate for susceptible individuals with altered behaviour 0.08 days−1

γ Recovery rate 1/7 days−1

νn Perceived risk of infection for Sn 10 – 40βn
νa Perceived risk of infection for Sa 10 – 40βa
k Extra cost induced by the altered behaviour 2.5 ·10−2 days−1

tf Time horizon 15 – 60 months
Ntot Total population 106

ρSn,0 Initial density of susceptible individuals with normal behaviour 0.99(1− ρI,0)
ρSa,0 Initial density of susceptible individuals with altered behaviour 0.01(1− ρI,0)
ρI,0 Initial density of infectious individuals 1/Ntot

mSn,0 Initial average flexibility of opinion for Sn [0,2]
mSa,0 Initial average flexibility of opinion for Sa [0,2]

Table 1: List of model parameters and initial conditions, with corresponding description and
baseline value.

We assume a population of Ntot = 106 individuals, representing, for example, the inhabitants
of a European metropolis. The baseline transmission rate of the disease is set to βn = 0.28 days−1

and reduces to βa = 0.08 days−1 for susceptible individuals that adopt the altered pattern of social
contacts (Sa). We assume a recovery rate of γ = 1/7 days−1, which means that 7 days is the
average time for infectious individuals to recover.

The net costs of the social behavioural strategies are linear–affine functions of the density of
infectious individuals ρI , see (19). Specifically, we consider that the perceived risk of infection
for susceptible individuals adopting the normal [resp. altered] behaviour is proportional to the
corresponding transmission rate: νn ∝ βn [resp. νa ∝ βa]. We distinguish between the following
two case studies according to the magnitude of this proportionality:

C1 the case of relatively high perceived risk of infection: νi = 40βi, i ∈ {n, a};

C2 the case of relatively low perceived risk of infection: νi = 10βi, i ∈ {n, a}.

In addition, members of Sa compartment pay an extra fixed cost induced by the altered behaviour:
k = 2.5 · 10−2 days−1.

Initial data are set to the beginning of the epidemics, namely we consider a single infectious
individual in a totally susceptible population: ρI,0 = 1/Ntot, ρSn,0 + ρSa,0 = 1 − ρI,0. As a conse-
quence, it seems us reasonable to assume that the most part of the susceptible population initially
adopts the normal behaviour: ρSn,0 = 0.99(ρSn,0+ρSa,0). As regards the initial values of the average
flexibilities of opinion for Sn and Sa compartments (mSn,0 and mSa,0, respectively), we vary them
in the range C = [0, 2] in order to deeply stress their role on the model outcomes.

Numerical simulations are performed in MATLABR© [36]. We implement the 4th order Runge–
Kutta method with constant step size for integrating the system (22). Platform–integrated func-
tions are used for getting the plots.

4.1 The case of relatively high perceived risk of infection

We start by investigating the case study C1, where the perceived risk of infection for both Sn and
Sa individuals is assumed to be 40 times larger than the corresponding transmission rate.

Fig. 1 displays the numerical solutions of model (22) in the baseline scenario of fully balanced
opinions, namely mSn,0 = mSa,0 = 1, implying that mSn = mSa ≡ 1 (see equations (22d)–(22e),
and Remark 4). We also sketch the dynamics of the fraction of susceptible individuals with normal
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Figure 1: Case study C1. Numerical solutions as predicted by model (22) by assuming mSn,0 =
mSa,0 = 1. Panel (a): density of susceptible individuals with normal (ρSn , black line) and altered
(ρSa , blue line) behaviours. Panel (b), left y–axis: fraction of susceptible individuals with normal
behaviour, p (black line). Panel (b), right y–axis: density of infectious individuals, ρI (blue line).
Panel (c): rate of opinion switching from Sn to Sa (gna, black line) and from Sa to Sn (gan, blue
line) compartments. Parameters values and other initial conditions are given in Table 1.

behaviour p, defined in (24), that is ruled by the differential equation (25). In such a scenario, the
disease dynamics is characterized by two epidemic waves: the first peak occurs about 3 months
after the initial time and reaches 7.4% of the total population, the second one follows 28 months
after the preceding one and reaches 3.5% of the population (Fig. 1b, blue line). The mutual
position of the rates of switching gna and gan reverses before and after that each peak occurs
(Fig. 1c): the initial positive gan rate (switching from the Sa to the Sn compartment) vanishes
about 1 month before the first [resp. 2 months before the second] peak and then returns positive
40 days [resp. 38 days] after it. Hence, susceptible individuals tend to switch from the altered to
the normal behaviour and vice versa, alternately (Fig. 1a). Correspondingly, the fraction of the
susceptible population adopting the normal behaviour, p, initially very high, alternates between
phases of rapid decline with phases of relatively slower rising (Fig. 1b, black line).

In order to investigate the impact of the average relative weights mSn and mSa in the individual
evaluation about the change of social contact patterns, we compare the results by Fig. 1 with the
cases of more or less flexible opinions.

Specifically, we consider the cases of balanced opinions for individuals initially in Sa (mSa,0 = 1)
and more or less flexible opinions for individuals in Sn (mSn,0 = 1.5 or mSn,0 = 0.5, respectively).
Comparative numerical simulations are given in Fig. 2. From Fig. 2c1–c3 and Fig. 2d, we note
that the average flexibilities of opinion for individuals in Sn and Sa compartments tend to rapidly
equalize. Indeed, most of the susceptible population initially adopts the normal behaviour (p(0) =
ρSn,0/(ρSn,0 + ρSa,0) = 0.99); when individuals switch en masse from Sn to Sa due to the arrival of
the first epidemic peak (namely, when the rate of switching gna passes from being null to positive
and overcomes gan), they also bring with them their degree of flexibility of opinion. Hence, the
ensuing average mSa is mostly due to individuals coming from the Sn compartment. From Fig. 2a,
we observe that, when individuals have on average more volatile opinions (red lines), the switching
between different social behaviours is more rapid with respect to the baseline case of fully balanced
opinions (black line). As a consequence, the epidemic peaks turn to be more frequent (three instead
of two), but generally less high than in the baseline case (Fig. 2b). Conversely, when individuals
are on average more intransigent, the switching between the alternative social behaviours occurs
more slowly than in the baseline case of fully balanced opinions (Fig. 2a, blue vs. black lines). As
a consequence, the epidemic peaks reduce to only one, that however is much higher: it reaches
13.4% of the total population vs. 7.4% by the first peak in the baseline case (Fig. 2b, blue vs.
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Figure 2: Case study C1. Numerical solutions as predicted by model (22) by assuming mSa,0 = 1
and mSn,0 = 0.5 (blue lines), mSn,0 = 1 (black lines), mSn,0 = 1.5 (red lines). Panel (a): fraction of
susceptible individuals with normal behaviour, p. Panel (b): density of infectious individuals, ρI .
Panels (c1)–(c3): average flexibility of opinion for the Sn compartment, mSn . Panel (d): average
flexibility of opinion for the Sa compartment, mSa . Parameters values and other initial conditions
are given in Table 1.

mSn,0 = 1 mSn,0 = 1.5 mSn,0 = 0.5 mSn,0 = 1 mSn,0 = 1
mSa,0 = 1 mSa,0 = 1 mSa,0 = 1 mSa,0 = 1.5 mSa,0 = 0.5

ρR(tf )Ntot 5.42 ·105 5.55 ·105 5.70 ·105 5.92 ·105 4.95 ·105

Table 2: Case study C1. Number of recovered individuals at the end of the time horizon, tf = 60
months, as predicted by model (22) for five combinations of the initial average flexibilities of opinion
mSn,0 and mSa,0. Parameters values and other initial conditions are given in Table 1.

black lines). As theoretically predicted, we also observe that, at variance with the case of fully
balanced opinions where if gna is positive, then gan is null and vice versa (Fig. 1c), in the case of
more [resp. less] flexible opinions the switching rates gna, gan can be both positive [resp. both null]
at the same time (curves not reported here).

In Table 2, we report the values at the end of the time horizon (tf = 60 months) of the number
of recovered individuals (ρR(tf )Ntot) in the different simulation scenarios. Being ρI(tf ) ≈ 0, the
quantity ρR(tf )Ntot matches the cumulative incidence of the disease (i.e., the total number of
infections) in the interval [0, tf ]. From Table 2, we notice that both the cases of more or less flexible
opinions for individuals initially in Sn (second and third columns, respectively) produce globally
little more infections than the baseline case (first column): 2.6% and 5.2% more, respectively.

We also investigate the cases of balanced opinions for individuals initially in Sn (mSn,0 = 1)
and more or less flexible opinions for individuals in Sa (mSa,0 = 1.5 or mSa,0 = 0.5, respectively).
Numerical simulations are given in Fig. 3. Also in such cases, the initial average flexibility of opinion
for the Sn compartment remains that predominant in the course of time. Namely, the average mSa

for the compartment of susceptible individuals with altered behaviour gets close to 1 regardless
of its initial value (Fig. 3d). With respect to the baseline case of fully balanced opinions (black
lines), having mSa,0 different from 1 has the effect of slowing down/speeding up (red/blue lines,
respectively) the switching of individuals between the alternative social behaviours (see Fig. 3a).
From Fig. 3b we note that, when individuals initially in Sa have more volatile opinions (red lines),
the first epidemic peak turns to be 11% higher than in the baseline case, but the second peak is
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Figure 3: Case study C1. Numerical solutions as predicted by model (22) by assuming mSn,0 = 1
and mSa,0 = 0.5 (blue lines), mSa,0 = 1 (black lines), mSa,0 = 1.5 (red lines). Panel (a): fraction
of susceptible individuals with normal behaviour, p. Panel (b): density of infectious individuals,
ρI . Panels (c): average flexibility of opinion for the Sn compartment, mSn . Panel (d): average
flexibility of opinion for the Sa compartment, mSa . Parameters values and other initial conditions
are given in Table 1.

delayed by over 4 months and 16% lower than in the case of fully balanced opinions. Globally, the
total number of infections (namely, ρR(tf )Ntot) is about 9% larger than in the baseline case (see
Table 2, fourth column). Conversely, when individuals initially in Sa are more intransigent (Fig. 3b,
blue lines), the first epidemic peak is 10% lower, but the second peak is anticipated by 3 and a half
months and 10% higher than in the baseline case. In such a case, the final cumulative incidence
ρR(tf )Ntot is 9% smaller than in the case of fully balanced opinions (Table 2, last column).

An overall view of the impact of the flexibility of opinion on the asymptotic behaviour of
the model (22) is given in Fig. 4. Specifically, we report the asymptotic (stationary) densities
of susceptible individuals with normal and with altered behaviour (namely, the components ρ∞Sn

and ρ∞Sa
, respectively, of the generic equilibrium (26)), and the corresponding average flexibilities

of opinion (m∞Sn
and m∞Sa

, respectively) by varying the pair (mSn,0,mSa,0) in the parameter space
[0, 2]2. The values are numerically approximated to those at t = 20 years after the initial time.
Note that from ρ∞Sn

and ρ∞Sa
one can also derive the stationary density of the individuals that have

been infected and recovered, say
ρ∞R = 1− ρ∞Sn

− ρ∞Sa
,

being the total population constant and the equilibria of model (22) at the disease–free status
(ρ∞I = 0). From Fig. 4c and Fig. 4d we note that in most of the parameter space (mSn,0,mSa,0) ∈
[0, 2]2 the stationary average flexibility of opinion for both Sn and Sa compartments is close to the
average flexibility of individuals initially in Sn, mSn,0. An exception is constituted by the cases of
very intransigent individuals initially in Sn (mSn,0 . 0.35): in such cases mSa is asymptotically
close to its initial value (m∞Sa

≈ mSa,0) regardless of mSn,0 (Fig. 4d). The explanation of this
outcome relies on the observation that when mSn,0 is very small, the switching rate from the
normal to the altered behaviour, gna, remains null all long, so that the Sa compartment (whose
size is initially very small) can only be further emptied. For the same reason, the stationary
number of Sn individuals is rather constant for mSn,0 . 0.35 (Fig. 4a); but it greatly varies for
larger mSn,0: the density ρ∞Sn

ranges from 21.5% to 52.5% of the total population. Interestingly,
ρ∞Sn

does not monotonically change with neither mSn,0 nor mSa,0, but overall it is affected more by
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Figure 4: Case study C1. Contour plots of asymptotic quantities as predicted by model (22)
versus the initial average flexibility of opinion for the Sn compartment, mSn,0, and for the Sa
compartment, mSa,0. Panel (a): stationary density of susceptible with normal behaviour, ρ∞Sn

.
Panel (b): stationary density of susceptible with altered behaviour, ρ∞Sa

; in–box: zoom in for the
parameter subspace (mSn,0,mSa,0) ∈ [0, 0.4]× [0, 0.03]. Panel (c): stationary average flexibility of
opinion for the Sn compartment, m∞Sn

. Panel (d): stationary average flexibility of opinion for the
Sa compartment, m∞Sa

. Parameters values and other initial conditions are given in Table 1.

variations of mSn,0 with respect to mSa,0. As far as the stationary density of Sa individuals, ρ∞Sa
, is

concerned, it is almost null in any case (Fig. 4b). This yields the asymptotic cumulative incidence
of the disease well approximated by ρ∞RNtot ≈ (1− ρ∞Sn

)Ntot.

Remark 5. As anticipated in Section 2, when a compartment is almost empty, the macroscopic
model may not well reproduce the corresponding average flexibility of opinion as predicted by the
stochastic particle model. This is due to the inconsistency of average quantities when the number
of particles is very small. In that case, the deterministic macroscopic model cannot be justified by
means of the law of large numbers and statistical fluctuations should be taken into account. In our
case, this happens for example at the end of the time horizon when the size of the Sa compartment
is rather null (Fig. 4b). The goodness of the match between the solutions from the macroscopic and
the microscopic approaches was deeply stressed in the epidemic model [30], where the time–varying
viral load of each agent is tracked. Analogously to what happens in that case, we expect that the
empirical average flexibility of opinion approaches zero when the compartment is nearly empty.

4.2 The case of relatively low perceived risk of infection

Then, we investigate the case study C2, where the perceived risk of infection for both Sn and Sa
individuals is just 10 times larger than the corresponding transmission rate.
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Figure 5: Case study C2. Numerical solutions as predicted by model (22) by assuming mSn,0 =
mSa,0 = 1. Panel (a): density of susceptible individuals with normal (ρSn , black line) and altered
(ρSa , blue line) behaviours. Panel (b), left y–axis: fraction of susceptible individuals with normal
behaviour, p (black line). Panel (b), right y–axis: density of infectious individuals, ρI (blue line).
Panel (c): rate of switching from Sn to Sa (gna, black line) and from Sa to Sn (gan, blue line)
compartments. Parameters values and other initial conditions are given in Table 1.

Fig. 5 displays the numerical solutions of model (22) in the baseline scenario of fully balanced
opinions, namely mSn = mSa ≡ 1. At variance with the case study C1 (see Fig. 1), in such a case
the disease dynamics is characterized by just one epidemic wave, but much more severe: the peak
occurs on the 99th day and reaches 14% of the total population (Fig. 5b, blue line). Indeed, the
relatively low perceived risk of infection leads the individuals to be less reactive than in the case
C1, and the switching from the Sn to the Sa compartment occurs more slowly (compare the rates
of switching gna in Fig. 1c and Fig. 5c). The maximum fraction of susceptible individuals adopting
the altered behaviour (namely, 1−min(p)) reaches about the 84% versus almost the 100% in the
case C1 (Fig. 5b, black line).

The scenarios of balanced opinions for individuals initially in Sa (mSa,0 = 1) and more or less
flexible opinions for individuals in Sn (mSn,0 = 1.5 or mSn,0 = 0.5, respectively) are depicted in
Fig. 6. Corresponding relevant quantities concerning both the transient and the asymptotic system
dynamics are reported in Table 3 (second and third columns) and compared with the baseline case
of fully balanced opinions (first column). We observe that variations in the average flexibility of
opinion have little impact on the height of the epidemic peak and do not induce subsequent waves,
but modify the descent of the epidemic curve (Fig. 6b). This may be explained by the fact that
the perceived risk of infection is so low that individuals react to the epidemic outbreak when the
rising is already out of control. Even when the switch from the normal to the altered behaviour
is massive, as in the case of averagely more volatile opinions (see Fig. 6a, red line), it occurs too
late to significantly reduce the epidemic peak. Nonetheless, the impact on the descent epidemic
phase can significantly affect the total number of infections: the asymptotic cumulative incidence
of the disease, ρ∞RNtot (that is well approximated by (1 − ρ∞Sn

)Ntot), varies from about the 49%
of the population, when individuals have more volatile opinions (mSn,0 = 1.5), to the 78%, when
individuals are more intransigent (mSn,0 = 0.5). In the latter scenario of less flexible opinions, note
also that the stationary average flexibility of opinion for the Sa compartment is greater than that
for the Sn compartment: m∞Sa

= 0.6 > 0.51 = m∞Sn
(Table 3, third column), this is because the

number of Sn individuals entered in the Sa compartment is not enough for their opinion flexibility
to fully prevail in it (see Fig. 6a, blue line).

Finally, the scenarios of balanced opinions for individuals initially in Sn (mSn,0 = 1) and more
or less flexible opinions for individuals in Sa (mSa,0 = 1.5 or mSa,0 = 0.5, respectively) are depicted
in Fig. 7. Corresponding relevant quantities concerning the system dynamics are reported in Table
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Figure 6: Case study C2. Numerical solutions as predicted by model (22) by assuming mSa,0 = 1
and mSn,0 = 0.5 (blue lines), mSn,0 = 1 (black lines), mSn,0 = 1.5 (red lines). Panel (a): fraction of
susceptible individuals with normal behaviour, p. Panel (b): density of infectious individuals, ρI .
Panels (c1)–(c3): average flexibility of opinion for the Sn compartment, mSn . Panel (d): average
flexibility of opinion for the Sa compartment, mSa . Parameters values and other initial conditions
are given in Table 1.

mSn,0 = 1 mSn,0 = 1.5 mSn,0 = 0.5 mSn,0 = 1 mSn,0 = 1
mSa,0 = 1 mSa,0 = 1 mSa,0 = 1 mSa,0 = 1.5 mSa,0 = 0.5

max(ρI) 0.14 0.12 0.15 0.14 0.13
arg max(ρI) (days) 98.61 95.11 99.61 99.11 98.11

min(p) 0.16 0.02 0.97 0.21 0.12
ρ∞Sn

0.36 0.51 0.22 0.33 0.40
ρ∞Sa

1.61 ·10−15 1.47 ·10−15 1.61 ·10−15 1.41 ·10−15 1.79 ·10−15

m∞Sn
1.00 1.49 0.51 1.01 0.99

m∞Sa
1.00 1.49 0.60 1.01 0.99

Table 3: Case study C2. Relevant quantities as predicted by model (22) for five combinations
of the initial average flexibilities of opinion mSn,0 and mSa,0. Parameters values and other initial
conditions are given in Table 1.

3 (fourth and fifth columns). As expected, due to the initial small size of the Sa compartment,
the impact of mSa,0 on both the transient and the asymptotic dynamics of model (22) is minor:
when mSa,0 varies from 1.5 to 0.5, the total number of infections caused by the epidemic outbreak
(ρ∞RNtot ≈ (1 − ρ∞Sn

)Ntot) decreases from the 67% to about the 60% of the total population, and
the maximum fraction of the susceptible population adopting the altered behaviour (1 −min(p))
increases from the 79% to the 88%. Other relevant quantities undergo even more little variations.

5 Concluding remarks

Shaping the complex dynamics of spontaneous behavioural changes in response to an epidemics is
crucial for public health authorities to plan control strategies. Mathematical models proved to be
a valid tool to improve the understanding of the intricate interplay between human behaviour and
disease spreading. Here, without referring to any specific disease, we give a contribution in this
direction by using a kinetic theory approach.
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Figure 7: Case study C2. Numerical solutions as predicted by model (22) by assuming mSn,0 = 1
and mSa,0 = 0.5 (blue lines), mSa,0 = 1 (black lines), mSa,0 = 1.5 (red lines). Panel (a): fraction
of susceptible individuals with normal behaviour, p. Panel (b): density of infectious individuals,
ρI . Panels (c): average flexibility of opinion for the Sn compartment, mSn . Panel (d): average
flexibility of opinion for the Sa compartment, mSa . Parameters values and other initial conditions
are given in Table 1.

We develop a game theoretical epidemic model where the flexibility of opinion of the individuals
about the change of social contact patterns is explicitly taken into account. Starting from a
stochastic particle model, we derive a statistical description at the mesoscopic level of our multi–
agent system and, eventually, a macroscopic model given by a system of non–linear ODEs. This
latter model naturally inherits a large number of features of the original microscopic dynamics
with the advantage that it is more amenable to analytical and numerical investigations.

Among the main results, we evidence that

• By attributing a degree of flexibility of opinion to each agent, we account for the personal
attitude to change opinion. This leads the heterogeneity of the cost–benefit assessments of
individuals who have to choose whether to change or preserve their social behaviour;

• During an interaction between individuals adopting alternative social behaviours, it may
happen that both or neither of them perceive their own strategy as less convenient than
the alternative one. It follows that at population level the switching rates between the two
strategies may be both positive or both null at the same time;

• With respect to the hypothetical case that all the individuals have the same flexibility of
opinion, having variegated personal attitudes produces both a qualitative and a quantitative
impact on the disease dynamics and on the consequent behavioural responses;

• In the case of relatively high perceived risk of infection within the population (Section 4.1),
more or less flexible opinions may: i) lead to an increase or a decrease of the number of
epidemic waves; ii) modify the height of the peak and the time it occurs; with respect to the
baseline scenario of fully balanced opinions. However, the corresponding variations in the
cumulative disease incidence at the end of the time horizon are small (not more than 9%);

• In the case of relatively low perceived risk of infection (Section 4.2), more or less flexible
opinions do not increment or decrement the number of epidemic waves with respect to the
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scenario of balanced opinions, and have little impact on the height and time occurrence of
the peak. However, the cumulative incidence may vary from the 49% of the population, when
individuals have more volatile opinions, to the 78%, when they are more intransigent.

We stress that our approach is quite general and could be easily adapted to other epidemiological
frameworks where individual opinions play a key role. For example, the voluntary adherence to
immunization programs is a hot topic of behavioural epidemiology of infectious diseases [2, 7, 8, 12,
34, 49]. In such a context, a critical phenomenon is the ‘pseudo–rational’ exemption to vaccination
[2, 7, 12, 49]: individuals are more or less inclined to overweight real and presumed vaccine side
effects and underweight actual risks due to the disease. Also, our approach could be extended
by including more heterogeneity in the behavioural strategies that individuals can adopt. For
example, one can consider a finite number (greater than two) of alternative strategies or even a
continuous dynamics between the two extremal ones.

Finally, we plan to incorporate the role of the flexibility of opinion in a behavioural change
epidemic model where the disease dynamics explicitly depends on the individual viral load. Namely,
we want to combine the approach introduced here with that considered in the papers [31, 32]. In
such a case, each agent would be characterized by – besides the epidemiological compartment to
which he/she belongs – two microscopic traits: the viral load, which influences the transmission
and progression of the infection, and the flexibility of opinion, which influences the imitation game
dynamics.
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A Numerical comparison between the particle and the macro-

scopic models

In Fig. A1 we report an illustrative comparison between the numerical solutions of the particle
model (12) (markers) and those of the macroscopic model (22) (solid lines). We consider the case
study C2 in the baseline scenario of fully balanced opinions, namely mSn = mSa ≡ 1 (see Fig. 5). In
order to simulate the stochastic particle model, we implement a Monte Carlo algorithm. We remark
that this corresponds to integrate the kinetic model (14)—(17) in a Monte Carlo framework. The
Monte Carlo simulations are performed by setting the time step dt = 10−3 days and the parameters
λSi,I = λ = λIR = 1, βd,i = βi, γr = γ, i ∈ {n, a}. As expected, from Fig. A1 we note a very good
match between the two approaches in predicting the dynamics of compartment densities.

We verified that similar results hold when different sets of parameter values are considered
(plots not shown here).
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