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Abstract—Buildings benchmarking based on their electric pro-
files is a fundamental step to identify, evaluate and then possibly im-
plement energy efficiency oriented actions. Indeed, benchmarking
enables comparison among peer buildings or industrial sites and
the identification of reference cases, either efficient and inefficient
ones. In this regard, temporal data clustering is an effective and
widely applicable benchmarking tool. In this work, we propose a
novel Machine Learning based methodology, taking advantage of
two fundamental tools, namely a decomposition algorithm and a
clustering one. Several clustering algorithms have been tested to
identify k-Means as the most suitable one. The proposed method-
ology includes the evaluation of energy Key Performance Indicators
for effective analysis and comparison of buildings. The proposed
framework has been tested on a real-world case study including
around 2000 non-residential buildings. The classification of build-
ings based on K-Means achieved an accuracy of 99.7% with respect
to their usage category. Furthermore, reference Key Performance
Indicator values for each cluster are obtained and discussed to
understand buildings’ energy behaviour and possible reasons for
inefficiencies.

Index Terms—Energy efficiency, non-residential buildings,
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I. INTRODUCTION

R ETROFIT of existing buildings and efficient buildings
operation are two of the key actions to be undertaken to en-

hance the transition towards energy sustainability [2]. In deeds,
the buildings sector is the major responsible for energy usage
and energy-related CO2 emissions. Specifically, it accounted
for 36% of global final energy consumption and was respon-
sible for 37% of energy-related CO2 emissions in 2020 [3],
corresponding to 11.7 gigatons of CO2. Despite carbon dioxide
emissions associated with buildings decreased consistently after
2015, major challenges shall be addressed in the next decades to
meet with the goal of keeping global temperature below 1.5◦C
with respect to pre-industrial levels [4]. The building stock
is expected to increase dramatically, particularly in emerging
countries. Furthermore, space cooling, which was responsible
for 1 gigaton of CO2 emissions and 5% of global energy con-
sumption in 2020 [2], has doubled over the last two decades and
it is expected to double once more by 2040. Besides, a number
of energy intensive economic sectors are increasing dramati-
cally their energy demand. This is the case, for example, of
the Information and Communication Technology (ICT) branch.
Pushed by the widespread of the Internet [5], ICT branch is
experiencing an exponential growth of energy demand which
increased by an annual rate of about 10% over the last decade [6].
The main contributor to this growth is the Telecommunication
(TLC) sector, whose companies are in charge of the operation of
the TLC network, including Central Offices (CO), Data Centres
(DC), offices and many other buildings. TLC companies are
responsible for about 7% of the global electrical demand [7].
DC and data transmission networks represent the two highest
shares in the TLC sector energy demand, contributing to about
1% each of the worldwide total electrical demand in 2019 [8].

For these reasons, energy efficiency-oriented retrofit actions,
as well as efficient management of buildings will be crucial
challenges. This is witnessed by the actuality of the debate over
energy efficiency at a political level, as well by the ongoing and
growing economic investments and research efforts. The first
aspect is certified by the centrality of the topic in the public
and in the institutional debates and in the directives enacted by
many political entities all around the world [3], [9]. At the same
time, the global amount of investments for energy efficiency
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actions reached 180 billion dollars in 2020. Still, this amount
is expected to burst over the next decades, as existing buildings
shall be retrofitted with an annual rate equal to 3% to meet with
the sustainability goals [2]. These investments are boosted by
the economical benefit they produce, as they reduce costs and
enhance economic competitiveness and sustainability [10].

Nevertheless, the pathway for an effective, broad and com-
prehensive energy transition struggles to gain a foothold. In
many cases, this is due to a lack of awareness of the causes
of inefficiency, or to inability to strategic planning of retrofit
interventions. In this regard, the availability of data from large
populations, capable of representing the conditions of the com-
plex real-world buildings stock, is fundamental to derive strong
evidence to support design of proper energy efficiency actions.
Smart monitoring systems and the Internet-of-Things (IoT)
paradigm represent the starting points to enhance awareness of
energy behaviour of buildings [11]. Acquisition and investiga-
tion over huge amounts of data have become possible thanks to
the widespread of systems for measurement, collection and data
storage. By 2018, 100 million electricity smart meters had been
installed in Europe [12]. Notwithstanding the impressive pace
towards digitization, this represents just 34% of metering points
around the Old Continent. In order to effectively process and
exploit these data, new techniques and disciplines arose. These
are generally addressed as data mining techniques. Particularly,
Machine Learning (ML) emerged as the most promising dis-
cipline, thanks to its devotion to automation of the data inves-
tigation procedures and its numerous applications. Nowadays,
ML is an effective and accurate approach to typical tasks such
as pattern recognition, clustering, anomaly detection, regression
and classification, and a powerful tool to take practical actions
in support of a more energy efficient buildings management.

A key starting point for developing a strategic plan for energy
efficiency of a building stock is identifying groups of buildings
with similar characteristics and calculating energy performance
indexes to allow comparison among peers. Eventually, reference
buildings are selected within each group and retrofit analysis
is undertaken. This approach, which is generally addressed
as benchmarking, enables, for instance, the identification of
priority refurbishments, ranking of peer buildings according to
their efficiency and estimation of energy savings potential.

This paper proposes a novel ML-based methodology for
benchmarking of buildings. Besides, the framework is intended
to support the analysis of the characteristic Key Performance
Indicators (KPI) of the buildings. With the perspective of pro-
viding the most effective and adequate clustering, smart me-
ter measured electrical demand is employed. The proposed
methodology includes i) the application of a time series (TS)
decomposition model to obtain reference load components, and
ii) a clustering algorithm to retrieve groups of homogeneous
buildings. A real-world dataset has been employed to test
the proposed framework. Specifically, a massive load profiles
dataset regarding electrical demand from a heterogeneous stock
of buildings from the largest TLC service provider in Italy.
The data includes hourly aggregated load measures, measured
from 1st January 2019 to 31st December 2019 for around 2000
buildings. It includes DC, CO, offices and mixed-use buildings.

Moreover, this paper extends our previous work [1] by con-
sidering additional SoA clustering algorithms and additional
temperature-at-use related KPIs.

The proposed work is organised as follows. Section II explores
the literature efforts and discusses its gaps and presents the main
contributions of this work. Section III describes the proposed
methodology and the employed ML algorithms. Section IV
includes the presentation of a tailored normalization tool for the
investigated dataset and of the energy KPI. The outcomes from
each step of the analysis are provided and discussed in Section V,
including the clustering validation metrics to demonstrate the
correctness of the obtained results. Final remarks and potential
future developments are summarised in Section VI.

II. LITERATURE REVIEW

As data-driven approaches took over the sector of buildings
performance analysis, a flourishing literature introduced and
tested a number of new algorithms and applications of ML tools.
Firstly, ML enabled benchmarking of buildings considering mul-
tiple factors related to buildings’ energy performance [13]. To
this purpose, the most broadly adopted algorithm was clustering,
an unsupervised learning tool employed for a number of ap-
plications, including heating and cooling systems performance
identification, energy usage pattern discovery, load profiling,
classification, characterization, targeting, anomaly detection and
energy management [14], [15]. Buildings benchmarking can
be achieved by means of two different approaches: the first
considers non-temporal parameters as inputs, the second deploys
TS. Specifically, the first approach consists of considering some
buildings parameters and performance indicators as input vari-
ables for the clustering model. For instance, Marrone et al. [16]
group homogeneous schools and identify reference buildings for
each cluster. These elements can be used to quantify the energy
savings potential associated with a specific energy retrofit action
to be undertaken for the whole set of buildings, hence supporting
the administration in decision-making. A similar framework is
employed by Geyer et al. [17], which make use of 50 different
buildings’ parameters. The authors underline that, to the aim
of planning an efficiency-oriented renovation strategy, buildings
shall be grouped according to their similarity in terms of reaction
to retrofit measures, rather than in terms of descriptive and
structural parameters. This can be achieved by incorporating
appropriate performance indicators of the buildings as inputs of
the model. Cecconi et al. [18] used k-Means to group homo-
geneous buildings and an Artificial Neural Network (ANN) to
allow estimation of energy savings.

Contrary, given the availability of electrical load measure-
ments, many researchers preferred to focus on time-domain
inputs. These clustering models can be further divided into direct
and indirect methods. The first are those making use of TS, or
part of them, as they are. The second class of methodologies
includes some data transformation step, which usually aims for
dimensionality reduction of data. This is due to the issue of
computational complexity of clustering long TS, for instance
yearly load profiles (YLP) with hourly measurements. A couple
of interesting examples of direct methods are described in [19],
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[20]. The former is particularly noticeable for considering a
massive dataset of about 3800 buildings, including both res-
idential and non-residential ones, for a total number of over
2 million daily load profiles (DLP). These approaches include
both an intra-building and an inter-buildings clustering steps.
Yet, many authors adopted indirect methods, considering that
some data-dimensionality technique may better preserve the
meaningfulness and representativeness of TS and enhance com-
putational cost reduction. For instance, Ryu et al. [21] encoded
TS by means of a Convolutional Autoencoder. K-Means was
then employed, resulting in dramatically lower computational
time with respect to clustering of the original TS. Motlagh
et al. [22] converted electrical load TS into signature objects
by means of neural regression and subsequently performed
clustering. Similarly did Westermann et al. [23]. The authors
stress that temperature-at-use models, such as energy signatures,
are more appropriate than those focusing solely on temporal
patterns. Giordano et al. [24] instead identified homogeneous
electricity customers by employing a spectral-based approach,
which revealed itself as suitable for clustering TS featuring
strong periodicity.

In this context, a number of clustering algorithms have been
invented, tested and compared. The prevailing algorithm, by
date, is k-Means, adopted in [16], [18], [19], [20], [21], [23],
[25]. Hierarchical clustering has been adopted in [17], while
Zarabie et al. [26] claim that Affinity Propagation Algorithm
outperforms k-Means, k-Medoids and Spectral clustering for
residential load profiles grouping. Damayanti et al. [27] achieved
higher clustering performance by employing a k-Harmonic
Means algorithm to cluster electrical load profiles with respect to
k-Means and Fuzzy c-Means. Yang et al. [28] instead employed
the k-Shape algorithm, introduced by Paparrizos et al. in [29], to
analyse energy consumption patterns from academic buildings
in Singapore. Li et al. proposed to use Gaussian Mixture Model
and hierarchical clustering for intra-building and inter-buildings
clustering respectively [30]. The search for novel clustering
algorithms often dealt with the issue of shift, scaling and com-
plexity invariance. For these same reasons, some authors focused
their research on distance measures to be employed rather than
traditional Euclidean ones. For instance, the Pearson Correlation
Coefficient-based dissimilarity measure was employed in [31]
and Dynamic Time Warping in [23].

Considering the urgency of pervasive energy efficiency mea-
sures regarding existing buildings, identification of groups of
homogeneous buildings, construction of representative sam-
ples and investigation of representative case studies are key
challenges to be addressed as soon as possible [3]. Both the
buildings parameters and load profiles may be employed for
clustering, which is a first necessary step of the aforementioned
tasks. Nevertheless, thermal parameters are one of the sources
of uncertainties in buildings’ energy assessment [32]. These
may be due to measurement errors as well as environmental
conditions, such as moisture or age, which may modify the
thermal properties of buildings. Furthermore, the collection of
the necessary parameters for the whole existing buildings’ stock
is a tremendous challenge. On the contrary, smart meters pene-
tration is expected to reach 92% of the electricity delivery points

Fig. 1. Outlook of the proposed methodology.

in 2030 [12]. Hence, data regarding almost the whole number
of existing buildings will be available in a few years. Proper
algorithms will be needed to effectively and efficiently exploit
these data. Furthermore, most of the research to date have dealt
with small and not very diversified datasets. For these reasons,
the present paper describes a new ML-based framework aimed
at clustering buildings according to their energy behaviour. This
is achieved by considering the hourly load measurements rather
than the buildings’ characteristics. The methodology features a
decomposition tool to retrieve representative load components
from the profiles. Hence, clustering of buildings is performed
and validated through proper Clustering Validity Indexes (CVI).
Finally, characterization of buildings is performed by means
of specific Key Performance Indicators (KPI) and statistical
analysis. The proposed framework was applied to a real-world
dataset regarding a specially energy-intensive sector.

III. METHODOLOGY

In order to address the tasks outlined in the previous sections,
here we present our novel methodology schematised in Fig. 1.
The proposed approach provides an automated tool for buildings
benchmarking. The framework relies on the exploitation of
smart meter data. Specifically, hourly aggregated load profiles
are considered. Besides the fundamental task of benchmarking,
this work shall enhance detection and revision of wrong labels
attached to buildings, in the perspective of supporting the facility
management of the company. The methodology involves four
parts, namely Data CollectionPre-processing, Clustering, and
Post-Processing.
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A. Data Collection

Electrical load measurements are obtained by smart meters. In
this case study, these devices provide hourly aggregated energy
consumption, that is mean total absorbed power. Raw data often
include measurement errors, such as missing values, zeros or
negative values, and values out of the plausible load range.
Load profiles shall comprehend an adequate number of points
and include measurements from any hour and season. Hence,
load profiles shall contain measurements from one year or
more.

B. Pre-Processing

Pre-processing, or pre-clustering phase, includes the steps
necessary to handle raw input data. Specifically, pre-processing
is intended to guarantee data reliability, comparability and ex-
ploitability. To this purpose, 3 steps are included in the pre-
processing step: data cleaning, data normalization and decom-
position.

Data Cleaning: Firstly, a data set cleaning step is carried out,
to delete abnormal measurements and to reduce noise inside TS.
Specifically, the abnormal values to deal with are measurement
errors. To this purpose, load profiles are filtered by replacing
values featuring gradients higher than three times the standard
deviation calculated from the distribution of gradients from the
TS itself. These values, as well as the missing ones, are replaced
by means of linear interpolation. Besides, short TS, which
are load profiles with less than one year of measurements or
containing long-lasting abnormal measurements (i.e. whenever
48 consecutive values were considered abnormal), have been
filtered out.

Data Normalization: Normalization of load profiles is applied
to cluster buildings with similar characteristics but different size.
This step is designed in accordance with the goal of clustering.
For instance, in some cases buildings’ size may be a criterion
for grouping, hence a normalization step may not be included
in the framework. More often, normalization is a step of the
analysis to be tailored to the investigated dataset. In this case,
base-load normalization is employed in accordance with the
characteristic of the case study. This choice is described in depth
in Section IV-A.

Decomposition: Identification of representative profiles is a
crucial step of benchmarking. Previous works often focused on
the identification of representative DLP by means of a intra-
building clustering step [19], [20], [30]. Yet, it has been pointed
out that the representativeness of DLP is questionable and that
considering YLP is more adequate [21]. Nevertheless, exploiting
YLP for clustering is hindered by the problem of dimensionality.
Indeed, adequate load profiles often feature hourly resolution,
which results in YLP in 8760 dimensions and may determine
complexity and computational time issues. To deal with this
obstacle, dimensionality reduction techniques may be adopted to
preserve meaningful features of TS, while removing irrelevant or
redundant attributes [33]. Dimensionality reduction techniques
can be divided into feature extraction and feature selection,
being the former the more suitable for TS. In fact, buildings

are expected to depict particular load patterns, which may de-
pend on a number of factors. For instance, outdoor tempera-
ture variations will affect electrical demand of those buildings
equipped with air conditioning, typically determining seasonal
and daily periodicity. Occupancy schedules will determine the
load for lighting, and weekly patterns have to be expected
for industrial, commercial and residential buildings. Assuming
periodicity as a distinctive feature of buildings, the proposed
methodology takes advantage of a decomposition algorithm in
the attempt of isolating the fluctuations linked to sites’ usage.
This step is intended to preserve meaningfulness of YLP and to
shorten computational time by reducing the dimensionality of
the vectors which will be employed in the clustering phase. In
order to identify the most significant periodical components, an
auto-correlation analysis is carried out and Pearson’s coefficients
are calculated. Hence, the Loess decomposition model [34] has
been applied to distinguish the base load, the seasonal and the
periodic components of load profiles. This model consists of
an additive decomposition tool, whereas TS are interpreted as
follows:

ETOT = l + t+ p+ n (1)

where l is the level component, which is constant over the whole
TS; t is the trend representing the tendency of the TS to grow or
decrease over consecutive periods; p is the periodic component;
and n are the residuals, or noise, which is the difference between
the original TS and the sum of the previously mentioned compo-
nents. Finally, the representative periodic component (RPC) has
been isolated from the remaining part of the electrical demand
and is used as an input for the clustering phase.

C. Clustering

Clustering is an automated and unsupervised ML algorithm
designed to group elements according to their similarity. This
phase of the analysis takes advantage of the comparison of
several clustering algorithms and of proper CVIs to assess their
performance.

Clustering Algorithms: Several clustering algorithms have
been tested based on the related works presented in Section II.
More in detail, k-Means, k-Shape, Partition Around Medoid
(PAM) and hierarchical agglomerative algorithms were em-
ployed to group different TS considering their RPC. Euclidean
distances were adopted as the distance measure of the above-
mentioned algorithms. Since the best configuration can not be
known a priori, each algorithm has been tested for a number of
clusters between 2 and 10.

Clustering Validity Indexes (CVIs): A number of CVIs has
been introduced to assess the performance of the algorithms [35].
These indexes essentially consider two aspects, which are intra-
cluster similarity and inter-clusters separation. In this study four
CVIs were considered, namely Within Cluster Sum of Square
(WCSS), Silhouette Coefficient, Davies Bouldin Index (DBI)
and Calinski-Harabasz Index (CHI). Yet, other factors shall
be considered whereas clustering is employed to the specific
purpose of benchmarking. In particular, a fundamental aspect
is segregation of variables [36] in clusters. This aspect may
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be described considering the mean distance among the clusters
mean values of the most significant KPIs. Moreover, since some
usage labels were provided in the original dataset, homogeneity
of usage classes within clusters was considered.

D. Post-Processing

The post-processing phase includes validation, exploitation
and exploration of the results. In this study, these aspects are
considered in accordance with two specific goals, which are
relabelling and benchmarking.

Relabelling: Considering the clusters retrieved and the pre-
dominant usage categories labels within each single cluster,
some buildings may result as discordant. In these cases, the TLC
service provider energy managers have been asked to check if
any change in the building usage or reduction/increase of the
staff operating within those sites had occurred and had not been
reported. Eventually, sites have been relabelled in accordance
with their actual and current usage category.

Benchmarking: Finally, benchmarking of the building stock is
performed, taking advantage of the definition of adequate KPIs
for comparison. Hence, statistical analysis may be employed to
determine reference elements from each cluster, rank buildings
according to their efficiency and define KPIs intervals. At this
stage the analysis may be easily deepened to understand energy
and thermal behaviour of sites, to identify causes of inefficien-
cies of the sites and to determine priority retrofit interventions.

IV. CASE STUDY, DATASET AND KPIS

The methodology introduced in Section III is applied to a
real-world dataset containing aggregated hourly electric load
measurements for the whole year of 2019 regarding buildings
managed by the largest TLC service provider in Italy. The vast
majority of the buildings in the data set are COs, which are
facilities containing telephone switches and other TLC hardware
employed for the operation of the wired network, or similar ones,
such as DC. Many of these buildings actually have promiscuous
usage, featuring both areas devoted to TLC equipment and areas
for offices. A few buildings predominantly occupied by offices
are present as well. The geographical location, the Climatic
Severity Index, the square footage of the areas devoted to offices
and TLC equipment are included in the data set. With respect
to most of the research efforts reported in Section II presenting
applications on small datasets, this work deals with and relies on
testing the proposed methodology on a dataset including almost
2000 buildings. Furthermore, the proposed application investi-
gates a fast-growing and specially energy-intensive economical
sector. For instance, the TLC industry in our country was respon-
sible for 3.863 GWh of electrical demand in 2018 [37], which
corresponds to 1.27% of the national consumption. Hopefully
this work will represent a starting point for further investigation
to provide effective solutions for energy efficiency in the build-
ings sector in general and in the TLC branch specifically. This
Section is intended to provide a brief overview of the energy
outlook of TLC buildings and of the proper KPIs which will be
later discussed in Section V

A. Energy Outlook of TLC Buildings and Normalization

As the available data consists of aggregate electrical load
profiles, it is worth noting that TLC sites’ typical energy balance
includes 4 fundamental contributions:

ETOT (t) = ETLC(t) + EDISS(t) + ECLC(t) + EAUX(t)
(2)

where ETLC represents the electrical demand from TLC equip-
ment, EDISS takes into account the energy conversion losses,
ECLC is the contribution from the cooling system and EAUX

includes the electrical loads from auxiliaries and lighting sys-
tems.

Since ETLC and EDISS may be assumed as constant val-
ues [38], their contribution well represents the TS base-load.
Hence, the electrical load fluctuations are due to the cooling
load, lighting and auxiliaries systems. It is worth pointing out
that these load fluctuations depend on non-shiftable lighting or
cooling demands. Hence, external variables which may affect
normal electricity usage, such as its variable cost, shall not be
considered.

Since no occupancy is expected to affect the electrical demand
of the sites during nights, and since the weather conditions in
Italy determine that the cooling system is not necessary during
winter days’ colder hours, the electrical load measured at these
time steps is representative of the aforementioned base load.
Notice that the size of TLC buildings is well-described by the
constant electrical load of the TLC equipment. Accordingly, the
normalization step, described in Section III-B, takes into account
the base load. Nevertheless, the presence of measurement errors
or anomalies may affect the calculation of the base load. Hence,
the most suitable value for normalisation can be calculated as:

Emin ≈ mean(min(Ei)d), i ∈ [1, 4], d ∈ winterdays (3)

where Ei is the energy demand from the ith hourly time step
from winter day d. It is worth noting that the values obtained
through the proposed normalisation method are analogous to the
product of two of the most widely used efficiency metrics in the
TLC branch, namely the Power Usage Effectiveness (PUE) and
Utilization Factor (UF) [38]. In fact, these indexes are defined
as:

PUE = ETOT /ETLC (4)

UF = ETLC/EMIN (5)

Hence:

ETOT /Emin = PUE ∗ UF = LI (6)

where LI is the Load Index of a bulding. This index, as well as
the PUE and UF, is generally calculated yearly.

PUE is generally used to assess the efficiency of DC and CO.
One may easily guess that this value will rise as the contribution
of the cooling load increases. On the other hand, promiscuous
sites and predominant offices buildings are expected to have high
PUE values due to the strong contribution of EAUX . UF takes
into account the energy conversion efficiency, which is generally
constant and depends on the installed conversion devices.
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B. Energy Key Performance Indicators

Besides LI, which was introduced in Section IV-A, a few other
KPIs are considered for the analysis. The second one is Specific
Power (SP), defined as the mean load by the building area. Other
characteristic features of load profiles are the mean fluctuations
ΔP , that is the mean difference between the peak and the trough
daily loads. These KPIs are calculated separately for working
days, Saturdays and Sundays and holidays, since the fluctuations
determined by variations of EAux are heavily depending on the
weekly occupancy schedule. Finally, since outdoor weather data
were available for a subset of 75 buildings, additional features,
which may be derived from Energy Signatures (ES) [39], are
investigated. The first of these features is cooling Balance Point
(BP), which is the maximum outdoor temperature determining
a cooling load equal to zero. The second is the percentage rise,
with respect to base load, in electrical demand determined by an
increase of 1 ◦C, named β∗

Temp.

V. RESULTS

Results from each step included in the proposed methodology
are here discussed. To handle and analyse the dataset, we took
advantage of Python programming language exploiting scikit-
learn and Keras libraries.

A. Pre-Processing Results

In the data cleaning step, the dataset is reduced to 1328
buildings, corresponding to 73.22 % of the overall amount of
sites, whose provided usage categories percentages are: i) CO:
96.84%; ii) DC: 0.08%; iii) Offices: 2.25%; iv) Radio Base
Stations (RBS): 0.45% ;v) Unlabelled: 0.3%; vi) Others: 0.08%.

Subsequently, TS are rescaled accordingly to base load nor-
malization. As a results, those sites devoted to the operation
of TLC devices, depict low LI, while offices result in a higher
average normalized load. Indeed, 75% of CO, RBS and DC
feature a LI below 1.23, with a mean value of 1.20. Offices’
average load demand instead is higher with respect to base-load,
as 75% of the sites have LI over 1.24, with a mean value of 1.46.

Periodical components can be easily detected by means of
autocorrelation analysis. Autocorrelation is described by means
of Pearson’s coefficients calculated within individual load pro-
files with respect to lagged values. The results, as shown in
Fig. 2, clearly confirm the expectations expressed in Section II-
I-B, that is the existence of daily and weekly periodicity. In-
deed, local maxima are evident at lags 24, 48 and so on. This
pattern corresponds to the daily periodic component, as values
are strongly correlated to those at the same hour of previous
days. Secondly, it may be observed that the value of peaks
generally decreases as the lag increases. Still, the seventh and
fourteenth peaks overcome other local maxima, enlightening the
correlation of value from the same hour of the same day of the
week. This witnesses the presence of weekly periodicity, whose
relevancy is heavily depending on the buildings’ usage. Indeed,
in pure TLC buildings, electrical demand is strongly dependent
on daily and seasonal outdoor temperature fluctuations, since
the most important contribution to electrical demand variation is

Fig. 2. Analysis of time serie auto-correlation, considering electrical measure-
ments from a Central Office.

Fig. 3. Visualization of the original YLP, the trend and the 168 time steps long
RPC obtained by additive decomposition.

cooling loadECLC [40]. On the contrary, offices load profiles are
more strictly affected by EAUX , which in turn heavily depends
on the occupancy schedule. Hence, besides the daily periodic
component, relevant periodicity is expected to be detected for
lags equal to 168 hours, accordingly to the typically weekly
occupancy schedules of offices. Notice that, since the dataset
includes measurements from the sole year of 2019, the seasonal
component is obtained through the trend component. Finally,
we extracted RPC from TS taking advantage of Loess decom-
position tool, as in the example in Fig. 3. Besides conveying
meaningful information, handling the extracted 168-long RPC
determines important computational time savings, with respect
to the original entire load profiles. A few additional characteris-
tics of TS become noticeable by observing different RPC. Firstly,
peak and trough hours generally differ from TLC buildings and
offices. Indeed, the maximum daily electrical demand for pure
CO and DC is generally occurring during the afternoon, while
many offices’ buildings show a peak between noon and 2 p.m..
Again, this phenomenon looks reasonable accordingly to the
relevancy of a specific load quota rather than another. Indeed,
the impact of outdoor temperature, which generally reaches its
maximum during the afternoon, is expected to be determinant in
what concerns those buildings whose consumption is essentially
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TABLE I
F1 SCORE FROM THE 4 ALGORITHMS AND 9 CONFIGURATIONS

TABLE II
MEAN LI OF THE ELEMENTS OF EACH CLUSTER, RETRIEVED BY EACH

ALGORITHM FOR CONFIGURATION 7 CLUSTERS

TABLE III
STANDARD DEVIATION OF THE DISTRIBUTION OF LI, RETRIEVED BY EACH

ALGORITHM FOR CONFIGURATION 7 CLUSTERS

depending on cooling load, that is, in our case, CO and DC.
Contrary, in offices peak electrical demand will likely occur in
phase with peak occupancy within the buildings.

B. Clustering Results

Four State-of-Art unsupervised ML algorithms with nine
different configurations each for a total of thirty-six different
models are tested with the described case study. Each clus-
tering configuration was performed considering the whole set
of 1328 buildings resulting from the previous step, to enable
fair performance comparison within the employed models. The
results are described according to both variables segregation
and CVIs. As a first aspect, it is convenient to investigate
segregation of buildings usage categories in clusters. To this
purpose, predominant usage categories in every single cluster
are considered as predicted categories of the buildings within
the cluster itself. Hence, precision, recall and F1 score can
be calculated. The F1 score results are reported in Table I
for the 36 clustering configurations tested. It may be easily
seen that k-Shape algorithm has the lower performance for any
number of clusters. The best configurations are from k-Means
and PAM algorithms, respectively regarding configurations 7, 8,
9 and 8, 9, 10. To deepen the analysis of clustering algorithms’
performance, another variable is considered, namely LI, which
is the most important energy KPI of the buildings in our dataset.
The results, shown for the exemplary case of 7 clusters, may
be interpreted by means of Table II, reporting the mean value
of LI within every single cluster, and Table III, reporting the
standard deviations of the KPI. The former clearly depicts the
good separation of clusters’ mean values for k-Means, PAM and

Fig. 4. CVIs comparison for the best performing algorithms, k-Means and
PAM, according to different configurations.

Hierarchical Agglomerative (HA) algorithms. On the contrary,
k-Shape clusters buildings in such a way that no segregation
regarding LI exists. The righter column of Table II displays the
mean value of distance among LI mean values. The higher the
value, the better LI segregation. In this case, the Table witnesses
the superior performance of k-Means. Besides of separation of
values from one cluster to another, cohesion of values within
clusters is a fundamental metric for variables’ segregation. In
Table III it may be easily noticed that PAM algorithm outper-
forms the remaining in terms of mean standard deviation of
LI within clusters, as shown in the righter column. It is worth
noticing that the poor performance of k-Shape, witnessed by the
presented results, is likely due to the relevancy of the position
of peaks discussed in Section V-A. Indeed, this algorithm was
conceived to be phase and shift invariant. Furthermore, as we
will discuss later, amplitude of fluctuations is a characteristic
feature as well.

Hence, the two best performing algorithms, K-Means and
PAM, are further investigated. To this purpose, four CVIs were
considered, as introduced in Section III-C. The results are re-
ported, for CHI and DBI, in Fig. 4. The plot clearly highlights
the best performance of k-Means, which outperforms PAM in
terms of both indexes for any configuration. The best CVIs
result from k-Means configurations 2, 7 and 8 and 2, 3 and 4
for CHI and DBI respectively. Nevertheless, the WCSS index
results in extremely high values for low numbers of clusters. This
suggests not considering configurations 2, 3 and 4. Given the
slightly superior performance of configuration 7 with respect to
8 concerning DBI (0.84, 0.91), CHI (1057, 1048) and Silhoutte
Score (0.39 and 0.38), this configuration was finally selected as
the most adequate. Finally, 7 clusters are obtained. The five most
significant ones are reported in Fig. 5.

C. Post-Processing Results

1) Clustering-Based Identification of Usage Category and
Labelling: Once the 7 clusters are obtained, clusters III and VII
arouse suspicions about the reliability of these load profiles.
Notice that these clusters only contained 3 and 1 buildings re-
spectively. Further investigation of the RPC and original TS from
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Fig. 5. Significant RPC clusters resulting from the best configuration.

TABLE IV
COMPOSITION OF THE MOST SIGNIFICANT CLUSTERS IN ACCORDANCE TO THE

PROVIDED USAGE CATEGORY LABELS

these buildings confirmed the existence of extreme anomalies in
these load profiles. Hence they are filtered out. The remaining
five clusters comprehend the vast majority of buildings, with a
strong prevalence of TLC sites in clusters I and II (Fig. 5(a) and
5(b)), consisting of 803 and 447 buildings respectively. Offices
are predominant in clusters V and V I (Fig. 5(d) and 5(e)), while
cluster IV features a more heterogeneous composition (Fig.
5(c)). These three clusters include a minority of the original
dataset, with cardinality 62, 8 and 5 for clusters IV , V and V I
respectively. Fig. 5 highlights some peculiar features of clusters.
Firstly, magnitude of fluctuations is a fundamental and distin-
guishing feature. This unfolds additional reasons for the poor
performance of k-Shape algorithm, discussed in Section V-B.
Furthermore, weekends load demand reduction is noticeable in
clusters IV, V and VI. This confirms the existence of weekly
patterns, which depend on the relative importance of occupancy
in determining a building’s energy demand. Besides, the last two
plots, that is the clusters dominated by offices, depict differences
in the RPC regarding Saturdays and Sundays. One may even
notice a slight decrease in the daily load peak on Friday with
respect to the other working days in Fig. 5(e).

The composition of clusters with respect to usage category is
synthesized in Table IV. Assuming that most of the sites are cor-
rectly labelled, clusters I and II are assumed as representative of
pure or predominant TLC buildings, clustersV andV I of offices

and cluster IV is expected to contain promiscuous sites. A few
sites’ labels are hence detected as abnormal. Particularly, 3 sites
labelled as CO (0.23% of the COs) and one as RBS (16.7% of
the RBSs) are included in clusters representing offices. On the
other hand, 9 sites with label office were identified in clusters
dominated by TLC buildings. A field verification on these sites
reported that the actual usage category of 9 out of 13 sites
was correctly identified by the clustering algorithm. It is worth
noting that most of the sites abnormally labelled were building
containing both TLC equipment devoted areas and offices. Many
of these occurred in a change of usage category due to an increase
or reduction of employees within the site. Moreover, under the
reasonable assumption that those sites whose label coincide with
the usage category represented by a cluster are correctly labelled,
the clustering algorithm achieves an accuracy of 99.7%.

2) Reference KPIs According to Cluster: The KPIs intro-
duced in Section IV-B are calculated and statistical analysis
is undertaken to identify reference buildings and ranges for
each buildings’ usage cluster. Notice that, for sake of brevity
and to enhance better statistical description of groups, in this
phase clusters I and II are merged to form the TLC buildings
group, while V and VI clusters are combined into offices group.
A quick overview of the different energy characterization of
buildings is described by means of the radar charts in Fig.
6. Bold lines indicate each group’s medoids. TLC facilities
depict low LI, medium-high SP and low fluctuations regarding
weekdays (ΔP ∗

weekdays) as well as Saturdays (ΔP ∗
sat) and Sun-

days (ΔP ∗
sun). The more noticeable difference between these

buildings and promiscuous ones concerns SP and ΔP ∗
weekdays.

The distribution of these KPIs may be better analysed by
means of Figs. 7(a) and 9(a). Specifically, mean SP is 26.0
and 37.9 kWh/m2 for promiscuous and TLC buildings respec-
tively. TLC facilities in many cases depict SP values beyond
50 kWh/m2, with a maximum of 65.0 kWh/m2, due to the
special energy intensity of these sites. Regarding load fluctua-
tions, mean fluctuations from the vast majority of sites devoted
to TLC equipment operation are below 19% with respect to
base-load, regardless of the day of the week. The amplitude of
fluctuations from holidays in promiscuous sites is pretty close
to those from any day in the former category. This witnesses
that, as soon as no occupancy affects electrical demand from
the promiscuous site, their energy behaviour is analogous to the
one from pure TLC buildings. Yet, slight differences may be
observed within weekdays and holidays daily fluctuations for
promiscuous buildings. Specifically, 90% of promiscuous sites
have fluctuations in ranges from 20.5% to 49.4% during working
days and from 4.2% to 23.1% during holidays. Nevertheless,
Fig. 9(b) makes it evident the marked difference regarding LI
as well, whose mean values are 1.19 and 1.26 for TLC and
promiscuous buildings respectively. This aspect, along with the
distribution of all the KPIs calculated, witnesses the accurate
segregation of variables achieved by the proposed framework.
Moreover, offices depict marked differences concerning all the
KPIs, as it may be easily noticed in Fig. 6(c). More in detail, the
53.8% of offices depict mean working days fluctuations over
100% with respect to base load, and the whole set of sites have
values beyond 70%. These fluctuations are significantly lower
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Fig. 6. Visualization of the energy KPIs characterizing buildings, according to their usage category cluster.

Fig. 7. Distribution of the mean daily fluctuations, according to day type and
usage category cluster.

Fig. 8. Visualization of the energy KPIs characterizing efficient and bad
performing TLC buildings.

during Saturdays and Sundays, whereas 90% of the sites are
characterised by values in ranges from 8% to 118% and from 7
% and 91% respectively.

3) Reference Buildings and Possible Reasons of Inefficien-
cies: Finally, a subset of 75 buildings whose weather historical

Fig. 9. Distribution of SP and LI, according to day type and usage category
cluster.

TABLE V
ENERGY SIGNATURE DERIVED KPIS DISTRIBUTION ACCORDING TO USAGE

CATEGORY CLUSTER

data are available is investigated more in detail. The summary
of the two significant KPIs is reported in Table V. Promiscuous
buildings look pretty similar to offices for what concerns BP,
being both characterized by a mean value of around 17 ◦C, that
is these buildings generally do not require space cooling until
outdoor temperature overcomes this threshold. Differently, TLC
buildings depict lower BP, in many cases even below 10 ◦C. This
is likely due to the need for space cooling from the TLC equip-
ment and to its high power density which corresponds to high
heat generation density. Yet, marked differences among promis-
cuous buildings and offices are noticeable regardingβ∗

Temp. This
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is explainable by considering the relevant differences in base
load from the two categories of buildings.

As an example of the possible energy efficiency-oriented
applications of benchmarking, we selected TLC buildings as
a study case for comparison among peer buildings, with the
perspective of analysing the possible reasons of inefficiencies.
Firstly, buildings are ranked according to the efficiency KPI,
that is, in our case, the LI. Afterward, we selected one build-
ing from the top performing ones as a reference building for
what concerns energy efficiency. Similarly, the less efficient
buildings were selected and compared to the reference one. The
efficient building characteristic are summarized by the green
line in Fig. 8, along with other two buildings, represented by the
orange and the red lines. Notice that this radar chart presents
a different scale with respect to the ones in Fig. 6, in order
to make differences among the investigated buildings more
evident. The radar chart clearly enlightens the reasons for the
worst performance of each building. Regarding building B, one
would easily guess that a major cause of inefficiency may be the
extremely high value of β∗

Temp. Yet, strong differences may be
noticed as well for load fluctuations, which are much higher, and
SP, which is much lower than the one from the reference efficient
building. All these aspects arise suspicion about the eventual
presence of personnel within the worst performing building. This
may be an additional contribution to electrical demand, which
does not mean necessary it represents an energy inefficiency.
Hence, rather than identifying this building as a priority retrofit
intervention it may be advisable to investigate more in detail the
occupancy of the site. On the contrary, building C has similar, or
not so different, values to the reference building regarding most
of the KPIs, with an important exception regarding the BP. This
means that the cooling system intervenes, in the case of the worst
performing building, for lower outdoor temperatures, even if the
two buildings are similar in usage as well as in SP. This is likely
to be due to differences in the indoor temperature set points
or to issues regarding the building envelope. Hence, further
investigation over these aspects is advisable with the perspective
of understanding potential benefits of retrofit actions.

VI. CONCLUSION

Considering the existing challenges for buildings benchmark-
ing and the opportunities disclosed by the imminent widespread
of smart metering, a time-domain clustering algorithm is
adopted in this paper to group buildings according to their usage
category. Nevertheless, direct exploitation of load profiles may
result in computational issue or in ineffective clustering. Hence,
a decomposition tool is proposed as part of the pre-processing
phase, with the aim of extracting representative periodic com-
ponents from time series. The framework has been tested on a
massive dataset containing hourly load profiles from different
usage buildings. Several clustering algorithms are tested and
clustering validity indexes, as well as variables segregation, have
been employed to assess their performance. K-Means resulted as
the best performing algorithm, and the model was able to reach
an overall accuracy of 99.7%. Finally, energy KPI are calculated
and discussed. Buildings are compared to more efficient ones
belonging to the same cluster in the perspective of understanding
possible sources of inefficiency.

Future work shall focus on extensive work regarding the
temperature-at-use KPIs, since they may provide fundamental
information on sources of inefficiencies. The methodology shall
be tested as well on other datasets including non-residential
buildings with different usage categories.
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