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Abstract – This work details the latest advancements on
a single-channel, reactive Brain-Computer Interfaces
developed at the Interdepartmental Research Center
in Health Management and Innovation in Healthcare
(CIRMIS) of the University of Naples Federico II. The
proposed instrumentation is based on Extended Reality
(XR) and exploits the acquisition and classification of
the Steady-State Visually Evoked Potentials (SSVEPs).
In particular, an XR headset is employed for generating
the flickering stimuli necessary to the SSVEP elicita-
tion. The users brain signals are captured by means of
a highly wearable and portable electroencephalografic
acquisition unit, which is connected to a portable pro-
cessing unit in charge of processing in real time the in-
coming data. In this way, a deeper interaction between
users and external devices with respect to traditional
architectures is guaranteed. The classification capabil-
ity of the proposed instrument has been significantly
improved over the years. Currently, in fact, a classifi-
cation accuracy up to 90 % is obtained with at least 2 s
of acquisition time.

I. INTRODUCTION
A Brain-Computer Interface (BCI) is a technology em-

ployed in order to provide a direct communication path be-
tween the human brain and external devices [1, 2, 3]. Since
a huge amount of information can be extracted from the
user brain signals, a distinction is typically made between
active, reactive, and passive BCIs [4]. Reactive BCIs rely
on the acquisition and processing of brain waves produced
in response to external stimuli [5]. Among all the reactive-
BCI paradigms, Steady-State Visually Evoked Potentials
(SSVEPs) have gained momentum in the development of
applications regarding healthcare [6], entertainment [7],
and industry [8]. Typically, SSVEPs are a sinusoidal-like
waveform with a fundamental frequency equal to that of
the observed flickering stimulus. Often, higher harmonics
can also be detected [9].

In SSVEP-based applications, N flickering stimuli at dif-
ferent frequencies are associated to specific commands, so
that the user can select the desired target by simply look-
ing at the corresponding flickering stimulus. These stimuli
are traditionally displayed on LCD monitors. Moreover,
multi-channel EEG acquisition units are often adopted
[10]. However, this setup is often very bulky and limits
the portability of these systems.
For this reason, the Interdepartmental Research Center in
Health Management and Innovation in Healthcare (CIR-
MIS) of the University of Naples Federico II has devel-
oped an innovative solution which can facilitate the adop-
tion of BCI-SSVEP in daily-life activities. In particular,
the proposed BCI instrumentation is based on a single-
channel electroencephalographic (EEG) acquisitions [11]
and on the use of Extended Reality (XR) devices to ren-
der the flickering stimuli [12] for the SSVEPs elicitation.
The number of the stimuli accommodated on the XR dis-
play was set to two [8], so that the user was able to take
a binary decision by gazing one stimulus out of two. The
data coming from the wearable EEG acquisition unit are
processed in real time by a portable processing unit, which
is in charge of classify the received brain signals and send
the related command to external devices.
The classification capability of the proposed system has
been significantly improved over the years. The first pro-
cessing method employed was based on the traditional
Power Spectral Density Analysis (PSDA) in frequency do-
main. It managed to classify one frequency out of two with
an accuracy greater than 80 % and an acquisition time of 2
s [8]. More recently, a time-domain approach based on the
Canonical Correlation Analysis (CCA) was employed by
improving the obtained accuracy of about 5 % [6]. How-
ever, the main drawback of these methods was related to
the impossibility to detect undesired frame per second (fps)
variation of the XR headset during the generation of the
flickering stimuli. For the sake of the example, given a
refresh rate of 60 Hz, a variation of about 5 % inevitably



Fig. 1. Major blocks of the system architecture.

leads to a shift of the rendered frequencies from 10.0 Hz up
to 9.5 Hz or 10.5 Hz. This means that the elicited SSVEPs
are shifted accordingly. Therefore, the classification per-
formance of the proposed algorithms decreases since the
acquired signals and the reference ones are no longer con-
sistent.
For this reason, an adaptive strategy to find the actual
SSVEP peaks has been employed in recent months [5].
Moreover, the adoption of Machine Learning (ML) clas-
sifers such as K-Nearest Neighbor (K-NN), Support Vector
Machine (SVM), and Feed-Forward Neural Networls (NN)
has also been performed to further improve the classifica-
tion of the features which are extracted from the original
samples. This new technique, defined Features Reduction
(FR), has achieved an accuracy greater than 90 % at 2-s
acquisition time.
The paper is organized as follows. Section ii. pro-
vides a description of the system architecture, along with
the modality of rendering of the flickering stimuli, and
the classification algorithm implemented over the years.
Therefore, Section iii. shows the obtained experimental
results. Finally, conclusions are drawn.

II. MATERIALS AND METHODS
A. System Description

The architecture of the BCI instrumentation is shown
in Fig. 1. An AR Display renders 2 flickering stimuli to
elicit users SSVEPs. Then, three dry Electrodes are placed
in Oz, Fz, and A2 positions, according to the 10-20 Inter-
national System [6], and capture the user EEG. The elec-
trodes are connected to a portable Acquisition Unit, which
sends the digitized EEG samples to a portable Processing
Unit. The processing unit runs the SSVEP classification
algorithm, and sends in real time the output command to
the BCI Application, which actuates the received command
and provides a feedback to the User in order to show the
desired selection.

Fig. 2. Rendering of the two flickering stimuli in a 1-s time
interval

B. Hardware
The chosen XR device was the Epson Moverio BT-200.

It is an Optical-See-Through device with a 23Â° diagonal
field of view, and a nominal refresh rate of 60 Hz. The
selected acquisition unit was the Olimex EEG-SMT, a 10-
bit, 256 S/s, open source Analog-to-Digital converter. Fi-
nally, the adopted processing unit was the Raspberry Pi 4,
a single-board PC connected via USB to the Olimex.

C. Software
The flickering icons on the Epson Moverio glasses were

generated by means of an Android application realized
with Android Studio. The XR environment consisted of
two squares placed at opposite edges of the screen. The
two squares reverse black and white according to the cho-
sen flickering frequency (namely, 10 Hz and 12 Hz). More-
over, a software written in Python 3 on the Raspberry Pi 4
was used to (i) acquire the digitized signal via USB from
the Olimex, (ii) process it, and (iii) send the output com-
mand to the specific target via TCP/IP [6, 12, 13]

D. Rendering of the Flickering Stimuli
With regards to the rendering of the flickering stimuli at

10 Hz and 12 Hz, Fig. 2 shows the implemented pixel al-
ternations. Since 10 Hz is a submultiple of six of Moverio
Refresh Rate (60 Hz), the length of the sequence that has to
be repeated is equal to six frames (i.e., three frames white,
and three frames black). Instead, 12 Hz is a submultiple
of five of Moverio Refresh Rate, then the length of the se-
quence is equal to five frame (i.e., three frames white, and
two frames black).



E. SSVEPs Classification
The algorithms implemented over the years were metro-

logically characterized by analyzing data related to an
experimental campaign conducted on 20 untrained and
healthy volunteers. For each volunteer, 24 signals were
acquired. The chosen flickering frequencies were 10 Hz
(rendered on the right side of the screen) and 12 Hz (ren-
dered on the left). Each subject was asked to focus on one
stimulus at time, for 10 s. Two metrics are used to evaluate
the classification performance: (i) classification accuracy,
and (ii) acquisition time. The classification accuracy is de-
fined as the percentage of brain signal correctly classified,
while the acquisition time represents the time duration of
the signals considered.
In this work, three algorithms are considered.

• Power Spectral Density Analysis: The most intu-
itive approach used to detect and classify the elicited
SSVEPs is based on a Power Spectral Density Anal-
ysis (PSDA) [14]. First, a Fast Fourier Transform
(FFT) is applied to the user EEG. Then, a PSD is per-
formed in the neighborhood of each frequency ren-
dered on the display according to (1).

P (fn) =
1

2k + 1

[
kn+k∑

i=kn−k

A2(i)

]
(1)

Where: P (fn) is the PSD coefficient for the given fre-
quency fn, kn is the corresponding bin in frequency
domain, k is the number of neighbours to be consid-
ered, and A is the signal amplitude. Finally, the clas-
sification is performed based on the hypothesis that
the observed stimulus is very likely to be that with the
highest PSD [15]. However, this method requires a
minimum time duration ∆T of the acquired EEG in
order to correctly discriminate the harmonics, since
an appropriate frequency resolution ∆f is required
[16], as explained in (2).

∆T =
1

∆f
(2)

• Canonical Correlation Analysis: An alternative way
to process SSVEPs is the Canonical Correlation Anal-
ysis (CCA) in time domain. It is a multivariate sta-
tistical method of correlating linear relationships be-
tween two sets of data [17]. CCA is performed be-
tween the EEG data and a set of sine waves having the
same frequencies of the stimuli, and variable phase. A
correlation coefficient ρmn is extracted for each stim-
ulus frequency fn. This relation is described by (3).

ρn = maxϕ
cov(D,Φn(ϕ))

σD σΦn(ϕ)
(3)

Where D is the EEG data, Φn is the sine wave at the
frequency fn of each rendered stimulus, and ϕ is the

Fig. 3. Features extractions and ML-based classification

phase ranging from 0 to 2π. Therefore, these coeffi-
cients are used for SSVEP classification. For the sake
of example, in [17] the output of the classification was
associated to the frequency with the highest correla-
tion coefficient extracted. Alternatively, in [6, 13] the
maximum value among the correlation coefficients ρn
was compared with given threshold values: the signal
was marked as classified only if the chosen correla-
tion coefficient exceeded these thresholds. The clas-
sification performance achieved with the use of CCA
are typically better than PSDA [15]. However, a band
pass filtering for the EEG can be necessary during the
pre-processing phase, due to the effect of spontaneous
EEG activities not involved in SSVEP events.

• Features Reduction: However, none of these two
methods detects undesired frame per second (fps)
variation of the XR headset during the generation of
the flickering stimuli. Given the Moverio Refresh
Rate (60 Hz), a variation of about 5 % inevitably
leads to a shift of the rendered frequencies from 10.0
Hz up to 9.5 Hz or 10.5 Hz. This means that the
elicited SSVEPs are shifted accordingly. Therefore,
the classification performance of the proposed algo-
rithms may decrease as the acquired signals and the
reference ones are no longer consistent. For this rea-
son, an adaptive strategy to find the actual SSVEP
peaks has been employed. The main blocks are shown
in Fig. 3. The EEG Samples are processed both in fre-
quency and time domains, in order to obtain a reduced
number of significant features.

– In the frequency domain, a fast Fourier trans-
form (FFT) is performed. Then, the actual
SSVEPs Peaks are detected around the two
rendered frequencies. In this way, the uncer-
tainty introduced by the XR device during the
generation of the flickering stimuli is mitigated



as the Power Spectral Densities (PSDs) P1 and
P2 around the two detected peaks are more
accurate.

– In the time domain, a Band pass Filtering
between 5 and 25 Hz is applied by means of
a Finite Impulsive Response (FIR) filter with
linear phase response. Then, the Canonical
Correlation Analysis (CCA) between the fil-
tered signal and a set of sinewaves, having
the frequencies of the two detected peaks and
variable phase, is performed. As a consequence,
also the two canonical correlation coefficients
ρ1 and ρ2 obtained for each frequency are more
accurate.

Ultimately, for a given brain signal of variable length,
only four features are extracted and Normalized.
The Classification is carried out by means of three
ML classifiers: in particular, Support Vector Machine
(SVM), k-Nearest Neighbour (k-NN), and Artificial
Neural Network (ANN) are employed. The FR algo-
rithm was tested on this realized data set by means of
Leave One Subject Out Cross Validation (LOSO CV).
This validation strategy highlights the inter-individual
reproducibility. It divides the data set in 20 folds,
where each fold is constituted by a subject. Then, for
each combination of the models hyperparameters, the
process will run 20 times, each time with a different
subject in the test set, taking the remaining ones in the
training set.

III. RESULTS
In Table 1, the classification accuracy obtained by the

proposed algorithm in function of the acquisition time T
and the ML model is summarized. The uncertainty is eval-
uated at 2-σ. Clearly, increasing the duration of T leads to
an increase of the classification accuracy as more informa-
tion is given to the Features Reduction block. Overall, the
best performance are obtained by ANN, but even a more
simple classifier like k-NN reaches comparable accuracy
levels.
In Table 2, a comparison between the results achieved by
ANN is made with those obtained by the two classifica-
tion algorithm previously developed (PSDA and CCA). As
visible, the proposed ML-based algorithm provides a sig-
nificant enhancement. The main contribution is given by
the peak detection block, which allows to obtain more ac-
curate features both in time and frequency domains, thus
mitigating the uncertainty caused by unpredictable frame
rate variation of the XR device. It should also be noted
that both the CCA and PSDA are characterized by a worse
inter-individual 2-σ uncertainty. Hence, the model pro-
posed in this work offers a greater possibility to be gen-

Table 1. Accuracy Results in function of the Acquisition
Time T for the three ML Models

T (s) k-NN (%) SVM (%) ANN (%)
0.5 72.8 ± 4.1 74.8 ± 4.3 75.0 ± 4.3
1.0 80.7 ± 4.4 82.0 ± 4.4 82.1 ± 4.4
2.0 88.3 ± 2.6 89.2 ± 2.3 89.2 ± 2.3
3.0 93.3 ± 2.6 93.6 ± 2.3 93.7 ± 2.5
5.0 96.4 ± 2.1 96.4 ± 2.1 96.7 ± 1.7
10.0 99.0 ± 1.3 99.2 ± 1.3 99.4 ± 1.2

Table 2. PSDA, CCA, and FR Classification Accuracy in
function of the Acquisition Time T

T (s) PSDA [8] (%) CCA [6] (%) FR (%)
0.5 - 70.8 ± 4.5 75.0 ± 4.3
1.0 - 74.8 ± 8.1 82.1 ± 4.4
2.0 81.1 ± 7.6 84.9 ± 5.4 89.2 ± 2.3
3.0 87.7 ± 5.2 91.0 ± 4.2 93.7 ± 2.5
5.0 96.0 ± 2.6 95.4 ± 2.5 96.7 ± 1.7
10.0 98.9 ± 1.0 - 99.4 ± 1.2

eralized to every users.

IV. CONCLUSION
This work provides a review about the latest advance-

ment on single-channel Brain-Computer Interfaces based
on Steady-State Visually Evoked Potentials and Extended
Reality. The proposed BCI instrumentation with the adop-
tion of XR guarantees greater immersivity and engagement
with respect to traditional setups. Over the years, three
different algorithms were implemented to classify users
SSVEPs. The current algorithm is based on a combined
processing in time and frequency domains and on a ML
classification. It reaches a classification accuracy up to
90 % with at least 2 s of acquisition time. These results
outperformed the previous ones obtained with traditional
processing strategies like Power Spectral Density Analysis
and Canonical Correlation Analysis. Moreover, an addi-
tional advantage in using ML was the decrease in the inter-
individual 2-σ uncertainty. Therefore, such approach can
facilitate future developments of ready-to-use systems.
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