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Abstract
Driving the decisions of stock market investors is among the most challenging financial
research problems. Markowitz’s approach to portfolio selection models stock profitability
and risk level through amean–variancemodel, which involves estimating a very large number
of parameters. In addition to requiring considerable computational effort, this raises serious
concerns about the reliability of the model in real-world scenarios. This paper presents a
hybrid approach that combines itemset extraction with portfolio selection. We propose to
adapt Markowitz’s model logic to deal with sets of candidate portfolios rather than with
single stocks. We overcome some of the known issues of the Markovitz model as follows: (i)
Complexity: we reduce the model complexity, in terms of parameter estimation, by studying
the interactions among stocks within a shortlist of candidate stock portfolios previously
selected by an itemset mining algorithm. (ii) Portfolio-level constraints: we not only perform
stock-level selection, but also support the enforcement of arbitrary constraints at the portfolio
level, including the properties of diversification and the fundamental indicators. (iii)Usability:
we simplify the decision-maker’s work by proposing a decision support system that enables
flexible use of domain knowledge and human-in-the-loop feedback. The experimental results,
achieved on the US stock market, confirm the proposed approach’s flexibility, effectiveness,
and scalability.
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1 Introduction

Stock portfolio selection aims at allocating funds to financial equities. The pioneering work
by [1] presents the popular mean–variance model to address portfolio optimization. In a nut-
shell, stock return and risk of investment are quantified using first- and second-ordermoments
of per-stock historical price distributions. Although lots of efforts have been performed by
researchers to solve and expand Markowitz’s model, scalability issues [2] and reliability of
the estimated values still need to be faced. In fact, the information required by [1] to estimate
expected value and higher-order moments super-linearly scales with the candidate stocks [3].
More specifically, the Markowitz approach concerns the estimation of covariance values and
the cardinality of the model parameters is quadratic with the number of considered assets.
Estimating a so large number of model parameters, beyond requiring a considerable com-
putational effort, raises serious questions on the reliability of these values [4]. Furthermore,
investors commonly need to enforce additional, more complex constraints, e.g., incorporating
transaction costs and sector-based stock diversification strategies [5]. Many of them require
the adoption of heuristic methods as the new problem becomes NP-hard. For this reason, the
most common portfolio selection approaches apply heuristic methods to shortlist the most
relevant stocks [6–8].

The recent advances in data mining and machine learning techniques have fostered the
development of hybrid solutions to portfolio optimization. They consist of a two-step process,
where a subset of the most relevant stocks is selected first based on data-driven models and
then anoptimization step is applied on top of the shortlisted stocks [9]. The techniques used for
stock selection at the first stage encompass, among other, machine learning and deep learning
models [10], clustering techniques [11], and swarm intelligence and othermetaheuristics [12].
To the best of our knowledge, all previous hybrid methods select portfolios on top of a
shortlist of individual stocks. This limits the efficiency and scalability of the optimization
step. To efficiently and effectively integrate complex portfolio-level constraints deeply into
the portfolio selection step, it would be desirable to early prune part of the portfolio candidates
at this previous stage.

The present paper proposes a scalable hybrid method, namely early portfolio pruning
(EPP), where a set of candidate portfolios is early generated at the first step by means of
an itemset-based heuristic. Then, the selection problem is no longer solved on top of a
set of single stocks, but rather on a portfolio shortlist. In other words, the main analytical
complexity is moved up to the itemset-based heuristic phase and accomplished by means of
ad hoc, scalable algorithms. The name assigned to the presented method (EPP) emphasizes
its peculiar characteristic to early discard the less interesting portfolios from the search space
as soon as possible. To overcome the limitations of the Markowitz approach, we quantify the
interactions among stocks only within a restricted number of portfolios previously shortlisted
by an itemset mining algorithm, thus reducing the model complexity. Moreover, we provide
decision-makers with a configurable system that does not forcibly depend on the first two
moments, which are often contested in the financial world because of their instability and
subject to great variation, thus allowing the incorporation of other metrics.

The proposed hybrid portfolio generation method allows investors to customize the selec-
tion process at their complete discretion even while coping with a large set of stocks. To this
aim, we first reformulate the optimization problem by [1] to tailor it to the modified task.
Then, we propose a scalable implementation of the EPP method integrating a parallel, scal-
able implementation of an itemset mining algorithm [13]. Finally, we integrate the presented
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method into a financial decision support system (DSS), which leverages fundamental data
analysis to choose the portfolio according to the end-users’ preferences.

We run both performance evaluations and scalability tests on stocks belonging to the US
market. The outcomes of the backtesting simulations confirm the effectiveness of EPP com-
pared to previous approaches: EPP produces, on average, a good combination of profitable
yet low volatile portfolios, also in adverse market conditions (e.g., during the COVID-19
pandemic). Furthermore, the scalable implementation allows EPP to handle stock sets not
manageable by existing itemset-based heuristics, e.g., [14].

The key contributions of the paper are enumerated below:

• We present EPP, a hybrid method to select stock portfolios where candidate portfolios
are early pruned by means of an itemset mining process.

• We propose an adapted version of the established mean–variance logic proposed by [1].
The proposed approach partly overcomes the inherent complexity of the traditional
Markowitz model due to the excessively large number of estimated parameters as well
as supports the enforcement of portfolio-level constraints on real features other than the
stock prices [15].

• We present a decision support system allowing experts to monitor the portfolio selection
process and leverage domain knowledge by enforcing the portfolio-level constraints (see
Fig. 1).

• We adopt a parallel itemset mining implementation to perform candidate portfolio gener-
ation in a scalable way. We also empirically demonstrate the scalability of the proposed
approach with the number of analyzed stocks and the size of the training time window.

• We compare EPP performance with that of both existing methods and real US funds in
terms of portfolio payout (profit measure) and volatility (risk measure), showing com-
petitive results.

The rest of the paper is organized as follows. Section 2 reviews the state of the art.
Sections 3 and 4, respectively, formalize the traditional and adapted mean–variance model.
Section 5 describes the architecture of the decision support system. Section 6 reports the
main experimental results, whereas Sect. 7 draws conclusions and discusses future works.

2 Literature review

Stock portfolio optimization aims at allocating funds to a set of selected equities [16]. The tra-
ditional mean–variance model proposed by [1] focuses on finding the best trade-off between
return of investment and risk by, respectively, quantifying them as the mean and variance
of the historical stock prices. Several extensions of the original model have been proposed
in the literature. They propose, for example, integrating more advanced risk measurements,
to handle a maximum number of selected stocks, and to incorporate transaction costs in the
optimization model [15]. Another commonly used approach based on the traditional mean–
variance model is the capital asset pricing model (CAPM). It is still widely used for portfolio
construction, although it is often criticized for its poor empirical performance and strong sim-
plifications, which invalidate its application use [17]. In its classic Sharpe–Lintner version,
the expected return on a given asset is constructed through the risk-free interest rate plus a
risk premium (market beta of the asset) multiplied by the premium per unit of beta risk.

Rather than finding the portfolio that best matches a set of restrictive conditions, portfolio
optimizers can be integrated into financial decision support systems [18–20]. The aim is to
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allow end-users to specify their personal preferences, targets, and attitude to risk. This work
presents a decision support system integrating a hybrid strategy to portfolio selection.

The research community has paid a particular attention to properly handle efficiency
and estimation issues. In fact, linear and quadratic mixed-integer programming solvers may
encounter issues while coping with a large number of securities. Moreover, allowing end-
users to personalize the portfolio selection commonly entails enforcing ad hoc constraints,
which may further increase the complexity of the optimization problem [21]. To find com-
putationally effective solutions to NP-hard problems, the most common strategy is to adopt
heuristic approaches to shortlist the candidate stocks [6–8]. Similar to [6–8], this paper
addresses the selection of a subset of profitable stocks to buy, while introducing additional
ad hoc constraints on the candidate portfolio.

More recently, researchers have tried to combine optimization strategies with data mining
and machine learning techniques with the goal of heuristically choosing the most convenient
stocks to buy. Specifically, hybrid approaches apply machine learning techniques to forecast
future stock prices and then shortlist the stocks with a higher expected return to create the
portfolio. For example, [22] and [3] rely on an investment decision model that predicts the
direction of the stock prices first. Next, only those stocks designed to reach the expected
return are considered eligible for the Markowitz optimization model. Similarly, [23] apply
a genetic algorithm to select good quality assets at the first stage. This paper proposes a
hybrid approach that combines established data mining techniques, i.e., itemset mining, with
optimization techniques. Unlike [3, 22, 23], the proposed approach is fully unsupervised.

Other hybrid approaches rely on a two-stage process that performs stock evaluation and
scoring. For example, [10] first evaluate each individual stock by performing a prediction of
the stock return in the next time period. Next, they compute a scoring function that takes into
account fundamental factors such as the net profit margin and the cash flow ratio. Alternative
stock evaluation and scoring strategies encompass the use of clustering to find groups of
similar stocks [11], genetic algorithms [24] or swarm intelligence methodologies [25–27]
to deal with portfolio optimization, and itemset mining to generate candidate portfolios
satisfying global constraints on the expected portfolio returns [14]. [14] perform a greedy
selection of the candidate portfolios based on a set of a user-specified constraints related to
portfolio size and diversification level. Unlike [10, 11] we early perform not only single stock
selection but also global portfolio evaluation based on a parallel itemset mining approach.
Unlike [14], on top of the itemset mining phase we shortlist the best candidate portfolio using
an adapted Markowitz logic that incorporates a variety of additional constraints (including
those based on fundamental analysis). Furthermore, we adopt a parallel implementation of
the itemset mining process to scale toward large sets of stocks.

3 Problem statement

3.1 Notation

Hereafter, we will adopt the notation reported in Table 1.

3.2 TheMean–Variancemodel

The original mean–variance (MV) model is among the most established stock portfolio
optimization strategies [1]. The key idea is to deal with the return of a single stock as a
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Table 1 Summary of notations and their meanings

F Financial statements of the candidate stocks

S Set of candidate stocks

P Power set of S that represents all the possible portfolios

Pq Stock portfolio consisting of a selection of candidate stocks,
indexed by q ∈ {1, . . . , |P|}

H Historical price series of the candidate stocks within the reference
time period

wi Proportion of the total amount available for investment applied to
stock si ∈ S

xq Binary vector in {0, 1}|S| with 1 when the stock si is selected in
portfolio Pq and 0 otherwise

E[·] Expected value function

Emin[·] Lower-Bound estimate of the portfolio return (LBPR)

Ri Random variable return of stock si ∈ S over the holding period

μi = E[Ri ] Expected return of the individual stock si over the holding period

μP : P → N
+ Generalized expected return of the portfolio Pq over the holding

period

µ Vector with the expected return of all the stock in S

σi j = Cov(si , s j ) Covariance of the returns for the pair of stocks si and s j
� Covariance in matrix form for all the stock in S

�P : P → N
+ Generalized risk measure for the portfolio Pq over the holding

period

cP : P → N
+ Technical and fundamental analysis constraint function for the

portfolio Pq over the holding period

1, 0 Vectors with all elements set to 1 and 0

random variable and to consider expected return and variance to model stock profitability
and risk level, respectively. To quantify the return of investment and the risk level of each
individual stock, the distribution descriptors are computed over the historical stock prices
H [28].

According to the MV model, the return of a candidate stock si is modeled as a random
variable Ri , with associated expected return μi = E(Ri ). By identifying the vector of these
latter values as µ, the expected portfolio return is formulated as follows,

µTw =
|S|∑

i=1

wiμi . (1)

Where the participation weights of the candidate stocks are stored into vector w ∈ R
|S|,

denoting by wi , i=1,2,. . .,|S| the weight of stock si ∈ S in portfolio P.
Beyond maximizing the expected return of the selected portfolio, the MVmodel incorpo-

rates portfolio diversification by estimating the return dispersion as

wT�w =
|S|∑

i=1

|S|∑

j=1

wiσi jw j . (2)
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According to the MV model, the stock portfolio optimization problem can be modeled as
a linear combination of the aforesaid objectives [4]

maximize µTw − λ · wT�w

s.t. 1Tw = 1

w ≥ 0

, (3)

where

• λ ∈ R
+ is the risk aversion coefficient, i.e., the larger the coefficient, the more risky the

generated portfolio, and
• w ≥ 0 defines as positive (short-selling operations are not permitted) value each weight

wi .

Hereafter, we will make the following assumptions:

• The total amount available for stock investments is allocated.
• The amount allocated to each stock is kept fixed until the end of the holding time.

The traditional MV model formulation treats the set of input stocks S as a unique, large
portfolio and assigns a continuous weight wi to each stock si ∈ S. Conversely, in the present
work, we address the binary stock selection problem [29] and rely on a uniform investment
strategy. This entails a selection of an equally weighted portfolio over the power set P of
S. Moreover, we apply a buy-and-hold strategy to invest in the stock markets (i.e., buy the
securities and sell them at the end of the holding time).

4 The proposedmean–variancemodel adaptation

Wewill present here the adapted version of the traditional MV philosophy, whose goal is not
to generate the desired portfolio by shortlisting single stocks, but rather to identify the best
portfolio from a set of portfolio candidates.

As a preliminary step, portfolio candidates are generated by means of an itemset-based
heuristic presented later on in Sect. 5.4. The idea behind it is to approximate the expected
return of a candidate portfolio as a combination of daily returns of the least performing stock
in the portfolio. However, notice that the EPP approach can be conveniently generalized and
adapted to an arbitrary portfolio-level heuristic that can be computed in a scalable way.

In the itemset-based heuristic, each candidate stock portfolio satisfies a lower-bound esti-
mate of the portfolio return [14] (LBPR, in short), which is defined and computed as follows

Emin[Pq ] = averaged∈H
{
minret(Pq , d)

}
, (4)

where Pq is a selected portfolio identified as an element of the power set P of S, thus
q ∈ {1, . . . , |P|}. The function minret(·) returns the least daily return over all the portfolio
stocks on a given day d .

Then, we look for the portfolio P ∈ P that is best placed with regard to a single rank-
based objective function, where the portfolio evaluation relies on an additional combination
of expert-driven decision criteria. Thus, the key idea is to combine the portfolio-level return
provided by an ad hocmeasure of performance (in this work LBPR)with additional measures
of performance of the candidate portfolios that can be independently generated using different
strategies (e.g., volatility, wisdom of crowds).
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The suggested selection model explores a subset of the portfolios P and stores into vector1

xq ∈ P the binary choice relative to each candidate portfolio

minimize (1 − λ)μP(xq) + λ · �P(xq)

s.t. cP(xq) ≥ Th Th ∈ R
T

xq ∈ P

, (5)

where

• The return ranking function μP: P → N
+ directly interfaces with the adopted portfolio-

level heuristic by returning the rank of a candidate portfolio, and in this work, it boils
down to a ranking based on the lower bound estimate of the return Emin[Pq ].

• The risk ranking function�P: P → N
+ returns the rank of a candidate portfolio based on

its risk measure, avoiding the estimation of statistical measures for all the combination
of available stocks.

• Constraints cP: P → R
T allow end-users to set up multiple decision criteria based on a

variety of T factors through a threshold Th, among which the stock diversification over
sectors, the observed trends in the historical stock prices, and the fundamentals behind
the considered assets. Constraint enforcement will be discussed later on (see Sect. 5.3).

• λ ∈ [0, 1] is the risk aversion of the end-users, which allows us to make a combination
of portfolio payoff and risk.

The ranking strategy replaces a combinatorial optimization approach, supplying a mean-
ingful way to compare the generalizations of the risk and the return that could be a priori not
comparable with a fully quantitative approach. Notice that in Eq. (5) the dependency on the
portfolio family P is made explicit and the set of additional constraints can be conveniently
adapted to the end-users’ needs.

5 The early portfolio pruningmethod

The proposed hybrid method consists of a two-step process:

1. Candidate portfolio generation It analyzes historical stock-related data by means of a
parallel itemset mining approach to generate a selection of candidate stock portfolios.
The aim is to early identify a subset of promising stock portfolios based on a global trend
analysis of the composing stock prices.

2. Portfolio selection It identifies, among the candidate portfolios generated at the previous
step, the best choice according to both a set of end-users preferences and the analysis of
additional stock-related data (e.g., fundamental analysis). This step is accomplished by
a solver that addresses the adapted mean–variance philosophy described in Sect. 4.

5.1 Datamodel

We consider the following stock-related data:

• The daily Open-High-Low-Close-Volume (OHLCV) values, associated with each con-
sidered stock in the reference time period.

1 Notice that for each portfolio Pq holds a biunivocal relation with the binary vector xq with 1 when the stock
si is selected in portfolio Pq and 0 otherwise.
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Table 2 Transactional data
representation. Reference time
period [d1, d6]

Time stamp Transaction

d1 〈A,5%〉, 〈B,5%〉, 〈C,−1%〉, 〈D,7%〉, 〈E,5%〉
d2 〈A,2%〉, 〈B,6%〉, 〈C,0%〉, 〈D,2%〉, 〈E,2%〉
d3 〈A,4%〉, 〈B,5%〉, 〈C,−2%〉, 〈D,4%〉, 〈E,5%〉
d4 〈A,4%〉, 〈B,2.5%〉, 〈C,−4%〉, 〈D,10%〉, 〈E,4%〉
d5 〈A,1%〉, 〈B,4%〉, 〈C,−2%〉, 〈D,7%〉, 〈E,1%〉
d6 〈A,−1%〉, 〈B,6%〉, 〈C,0%〉, 〈D,1%〉, 〈E,−1%〉

• A taxonomy that clusters stocks into homogeneous categories/financial sectors.
• The financial statements that periodically report the updates of the key economic stock

indicators.2

OHLCV data are widely used to analyze stock price and volume trends by means of
technical analyses as they are expected to inherently incorporate all the underlying effects.
They are analyzed in the first step of the hybrid method (candidate portfolio generation).

The taxonomy consists of a set of aggregation hierarchies built over stocks. It is instru-
mental for diversifying the fund allocation across different sectors thus reducing the overall
risk exposure [30].

Financial reports are commonly exploited in fundamental analysis to measure the equity
intrinsic value by examining related economic and financial factors [31]. Aggregation hier-
archies and financial reports are both used to drive the portfolio selection step.

5.1.1 Transactional stock price model

To generate the candidate itemset-based portfolios, the selected heuristic extracts from the
OHLCV data the daily closing prices of each of the considered stocks and stores them into
a transactional dataset [32]. Each transaction trx corresponds to a distinct trading day dx in
the reference time period [dstart , dend ]. trx consists of the set of pairs 〈si , r xi 〉, where r xi is
the percentage variation of the closing prices of stock si between days dx and dx−1.

An example of transactional dataset is reported in Table 2. It consists of six transactions,
each one collecting the closing price variations (w.r.t. the preceding day) of the stocks A, B,
C, D, and E on different trading days. For instance, on day d1 the closing price of stock A
has increased by 5% w.r.t. to the preceding day. Notice that in transactional data model the
temporal order of the contained transactions is not relevant, i.e., the temporal order of day
d1-d6 does not matter.

5.1.2 Taxonomy over stocks

We build a taxonomy over stocks to incorporate the information about stockmembership into
specific financial sectors. Each stock is mapped to the corresponding sector. In our experi-
ments, the hierarchical stock relationships are derived from the standard GICS sector-based
stock categorization.3 Alternatively, end-users could automatically infer the relationships
using ad hoc clustering-based methods, e.g., [33–35], subspace factorization or genetic algo-
rithms, e.g., [36, 37].

2 In the experiments, we will consider the quarterly reports published by Yahoo! Finance and available at
https://finance.yahoo.com/ (latest access: December 2021).
3 https://www.msci.com/gics (latest access: December 2021).
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5.1.3 Financial statements

Fundamental analysis focuses on examining the economic and financial factors related to a
stock (e.g., production, earnings, employment, housing, manufacturing, management). In the
current work, we focus on the subset of fundamental factors selected by [38] to forecast stock
performance, namely (i) rate of sales growth over the past year (SGI) [39], (ii) gross margin
(GMG) [40], (iii) earning surprise (CHGEPS) [41], (iv) total capital expenditures (CAPX),
(iv) revenues earned or expenses incurred (ACCRUAL) [42], and (v) level of research and
development investments (R&D). However, it is possible to use as constraint other factors as
well.

5.2 Candidate portfolio generation

Frequent itemset mining is an established unsupervised technique to discover recurrent item
correlations from transactional data [43]. A frequent itemset is an arbitrary set of l items
(l ≥1) whose observed frequency of occurrence (support) is above a given threshold. In our
context, itemsets represent arbitrary stock portfolios consisting of l stocks.

Traditional itemset mining algorithms such as Apriori [44] and FP-Growth [45] do not
consider the weights associated with the items occurring in each transaction. In our context,
item weights indicate the percentage closing price variation w.r.t. the preceding trading day.

More recently, various algorithm extensions have been proposed to incorporate item
weights into the itemset mining process, e.g., [46, 47]. In parallel, lots of efforts have been
devoted to parallelizing the extraction of frequent itemsets using Hadoop–Spark framework
in order to scale toward Big datasets, e.g., [13].

The candidate portfolio generator in EPP extracts all the itemsets representing promis-
ing stock portfolios by adopting the portfolio-level heuristic evaluator previously proposed
by [14]. The key idea is to filter out the combinations whose average least return of the com-
posing stocks is below a given threshold. Since the current implementation of the presented
heuristic method is centralized, it is unsuitable in its current form for coping with a very large
initial stock set (see Sect. 6.4).

To overcome the above issue, we leverage the parallel and distributed itemset mining
techniques presented by [48] and currently supported by theML-Lib library [49]. Specifically,
we tailor the parallel mining process to successfully cope with transactional data including
item weights.

5.3 Portfolio selection

Modern financial decision support systems allow end-users to specify their preferences for
portfolio selection by different levels of insight, thus extending the originalMarkowitz’swork
that was based only on the first two moments of the distribution of the returns. Decisions are
commonly drivenby (i) the currentmarket conditions, (ii) the economic investors’ preferences
and attitude to risk, and (iii) the intrinsic economic value of the considered assets.

To identify the portfolio, EPP relies on the adapted mean–variance model previously
described in Sect. 4. It allows the enforcement of a set of user-specified constraints both at
the portfolio-level constraints. Specifically,
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• Fundamental analysis Portfolios are evaluated in terms of the relative strength of the
financial stock fundamentals. The ranking strategy shortlists the portfolios including
top-ranked stocks across a variety of established financial indicators.

• Diversification Portfolios are expected to include stocks well diversified across sectors
and markets. The portfolios that do not meet a sufficient level of diversification are early
pruned.

• Trend Stock price trends are commonly used to plan trading strategies. Portfolios are
shortlisted based on the underlying long-term price trends of the composing stocks,
which are estimated using established technical analysis indicators.

A more detailed description of the supported constraints is given below.

5.3.1 Portfolio-level constraints based on fundamental factors

We assign a fundamental score to each portfolio based on the characteristics of the composing
stocks. Specifically, according to [50], we first derive the financial/economic strength of each
stock based on a variety of fundamental factors and then combine the per-stock scores to
assign the portfolio-level score.

Starting from the initial set of fundamental indicators/ratios available in the fundamental
reports (see Sect. 5.1), we extract a summary consisting of a sample of key financial informa-
tion. The sample is extracted according to [38]. These values are discussed to be effective on
stocks with extreme returns, and thus, they well fit an early pruned family of stocks that have
been selected in the first stage of the algorithm by returns. To meet the end-user preferences,
the selection process of the considered indicators/ratios is expert-driven. She decides from
the default pool the indicators that are worth including.

The per-stock score is an integer number, ranging from zero to the number of activated
indicators/ratios. It considers the number of factors that are placed in the upper percentile
in the overall stock ranking.4 The idea behind it is to appreciate the relative strength of the
financial fundamentals of the stock only in terms of relative global quality, by looking at the
distribution of each indicator amongst the pruned stocks.

5.3.2 Portfolio-level constraints based on diversification

To assess the level of risk of a portfolio, we verify that the selected candidates satisfy a
minimum (user-provided) level of stock diversification according to the stock categorization
specified in the input taxonomy. Specifically, we compute the diversification level of the
portfolio as the percentage of stocks belonging to different categories. Notice that to manage
risk exposure the minimum diversification level can be manually specified by the domain
expert.

5.3.3 Portfolio-level constraints based on technical analyses

Stocks prices can be aggregated and analyzed using the classical technical analysis indica-
tors and oscillators [51] such as Simple Moving Average (SMA) and Exponential Moving
Average (EMA). They provide useful information about the underlying stock price trends
and exchanged volumes.

4 In compliance with [50] in the experiments we rank the stocks by decreasing summarizing factor score and
then pick only those in the upper 80% percentile.

123



Early portfolio pruning: a scalable approach...

Fig. 1 Graphical representation of the main decision support system steps

To prevent the selection of portfolios that include stocks characterized by negative trends
we also incorporate a portfolio evaluation based on technical analysis.

For example, EPP supports the comparison between the current portfolio prices and the
simple/exponential moving average at a fixed periodicity (e.g., when the price is above the
SMA with period 50 then a price uptrend is likely).

5.3.4 Risk aversion

To meet end-users’ preferences, we ask them to set the value of risk aversion λ ∈ [0, 1] in
the adapted mean–variance logic. The higher λ, the higher the risk aversion (see Sect. 4).

Notice that alternative, more sophisticated approaches to attach risk aversion levels to
stock portfolios (e.g., [52]) can be integrated as well.

5.4 The decision support system

Algorithm 1 presents the proposed decision support system. First, it runs the LBPR algorithm
on the dataset of daily stock prices Ds Then, it ranks the result set shortlisting the top-k
portfolios by filtering out all the portfolios with diversification level lower than the given
threshold thd and with fundamental score below thf . Finally, it selects the stock portfolio
achieving the optimal balance between expected return and risk.

To better clarify the key steps adopted by the decision support system, Fig. 1 shows a
sketch of the decision-making process.

5.4.1 Computational complexity

The computational complexity of the LBPR algorithm is mainly influenced by the itemset
mining step, which is used to heuristically generate the candidate stock portfolios. The further
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Algorithm 1 EPP: pseudocode of the decision support system

Input : Ds: Dataset containing daily stock prices of traded companies
Df : Dataset containing financial statements of traded companies
Dd: Dataset containing sectors of traded companies
sup: Minimum support threshold for LBPR (default: 8%)
l: Maximal portfolio size for LBPR (default: 7)
k: number of portfolios to maintain after LBPR step (default: 100)
thd: diversification threshold (default: thd = 70%)
tic: Defined condition on technical indicator[s]
(default: daily closing price above/under SMA-50 periods)
f : Fundamental indicator[s] to be employed
thf : Fundamental indicators scoring threshold (default: 20th percentile)
λ: Risk-based weight between rankings [0, 1] (default: 0.5)

Output: ranking: Ranking of suggested portfolios

/* Lower-Bound Portfolio Return Estimation */
Rlbpr, rankinglbpr ← LBPR(Ds, sup, l)
Rdiv ← filterDiversification(Rlbpr , thd,Dd)
Rtopk ← filterTopK(Rdiv , rankinglbpr , k)
/* Filtering portfolios */
foreach portfolio p ∈ Rtopk do

if p satisfies tic then
Rti.insert(p)

Lstocks ← extractStocks(Rti)
foreach stock s ∈ Lstocks do

scores ← scoringStock(s, f,Df )
Lscores.insert(scores)

foreach portfolio p ∈ Rti do
scorep ← scoringPortfolio(Lscores)
if scorep > thf then

Rf .insert(p)

/* Ranking result set */
rankingrisk ← rankByRisk(Rf )
ranking ← (1 − λ) · rankinglbpr + λ · rankingrisk
return ranking

steps, applied on top of a restricted subset of portfolios, have negligible impact on time and
memory complexity.

Enumerating all the possible frequent itemsets in a large dataset is known to be NP-
hard [53]. In particular, the number of generated candidates is linear with the dataset size and
combinatorial with the number of input items. However, as discussed in [14], the optimal
portfolio size is at least one order of magnitude lower than the number of candidate stocks.
Hence, its impact is much less critical for maximal itemset mining.

LBPR adopts a parallel implementation of a maximal itemset mining algorithm [13],
which guarantees a time complexity of O( |Ds |

P ), where |Ds | is the dataset size and P is the
number of partitions used in the parallel and distributed computation. Empirical evidence of
the algorithm scalability is given in Sect. 6.4.
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6 Experiments

6.1 Experimental design

6.1.1 Data sources

We crawled stock-related data from Yahoo! Finance.5

6.1.2 Hardware and code

We run the experiments on a hexa-core 2.67 GHz Intel Xeon with 32GB of RAM, running
Ubuntu Linux 18.04.4 LTS. The framework is written in the Python and Spark languages.
The source code is available for research purposes upon request to the authors.

6.1.3 Backtesting

We run a set of backtesting trading simulations to evaluate the profitability and riskiness of
EPP. The test periods are defined according to the bearish and bullishmarket states previously
introduced in [54]. To this end, we first segment the raw price series of the analyzed market
index into bearish and bullish market states, highlighted in Fig. 2, and then select reference
time periods accordingly.

• Bearish period Period 2008–2009. It was mainly characterized by a bearish market
condition due to the global financial crisis originated by the subprime mortgage crisis.

• Bullish period Period 2012–2015. It was characterized by a bullish market condition due
to global economic growth. This period is a subsection of the 10-year long bullish period
identified. Specifically, the selected subsection is characterized by the fastest growing
market of the full period.

• COVID-19 pandemic period Period 2018–2020. It was characterized by a mix of bearish
and bullish market states. This particular case study is related to the outbreak of the
COVID-19 pandemic, the imposition of restrictions, and the end of the first epidemic
wave. We consider it as real-life, challenging scenario.

Separately for each period, we run several backtesting simulations to assess the effective-
ness and robustness of the portfolio optimization strategies on historical stock-related data
relative to the NASDAQ-100 index. Specifically, we learn the itemset-based model using a
six-month period (e.g., from July 1, 2007, to December 31, 2007, for the bearish period)
and apply it to the next 12 months (e.g., for year 2018). For each simulation, we apply a
buy-and-hold strategy, i.e., we buy the portfolio stocks at the beginning of the period and sell
them at the end.

In all the performed simulations we consider an initial equity of 100,000 USD, we adopt
a fixed-fractional money management strategy (with neither stop loss nor stop profit limits)
and approximate per-trade transaction costs to 0.15% [55].

6.1.4 Competitors

We compare the performance of EPP with that of

5 https://finance.yahoo.com. (Latest access: August 2020).

123

https://finance.yahoo.com


D. G. Gioia et al.

Fig. 2 The NASDAQ-100 index. Bearish periods are colored in gray whereas bullish ones are in white

• TheNASDAQ-100 benchmark, which replicates theNASDAQ-100 indexwith no lever-
age.

• The established mean–variance model by Markowitz [55], where, to choose the optimal
portfolio on the efficient frontier, we follow the strategy presented by [56] and optimize
the choice according to the value of the Sharpe ratio [57], which measures the reward-
to-variability ratio of a portfolio compared to a risk-free asset. This portfolio will be
identified asMarkowitz–Sharpe from now on.

• Aset of recently proposed deep reinforcement learning (DRL) strategies to stock portfolio
allocation available in the FinRL library, namely A2C, TD3, and DDPG [58].

• The most recently proposed itemset-based heuristic for portfolio generation, namely
DISPLAN [14].

• Three establishedUS hedge funds (only for the most recent COVID-19 pandemic period
2018-2020) investing on the same assets, i.e., MSEGX-Morgan Stanley Inst Growth A,6

OLGAX-JPMorgan Large Cap Growth A,7 PIODX-Pioneer Fund Class A.8

For Markowitz, we generate portfolios by using the estimateMaxSharpeRatio function
from MATLAB (R2020b). For DISPLAN and EPP, we vary the minimum support threshold
in the range [3%,12%], whereas the diversification threshold is set to 70%. To train FinRL,
we consider 10 years of historical data to avoid the negative effects of data overfitting.

6.1.5 Evaluation metrics

For each trading simulation we analyze

6 https://www.morganstanley.com/im/en-us/intermediary-manager-research/product-and-performance/
mutual-funds/us-equity/growth-portfolio.shareClass.A.html (Latest access: March 2022).
7 https://am.jpmorgan.com/us/en/asset-management/adv/products/jpmorgan-large-cap-growth-fund-a-
4812c0506 (Latest access: March 2022).
8 https://www.amundi.com/usinvestors/Products/Mutual-Funds (Latest access: March 2022).
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• The equity line plot, which graphically shows the temporal variation of the equity during
the test period [51].

• The payout, which is computed as the overall percentage return/loss of the portfolio at
the end of the test period [4].

• TheVolatility, which measures the standard deviation of the overall portfolio value with
regard to the daily returns [4].

We graphically analyze the metrics above by plotting time series representing the percent-
age variation of the equity w.r.t. the initial value of the investment (e.g., see the equity line in
Fig. 6a) and the daily percentage change in the price of the portfolio (e.g., see the volatility
plot in Fig. 6b).

6.1.6 Scalability

We test the scalability of EPP with both the number of considered stocks and the size of the
historical time window used in the learning phase to generate the itemset-based model.

To test the scalability with the number of stocks, we randomly add stocks of the Stan-
dard&Poor500 index to the initial stock set and rerun the simulations until the whole S&P500
index is covered.

6.2 Results of the backtesting simulations

Here, we present the following results:

• The comparison between the equity lines of the portfolios generated by EPP and those of
the tested competitors (see Figs. 3a, 4a, 5a, 6a, 7a, and 8a). They provide a high-level view
of the overall performance achieved by different approaches. For the sake of clarity, the
comparisons with the Reinforcement Learning strategies are reported in separate plots
(see Figs. 3b, 5b, and 7b).

• The comparison between the equities selected by EPP with those selected by the real
hedge funds (see Fig. 9). The aim is to show the applicability of the proposed system in
a real scenario.

• The volatility of EPP compared with those of the other approaches (see Figs. 4b, 6b,
and 8b).

Hereafter, we will separately analyze each market period.

6.2.1 COVID-19 pandemic period

Figure 3a and b compares the equities in the COVID-19 pandemic period (years 2018–
2020). EPP shows good resilience properties against negative market trends. For example,
note the frequency with which DISPLAN values (dotted in orange) are subject to declines
during different temporal windows (e.g., 09/2019-12/2019, 01/2020-05/2020), while EPP
maintains profitable values. It outperforms both DISPLAN and Markowitz–Sharpe, while
maintaining comparable results with regard to the DRL-based methods. By deepening the
analysis of the COVID-19 pandemic outbreak period (see the equity lines in Fig. 4a and the
volatility plot in Fig. 4b), EPP and DRL-based methods show a good capability to counteract
themarket drawdown thanDISPLANandMarkowitz–Sharpe during the peak of the epidemic
wave. The portfolio capability to be adaptive against adverse market movements is inherent
in DRL agents, whereas turns out to be an empirical property of the combination of a static
itemset-based model with the adapted Markowitz model.
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Fig. 3 Percentage variation of the equities. COVID-19 pandemic period. NASDAQ-100 index. a Comparison
with benchmark, DISPLAN, and Markowitz–Sharpe. b Comparison with the Deep Reinforcement Learning
strategies

Fig. 4 Performance comparison during the outbreak of the COVID-19 pandemic. a Percentage variation of
the equities. b Volatility plot

Fig. 5 Percentage variation of the equities. Bearish period. NASDAQ-100 index. a Comparison with bench-
mark, DISPLAN, and Markowitz–Sharpe. b Comparison with deep reinforcement learning strategies

6.2.2 Bearish market period

The analyzed bearish period (2008–2011) is relative to the 2008 financial crisis and the
subsequent market recovery. In the aforesaid challenging scenario, EPP maintains a good
performance in the first two years (2008–2010), only to be overtaken by Markowitz–Sharpe
during the rally following the financial crisis. An opposite result occurs in the comparison
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Fig. 6 Performance comparison during the outbreak of the financial crisis. a Percentage variation of the
equities. b Volatility plot

Fig. 7 Percentage variation of the equities. Bullish period. NASDAQ-100 index. a Comparison with bench-
mark, DISPLAN, and Markowitz–Sharpe. b Comparison with deep reinforcement learning strategies

with DRL-based models, where many crossovers occur in the first two years, culminating
in a final overtaking in the rally phase by EPP. (see Fig. 5a and b). However, by focusing
on the outbreak of the financial crisis, the EPP portfolio has shown to be less volatile than
Markowitz–Sharpe and its drawdown and payout are roughly comparable to those of the
DRL-based methods (see Fig. 6a and b).

6.2.3 Bullish market period

EPP performs better than the other tested competitors in the bullish period (see Fig. 7a and b).
Deepening the analysis on the period of maximal market growth (see Fig. 8a), Markowitz–
Sharpe payout is superior to those of EPP. However, the volatility is significantly higher (see
Fig. 8b). The reason is that thanks to the portfolio-level constraints EPP is more conservative
than Markowitz–Sharpe even in bullish market conditions when risky strategies that rely on
very few stocks are rewarded.

6.2.4 Comparison with hedge funds

This confirms the usability of the proposed system in real-world scenarios.

123



D. G. Gioia et al.

Fig. 8 Performance comparison during the period of most significant market growth (2013–2014). a Percent-
age variation of the equities. b Volatility plot

Fig. 9 Percentage variation of the equities. COVID-19 pandemic period. Comparison with real funds

6.3 Effect of the risk aversion

End-users can personalize the risk exposure of the EPP portfolio by conveniently setting the
risk aversion λ. The higher λ, the more important is the risk-based ranking classification of
the candidate portfolios (see Sect. 4).

We run a set of experiments to analyze the effect of the risk aversion on the performance
of the generated portfolios. Figure 10a and b compares the daily volatility and payout distri-
butions over all the analyzed years (2008–2020) achieved by setting a medium risk aversion
(λ = 0.5) and no risk aversion (λ = 0), respectively. The mean payout values are roughly
comparable with each other, whereas the volatility of the configuration setting with no risk
aversion is consistently higher. However, setting an extreme configuration is not advisable
because, on the one hand, taking into account no risk rankings may expose investors to more
relevant market oscillations without yielding significant returns. On the other hand, the risk
ranking alone would erase the pivotal role of the selected heuristic.

6.4 Scalability tests

We run several backtesting simulations using the EPP method to test the scalability with the
number of considered stocks and the size of the training window.
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Fig. 10 EPP standard configuration with medium risk aversion (λ=0.5) vs. EPP with no risk aversion (λ=0).
Years 2008-2020. a Distributions of the daily volatility statistic. b Distributions of the yearly payouts

Firstly, we tested EPP on a larger set of stocks, i.e., the entire S&P 500 index (500 stocks).
Figure 12 shows the equities lines of both EPP and the benchmark S&P 500 index over the
COVID-19 pandemic period. The results confirm the effectiveness of the proposed strategy.

Secondly, we vary the number of initial stocks from 10 to 500 to test the system scalability
(see Fig. 11a). To evaluate the impact of the parallel itemset mining phase on the EPP time
complexity, we test both a parallel and a centralized version of the system. In the centralized
variant of EPP, we replace the PFP algorithm [13] with an efficient, centralized FP-Growth
algorithm implementation.9

As expected, the increase in the number of initial stocks results in a super-linear increase
of the execution time, mainly due to the generation of a combinatorial number of candidate
itemsets, which are then processed in a sequential manner. Conversely, in the parallel version
the job is distributed across multiple workers and the increase is approximately linear with
the number of stocks.

Figure 11a shows a similar scalability test executed by keeping the number of initial
stocks fixed to 100 (i.e., the stocks in the NASDAQ-100 index) and by varying the number
of training months from 3 to 18. A nonlinear increase in the time complexity comes out by
considering a training window size larger than 12. However, the latter scalability issue seems
to be less critical than the former one as the standard window size configuration is typically
between 6 and 12 months.

7 Conclusions and future works

The paper presented a hybrid financial decision support system for selecting stock portfolios.
The framework allows for the combination of a parallel itemset mining process applied to
historical stock price data with a tailored set of constraint and a risk-averse adjustment. The
key idea is to simplify the complexity of stock-based approaches by early filtering part of the
candidate portfolios during the initial itemset mining phase. Specifically, the extracted item-
sets represent candidate stock portfolios, where we directly apply the traditionalMarkowitz’s
philosophy, allowing also for the enforcement of further portfolio-level constraints based on
complementary knowledge provided by taxonomies and financial reports.

9 http://fimi.uantwerpen.be/src/ (Latest access: December 2021).
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Fig. 11 Time complexity analysis. Comparison between EEPwith parallel itemsetminingwith the EPP variant
with sequential itemset mining. a Scalability with the number of initial stocks. b Scalability with the training
window size

Fig. 12 Percentage variation of the equities. COVID-19 pandemic period. S&P 500 stocks. Comparison
between EPP and the benchmark

The integration of a parallel itemset mining allows for the analysis of large stock sets not
manageable by a centralized approach and the selected portfolios achieves good performances
in terms of payout and risk exposure when compared to:

• Deep reinforcement learning methods. (Even if EPP relies on static stock portfolios,
whereas DRL dynamically adapts the model to the current market situation.)

• Markowitz–Sharpe models.
• Established US hedge funds.

As future work, we plan to: (i) Extend the current hybrid method and DSS by inte-
grating financial instruments other than stocks (e.g., exchange-traded funds); (ii) test the
proposed approach on non-US stocks by simulating multinational scenarios and properly
managing both multinational financial data and the geographical diversification over stocks;
(iii) improve the way decision-makers reflect their risk aversion; and (iv) investigate the use
of fuzzy rule models [59] and probabilistic itemset mining [60] to model market uncertainty.
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