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Abstract—We give a description in terms of phase and ampli-
tude deviation for networks of nonlinear oscillators with noise.
The case of white Gaussian noise is considered. The equations
for the amplitude and the phase are rigorous, and their validity
is not limited to the weak noise limit. We show that using Floquet
theory, a partial decoupling between the amplitude and the phase
is obtained. The decoupling can be exploited to describe the
oscillator’s dynamics solely by the phase variable. We discuss
to what extent the reduced model is appropriate and some
implications on the role of noise on the frequency and the
synchronization of the oscillators.

Synchronization of coupled oscillators is a paradigm for
complexity in many areas of science and engineering [1]–[3].
Any realistic network model should include noise effects [4],
[5].

A network composed of N weakly coupled nonlinear os-
cillators with noise can be described by the set of differential
equations

ẋi = ai(xi) + εci(x1, . . . ,xN , ζ(t)) i = 1, . . . , N (1)

where xi is the state of the ith oscillator, ε is the coupling in-
tensity and ζ(t) is the vector of the noise sources. Linearizing
around the noiseless state yields the description of the network
in terms of stochastic differential equations

dXi = [ai(Xi) + εci(X1, . . . ,XN )] dt

+ εBi(X1, . . . ,XN ) dW i i = 1, . . . , N (2)

where Bi : R
n·N 7→ Rn,m is a n ×m diffusion matrix, and

W i : R 7→ Rm is a vector of Wiener processes (the integral
of a white noise). For the sake of simplicity, in equation (2)
we assume that all oscillators are of the same order (Xi ∈
Rn, for all i), but we allow the interaction to vary for each
oscillator both in the modulating matrix Bi and in the random
fluctuation W i.

For ε = 0, the SDE (2) reduce to an ordinary differential
equation (ODE) describing N independent, noiseless oscilla-
tors. The i–th oscillator is described by the ODE

dxi(t)

dt
= ai(xi(t)) (3)

We assume that the ODE (3) admits an asymptotically stable
Ti–periodic solution, represented by a limit cycle xSi(t) in its
state space. For each oscillator we define the vector

u1i(t) =
ai(xSi(t))

|ai(xSi(t))|
(4)

u1i(t) is the unit vector that at each time instant is tangent
to the limit cycle xSi(t). Together with u1i(t) we consider
other n − 1 vectors u2i(t), . . . ,uni(t), such that the set
{u1i(t), . . . ,uni(t)} is a basis for Rn for all t.

A crucial concept to be defined in the analysis of synchro-
nization of oscillators is the phase concept. A phase function
is intended to represent the projection of the oscillator’s state
onto a reference trajectory, normally the unperturbed limit
cycle. For each oscillator we introduce a phase function θi :
Rn 7→ [0, Ti), interpreted as an elapsed time from an initial
reference point. Together with the phase function we shall
consider an amplitude deviation function Ri : R

n 7→ Rn−1,
with θi,Ri ∈ Cm(Rn), m ≥ 2.

The following theorem establishes the amplitude and phase
equation for the network

Theorem 1: Consider the Itô diffusion (2), and consider the
coordinate transformation

xi = hi(θi,Ri) = xSi
(θi(t)) + Y i(θi(t))Ri(t) (5)

Then in a neighborhood of the limit cycle xSi the phase θi(t)
and the amplitude Ri(t) are Itô processes and satisfy

dθi =
[
1 + aθi(θi,Ri) + ε2 âθi(θ1 . . .RN )

+ εcθi(θ1 . . .RN )
]
dt+ εBθi(θ1 . . .RN ) dW i (6a)

dRi =
[
Li(θi)Ri + aRi(θi,Ri) + ε2âRi(θ1 . . .RN )

+ εcRi(θ1 . . .RN )
]
dt+ εBRi(θ1 . . .RN ) dW i

(6b)

where (θ1 . . .RN ) is a shorthanded notation for
(θ1,R1, . . . , θN ,RN ). The explicit expression of all the
terms in equations (6a)-(6b) is here omitted, but it can be
found in [8]. The important point is that they admit analytical
expressions in terms of the unperturbed limit cycles xSi and
the basis vectors u2i , . . . ,uni .

The amplitude and phase equations (6a) and (6b) are exact,
since no approximation is involved in their derivation, and
they are valid for any value of the noise intensity ε as long
as the Jacobian matrices Dhi are regular. The amplitude and
phase equations obtained crucially depends on the choice of
the basis vectors u2i , . . . ,uni .

In general, the equations for the two Itô processes for the
phase and for the amplitude are coupled together, but it is



possible to show that making use of Floquet theory, a partial
decoupling between the phase and the amplitude dynamics is
obtained. Before introducing the theorem we recall the main
results of the Floquet theory [6], [7]. Let Ai(t) =

∂ai(xSi
)

∂xi

be the Jacobian matrix of the i–th oscillator evaluated on the
limit cycle xSi(t), and let Φi(t) be the fundamental matrix of
the variational equation

dyi(t)

dt
= Aiyi(t).

Thus, from Floquet theory we get:

Φi(t) = P i(t)e
DtP−1

i (0), (7)

where P i(t) is a Ti–periodic matrix, and Di =
diag[ν1i , . . . , νni ] is a diagonal matrix whose diagonal entries
are the Floquet characteristic exponents [6], [7].

Theorem 2: If the vectors u2i(t), . . . ,uni(t) are chosen
such that

[riu1i(t),u2i(t), . . . ,uni(t)] = P i(t),

then the Itô processes (6a) and (6b) become

dθi =
[
1 + ãθi(θi,Ri) + ε2 âθi(θ1 . . .RN ) (8a)

+ ε cθi(θ1 . . .RN )
]
dt+ εBθi(θ1 . . .RN ) dW i

dRi =
[
D̃iRi + ãRi(θi,Ri) + ε2âRi(θ1 . . .RN ) (8b)

+ ε cRi(θ1 . . .RN )
]
dt+ εBRi(θ1 . . .RN ) dW i,

where D̃i = diag[ν2i , . . . , νni
] and the Taylor series of

ãθi(θi,Ri) and ãRi(θi,Ri) do not contain linear terms in
Ri.

Another major advantage of using Floquet basis is that the
resulting phase functions are locally coincident with asymp-
totic phase introduced in [1], [2].

As an example we consider the following system composed
by two second order (N = 2, n = 2, and m = 2) oscillators
written in polar coordinates

dρi = ρi (1− ρi) dt+ ε ρidWρi (9a)

dϕi = [νiρi + ε(ϕj − ϕi)] dt+ ερj dWϕi (9b)

for i, j = 1, 2, and j ̸= i. The real parameters νi define the
free running frequency of the oscillators in absence of noise.
By using a Floquet basis, the related amplitude and phase
equations can be derived:

dθi =

{
1−R2

i + ε

[
νj
νi
(θj −Rj)− (θi −Ri)

]}
dt

+ ε

[
µi(1 +Ri)dWρi +

1 +Rj

νi
dWϕi

]
(10a)

dRi =− [Ri (1 +Ri)] dt+ εµi(1 +Ri)dWρi (10b)

We remark that, according to Theorem 2, eq. (10a) has a drift
coefficient that starts with a quadratic term in Ri. Moreover,
it is possible to show that asymptotically the two oscillators
synchronize with a phase difference

ψ =
νi − νj
2ε

(11)
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Fig. 1. Top: Phase difference given by (11) versus the noise intensity ε for
two oscillators with different free running angular frequencies, ν1 = 1 and
ν2 = 2. Bottom: Phase difference for two oscillators (free running angular
frequencies are ν1 = 1 and ν2 = 2 respectively), as a function of time for a
specific realization of the noise. The noise intensity is set to ε = 0.05. The
phase difference in absence of noise is shown for reference.

The phase difference in presence of noise is compared with
that obtained without noise in figure 1. On the top we can
see the asymptotic expected phase difference versus the noise
intensity, while on the bottom it is shown the phase difference
versus time for a specific realization of the noise process. It
can be seen how noise operates to actively reduce the phase
difference between the oscillators.

It is worth noting that the amplitude and phase description
highlights the influence of noise on the phases of the oscil-
lators. Therefore, it represents a good starting point for the
analysis of the role of noise on synchronization.
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